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ABSTRACT

We test Milgromian dynamics (MOND) using wide binary stars (WBs) with separations of 2-30 kAU. Locally, the WB orbital
velocity in MOND should exceed the Newtonian prediction by & 20 per cent at asymptotically large separations given the
Galactic external field effect (EFE). We investigate this with a detailed statistical analysis of Gaia DR3 data on 8611 WBs
within 250 pc of the Sun. Orbits are integrated in a rigorously calculated gravitational field that directly includes the EFE. We
also allow line-of-sight contamination and undetected close binary companions to the stars in each WB. We interpolate between
the Newtonian and Milgromian predictions using the parameter agry, With O indicating Newtonian gravity and 1 indicating
MOND. Directly comparing the best Newtonian and Milgromian models reveals that Newtonian dynamics is preferred at 19¢
confidence. Using a complementary Markov Chain Monte Carlo analysis, we find that o,y = —0.0211”8:822, which is fully
consistent with Newtonian gravity but excludes MOND at 160 confidence. This is in line with the similar result of Pittordis and
Sutherland using a somewhat different sample selection and less thoroughly explored population model. We show that although
our best-fitting model does not fully reproduce the observations, an overwhelmingly strong preference for Newtonian gravity
remains in a considerable range of variations to our analysis. Adapting the MOND interpolating function to explain this result
would cause tension with rotation curve constraints. We discuss the broader implications of our results in light of other works,
concluding that MOND must be substantially modified on small scales to account for local WBs.

Key words: gravitation —methods: statistical —celestial mechanics —binaries: general —stars: kinematics and dynamics—

galaxies: kinematics and dynamics.

1 INTRODUCTION

Our current best understanding of gravity is encapsulated by the
theory of General Relativity (GR; Einstein 1915). This reduces
to Newtonian dynamics in the weak-field non-relativistic limit
(Rowland 2015; de Almeida, Piattella & Rodrigues 2016; Ciotti
2022). According to this theory, the gravity from a point mass
follows an inverse square law, which historically was inferred from
the fact that the rotation velocity v, of a planet around the Sun
declines with its heliocentric distance r as v, oc 1/4/r. In principle,
this Keplerian decline should also apply to galaxies as a whole
if one considers tracers of their potential far beyond the bulk of
their detectable baryonic mass (stars and gas). However, it is well
known that galaxy rotation curves are flat (Bosma 1978; Rubin,
Ford & Thonnard 1978; Faber & Gallagher 1979, and references
therein) — this is nicely illustrated in fig. 15 of Famaey & McGaugh
(2012).

* E-mail: indranilbanik1992@gmail.com (IB); w.j.sutherland@qmul.ac.uk
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Several explanations have been put forward for this missing
gravity problem, which is also apparent in a number of other
ways like dwarf galaxy velocity dispersions (fig. 11 of Mc-
Connachie 2012) and weak gravitational lensing (Brouwer et al.
2021). The most popular idea is that the extra gravity needed
to bind galaxies and enhance their effect on passing photons
comes from an otherwise undetected halo of particles beyond
the well-tested standard model of particle physics (for a review,
see Peebles 2017). This forms the basis for the currently pre-
vailing Lambda cold dark matter (ACDM) standard model of
cosmology (Efstathiou, Sutherland & Maddox 1990; Ostriker &
Steinhardt 1995). However, DM particles have not been found
despite decades of highly sensitive searches for collisions with
terrestrial detectors (LUX Collaboration 2017; Lux-Zeplin Col-
laboration 2023). Similarly, there is no sign of y-rays from DM
annihilation or decay processes in supposedly DM-dominated Galac-
tic satellites, providing stringent limits on the allowed properties
of the hypothetical particles (Hoof, Geringer-Sameth & Trotta
2020).

This has led some workers to consider that the missing gravity
problem might not be due to seemingly undetectable particles. The
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most developed alternative is Milgromian dynamics (MOND; Mil-
grom 1983). It proposes that the gravity g in an isolated spherically
symmetric system is asymptotically related to the Newtonian gravity
g, of the baryons alone according to

g — {ng ifg, > a,,

JBgy, ifgy <a,.
MOND introduces a fundamental acceleration scale a, below which
the gravitational field deviates substantially from Newtonian ex-
pectations.l Just like with the Newtonian constant G, we must
determine a, empirically. Using the rotation curves of a handful
of disc galaxies with properties similar to our own, it has been found
that @, = 1.2 x 107'° ms™? (Begeman, Broeils & Sanders 1991).
This value has remained very stable over many decades (Gentile,
Famaey & de Blok 2011; McGaugh, Lelli & Schombert 2016; Chae
2022).

MOND works remarkably well at predicting the dynamics of
galaxies across a huge range in baryonic mass, surface brightness,
and gas fraction (Famaey & McGaugh 2012; McGaugh, Lelli &
Schombert 2016; Lelli et al. 2017b; Kroupa et al. 2018; Li et al.
2018). Observations show that galaxies follow a remarkably tight
‘radial acceleration relation’ (RAR) between the radial components
of g and g, as deduced from rotation curves and the baryonic
mass distribution, respectively (McGaugh 2020). This conclusion
is not much dependent on assumptions about the stellar mass-to-
light ratio because one can restrict attention to gas-rich galaxies
(McGaugh 2012). The intrinsic scatter in the RAR is only 0.034
dex, which given the uncertainties is consistent with zero (Desmond
2023). The RAR also extends to elliptical galaxies and even to weak
gravitational lensing down to g, &~ 1075 a, (Brouwer et al. 2021).
The gravitational forces in virialized galaxies are thus very well
described by MOND (for a review, see section 3 of Banik & Zhao
2022).

These successes are complemented by recent numerical MOND
simulations of galaxies, which allow an exploration of non-
axisymmetric dynamical features like bars and spiral arms (Banik
et al. 2020; Roshan et al. 2021a). MOND has also been shown
to get about the right star formation rates in disc galaxies with
an appropriate size and gas fraction for their stellar mass (Nagesh
et al. 2023). While these works typically target isolated galaxies,
MOND has also been applied to interacting galaxies, in particular
to understand the Antennae (Renaud, Famaey & Kroupa 2016), the
tidal stability of dwarf spheroidal galaxies in the gravitational field
of the Fornax Cluster (Asencio et al. 2022), the asymmetric tidal
tails of the globular cluster Palomar 5 (Thomas et al. 2018) and open
star clusters in the Solar neighbourhood (Kroupa et al. 2022), and
the formation of the Local Group (LG) satellite planes around the
Milky Way (MW) and M31 from tidal debris expelled by a past flyby
encounter between their discs around 8 Gyr ago (Zhao et al. 2013;
Bilek et al. 2018; Banik et al. 2022).

Many of these results were motivated by tensions and inconsis-
tencies within the ACDM paradigm. For instance, it is known to
face severe difficulties explaining the LG satellite galaxy planes
(Pawlowski 2021b, and references therein). Hydrodynamical MOND
simulations of M33 (Banik et al. 2020) were motivated by difficulties
in understanding why it is weakly barred, bulgeless, and has a two-
armed spiral — behaviour which is in many ways the opposite of
what arises in Newtonian simulations with a live halo (Sellwood,
Shen & Li 2019). Problems understanding galaxy bars in ACDM

ey

IThis is true in percentage terms, but the difference in absolute terms is < a,.
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are certainly not confined to M33: the model faces a 130 tension
when confronted with the observed ratios between bar lengths and
corotation radii (Roshan et al. 2021b). This fast bar tension has been
rather directly linked to dynamical friction between the rotating bar
and the hypothetical CDM halo (fig. 12 of Roshan et al. 2021a).
Those authors demonstrated that the problem is alleviated in MOND
(see their fig. 20), with a similar result found in subsequent more
detailed simulations that include hydrodynamics and star formation
(see fig. 16 of Nagesh et al. 2023). The presence of bars in galaxies
with a low surface brightness is also very problematic for ACDM
because these galaxies are supposedly embedded in a dominant dark
halo, which reduces the role of disc self-gravity (Kashfi, Roshan
& Famaey 2023). Milgromian disc galaxies are always completely
self-gravitating, making it easier to understand why even galaxies
with a large enhancement to their Newtonian baryonic rotation
curve commonly have bars and spiral arms (McGaugh, Schombert
& Bothun 1995; McGaugh & de Blok 1998a, b).

MOND has also been applied on galaxy cluster and cosmological
scales with the neutrino hot dark matter (VHDM) paradigm developed
by Angus (2009) and the aether scalar tensor (AEST) model (Skordis
& Ztosnik 2019, 2021, 2022) — for a review, we refer the reader
to section 9 of Banik & Zhao (2022). Here again some of the
successes relate to situations which are severely problematic for
ACDM, in particular the KBC void and Hubble tension (Keenan,
Barger & Cowie 2013; Haslbauer, Banik & Kroupa 2020) and the El
Gordo massive galaxy cluster collision at redshift z = 0.87 (Asencio,
Banik & Kroupa 2021, 2023). Thus, the successes of MOND extend
well beyond its initial motivation forty years ago from the rotation
curves of high surface brightness disc galaxies. At the same time,
the motivation for considering alternatives to ACDM extends well
beyond a mere failure to detect the hypothetical particles (for an
extensive review, see Banik & Zhao 2022).

1.1 The importance of wide binaries (WBs)

In this contribution, we seek to test the validity of MOND on very
small length scales by galactic standards, greatly diminishing the
role of DM (Acedo 2020). One might think that the role of MOND
would also be diminished, but since MOND does not introduce a
fundamental new length scale, it should remain valid in systems with
a much smaller mass and size than a typical galaxy provided the
accelerations are low enough. Equation 1 indicates that Newtonian
and Milgromian gravity diverge when g < g,. Around an isolated
point mass M, this occurs beyond its MOND radius

ry = HGM. 2)
a()

The MOND radius of the Sun is 7000 AU (7 kAU) or 0.03 pc. This is
much smaller than the typical separation between stars in the Solar
neighbourhood, where the Newtonian Jacobi or tidal radius for a
system with M = 2 M is 350 kAU (equation 43 of Jiang & Tremaine
2010). It is thus possible to test MOND at kAU distances from a
star provided suitable tracers can be found. The properties of long-
period comets that reach kAU distances have been used to argue in
favour of the Milgromian enhancement to the Solar potential (Penner
2020), while its predicted anisotropy may explain the apparent orbital
alignment of Kuiper belt objects with a large pericentre (Brown &
Mathur 2023; Migaszewski 2023). However, this evidence is rather
indirect. More direct evidence could be obtained using interstellar
precursor missions travelling at a few percent of the speed of light
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¢ (Banik & Kroupa 2019b), but this remains well beyond current
technology.

These difficulties can be overcome by using stars in WBs, defined
in this work as binary stars with orbital acceleration < g, implying
kAU-scale separations. The nearest star to the Sun is in such a WB
(Beech 2009, 2011). MOND can thus be tested using the orbital
acceleration of Proxima Centauri around « Centauri A and B, which
have a very small separation and can be treated as one object
(Kervella, Thévenin & Lovis 2017). Unfortunately, the ~ 0.5 pas
astrometric precision required is roughly two orders of magnitude
beyond the reach of current instruments (Banik & Kroupa 2019a).
Instead of using the acceleration, it is much more promising to
use the relative velocity, but then the wide binary test (WBT) of
gravity has to be done statistically by considering a large number
of WBs to average over orbital phases and projection effects. This
was first suggested by Hernandez, Jiménez & Allen (2012), with
Pittordis & Sutherland (2018) later exploring the behaviour of WBs
in several gravity theories. Since WBs come in a range of masses and
separations, the WBT is usually phrased as a statistical test involving
the distribution of the dimensionless parameter

Newtonian v¢
—

~ GM
U= v [ (3)
sky

where M is the total mass of a WB with sky-projected separation rgy
and relative velocity vy, with v = |v| for any vector v. Thus, the
relative velocity is normalized to the Newtonian circular velocity at
the projected separation. Since the actual separation is larger, v is
smaller than if the Newtonian v, had been calculated using the 3D
separation. Moreover, we only consider the sky-projected part of v,
(which we denote vgy) as the data is not yet accurate enough for
a 3D version of the WBT (though see Section 5.5). This is mainly
due to the parallaxes being too inaccurate to reliably constrain the
3D separation (Section 2.3.2), though there is also some additional
uncertainty from the required correction for the gravitational redshift
of each star (Loeb 2022). Considering only sky-projected quantities
further reduces v, which in this contribution is based on using Vgky
in equation (3) — we do not use the full 3D v. Note that even though
we will mostly be dealing with the magnitudes of ryy and vy, in
this work, these are actually 2D vectors within the sky plane. This is
important to the work of Hwang, Ting & Zakamska (2022), who used
the angle v between ryy, and vy, to obtain interesting constraints
on the WB orbital eccentricity distribution (Section 3.1.2).

The first detailed MOND calculations of WB orbits showed that
the Milgromian circular velocity would be enhanced by 20 per cent
over the Newtonian expectation in the asymptotic regime of large
separations, a result which can be understood analytically (Banik
& Zhao 2018c, hereafter BZ18).> Numerical MOND simulations
of nearby star clusters also show a 20 per cent enhanced velocity
dispersion over their Newtonian counterparts for essentially the same
reason (Kroupa et al. 2022). The enhancement is limited by the
Galactic gravity on the Solar neighbourhood, which is important
in MOND because it is a non-linear theory [equation (1)]. As a
result, the internal behaviour of a self-gravitating system is influenced
by an external source of gravity, even in the absence of tidal
effects. This non-standard external field effect (EFE) has been an
important aspect of MOND since the beginning, not only because
it is theoretically inevitable in a non-linear theory, but also because

27 in this contribution has the same meaning as Ugsky in BZ18.
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the EFE is necessary to suppress the MOND enhancement to the
velocity dispersions of the Pleiades and Praesepe open star clusters
(see section 3 of Milgrom 1983).

Many further arguments for the EFE can be made nowadays (for
a review, see section 3.3 of Banik & Zhao 2022). It significantly
enhances the tidal susceptibility of dwarf galaxies in a cluster
environment by weakening their self-gravity, thereby helping to
explain the observed signs of tidal disturbance in the Fornax Cluster’s
dwarf galaxies and the lack of low surface brightness dwarfs towards
its centre (Asencio et al. 2022). As explained in that work, tidal
radii are necessarily in the EFE-dominated regime, making their
results particularly sensitive to the EFE. Its subtle imprint on the
outer parts of disc galaxy rotation curves has recently been detected
by comparing galaxies in isolated and more crowded environments
(Chae et al. 2020b, 2021). The EFE is also crucial when calculating
the escape velocity from a mass distribution, since the Milgromian
potential of an isolated mass is infinitely deep (Famaey, Bruneton
& Zhao 2007; Zhao, Li & Bienaymé 2010; Banik & Zhao 2018b).
This is not true once the EFE is included because at large distances
where the EFE dominates, the gravitational field of a point mass
returns to the Newtonian inverse square law, albeit with a higher
normalization and some angular dependence (see fig. 1 of Banik &
Zhao 2022). This EFE-dominated regime is sometimes known as the
quasi-Newtonian regime, though in this contribution we simply refer
to it as the asymptotic regime because local WBs lack an extended
region in which they are isolated and at low acceleration. This is due
to the Galactic external field g, being slightly stronger than a,, as
evident from the Galactic rotation curve (e.g. Zhu et al. 2023).

Given the importance of g, for the WBT, it is fortunate that we
know g, from a direct measurement of the acceleration of the Solar
System relative to distant quasars using their changing aberration
angle, which directly tells us that g,/c = 5.05 & 0.35 pas/yr in a
direction very close to that of the Galactic centre (Gaia Collaboration
2021b). This precludes substantial deviations of g, from the value
deduced kinematically from the Galactic rotation curve (Section 3.1).
Even so, the predicted 20 per cent enhancement to the orbital
velocities of local WBs is related to the shape of the MOND
interpolating function in the regime close to the critical acceleration
scale q,. It is thus somewhat model-dependent as it does not directly
relate to the weak-field asymptotic limit at the heart of MOND.
Nevertheless, recent detailed rotation curve studies have mostly
converged on the form of the interpolating function in this regime,
though of course slight variations are still possible. We will return to
this point in Section 5.3.

Prospects for the WBT were discussed extensively in BZ18, whose
section 8 clarified the main systematic effects that would likely have
to be considered. The main issue was expected to be undetected
close binary (CB) companions to one or both of the stars in a
WB. Indeed, the nearest star to the Sun is in just such a triple
system: Proxima Centauri is on a wide orbit about o Centauri A
and B, whose mutual orbital semi-major axis of 23 AU is negligible
compared to the 13 kAU distance from their barycentre to Proxima
Centauri (Kervella et al. 2016; Kervella, Thévenin & Lovis 2017). At
larger distances from the Sun, it is possible that a similar CB would
not be resolved, but it would still have significant effects on the
observed kinematics that would not arise if Proxima Centauri were
orbiting a single star (Section 3.2.1). Pittordis & Sutherland (2019,
hereafter PS19) considered the WBT in light of actual data from
Gaia Data Release 2 (DR2; Gaia Collaboration 2018), highlighting
that there is indeed an extended tail towards much higher v than
could plausibly arise from genuine WB orbital motion, which cannot
realistically yield v 2 2 for any reasonable modification to gravity.

MNRAS 527, 4573-4615 (2024)
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The possible presence of CBs was strongly suggested by the analysis
of Clarke (2020) and later by Belokurov et al. (2020), who argued
that some of the WBs with unexpectedly large relative velocities also
have a Gaia astrometric solution that poorly fits the observations.
Since the astrometric solution only includes parallax and proper
motion, it was argued that the excess ‘noise’ could be due to
astrometric acceleration induced by a CB, which was previously
shown to typically induce a much larger orbital acceleration than
the WB orbital motion (see section 8.2 of BZ18). Further follow-up
observations should be able to confirm the existence of CB compan-
ions around some WBs (Manchanda, Sutherland & Pittordis 2023),
especially once the astrometric time series are published in Gaia DR4
(see Section 5.5).

Some line-of-sight (LOS) contamination is also inevitable, though
this is expected to be rather modest thanks to the excellent quality of
the Gaia data (see section 3 of PS19). Their work shows a clear main
peak to the v distribution due to WB orbital motion. Investigation
of its properties already decisively rejects theories where local WBs
behave like isolated MOND systems without the weakening of their
self-gravity due to the Galactic EFE (see their fig. 11). This is because
the gravity binding WBs can be deduced from the main peak to the
v distribution at v < 2, with CB and LOS contamination leading to
an extended low amplitude tail out to much higher v. If the orbital
velocity becomes asymptotically flat with increasing separation, we
would expect the mode of the v distribution to be significantly higher
in systems with large ry,. The predicted peak shift is in catastrophic
disagreement with the observations, which show at most only a
modest peak shift. This still leaves open the possibility that WBs
obey MOND with its inevitable EFE, but it falsifies the quantized
inertia proposal (McCulloch & Lucio 2019) and repeated claims
to have confirmed that WBs follow the isolated MOND prediction
without considering the full v distribution (Hernandez et al. 2019;
Hernandez, Cookson & Cortés 2022).

In this contribution, we conduct a detailed statistical analysis to
test the MOND prediction for local WBs. We use a rigorous grid
solution to the MOND field equation including the EFE (BZ18) and
then add possible perturbations from undetected CBs around one or
both of the stars in each WB. We jointly infer properties of the WB
population, the undetected CB population, and the extent of LOS
contamination, which becomes important towards large rq, and .
Both the model used and the exploration of its parameter space are
much more detailed than in any previous attempt at the WBT. To
mitigate possible biases, the plan was prepared in advance (Banik,
Pittordis & Sutherland 2021) and has barely been modified to deal
with the actual Gaia DR3 (Gaia Collaboration 2023).

In the following, we explain how we reduce the Gaia data set to
a form suitable for our analysis and what quality cuts we employ
(Section 2). We then introduce our detailed model for the WB data
set and explain how we compare it to observations (Section 3). Our
results are presented in Section 4 and discussed in Section 5, which
includes a comparison with prior WBT results (Section 5.2). We
conclude in Section 6.

2 THE OBSERVED WB DISTRIBUTION

The primary data set for the WBT comes from the precise results
obtained by the Gaia mission (Gaia Collaboration 2016). Local WBs
were extracted from the Gaia data set using the methods described in
Pittordis & Sutherland (2023, hereafter PS23), who slightly adapted
the methods in an earlier work (section 2 of PS19) based on Gaia DR2
(Gaia Collaboration 2018) due to the improved quality in Gaia Early
Data Release 3 (EDR3; Gaia Collaboration 2021a). We supplement

MNRAS 527, 4573-4615 (2024)

EDR3 with radial velocities (RVs) from the full Gaia DR3 (Gaia
Collaboration 2023).

In Section 2.1, we describe the basic quality cuts that we impose.
We then conduct a Monte Carlo propagation of the uncertainties
(Section 2.3). This leads us to impose further quality cuts, which we
briefly summarize in Section 2.4 alongside our choice of restrictions
on the parameter ranges.

2.1 The Gaia DR3 sample and basic quality cuts

The details of the sample selection are given in PS23, whose main
points we summarize below. We begin by selecting all stars from
Gaia EDR3 at a Galactic latitude |b| > 15° with an apparent Gaia-
band (G-band) magnitude mg < 17 and measured parallax @ >
4 mas (estimated distance <250 pc) uncorrected for parallax bias
(Lindegren et al. 2021). From this sample of 2.1 million single stars,
candidate WBs are selected by requiring:

(i) Projected separation ryy < 50 kAU;

(i1) Star distances consistent with each other within the lesser
of 8 pc or 4x the combined distance uncertainty, i.e. |ds — dg| <
min (40,4, 8 pc), where A and B label the stars in each candidate WB;
and

(iii) Projected velocity difference between the stars of vy, <
3kms~!, as inferred from the difference in proper motions but assum-
ing both stars are at the mean estimated distance d=(ds+dz)/2.

From this preliminary list of binaries (WB-EDR3), sky regions are
removed around four known open clusters (see table 1 of PS23).

To remove some probable triple systems or groups, we reject all
WBs in which either star is common to more than one candidate
binary in WB-EDR3. We also search for comoving companion stars
to a fainter limit using a ‘faint star’ sample constructed from Gaia
EDR3 stars with mg < 20 and parallax @ > 10/3 mas. For each star
in each candidate WB, we search for companions in the faint star
sample with the following criteria:

(i) Parallax distance consistent with the main star at 40

(i1) Angular separation less than 2/3 of the main binary separation
(since hierarchical triples are expected to be unstable if the inner
orbit separation 2 0.4 x the outer separation);

(iii) Angular separation >0.5 arcsec to avoid barely-resolved
companions; and

(iv) Projected velocity difference from the main star <5 kms™!.

If any such ‘third star’ is found, the candidate binary is rejected.
Note however that this will not reject triples with an inner orbit closer
than about 100 AU or where the third star is so faint that mg > 20,
so it remains crucial to model the CB population. We return to this
point in Section 3.2.3.

PS23 also applied a per-star quality cut based on the Gaia
parameters (see equation 1 of Arenou et al. 2018). WBs were only
considered if both stars satisfy

%’
8]
A

— < 1.2max (1, exp[—0.2 (mg — 19.5)]) , “4)
v
X2 = astrometric_chi2_al ,

v = astrometricn_good_obs_al — 5.

This cut is based on Gaia DR2, so it should be fairly conservative in
Gaia DR3 given the greater number of observations per star and the
longer time baseline. Throughout this study, any quality cuts applied
at the individual star level are implemented by excluding the whole
WAB if either of its two stars fails to pass the relevant quality cut.
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Applying all the above quality cuts yields a sample of 73k candi-
date WBs. The majority have ryy < 1 kAU, which is not very useful
for the WBT. We therefore publicly release a smaller version of this
sample consisting of 19 786 WBs that satisfy 1.5 < rg,/kAU < 40,
which is somewhat wider than the parameter range we use for the
WBT.

From the Gaia DR3 WBs that pass the above quality cuts, we
restrict ourselves to the range rgy, = 2-30 kAU and v < 5. These
choices were fixed in advance to limit the possibility of biasing the
results (Banik, Pittordis & Sutherland 2021). The upper limit to v is
much larger than can plausibly arise from WB orbital motion. This is
necessary to properly sample the extended tail to the v distribution,
which we need in order to properly constrain the CB and LOS
contamination causing the tail. In particular, LOS contamination
is expected to become more significant at high v because v is a 2D
quantity, so we can get much better leverage on the extent of LOS
contamination if we have data at high v. Even so, we do not want
to include data at very high v because the likelihood of systematics
increases the wider the ‘aperture’ used for the WBT.

We could increase the sample size substantially by going down to
even lower separations, but then there would be a risk of swamping
the analysis with data on Newtonian systems. In this case, small
improvements to the fit in the Newtonian regime would become
more important to the statistical analysis than checking whether the
v distribution differs between systems within their MOND radius
and those with larger separations. On the other hand, we need to go
down to rather low ryy to provide a ‘Newtonian anchor’ population
that cannot be affected by MOND, especially since the RAR requires
a fairly smooth MOND interpolating function such that significant
MOND effects persist even when the accelerations slightly exceed
a, (Section 5.3). Model parameters besides the gravity law can be
constrained much better if we have a significant number of WBs
which cannot be much affected by MOND, since then the parameters
inferred here will not be degenerate with the gravity law. In particular,
a Newtonian anchor population should be extremely valuable in
constraining the CB population parameters — WBs are expected to
have similar CB populations regardless of whether their WB orbital
acceleration is below or above a,. Our analysis does not explicitly
consider some subset of our sample to be completely immune to
MOND (unlike Chae 2023), but instead relies on the predicted
MOND effects being different at low and high ry,. We will see later
that since our sample goes up to M = 4 M, and thus has systems
with MOND radii of up to 14 kAU [equation (2)], we have plenty
of WBs separated by a small fraction of their MOND radius. This is
especially true given the steeply declining ryy distribution of WBs
(BZ18, PS19, PS23), which also implies that the 3D separation is
likely to only slightly exceed ry, [equation (8)].

2.2 The mass-luminosity relation

We estimate the mass of each star in our WB sample from its absolute
G-band magnitude Mg using a similar technique to PS19, which we
briefly describe below. We use the My and (V — I) colour at different
stellar masses M as tabulated in Pecaut & Mamajek (2013).> We
relate this to Gaia photometry using the relation between (V — I) and
(G — V) colours from the first Johnson-Cousins relation in table C2

3https://www.pas.rochester.edu/~emamajek/EEM_dwarf_UBVIJHK _colors_
Teff.txt [3.3.2021]
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Figure 1. The relation between the mass of a star and its absolute G-band
magnitude (red line). Results are based on the absolute V-band magnitude
and (V — I) colour tabulated in Pecaut & Mamajek (2013) and the relation
between (V — I) and (G — V) colours from the first Johnson-Cousins relation
in table C2 of Riello et al. (2021). Our cubic fit to the data [blue line; equation
(6)] is used over the mass range between the vertical solid grey lines. Outside
this range, a linear relation is assumed, as indicated by the solid purple lines.
The dotted vertical line shows the maximum mass of any star in our WB
sample.

of Riello et al. (2021), which states that

(G—=V) = —0.01597 — 0.02809 (V — I) — 0.2483 (V — I)?
+ 0.03656 (V — I)® —0.002939(V — I)*. 3)

We now have a complete set of equations to obtain Mg for any M.
However, this is difficult to invert because of small-scale irregularities
in the relation arising from the complexities of stellar astrophysics
(Fig. 1). We therefore fit the relation using the cubic

Mg = 4.887 — 5.693x + 0.4164x> 4 0.9611x7 , (6)

where x = In M/M,. Since each unit decrease in M corresponds to
slightly less than an e-fold increase in luminosity L, equation (6) tells
us that L~M5 when M = Mg (x = 0), representing a steep mass—
luminosity relation. We use our cubic fit over the range 0.6 < Mg <
11.1. At the low (high) mass end, we assume the relation becomes
linear and has a slope of —3.3 (—2.9). The fitted relation between
Mg and x is shown as the solid blue line, confirming that the above
cubic provides a fairly good fit over the range we use it, i.e. between
the vertical solid grey lines. The purple lines outside this range show
that a linear relation here also provides a reasonably good fit, at least
up to the dotted vertical grey line showing the maximum mass of
any star in our sample. A cubic is the lowest order polynomial which
seems to provide a good match to the tabulated data in Pecaut &
Mamajek (2013), mainly because the slope is similar at low and high
masses but there is a steepening at intermediate masses.

We invert our piece-wise analytic relation between In M/M¢, and
M_; to obtain the mass of any star from its M, which we obtain from
its apparent magnitude using its trigonometric parallax. The linear
relations assumed at very low and very high masses can be readily
inverted. We invert our cubic fit over most of the mass and M range
using the Newton—Raphson method. To speed this up, we obtain an
initial guess for the mass using a linear fit of the form

Mg ~ 5.023 —5.102x . @)
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This can be inverted analytically without iterative techniques. Our
estimate that — ‘Z]LM = 0.20 is similar to previous estimates of
0.074In 10 = 0.17 (equation 3 of PS23) and 0.0725In 10 = 0.17
(equation 3 of PS19).

We consider uncertainties in Mg arising from those in the
trigonometric parallax and the Gaia photometric uncertainty in the
apparent magnitude, which we convert from a fractional uncertainty
to a magnitude uncertainty. We also allow a small uncertainty in
the conversion of luminosity to mass. This must play some role,
but the &~ 42 per cent asymptotic enhancement to the radial gravity
predicted in MOND combined with our estimate that 511‘:(1\'4 =-5.1
[equation (7)] implies that the MOND signal corresponds to a
difference in Mg of about 5.1In 1.4 = 1.7 mag, which is very large
compared to the slight fluctuations about our cubic mass-luminosity
relation evident in Fig. 1. In other words, the steep mass-luminosity
relation implies that mass uncertainties should have a very small
impact compared to uncertainties in the relative velocity arising from
uncertain proper motions, especially when the key quantity entering
v is essentially the relative proper motion between the two stars
in each WB. The mass of a star with known absolute magnitude
can be constrained to within &~ 6 per cent (Eker et al. 2015; Mann
et al. 2015), but due to the square root term in equation (3), this
would have only a 3 per cent impact on v. The impact on the
WBT is further reduced because it is mostly concerned with the
width of the v distribution, which is only affected at second order by
measurement uncertainties. Even so, we do assign a modest 0.024
dex or 5.5 per cent uncertainty to our stellar mass estimates at fixed
luminosity for reasons discussed in Section 2.3.3. We will see later
that our main conclusion is the same as a different study which used
a linear relation between M and x over the full mass range relevant
for the WBT, thus leading to rather different errors in the conversion
of absolute magnitudes to masses (PS23).

2.3 Monte Carlo error propagation

We use the full 5 x 5 Gaia covariance matrix to propagate
uncertainties in the sky position, parallax, and proper motion of
each star in our WB sample into an uncertainty in v. We will see
later that this uncertainty is very small for a large number of WBs,
so our approach is to consider only those systems and obtain their
(roky, 0) directly from the raw observables. The resulting (ryy, D)
distribution is then used in our main analysis, which therefore does
not directly include measurement uncertainties — these are included
indirectly in the sample selection. Our procedure avoids adding mea-
surement errors to values that already contain measurement errors,
as that would lead to adding measurement errors twice to the latent
values.

For our Monte Carlo error propagation, we diagonalize the corre-
lation matrix and generate Gaussian random numbers to propagate
uncertainties along each of the eigenvector directions, bearing in
mind also the eigenvalues. The correlation matrix is dimensionless,
so we relate it to the covariance matrix using the Gaia catalogue
uncertainty of each parameter. Uncertainties in the parallax and
proper motion are important, but we do not propagate the uncertainty
in the sky position of each star at the reference epoch, instead taking
the published position at face value. This simplifies our analysis
greatly because it enables us to work with a fixed definition of the
sky plane for each WB, which we take to be the plane whose normal
vector is the angular bisector of the directions toward each of the
stars in the WB. Since the sky positions of the stars in our WB
catalogue are expected to be particularly precise, there should be
negligible uncertainty associated with this definition. Apart from this
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minor change, we follow the same method as that described in Banik
(2019) using mock parallax and proper motion data which samples
the Gaia error distribution as described above. We assume that the
projected separation of each WB has only a negligible uncertainty,
so we obtain rgy from the raw data.

2.3.1 The systemic RV

Compared to the detailed plan we set up earlier (Banik, Pittordis
& Sutherland 2021), a major simplification has become possible
with regards to the systemic RV of each WB because we can
generally obtain this directly from Gaia DR3 (Gaia Collaboration
2023) without having to guess it from the proper motion and distance
to the Galactic disc plane. The RV of each star enters the calculation
of vy, through perspective effects (Shaya & Olling 2011; Banik
2019; El-Badry 2019) — a receding WB with no internal motion
will have a shrinking apparent separation on the sky. The impact is
suppressed by the angular separation of the WB on our sky plane, but
the systemic RV still cannot be completely neglected: for a WB with
ray = 10 kAU, a typical systemic RV of 20 kms™' translates into
an apparent proper motion of 10 ms~! at a heliocentric distance of
100 pc. Since the Newtonian v, of two Sun-like stars with a 10 kAU
separation is 420 ms~!, the impact on © would be < 0.03 depending
on the geometry. While this is small, we opt to try and include the
impact of recessional motion because WBs can be even closer and/or
have a larger RV.

We can see from the above that the at most km s~! level difference
in RV between the stars in each WB would have only a negligible
impact on v. This is because relative motions along the LOS and
within the sky plane should be comparable, but the impact of the
former are suppressed by the angular WB separation on the sky.
Consequently, we limit ourselves to including only the systemic RV
of each WB. We find the systemic RV by taking an inverse variance
weighted mean of each star’s RV when this is available for both stars,
leading to an uncertainty smaller than either star’s RV uncertainty.*
If the RV is only available for one star, we adopt this as the systemic
value. We then assign both stars a recessional velocity equal to the
systemic RV, errors in which are propagated as part of the Monte
Carlo error propagation.

2.3.2 Reducing uncertainty in the relative distance

Another source of perspective effects (discussed further in Shaya &
Olling 2011) is the difference in heliocentric distances to the stars in
each WB. The relative LOS separation is important because proper
motions must be multiplied by distances to convert them from angular
to physical velocities. The Gaia parallaxes typically do not provide
very tight constraints on the LOS separation: while the astrometry is
spectacular by historical standards, trigonometric distances to stars
100 pc away are not accurate at the KAU level (the typical uncertainty
is about 80 kAU; see section 6.2 of BZ18). Using the same arguments
as in Section 2.3.1, a system with a tangential motion of 20 kms™!
but whose LOS separation is uncertain by 80 kAU would have an
almost 80 ms~! uncertainty in Vgky. This translates to an uncertainty
in v of up to 0.2 depending on the geometry, which could hamper
the WBT.

4We combine the RV measurements when these are known for both stars
because the typical RV uncertainty is around 1 kms~!, which is much more
than the expected WB relative velocity. Thus, differences in the RV are best
understood as due to random errors rather than intrinsic WB orbital motion.

€202 Joquiaoaq 0 U0 158NB Aq 8.2 L/ELSYIE/LZG/I0IE/SeIUW WO dNOD1WapED.)/:SA]Y WOl PAPEOUMOC



Wide binary orbital velocities challenge MOND

We intuitively expect that a WB’s 3D separation is not much larger
than its ryy, as suggested by the referee to Banik (2019). We exploit
this insight using the technique discussed in its section 2.3, which
we briefly summarize here. The mean of the heliocentric distances
to the two stars is taken to be the inverse variance weighted mean
of the parallax distances to each of the stars in the WB, causing the
mean distance to vary slightly between trials and thereby affect the
distance modulus. Assuming a power-law prior on the 3D separation
r of the form P(r) o r~'¢ (Lépine & Bongiorno 2007; Andrews,
Chanamé & Agiieros 2017; El-Badry & Rix 2018), we obtain a
posterior inference on the ratio x = r/ryy. Following equation 18 of
Banik (2019), we obtain that

P(x) x x> 1. (8)

X
As part of the Monte Carlo error propagation, we then randomly
sample this distribution to obtain the separation of each WB along
the LOS. We then push one of the stars away from us and bring
the other star towards us by half this amount, with the displacement
of each star being purely along its sky direction at the reference
epoch. We use a random coin toss in each Monte Carlo trial to
decide which star is to be pushed away from us. The revised distance
to each star alters its estimated absolute magnitude and thus its
mass.

This technique drastically reduces the uncertainty on the relative
LOS distance in systems with a very low ry, (compare the black
and blue points in fig. 3 of Banik 2019). One disadvantage is that
it implicitly assumes that the WB is genuine, so our results are less
robust against LOS contamination. However, we mitigate this in our
statistical analysis by including an allowance for LOS contamination
(Section 3.3).

Our approach is similar to that used in Nelson et al. (2021), though
they used a prior of 7! instead of 7~ A more important difference
is that those authors were only interested in the 3D separation
between the stars, whereas we need to find the heliocentric velocity of
each star, which requires knowledge of the individual LOS distances.
This causes our calculated v parameter to depend on which star is
closer to us. Since we do not have this information, we use Monte
Carlo trials to quantify the resulting uncertainty. We stress that in
our main analysis, the adopted value of v is based on assigning the
same LOS distance to both stars. The purpose of our deprojection is
to quantify the uncertainty and combine this with other sources of
uncertainty so that we can remove systems with insufficiently precise
.

The technique discussed above assigns the relative LOS distance
a value of zero and a non-Gaussian uncertainty of ~rgy. This would
only reduce the uncertainties if the parallaxes were not accurate
enough to directly constrain the relative distance. Thus, we only
apply the above technique if 7y is smaller than the uncertainty in
the relative LOS distance given by the Gaia trigonometric parallaxes.
While we generally expect this to be the case, we do not enforce
it. The 3D geometry of nearby WBs may well be clear from
existing Gaia data, with the definition of ‘nearby’ extending to larger
distances as the data improves. Our approach is thus to use whichever
method is expected to be more accurate. Note that if Gaia parallaxes
are used directly, then the relative distance along the LOS may have
a non-zero mean value when averaged across different Monte Carlo
trials as these would propagate uncertainties in each parallax. In this
case, the nominal values adopted for our main analysis do not rely
on the deprojection algorithm outlined above because each star is
assigned its observed parallax distance.

4579

2.3.3 Improved mass estimates

It is possible to slightly improve the accuracy of our mass estimates
by using the Final Luminosity, Age and Mass Estimator (FLAME;
Pichon 2007) work package in Gaia DR3. Masses obtained in this
way are not available for all stars, but when they are available,
they should be much more precise because they involve a detailed
analysis of the spectrum. Fig. 3 of Hernandez (2023) shows that
FLAME masses can differ by ~ 0.05 My from estimates using
a linear relation between absolute magnitude and the logarithmic
mass. Unfortunately, restricting to only WBs where both stars have a
FLAME mass would reduce the sample size too much for the WBT
to be feasible. We therefore apply a small correction to the masses
estimated using our cubic fit to the Pecaut & Mamajek (2013) mass-
luminosity relation [equation (6)]. Denoting these masses by Mpy,
and the revised masses with the FLAME calibration as My, a good
fit is given by

Mr = Mpy — 0.07 tanh ( )

exp (2— Am), if Mpy < 0.5 Mg,
=<1, if0.5Mg < Mpy <0.75 M,

exp (ovsn;o#m) . ifMpy = 0.75M, .

Mpy —0.75 Mg, ;
0.16 M, ’

The adjustment is tapered using the factor f so it rapidly decays
for stars with mass M < 0.5 M as there are no FLAME masses
below this, so we assume that Mpy, becomes very reliable at the low-
mass end. We will see later that our results are not much affected
by restricting our WB sample to systems where both stars have
M > 0.5 M, which has the advantage that FLAME results can serve
as a calibration. Mpy, and FLAME masses gradually converge when
M > 0.75 M.

Our small adjustment to Mpy, is designed to eliminate a small
systematic discrepancy with the FLAME mass in the stars for which
the latter is available. Even so, our calculated My does not exactly
coincide with the FLAME mass. Based on the typical difference
between the two mass estimates and assuming that the FLAME
masses are very accurate, we assign our estimated masses a random
Gaussian uncertainty of 0.024 dex or 5.5 per cent at fixed absolute
magnitude. A 5.5 per cent uncertainty is in line with the fact that
masses estimated directly from luminosities were expected to have a
6 per cent uncertainty (Eker et al. 2015; Mann et al. 2015), as argued
in section 6.3 of BZ18. Note that our mass estimates also include
uncertainty in the absolute magnitude due to that in the apparent
magnitude and the trigonometric parallax.

2.4 Refined quality cuts for the WBT

The quality cuts discussed in Section 2.1 provide a reasonably
carefully prepared sample of WBs that can be used in further
analyses. Unfortunately, some of these WBs are unsuitable for our
highly precise analysis. The additional quality cuts in this work
beyond those mentioned there are to exclude:

(1) Stars in sky directions with a high total Galactic extinction
towards an extragalactic source (Section 2.4.1);

(ii) Stars which are substantially below the main sequence on
a colour—luminosity diagram, which can make the mass estimate
inaccurate (Section 2.4.2);

(iii) Stars which sometimes appear as multiple peaks in the
Gaia images, suggesting the presence of a CB companion that can
sometimes be resolved (Section 2.4.3);
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(iv) WBs where the RV is unknown for both stars (Section 2.4.4);
(v) WBs where the RV is known for both stars and there is a
mismatch at >3o0 confidence (Section 2.4.5); and
(vi) WBs whose v is too uncertain (Section 2.4.6).

We also restrict ourselves to WBs with 2 < rg, /kAU < 30 and
v < 5 forreasons discussed earlier. To reduce the computational cost,
we only consider WBs with a total mass of 0.464 — 4.31 M. These
cuts are now described further.

2.4.1 Dust extinction

As discussed in Section 2.2, our estimated mass for each star
relies entirely on its absolute G-band magnitude, which in turn is
inferred from its apparent magnitude and trigonometric parallax. The
difference between apparent and absolute magnitudes is assumed to
arise purely from the distance modulus, which implicitly assumes
negligible dust extinction. This should be a good assumption for
stars within 250 pc and >15° from the Galactic disc, especially as
known star clusters are excluded (table 1 of PS23). Even so, we can
further reduce the impact of dust by considering only WBs where
both stars have a V-band extinction Ay < 0.5 based on the dust maps of
Schlegel, Finkbeiner & Davis (1998), which reduces our sample size
by 8.5 per cent. We note that their published values refer to the total
Galactic extinction along the LOS towards an extragalactic source.
Since the WBs in our sample are all within 250 pc, the extinction
towards any of the stars in our sample should be far smaller, making
our cut on Ay quite conservative.

2.4.2 Colour-magnitude diagram

Our mass estimates also rely on a mass-luminosity relation designed
for main sequence stars (Pecaut & Mamajek 2013). To check if this
is a good assumption, we use Fig. 2 to plot the relation between
the absolute G-band magnitude and the colour, which we define as
the difference in apparent magnitude between the Gaia blue and red
passbands. As expected, the vast majority of the stars in our sample
are on the main sequence. However, a small number of stars are
very far below the main sequence — these are probably white dwarfs
(WDs). We remove these by excluding stars below the solid blue
line, which achieves a good separation between the main sequence
and the WD track. Only a very small number of WDs are removed by
this cut and these are all well separated from the main sequence, so
any remaining WDs should have a negligible impact on our results.

An interesting feature of our main WB sample’s colour-magnitude
diagram is a concentration of stars parallel to but brighter than the
main sequence (Fig. 2). This ‘double main sequence’ is caused
by unresolved CBs where both stars have an exactly equal mass,
as demonstrated by the parallel dashed grey lines with an offset
corresponding to a factor of two in luminosity. We do not exclude
stars belonging to this double main sequence because our analysis
already accounts for it (Appendix A).

A major complication to the WBT is the presence of undetected
CB companions (Section 1). We follow a ‘mitigate + simulate’
strategy to minimize the uncertainties introduced by CBs. This
entails reducing the presence of CB companions and modelling the
distribution of those that remain. Since we do not aim to have a
sample that is completely free of stars with a CB companion, we
benefit from a much larger sample size than the study of Hernandez
(2023). We discuss below how we attempt to reduce the proportion
of contaminated WBs. Details of our CB model will be presented
later (Section 3.2).
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Figure 2. The colour-magnitude diagram of our sample just prior to
removing 66 WBs where one star is below the solid blue line, which is
designed to remove the white dwarfs evident at the lower left. The two dashed
grey lines have an offset corresponding to a factor of two in luminosity. The
lower line passes through the main sequence, while the upper line passes
through the secondary track evident at higher luminosity. We attribute this
double main sequence to unresolved binaries where the stars have an exactly
equal mass (Appendix A).

2.4.3 Multiple peaks in Gaia images

If there is a clearly detected CB companion to a star in a WB and
it is reasonably likely that the third star is bound to the WB, then
the system is excluded from our analysis (Section 2.1). However,
CBs which are fainter and/or on a tighter orbit might not be clearly
resolved. The contaminated star might then appear resolved into
two sources in only some Gaia focal plane transits. We exploit this
by using the parameter ipd_frac-multi_peak in the Gaia DR3
catalogue (see also section 5 of El-Badry, Rix & Heintz 2021). This
is the percentage of successful focal plane transits in which a source
is detected as multiple peaks in the image. A genuinely isolated star
would ideally give ipd_frac_multi_peak = 0, but since it might
spuriously show up as multiple peaks in the Gaia images due to
issues like cosmic ray hits, we allow ipd_frac_-multi_peak <2 (a
threshold of 2 was also used in Pace, Erkal & Li 2022). We reject
any star that is detected as multiple peaks more frequently.

Fig. 3 shows the distribution of ipd_frac_-multi_peak for the
WBs in our sample prior to imposing this quality cut, with the
higher value shown for the two stars in each WB. It is apparent
that our quality cut does not reduce the sample size very much. At
the same time, it seems unlikely that a star really has a marginally
detected companion if it appears to be isolated 98 per cent of the
time. However, if a star frequently appears as multiple peaks in the
Gaia images, then we might reasonably suspect it to be part of a CB.

2.4.4 Having a systemic RV

Even though we are implementing a 2D version of the WBT using
only motions within the sky plane, the systemic RV of each WB
does still enter into our analysis, albeit scaled down substantially by
the angular separation of the WB (Section 2.3.1). For our technique
to work, we are forced to reject WBs where the RV is unknown for
both stars, which loses roughly 1/3 of our sample. We accept systems
where the RV is known for only one star because the systemic RV is
not needed very precisely and the RVs of the stars in a WB would
differ by at most a few kms~!, especially for the more widely
separated systems where perspective effects are more important.
Requiring both stars to have a measured RV reduces the sample

€202 Joquiaoaq 0 U0 158NB Aq 8.2 L/ELSYIE/LZG/I0IE/SeIUW WO dNOD1WapED.)/:SA]Y WOl PAPEOUMOC



Wide binary orbital velocities challenge MOND 4581
5001 S —
[_[0] —5=1-2
® 400 —i=2-3
o 2 o34
— £ 300t —v=4-5
3 -
95-10 E
11-20 Z1001
121-50 4.
- 0 ‘ = eSS ‘
- 151-100 0 0.05 0.1 0.15 0.2 0.25

Figure 3. Distribution of the Gaia DR3 parameter ipd_frac_multi_peak
for the WBs in our sample prior to imposing the quality cut related to this
parameter. For each WB, we take the star with the higher value. Although
ipd_frac_multi_peak can be as high as 100, it is typically 0, as expected
for a single source.

size from 8611 to 5504, but the proportion of systems with v > 2.5
(which is a rough proxy for the level of contamination) only drops
from 10.2 per cent to 9.5 per cent.

2.4.5 Similar RVs when both are available

While we do not require both stars in a WB to have a known RYV, this
is often the case. When available, we use this information to reject
WBs whose two stars have RVs that differ from each other by more
than triple the quadrature sum of the RV uncertainties or triple the
Newtonian v,., whichever is larger.’ This reduces the sample size by
3.5 per cent (we lose 308 WBs out of 8919 without this cut). Since
almost 2/3 of the systems in our WB sample have a reported RV for
both stars, the fact that only a small proportion of WBs consist of
stars with discrepant RVs suggests that our selected WBs are mostly
genuine. The use of systemic RVs constrained to kms™' precision
by Gaia spectroscopy substantially reduces the scope for perspective
effects to alter the results obtained in this contribution.

2.4.6 The v uncertainty

The above quality cuts are designed to reduce systematic uncertain-
ties in the WB parameters. These also have random uncertainties,
which we need to quantify. As discussed in Section 2.3, we use
Monte Carlo error propagation to obtain the uncertainty in the all-
important v using 2'? trials. We find that the uncertainty is very small
for a large proportion of the WBs in our sample (as expected from
a simpler analysis of Gaia DR2 results; Banik 2019). We therefore
apply a quality cut such that

Errorin v < 0.1 max <1, %) . (10)

We found that this achieves a good balance between the quality and
quantity of data. The uncertainty is allowed to be somewhat larger
at higher v because we use wider bins in v here when comparing

SEven if we had perfect data, the RVs of the stars in a WB could still differ
by order their Newtonian v,.

v uncertainty

Figure 4. The frequency distribution of the v uncertainty as estimated from
Monte Carlo error propagation of the 5 x 5 Gaia DR3 covariance matrix
(Section 2.3). Different curves show results for different ranges of v, as
indicated in the legend. We only consider WBs whose v uncertainty is at
most 0.1 max (1, 5/2), truncating each error distribution at the right. The
truncation at the left is caused by the 0.024 dex mass uncertainty at fixed Mg
imposing a minimum fractional uncertainty in v.

to theory (Section 3.5). Moreover, such systems are less crucial for
the WBT as they are not part of the main peak at v < 2, implying
significant contamination from some source.

The distribution of v uncertainties is shown in Fig. 4 for different v
ranges of our WB sample. As the WBT is mostly concerned with the
main peak to the v distribution at v < 2, our cut implies a maximum v
uncertainty of only 0.1 in the most crucial parameter range. Since the
mode of the main peak is at v &~ 0.5, measurement uncertainties that
add an extra 0.1 in quadrature would only boost the root mean square
value by about 2 per cent, which is negligible in comparison to the
predicted MOND enhancement of 20 per cent. Moreover, the typical
v uncertainty for such systems is much smaller than the maximum
permitted by our selection. Indeed, PS19 found the v distribution
in Gaia DR2 changed little when restricting to systems where the
uncertainty is below 0.25 (compare their figs 12 and 13). We therefore
neglect v uncertainties in the rest of our analysis, bearing in mind
that our WB sample has already been chosen to have an accurate v.

We need to integrate WB orbits for a range of masses covering
the mass range of our sample. This is because larger mass systems
have a larger MOND radius [equation (2)], reducing the impact of
MOND at fixed separation (BZ18). To limit the computational cost,
we restrict our analysis to WBs with a total mass of 0.464 — 4.31 M.
This reduces our sample size very slightly. Including the remaining
WBs would require a considerable broadening of the mass range
covered by our WB orbit library or a substantial worsening of its
mass resolution, but there would be very little gain in sample size.
It would also leave our results more vulnerable to systematic issues
with very low or very high mass stars.

2.5 The WB sample

After applying the quality cuts described so far, we are left with a
final sample of 8611 WBs. Their mass distribution is shown in Fig. 5,
with blue bars showing individual stars and red bars showing binary
total masses. The latter are more relevant physically, so we will use
M to mean the binary total mass and M, to denote the mass of a single
star — unless it is clear that the discussion refers to stars considered
individually.
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Figure 5. The mass distribution of all the stars in our WB sample (blue bars).
The red bars show the distribution of the total mass of each binary. The outer
edges of the outermost bins show the range of the data.
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Figure 6. The number of WBs in different pixels of (rsky, '17). Results are
shown binned according to our pixellation scheme, which was fixed prior
to any detailed analysis (the pixel widths increase gradually towards higher
values). The comparison with theory is based on the likelihood of matching
the number counts shown here, which we find by multiplying together the
binomial likelihood for each pixel (Section 3.5). Notice the lack of WBs at
v ~ 2 for the highest rgy (empty pixels are shown in white). We interpret
this as due to dilution of the CB contamination over a wide v range due to the
low Newtonian v, of the WB. There is also little LOS contamination here: it
only becomes important when rgy and v are both large (Section 3.3).

As with previous detailed investigations into the WBT (PS19,
PS23), we perform it by decomposing the data into pixels in the
space of ryy and v (Fig. 6). It is clear that there are many more
systems at low ryy than at high ryy, in line with earlier results
(e.g. Andrews, Chanamé & Agiieros 2017). The main peak to the
v distribution is quite prominent, with the mode located at v ~ 0.5.
There is also an extended tail going out to much larger v, which
was previously reported (PS19) and attributed to undetected CBs
(Belokurov et al. 2020; Clarke 2020). Interestingly, a gap appears in
the distribution at v & 2, but only at high rq,. We attribute this to
the minimum in the v distribution at v & 1.5, which is evident also
at lower rgy. This minimum is caused by WBs having a sharp peak
to their v distribution at v ~ 0.5 followed by a rapid decline as a
consequence of orbital mechanics and projection effects (e.g. BZ18,
PS19). There is an extended tail due to CB contamination, but this too
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would generally lead to a declining v distribution because a slower
CB orbital velocity corresponds to a wider CB separation, which is
less likely (a more detailed explanation is given in Banik, Pittordis &
Sutherland 2021). However, we expect an increasing contribution
from chance alignments at larger v because their distribution is
expected to be linear in v [see equation (27)]. The minimum in
the v distribution is not very apparent at rgy S 5 kAU, where WBs
are very common and chance alignments are relatively unimportant.
The minimum becomes readily apparent at larger rg, where WBs are
quite rare, increasing the relative contribution of chance alignments
because they should have a flat distribution with respect to rgy
[equation (27)]. The fact that WBs are much less common at high
rey haturally leads to empty pixels around the minimum of the v
distribution, with the v range covered by these empty pixels expected
to gradually widen with increasing 7y .

It is clear that we need a detailed model including CB and LOS
contamination if we are to infer the law of gravity at low accelerations
and search for the predicted MOND signal. This is the subject of the
next section.

3 MODELLING THE WB DATA SET

The (rsky, 5) distribution of our WB sample is a consequence of
several simultaneously occurring physical processes and projection
effects, which we try to model in this section to best reproduce Fig. 6.
In addition to WB orbital motion (Section 3.1), we also consider how
an undetected CB population affects the observables (Section 3.2)
and take into account the possibility of some LOS contamination
(Section 3.3). This might be field stars, but it could also be from stars
that formed in the same star cluster. Given the results of PS19 and
the excellent quality of Gaia DR3, we expect LOS contamination to
only slightly affect our WB sample and to become important only at
large separation and v.

LOS contamination can be included in our model fairly easily.
Moreover, detailed WB orbit modelling has previously been con-
ducted in Newtonian and Milgromian gravity in a manner that can
readily be repurposed for the WBT (BZ18). As a result, the main
complication that we need to handle is the possibility of an undetected
CB companion around 0, 1, or 2 of the stars in a WB. Since recoil
motion and additional mass created by an undetected CB physically
affect the WB rather than merely contribute an extra population
to the statistics, including CB contamination greatly increases the
complexity and computational cost of the WBT. We were eventually
able to devise a detailed plan that captures the essential physics
in a computationally feasible way (Banik, Pittordis & Sutherland
2021). We refer the reader to that work for a more detailed look
at the computational techniques needed to implement the WBT in
a reasonable timeframe. This allows us to prepare the first detailed
model of the WB population whose parameter space is thoroughly
explored using standard statistical techniques.

3.1 The WB population

We set up a library of WB orbits using the prior work of BZ18 with
minimal adjustments, which we briefly describe. We need to run
calculations over a wider mass range in order to cover the range of
WB masses in our sample (red bars in Fig. 5). We also found that
the computational cost of including CB contamination can be greatly
reduced if instead of recording results with respect to the projected
separation 7y, we use

— 12
Fay = j;y : (11)
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where a is the semi-major axis of the WB (this is motivated in
Section 3.2.3). An incidental benefit of this approach is that at low
a, recording probabilities into different bins in 7y rather than rgy
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improves the resolution in rgy. Since we record results separately
for different a and only marginalize over a at a much later stage, we
can recover ryy = a?sky as and when needed, which is necessary for
a comparison with observations because a is generally not known.

In MOND, the Galactic EFE plays a crucial role (BZ18). This can
be estimated as g, = vczv o/ Ro, where Ry is the Galactocentric distance
of the Sun and v, o is the Galactic rotation curve amplitude at the
Solar circle (sometimes called the Local Standard of Rest or LSR).
As in section 3.6 of BZ18, we assume that v, o = 232.8 km s~ and
Ry = 8.2 kpc (McMillan 2017), which implies that g, = 1.785q,.
Subsequent studies show that Ry must be very close to 8.2 kpc based
on combining astrometry and spectroscopy of the star S2 near the
Galactic centre black hole (Gravity Collaboration 2019). Since its
proper motion is precisely known (Reid & Brunthaler 2004; Gordon,
de Witt & Jacobs 2023), the Galactocentric tangential velocity of the
Sun now has very little uncertainty, constraining the LSR velocity
to very close to 233 kms~! (McGaugh 2018; Zhou et al. 2023) if
the non-circular motion of the Sun is taken to be precisely known
from Schonrich, Binney & Dehnen (2010). The latter is somewhat
more uncertain than the other parameters entering into the LSR
velocity (Schonrich 2012; Francis & Anderson 2014; Bovy et al.
2015), but it is still clear that v, o is very unlikely to differ from
our assumed value by more than 10 kms~!, which implies that
uncertainty in v, o has little effect on the predicted MOND signal
in local WBs (Section 5.3). Moreover, g, has recently been directly
determined by the measurement of the Solar System’s acceleration
relative to distant quasars (Gaia Collaboration 2021b). Their work
discovered the changing aberration angle of distant quasars due to
the changing velocity of the Solar System barycentre. Its directly
measured acceleration points directly towards the Galactic centre
within a small uncertainty (see their fig. 10) and has a magnitude of
g = 1.94 £ 0.13 q,. Since gravitational fields from objects beyond
the Galaxy are thought to be negligible in comparison to the Galactic
gravitational field, this provides a completely independent and very
direct confirmation of the kinematic estimate of g, used in BZ18 and
in this contribution.

3.1.1 Orbit modelling

WBs are bound together by their mutual gravity. This is easy to
calculate in the Newtonian case but is somewhat more complicated
in MOND, as discussed next. Our calculation of the Milgromian
gravitational field and integration of WB orbits in this field use the
same approach as BZ18, to which we refer the reader for further
details.

In an isolated spherically symmetric mass distribution, the asymp-
totic MOND behaviour is given by equation (1). To interpolate
between the Newtonian and deep-MOND regimes, we have to use
an interpolating function v with argument g, such that g = vg,.In
the quasilinear formulation of MOND (QUMOND; Milgrom 2010),
this can be generalized to a more complicated geometry by taking
the divergence of both sides.

V.g = V-(vgN). (12)

In this contribution, we adopt the simple interpolating function
(Famaey & Binney 2005) for reasons discussed in section 7.1 of

The WBT depends significantly on the adopted interpolating function
because local WBs have an intermediate total acceleration. Using a
very sharp transition can cause WBs to be completely Newtonian
even if MOND is correct. However, this would not be consistent
with the RAR (we discuss this further in Section 5.3).

Since local WBs are significantly affected by the Galactic EFE,
we need to include the Galactic g,. This is assumed to point directly
towards the Galactic centre and to have a magnitude of 1.785 a, based
on the Galactic rotation curve, as discussed above. In QUMOND,
we need the Newtonian-equivalent external field g, ,, which is what
the Galactic gravity on the Solar neighbourhood would have been
in Newtonian gravity without DM. As discussed in section 9.3.1 of
BZ18, we can use the spherically symmetric relation between g, and
g, . because the Sun is many disc scale lengths from the Galactic
centre, reducing the importance of the Galaxy’s disc geometry.

8ev(8) = &y, - (14)

Solving this implicitly gives g, , = 1.144 a, in the Solar neighbour-
hood. The Newtonian gravity in a WB is then found by adding g, ,
to the contribution from the WB itself, which is called g . in some
works as it is internal to the WB.

To limit the computational cost, we treat each WB as a test
particle orbiting a point mass containing the binary total mass M.
This approach is valid in Newtonian gravity, but it was shown in
section 7.3 of BZ18 that it remains a very good approximation in
MOND. This is because the fairly strong Galactic EFE causes local
WBs to lack an extended regime in which they are isolated and at
low accelerations. For all intents and purposes, WBs are either in
the Newtonian regime or they are dominated by the EFE. In either
case, MOND becomes linear in the mass distribution, allowing the
potentials of the two stars to be superposed.

With this approximation, the problem becomes axisymmetric
about g,. We then solve equation (12) using the ‘ring library’ protocol
discussed in BZ18. This involves finding the source term V - (vg, )
at every point in a 2D grid and then using direct summation to find
g. The calculations are accelerated at off-axis locations by scaling
the previously calculated Newtonian gravity of a unit mass and
unit radius ring, avoiding the need to sum contributions to g from
different positions around each ring. An analytic allowance is made
for V- (vgN) being non-zero outside the rather large region used
in the integration (the extra contribution to the potential is given in
equation 9 of BZ18; see their appendix A for a derivation).

The Milgromian potential of a point mass is not spherically
symmetric in the presence of the EFE (Milgrom 1986a, 2010; Banik
& Zhao 2018a). This has some interesting consequences (Candlish
et al. 2018; Thomas et al. 2018; Banik & Kroupa 2019b; Banik
et al. 2020; Kroupa et al. 2022). Since the WB separation r is
expected to sample a range of directions relative to the EFE, the
WBT is mostly sensitive to the angle-averaged inward radial gravity,
which we denote (g,). Since the use of v rather than actual velocities
effectively divides out the Newtonian prediction g, , the WBT is
really about the parameter

n = <gr>, (15)
8n

MNRAS 527, 4573-4615 (2024)

€202 Joquiaoaq 0 U0 158NB Aq 8.2 L/ELSYIE/LZG/I0IE/SeIUW WO dNOD1WapED.)/:SA]Y WOl PAPEOUMOC



4584 1. Banik et al.

— <g>
’r, - gN
1.45 — 2700
L e e —————— 2400
1.35¢ b= 12100 _g
I | ]
13 —Ring library (BZ18) 1800 .g
1.25¢ —Asymptotic QUMOND| | 1500 5
1.2+ — Asymptotic AQUAL 1200 =
- -Numerical AQUAL Re)
1.15 mmGaia DR3 1, /1 900 E
117 600 =
1.05¢ / 1300
1 A ‘ 0

0 05 1 15 2 25 3 35 4
Radius —~ MOND radius

Figure 7. The azimuthally averaged boost factor n to the radially inward
gravity compared to the Newtonian expectation for WBs with different
separation relative to their MOND radius, assuming the simple interpolating
function [equation (13)]. The solid red (blue) horizontal line shows the
asymptotic analytic expectation in QUMOND (AQUAL), which we give
in equation (37) [equation (38)]. The numerical QUMOND result central to
our study (solid black line; BZ18) has the expected asymptotic behaviour. The
dashed blue line shows equation 15 of Chae & Milgrom (2022), which has
the wrong asymptotic limit (mismatch between blue lines towards the right)
and is based on numerical calculations that only deal with a weak external
field rather than a dominant one (see the text). The red histogram shows the
distribution of rgy/r,, for the WBs in our sample. The outer edges of the
most extreme bins show the full range of the data set.

whose square root is probed by velocity measurements. We use Fig.
7 to show 7 as a function of r/r,, (solid black line).® There is no
boost to the Newtonian expectation when r < r,,, but this changes
rapidly until » &~ r,,, beyond which the Milgromian enhancement
to (g,) saturates at just over 40 per cent due to the EFE. Without
it, the boost factor would continue growing linearly with r. In the
asymptotic or quasi-Newtonian regime (discussed further in section
3.3 of Asencio et al. 2022) where the enhancement factor has reached
its maximum, the WB gravity can be treated as a small perturbation
about the Galactic gravity, making the potential analytic (equation
30 of Banik et al. 2020). The analytic expectation is shown using
a horizontal red line, revealing an excellent match to the numerical
result whenr > r,,.

In this contribution, we focus on the QUMOND formulation
because it is more computer-friendly than the earlier aquadratic
Lagrangian formulation (AQUAL; Bekenstein & Milgrom 1984).
The asymptotic AQUAL result is shown in Fig. 7 using a horizontal
blue line (equation 35 of BZ18). As discussed there, this result is very
similar to the QUMOND result for the same interpolating function,
i.e. the same relation between g and g, in spherical symmetry.
Numerical AQUAL results are not available in the transition zone
where the EFE is neither negligible nor dominant, but we can get a
general idea using equation 15 of Chae & Milgrom (2022), which
is a fit to numerical results for a weak EFE as relevant to galaxy
rotation curves. We show this using a dashed blue line. It is clear
that this equation has the wrong asymptotic limit, as can also be seen
from the equation: when the EFE dominates, it takes the argument
1.1g,, rather than g, . Even if this issue is fixed, the functional

6Zonoozi et al. (2021) provide an analytic fit to these results for arbitrary g,
with the correct asymptotic behaviour (see their equations 23 and 24).
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form is not compatible with the EFE-dominated point mass potential
in AQUAL (equation 66 of Milgrom 2010) or the resulting radial
gravity (equation 32 of BZ18). Despite these issues when the EFE
is strong, equation 15 of Chae & Milgrom (2022) should still give a
reasonable idea of the AQUAL enhancement to (g,) when r < r,,
because it is a fit to numerical results in this regime. We see that when
r $0.57,,, the AQUAL and QUMOND results are almost identical.
Therefore, results for the WBT are not sensitive to which formulation
of MOND we use. We discuss this further in Section 5.3.

Another aspect of Fig. 7 is the distribution of r /r,,, which we
show using red bars (the left edge of the first bar shows the minimum
value). Our sample covers down to rgy/r,, = 0.14, so we consider
it to be reasonably sensitive down to r/r,, = 0.2, leaving some
allowance for 3D separations exceeding rq,. A WB separated by only
r,,/5 has an acceleration of g, = 25 a, and can thus be considered
isolated. In this case, v = 1/2 4+ /1/4 4+ 1/25 = 1.04, which is very
small compared to the predicted enhancement to g, for more widely
separated WBs. This is even truer for interpolating functions that
have a somewhat faster return to Newtonian behaviour at high
accelerations in order to better match Solar System ephemerides
(Hees etal. 2014, 2016). At the other end, our sample probes well into
the asymptotic regime where we would expect almost the maximum
possible enhancement to g, given the Galactic EFE. Our sample thus
covers a wide enough range of internal WB accelerations to allow
a sensitive search for the predicted MOND effect. While our WBs
experience a narrower range of total gravitational field strengths
because the Galactic EFE essentially imposes a lower limit, we
argue later that this is not a major limitation given rotation curve
constraints on the MOND interpolating function in the transition
zone (Section 5.3).

We use the assumed gravity law to integrate WB orbits with arange
of mass M, semi-major axis a, and orbital eccentricity e, defining a
and e for a generalized gravity theory as in section 2.3.1 of BZI18.
Following their approach, each orbit is started at a separation of a
and integrated for 20 revolutions. This should be more than sufficient
in the Newtonian case, but it is also adequate in MOND because
the resulting statistical distribution is similar to that yielded by a
much longer 5 Gyr integration (see their fig. 15). We also consider
a range of inclinations i between the orbital pole and the Galactic
centre direction defining the EFE. Results for different inclinations
are marginalized assuming a prior of sin i, which is appropriate for
an isotropic distribution of orbital poles. Orbits are truncated if the
stars get to within 50 AU or become more distant than 100 kAU as
we consider such WBs to have crashed together or to have likely
become unbound at some point by perturbations from passing stars,
respectively (section 2.3.2 of BZ18). At each time step, we consider
a dense 2D grid of viewing directions and compute the (7sky, '17)
inferred by a distant observer along the chosen LOS, with results
statistically weighted by the solid angle covered by each LOS. We
also weight the results at different time steps by the duration of the
time step, which varies because we use an adaptive time step to
reduce the computational cost. In this way, we build up a simulated
(Foky» ©) distribution for different (M, a, e).

In the Newtonian case, it is not necessary to consider different M
or i, but we use a 5x higher resolution in e because the v distribution
at fixed e has sharp peaks corresponding to pericentre and apocentre
and e does not change in a Newtonian orbit integration (unlike in
MOND; see Pauco & Klacka 2016). To get a smooth distribution
when marginalizing over different e, BZ18 found that a rather high
resolution is required in e for the Newtonian case. This is not needed
in MOND because the peaks are blurred out by changes in the shape
of the orbit over time: typically about 8 orbits are needed to go from
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nearly circular to very eccentric back to nearly circular (see their
fig. 20).

3.1.2 Orbital parameter distribution

The mass distribution of WBs is obtained directly from that of our
WB sample (Fig. 5). We count up how many WBs are in the mass
range covered by each value of M at which we perform an orbit
integration. This directly determines the relative statistical weights
of different M values in our WB orbit library.

Following Andrews, Chanamé & Agiieros (2017), we assume that
the semi-major axes of the WBs follow a broken power law in a. The
logarithmic slope at low a is fixed to —1.6, which is known to be
valid down to at least 0.5 kAU (El-Badry & Rix 2018). While this can
in principle extend up to arbitrarily large a, we assume that it breaks
down at @ = apeax, beyond which the logarithmic slope becomes B
< —1 to ensure a convergent integral. Our assumed distribution of a
is therefore given by

—1.6

a s
Pa) o {aﬁ7

ifa < Abreak »
ifa > Abpreak »

(16)

where apeax and f are free parameters that our analysis infers from
the data. Note that since we are modelling the distribution of our
sample of WBs rather than the full WB population, the inferred
values of these parameters may be somewhat biased. In particular,
the requirement to have accurate v measurements is quite difficult to
satisfy at large separations because the Newtonian v, is low. This is
likely to reduce B.

Following Hwang, Ting & Zakamska (2022), we parametrize the
distribution of orbital eccentricities using a power law with index y.

P = (y+De. a7

y is left as a free parameter that is allowed to vary over the range
0 — 4 in all our analyses. We expect a nearly thermal distribution
of eccentricities (y = 1; Jeans 1919; Ambartsumian 1937) — this is
discussed in more detail in Section 4.2 of Kroupa (2008). We use
a flat prior on y for our nominal analysis. However, Hwang, Ting
& Zakamska (2022) found that a slightly superthermal distribution
(y > 1) better fits the observed distribution of the angle v between
gy and vy (this is related to the WB orthogonality test outlined in
section 8.2.1 of BZ18). We therefore run a variation of our nominal
analysis in which we assume a Gaussian prior of y = 1.32 £ 0.09,
which should shrink the uncertainties somewhat. We note that since
CB contamination would tend to flatten out the distribution of i and
thereby drive the inferred eccentricity distribution towards thermal,
it is quite likely that y is slightly higher than inferred by Hwang,
Ting & Zakamska (2022) given that those authors do not consider
undetected CBs. On the other hand, their fig. 10 shows that y can be
overestimated slightly at large separations for an underlying slightly
superthermal distribution.

3.1.3 Interpolating the gravity law

An important aspect of our analysis is that we consider an arbitrary
gravity law on a sliding scale between Newtonian and Milgromian.
For this purpose, we introduce the gravity law parameter gr,y, which
is the most important parameter for the WBT. We define this such
that g,y = 0 represents Newtonian gravity and o,y = 1 represents
QUMOND with the simple interpolating function. We allow ogpay
values somewhat outside this range to capture the possibility of
behaviour different to either theory. The most plausible outcomes

4585

to the WBT are a strong preference for agr,, values very close to 0
or 1, with the large sample size hopefully tightening the error budget
enough that both possibilities are not simultaneously consistent with
the observations (a few thousand WBs should be sufficient; see
BZ18). Since the WBT will have some uncertainties, we allow ogray
to lie in the range (—2, 3.6). Negative values imply that the gravity
in the asymptotic regime has a lower than Newtonian normalization,
while ag,y > 1 implies a normalization higher than expected in
MOND.

To set up a parametrized gravity law, we obtain the simulated
(Fsky, V) distribution in both gravity theories for each (M, a, y), with
different orbital eccentricities marginalized over for the adopted y
using the eccentricity distribution it defines [equation (17)]. The
main idea of our parametrization is to transform the Newtonian
(ﬂky, 'vV) distribution into the Milgromian one and then interpolate the
coefficients involved in the transformation so that arbitrary gravity
laws can be considered.” To simplify our analysis, we consider a
simple 2D stretch in which the probability distribution is stretched
along the 7qy axis by a factor S, and then along the v axis by a
factor S,, with S, # S, in general. These are found by running a
2D gradient descent in (S,, S,) to minimize the sum of squared
residuals between the stretched Newtonian array and the MOND
array (Fletcher & Powell 1963). While a simple 2D stretch applied
to the former does provide a good approximation to the latter, there
are still some residuals, which we calculate for each pixel. This
array of residuals is itself scaled by a factor of o,y and stretched
in 2D by some factors depending on agr,y and (S,, S,). The idea
behind applying this ‘corrections array’ is to recover the Newtonian
(Milgromian) (Fuy, v) distribution exactly if agry = 0 (1). If we
consider an intermediate case where o,y = 0.5, we would expect the
v distribution to stop at a value about halfway between the maximum
which arises in the Newtonian and MOND distributions. To prevent
the corrections array from creating non-zero contributions all the
way out to the maximum v which arises in MOND, the residuals
array itself needs to be stretched somewhat, though in this case we
expect S, < 1. Since no corrections are required if &g,y = 0, we need
to avoid applying any corrections in this case, which is achieved by
our scaling factor of ag,,. We use linear interpolation in all the
stretch and scaling factors discussed above with respect to gry. To
avoid negative probabilities due to negative values in the corrections
array, any negative entries in the resulting (7sky, '17) distribution are
converted to zero and the array renormalized.

3.2 Undetected companions

As discussed in Section 1.1, undetected companions are the main
source of contamination to the WBT given the low measurement
uncertainties (Fig. 4) and the low LOS contamination fraction evident
from the low number counts in the rather wide pixels at high rgy and
v (Fig. 6). In particular, the declining v distribution it reveals is a
clear sign of some process that broadens the WB distribution, which
we otherwise expect to be concentrated at v < 2 for any plausible
gravity theory (PS19).

We therefore need to include the possibility that a star in a WB
is actually itself part of a CB, even though the CB companion is
undetected. Including CBs proved to be by far the most challenging
aspect of the WBT, so we had to make some simplifying assumptions
to keep the complexity and computational cost manageable. Due to
their much smaller separation, we assume that the CB is completely

7We marginalize over M and a at a later stage.

MNRAS 527, 4573-4615 (2024)

€202 Joquiaoaq 0 U0 158NB Aq 8.2 L/ELSYIE/LZG/I0IE/SeIUW WO dNOD1WapED.)/:SA]Y WOl PAPEOUMOC



4586 1. Banik et al.

Newtonian internally, even if MOND affects the motion of its
barycentre around the other star in the WB.® It will become clear
later that the undetected CBs relevant to the WBT indeed have only a
small separation compared to the WB, justifying this approximation.

3.2.1 Impact on WB observables

Undetected companions have two main effects on a WB: increased
mass and induced recoil velocity. Since the CB companion is
expected to tightly orbit the star it contaminates, we neglect the
impact of the CB on the WB’s ry. For this reason, we also assume
that the light emitted by the ‘undetected’ star is blended with that
of the contaminated star, i.e. they are unresolved by Gaia. This is
reasonable given that resolved third star companions would cause the
WB to be removed from our sample at an early stage (Section 2.1).
Indeed, we will see later that our analysis prefers to avoid CBs whose
separation is significant compared to that of the WB.

The actual mass of the CB exceeds its estimated mass by a factor

~ Total CB mass

ANM= ——— — 1. (18)
Estimated CB mass

This is positive because the mass—luminosity relation is very steep
(Fig. 1), so blended light from the ‘undetected’ companion raises
the estimated CB mass by less than the companion’s mass. As a
result, two unresolved Sun-like stars would appear to have a total
mass of only 1.19 M even though their total mass is actually 2 M,
yielding AM = 0.68. Since the mass—luminosity relation is not an
exact power law, AM depends on the masses of the stars involved.
We handle this complication by considering as a prior the mass
distribution of all the stars in our WB sample (blue bars in Fig. 5).
For a fixed fraction ¢ < 1/2 of the CB total mass in the undetected
companion, we consider a dense grid of primary star masses covering
the range shown there.’ In each case, we use the mass-luminosity
relation from Pecaut & Mamajek (2013) to obtain the fraction L of
the CB’s total luminosity contributed by the undetected companion
— this will be important later.'® We then numerically invert equation
(6) using the Newton—Raphson algorithm to find the estimated mass
of the CB given the total Gaia-band luminosity of the two stars in
it, thus following the same approach as observers would use without
knowing about the CB. In this way, we obtain the relation between
AM and g, which we show as the solid red line in Fig. 8. We also use
a dotted red line to show the results if we neglect the blended light
contributed by the undetected companion. The results are similar
either way unless the CB consists of two stars with an almost equal
mass: in this limit, blended light reduces AM from 1 to 0.72.

The impact of blended light is more significant when it comes to the
recoil velocity induced by an undetected companion. In the limit that
the CB has two equal mass stars such that ¢ = 1/2, the photocentre
and barycentre would coincide and move only due to the WB orbit.
This is true regardless of the relative velocity v of the CB orbit. In
general, the velocity of the primary star relative to the CB barycentre
would be gv, while the undetected star would move at — (l - t?) v,
which is in the opposite direction. Once these velocities are averaged
weighted by the mass fractions, the CB barycentre is of course static.

8Bekenstein & Milgrom (1984) showed that a body with high internal
accelerations can still exhibit MONDian behaviour for its barycentre.
9‘Primary’ here refers to the more massive star in the CB, which may itself
be a sub-dominant component of the total WB mass.

10For simplicity, we do not implement the FLAME calibration discussed in
Section 2.3.3 when converting masses to luminosities or vice versa in this
section.
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Figure 8. How the fraction of a CB’s total mass in its undetected component
affects the offset between its photocentre and barycentre (black lines) and
the fraction by which the total mass exceeds the mass estimated by observers
based on the luminosity (red lines). The scale for the left y-axis is arbitrary:
the important aspect is the functional form. The dot—dashed lines neglect the
increase to the estimated mass caused by the luminosity of the undetected
component. The solid lines include this effect, which helps to somewhat
mitigate the impact of CB contamination. The solid black line is proportional
to the CB’s impact on the WB v under the assumption that an undetected CB
increases the estimated mass of both WB components by a similar fraction.
Only the solid lines shown here enter into our model as AM [red; equation
(18)] and fyp [black; equation (20)].

But if we instead weight the stars using their luminosities, we get
that the photocentre velocity is

Vphot = [g(l—Z)—It(l—g)]v: (a—Z)v. (19)

Since we are only interested in the magnitude of vppe, the impact
on the observed WB relative velocity (based on photocentres) is

x ‘c? — Z’ (as also found by Penoyre, Belokurov & Evans 2022).

Moreover, v is itself proportional to the Keplerian velocity of the CB,
which depends on its total mass and separation. Finally, the impact
on v also needs to take into account that blended light increases
the apparent mass of the WB and thus its Newtonian v, [equation
(3)], but the extra mass is underestimated thanks to the steep mass-
luminosity relation. We assume for simplicity that both stars in a WB
are affected by CBs with a similar mass ratio to their primary star.

Putting all this together, we get that the impact on v scales with
the parameter

fu
fo = ‘47—2)\/1+M71. 20)

This is shown as the solid black line in Fig. 8. The dotted black line
shows the result if AM is calculated neglecting blended light. It is
clear that fy, is not sensitive to details of how A M is calculated for the
purposes of the above equation. This is because if ¢ <« 1/2 and the
CB has an extreme mass ratio, then th~e undetected star contributes
almost no blended light, making AM insensitive to whether we
consider this light. In the opposite limit that g ~ 1/2, the stars in the
CB are very similar such that g ~ L, making f, very small and thus
rendering irrelevant small differences in fj,.
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Figure 9. The mass ratio distribution of the WBs in our Gaia DR3 sample
(thick solid blue line). We consider three different forms for the undetected CB
population. The nominal assumption of a g** dependency (solid black line) is
based on Korntreff, Kaczmarek & Pfalzner (2012), with ¢ < 1 being the mass
ratio between the stars in each binary. This model fits the WB distribution
fairly well, especially given that selection effects would make it hard to find
binaries with ¢ < 1. We also consider the case of a flat distribution in ¢
(dot—dashed red line) and a linear distribution (dotted magenta line). These
should bracket the range of possible ¢ distributions.

3.2.2 Mass ratio distribution

The impact of an undetected CB on the WB observables depends
on the fraction of the CB mass in the undetected star (Fig. 8). This
requires us to assume some distribution for ¢ < 1/2, or equivalently
for the mass ratio ¢ = ¢/ (1 — g) < 1. Following Korntreff, Kacz-
marek & Pfalzner (2012), we assume that

P(q) x q0.4’

We expect this to broadly match the distribution of WB mass ratios.
We therefore use Fig. 9 to show the mass fraction in the less massive
star, which is the quantity more relevant for our analysis [equation
(24)]. The ¢°* assumption is shown as a solid black line, while the
distribution for our WB sample is shown as a solid blue line. It is
apparent that our adopted ¢** distribution provides a good match to
the WB distribution. The WB sample contains a deficit of systems
with a very extreme mass ratio, but this is almost certainly due to
selection effects: low mass stars are very faint (Fig. 1). Even if they
are not present in our WB sample, we still need to consider extreme
mass ratio CBs in our analysis because they can affect the WB
observables if the CB has a small separation.

To bracket the possible uncertainties in the CB mass ratio distribu-
tion, we also consider a flat distribution of ¢ and a linear distribution,
which we show on Fig. 9 as the dot—dashed red and dotted magenta
line, respectively. A flat distribution is a rough approximation to the
three-part power law recommended in fig. 7 of El-Badry et al. (2019).
We will see later that using instead a flat or linear prior on g gives
similar results to our our nominal ¢** assumption, so our conclusions
are similar for any power-law distribution of ¢ with exponent in the
range 0—1 (Section 5.1.2).

g=<1. 1)

3.2.3 Semi-major axis distribution

The Keplerian orbital velocity of the CB is affected by its semi-major
axis aiy. Following PS23, we impose an upper limit of akcp, where
a is the semi-major axis of the WB. Thus, we require that

~ _ dint
Aint =

< keg . (22)
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We work with a;, rather than a;,, because the ratio between the CB
and WB orbital velocities depends on the ratio of their semi-major
axes. The maximum allowed value of this ratio is kcg, which is a free
parameter in our analysis.

Since we remove systems with an obvious third star, kcp refers
to the maximum a;,, for CB companions to the WBs in our sample,
bearing in mind that we do not consider stars which have a discernible
companion within 0.5 arcsec with a reasonably consistent parallax
and proper motion (Section 2.1). To convert this to a separation in
AU, we note that as our sample goes out to 250 pc, we can expect a
reasonable number of systems out to 200 pc. Thus, we expect WBs
in our sample to typically not have CB companions with projected
separation beyond 100 AU. The upper limit to the actual separation
would be larger thanks to projection effects, but their impact on
ai, would be counteracted by the high likelihood of the orbit being
quite eccentric (Hwang, Ting & Zakamska 2022) and the fact that
orbital phases near apocentre are more frequent. It is possible for a
sufficiently faint star to go undetected at an even larger separation,
but it would have to evade our faint star catalogue used to reduce CB
contamination (Section 2.1). This catalogue goes down to an apparent
magnitude of mg = 20, which at a distance of 200 pc corresponds
to Mg = 20 — 5log;p20 = 13.5 and thus a mass of about 0.1 Mg
(Fig. 1). As a result, CB companions beyond 0.5 arcsec from the
contaminated star can remain undetected only in a narrow range of
mass at the very bottom of the main sequence. Such a low mass would
also reduce the perturbation to the velocity of the contaminated star
[low fyp in equation (20)]. Combined with the large separation, this
makes it unlikely that a distant low-mass companion which evades
our faint star catalogue would actually be relevant to our analysis. We
thus assume that the maximum relevant a;, ~ 100 AU. To convert
this to kcg, we note that a reasonable a for the WBs might be 40
kAU because our WB sample goes up to rgy = 30 kAU and we need
to consider all viewing angles and orbital phases. For this reason,
our WB orbit library goes up to a = 57 kAU, though we expect our
analysis to assign only very small statistical weights at such high a
due to its declining distribution [equation (16)] and the fact that we
truncate orbits when they go beyond 100 kAU to mimic disruption
caused by Galactic tides and encounters with other stars. Taking the
ratio of the above estimates for a;,; and a suggests that kcg ~ 2.5%o.
We do not impose this in our analysis, but we do set a prior that it
should be at least 1%o to avoid numerical difficulties. This is very
conservative because it implies a maximum a;, of about 40 AU,
which corresponds to just 0.2 arcsec for a WB 200 pc away. One
can easily envisage that a CB with a larger separation would not be
detected at this distance.

At the opposite end, the lowest a;, that we need to consider is set
by the fact that CBs on very small orbits have a short orbital period,
leading to rapid but low amplitude astrometric oscillations that have
little impact on the inferred space velocity of the contaminated star.
This phenomenon is not directly included in our analysis, which for
simplicity assumes that the stars in a CB move at constant velocity
over the whole Gaia observing baseline. In Appendix B, we estimate
that this approximation breaks down when a;, < 3.2 AU, below
which the impact of the CB rapidly becomes much smaller than our
estimate based on uniform linear motion.

Based on the above considerations, we allow CBs to have a 1.5
dex range of aj, with a maximum at kcg > 1%o. We assume that a;,
has a flat distribution in log-space, as in the classical Opik law (Opik
1924). The logarithmic distribution of a;, does indeed seem to be
rather flat between 10 and 100 AU (fig. 2 of Offner et al. 2023), so
this ought to be a reasonable assumption. We will see later that our
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results are not much affected by using a somewhat different shape or
width to the a;, distribution (Section 5.1.3).

In addition to properties of the CB, how it affects v of the WB also
depends on the latter’s projected separation. At fixed a, the impact on
v is reduced at low Tsky because this raises the predicted Newtonian
v, of the WB [equation (3)]. Considering also that the CB orbital
velocity o< 1/+/ajy, the perturbation to the WB  scales as

AV oy |8 (23)

int

The lack of any explicit dependence on a greatly reduces the
computational cost of the WBT, but this is only possible because
the WB libraries are stored with respect to 7Sky rather than ryy. The
only slight downside is that we need the latter for a comparison with
observations, so we subsequently need to find rgy = a?sky.

3.2.4 Convolving the CB and WB libraries

The fractional increase to the total mass of a WB is found by
combining AM for each of the stars in it, which we denote using A
and B subscripts.

AM = GuAM, + GsAMp, (24)

where g4 = 1 — g3 is the fraction of the WB total mass in star A and
AM, is the fraction by which its actual mass exceeds its apparent
mass [equation (18)]. If one of the WB stars is not in a CB, then
AM = 0 for that star. We assume that §, and 5 have an identical
distribution, which we obtain from our WB sample (solid blue line
in Fig. 9). This is not exactly correct because undetected CBs can
alter the mass ratio. However, we expect this to be only a very minor
issue because even in the extreme case of having two equal Solar
mass stars in a WB where one of the stars has an undetected equal
mass companion, observers would infer a mass fraction in the less
luminous component of 0.46 rather than the correct value of 1/3. The
error would be smaller in more typical cases, especially as both stars
in the WB could actually be CBs. We therefore expect the WB mass
ratio inferred from luminosities to be quite accurate.

To obtain the relative velocity between the photocentres and
barycentres of the CBs making up a WB, we again need to combine
the contributions from both CBs. In this case, the scaling factors are
\/(i and \/(773 because the Keplerian orbital velocity of a CB scales
with the square root of its mass. Allowing also for the increased WB
orbital velocity due to its mass being higher than estimated, we get
that the WB v should be revised as follows:

T > Vfy + AUAGa + AV/q5, (25)

where fi; was defined in equation (20) and Av, is the change to
v of the WB if all its mass was in star A such that g4 = 1 (Avg
is defined analogously). Since Av induced by each CB is a 2D
vector, we also need to allow for partial cancellation between the
photocentre-barycentre offsets arising from each CB. This leads to 4
possible outcomes for whether the contributions along each direction
are parallel or opposite.

Following El-Badry et al. (2019), we implement a §-function in the
probability distribution of the CB mass ratio. Such an equal mass ratio
population is also evident in our colour—magnitude diagram (dashed
grey lines in Fig. 2), with our analysis suggesting that the equal
mass likelihood Pegn = 0.04 (see Appendix A). The origin of such
a twin population is unclear, but it could be related to gas accretion
onto a forming binary star tending to equalize the masses (Tokovinin
2017; Tokovinin & Moe 2020; Tokovinin 2023). To include this,
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Table 1. The ryy and v range used for the WBT and the binning
scheme, which we fixed in advance to limit the possibility of bias
(Banik, Pittordis & Sutherland 2021).

I'sky (kAU) v

2-5 (6 bins) 0-1.6 (20 bins)

5-10 (5 bins) 1.6-2.6 (5 bins)
10-16 (3 bins) 2.6-5 (5 bins)
16-22 (2 bins)

22-30 (2 bins)

we combine the CB perturbations calculated assuming a smooth
distribution of the CB mass ratio with similar calculations assuming
an exactly equal mass ratio for the CB, weighting the former at (1
— Pegm) and the latter at Py, (further details are provided in Banik,
Pittordis & Sutherland 2021). We demonstrate later that changing
the assumed CB mass ratio distribution has very little impact on our
results (Section 5.1.2).

The overall impact of CBs on the WB population is modulated by
the likelihood fcg that a star in our WB sample has an undetected CB
companion. We assume that CB contamination of the two stars in
each WB occurs independently, so the likelihood of both stars being
contaminated is f2;, which is not negligible. We found that one of the
most computationally expensive parts of the WBT is calculating the
CB perturbations to the WB parameters in this double contaminated
case. This is due to the need to consider a range of CB semi-major
axes, velocity perturbations, and mass contributions from both CBs,
which almost doubles the already large number of nested loops.

Combining the CB perturbations with the WB library is non-trivial
because CBs cannot be considered as adding an extra population to
the statistics — they physically affect the WB. As summarized in
equation (25), we need to scale up the WB v to account for the
fractional mass increase AM induced by the CB(s) and then add
the velocity perturbations from each CB in the directions parallel
and orthogonal to v of the WB, which is a 2D vector in the sky
plane. We then use the Pythagoras Rule to calculate the resultant
v, or more precisely the appropriate v pixel (Table 1). Since there
is a reasonable chance that the resultant v > 5, CBs can reduce the
overall normalization of the (ryy, v) distribution in our WB library.
This may well have happened in reality, but since our Gaia DR3
sample only contains WBs with v < 5, we renormalize the (rsky, ﬁ)
distribution that we obtain after the CB-WB convolution step. The
computational cost of convolving the CB and WB libraries is kept
low using the techniques detailed in Banik, Pittordis & Sutherland
(2021).

3.3 Chance alignments

So far we have only considered bound systems. It is inevitable that
some of the WBs in our sample will be unbound. Observations are
unlikely to catch a WB in the process of disruption due to a passing
third star or a molecular cloud (see section 8.1 of BZ18). Even so,
chance alignments of stars can still arise, especially when we get to
large 7y and v (see fig. 7 of PS19). The likelihood is enhanced due
to the possibility of the stars being born in the same star cluster which
later dissolved [Oh et al. 2017; Dinnbier, Kroupa & Anderson 2022),
giving them a much lower relative velocity than the Galactic velocity
dispersion. This raises the chance of observing the stars close to each
other on the sky, which could cause them to be misidentified as a WB
given the Gaia parallax uncertainty. LOS contamination should be
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reduced somewhat by excluding regions of the sky with an enhanced
density of stars, e.g. known star clusters (table 1 of PS23).

To limit the complexity of our analysis, we set up a very
simple model for LOS contamination under the assumption that the
separation and relative velocity of stars born in the same cluster can
greatly exceed that of the WBs in our sample. Since r gy, and vy, are
both 2D vectors within the sky plane, we assume that the number
density of chance-aligned WBs scales as

dNLos

—_— . 26
drsky deky T'sky Usky ( )

Bearing in mind that vgy & V/,/Fey [equation (3)], the population
distribution of LOS contamination is
dNyos ~
— X V.
d Tsky dv

27

The dependence on ry, cancels out because raising 7, reduces the
range of v, for the same range in v.

We integrate this distribution across each of the ryy and v pixels
shown in Table 1 to obtain the relative number of chance-aligned
systems that we expect to find in each pixel. We then normalize the
results to a sum of fi pos and combine with the result of our CB-WB
convolution (Section 3.2.4) weighted by (1 — fios), where fios is
the LOS contamination fraction. We leave fi os as a free parameter
in our analysis. Since there are only a few WBs in our catalogue at
high rgy and v where LOS contamination would be most significant
(Fig. 6), we expect fLos to be at most a few percent.

3.4 The simulated distribution of WBs

To simulate the distribution of WBs, we tie together a model for
the WB population (Section 3.1) with a model for an undetected
population of CB companions (Section 3.2) and then allow for
chance alignments (Section 3.3). We use Fig. 10 to illustrate the
separate stages for the particular example of our best-fitting MOND
model (Section 4.1). The simulated v distribution is shown in four
different 7, ranges considering only WBs (blue curves), including
CBs (red curves), and finally including also the LOS contamination
(black curves). Since only a small proportion of the WB sample is
expected to lie in any single g, interval used here, we normalize
the v distributions using the final simulated distribution, so only the
black curve in each panel is guaranteed to have an integral of 1. WBs
alone almost never yield v 2 1.5, even in MOND — the theoretical
limit of 1.7 only refers to systems on highly eccentric orbits seen
close to pericentre from a direction nearly orthogonal to the relative
velocity (this is also apparent in fig. 3 of BZ18). CB companions
create an extended declining tail that is easily able to reach much
higher v. We capture much of this extended tail by going up to
v = 5, a choice we discussed in Section 2.1 and fixed in advance of
the WBT to mitigate possible biases (Banik, Pittordis & Sutherland
2021). This extra leverage allows our analysis to constrain the CB
population, which dominates the behaviour once v 2 2. A flat log-
space distribution of ajy (C)pik 1924) yields a v distribution that is
also flat in log-space in the CB-dominated region, helping to explain
why the distribution here is <1 /v. We expect this to flatten out and
ultimately start rising at very high v due to LOS contamination.
This is most evident in the highest ry, interval, where there is less
contribution from only the gravitationally bound systems because
WBs have a declining distribution of ryy [equation (16)]. Our WB
sample reaches high enough v for its distribution to become flat, but
a clearly rising trend is not apparent because we have limited the
considered v range to avoid being swamped by chance alignments.

4589

Other studies which consider a wider parameter range do show a
rising trend (e.g. see fig. 12 of El-Badry, Rix & Heintz 2021).

3.5 Comparison with observations

We compare the observed number of WBs in each (ryy. D) pixel
with the expectation of our model for that pixel. We use binomial
statistics because we are dealing with integer statistics and the total
sample size N is finite. Thus, the binomial likelihood of observing k
systems in a pixel is

!
Pt = g A= 8)
where p is the fraction of the total number of WBs in the comparison
region (rgy = 2-30 kAU, vV < 5) which should be located within
the pixel under consideration. For computational reasons, we use the
logarithmic version of this equation. The log-likelihood In P of the
model is then given by considering all 540 pixels summarized in
Table 1.

hP = Z In Ppixei - (29)

Pixels

This is used to infer the optimal values and confidence intervals for
our model parameters associated with the CBs (fcg, kcg, and y), LOS
contamination (fi os), and the WBS (apreak, B, and atgryy). Note that y
affects both the CB and WB populations because they are assumed
to follow the same eccentricity distribution for simplicity. The CBs
are assumed to follow an Opik law distribution of semi-major axes
(Opik 1924) over a 1.5 dex range (Section 3.2.3), while the WBs
follow a broken power law that reduces to a~' at small separations
[equation (16)].

Notice that regardless of how many WBs a pixel contains, In Ppixe|
< 0 in every pixel as its predicted p is always non-zero once we
include CB and LOS contamination. Since we have quite a large
number of WBs spread across a large number of pixels, we expect
In P « 0 (a similar situation is evident in table 2 of Asencio et al.
2022). As a crude estimate, we can suppose that our model predicts
8611/540 = 16 WBs in each of our 540 pixels, so the actual number of
WBs in any pixel is expected to nearly follow a Poisson distribution
with a standard deviation of /16 = 4. If the model works well,
then the actual number of WBs would be approximately uniformly
distributed over the range 12-20, with all of these outcomes having
a likelihood of Pyixe; = 1/9. The combined likelihood would then be
In P = —540 In9 = —1200. We therefore expect to get a combined
log-likelihood of about this much, but this is of course only a very
crude estimate. In reality, not all pixels would be expected to have
the same number of WBs, and even if they were, outcomes in the
tail of the Poisson distribution are less likely than the inverse of
the Poisson noise. Moreover, it is inevitable that our model does
not capture all the subtleties of the actual WB population because
of the simplifying assumptions made to keep the complexity and
computational cost manageable. None the less, we will see later that
the above estimate is fairly accurate.

4 RESULTS

Before presenting the results of our detailed statistical analysis
discussed in the previous section, we first look for trends in the
median v of our WB population with Ysky/T,» Which is a proxy for
the internal acceleration of each WB. For this purpose, we sort our
WBs in order of ryy/r, and use this to create ten equally sized
subsamples with no overlap. The thin magenta line in Fig. 11 shows
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Figure 10. How we build up the simulated v distribution in our best MOND model (Section 4.1), with results shown in four different rygy ranges (different
panels). In each case, the distribution due to WBs alone (blue) is significantly altered by including CBs (red). Further adding LOS contamination yields our final
simulated distribution (black), which is used to normalize the results shown here. This helps to highlight that including LOS contamination slightly raises the

predicted number of WBs at high rgy.

the median v as a function of the median T'sky/T,, of each subsample.
A clear rising trend is evident, with the increase being close to the
20 per cent expected in MOND. However, LOS contamination would
be more important at high ry, and high v, potentially inflating the
median v in a manner which appears acceleration-dependent. To
mitigate against this possibility, we note that MOND would cause
an acceleration-dependent broadening to the main peak of the v
distribution at v < 2 (Fig. 6; see also fig. 7 of PS19). In MOND, we
expect almost no WBs with v > 1.5 in the absence of contaminating
effects (see fig. 3 of BZ18). We therefore consider the median v of
only those WBs in each rgy/r,, bin with v < 1.5, 2, or 2.5, which
we show in Fig. 11 using the red, black, and blue line, respectively.
In all three cases, the rising trend disappears: the median v becomes
flat with respect to our proxy for the internal acceleration. There is of
course some scatter, but we would expect a random scatter of about
0.6/~/861 = 0.02 due to the finite number of WBs, which is roughly
in line with the actual scatter.

Since the upper limit to v should substantially alleviate the
impact of CB and LOS contamination without much affecting a
genuine MOND signal, it is clear that the apparent MOND signal
discussed above is almost certainly a consequence of contaminating
effects, highlighting how easily one can reach erroneous conclusions
from the WBT using simple population statistics without a good
understanding of the astrophysical systematics (Hernandez et al.
2019; McCulloch & Lucio 2019; Hernandez, Cookson & Cortés
2022). Focusing on WBs with v < 2, the very weak dependence of
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the median v on rgy/r, despite the significant range covered by
our sample strongly suggests that the WBT will return a Newtonian
result. We highlight this using the dashed grey lines in Fig. 11, which
approximately show the MOND prediction that the median v should
rise by a factor of /n = 1.2 over the range rqy/r,, = 0.2 — 1. This
is motivated by Fig. 7, which shows that the enhancement factor to
the radial Newtonian gravity rises from 1 up to its asymptotic value
roughly linearly over this range of r /r,, and is almost flat afterwards.
While this is a rather crude way of considering the situation because it
neglects projection and orbital phase effects, it should approximately
capture the expected broadening of the v distribution in the main
peak region as one considers WB subsamples with a lower internal
acceleration. The expected Newtonian behaviour is not shown as
there is already a gridline at 0.57. This provides a much better fit to
the median v for the v < 2 subsample than the approximate MOND
expectation mentioned above.

This strong hint that the WBT will disfavour MOND is in line
with the detailed analysis of PS23, who prepared a model for the
WB population similar to ours and found a strong preference for
Newtonian gravity over MOND. Their Newtonian model fits the
observations surprisingly well given their limited exploration of the
parameter space (see their fig. 12). Moreover, the right-hand panel of
their fig. 17 shows that WBs have a median vgy o 1/,/Tsky, especially
when restricting to only those WBs with v < 2. This is the expected
behaviour if Kepler’s Third Law works even in the low-acceleration
regime, as illustrated by the dashed lines on this figure.
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Figure 11. The median v of our WB sample as a function of the median
Fsky /T, » shown for ten bins in the latter which each contain 861 WBs except
the last bin which has 862. The solid lines show results with four different
upper limits to v of 1.5 (red), 2 (black), 2.5 (blue), and 5 (thin magenta).
Qualitatively, the MOND expectation is that the median v rises for larger
rsky/r), and then becomes flat once the Galactic gravity dominates. We
indicate this by two dashed grey lines with different normalizations. Their
shape is based on Fig. 7, which implies that the main peak in the v distribution
for v < 2 should broaden at low accelerations. Neglecting projection effects
and assuming the current separation is representative of the whole orbit, this
would lead to a rise in the median v by a factor of /7 = 1.2 that occurs
roughly linearly over the range rgy/r,, = 0.2 — 1 before rapidly flattening
out. The Newtonian prediction is a flat relation, which is consistent with
the data up to v < 2.5, within which lies 89.8 per cent of the sample. The
full sample of WBs (with v < 5) does show a rising median that looks
qualitatively similar to the MOND expectation, but since this rise is not seen
for the subsamples restricted to the main peak region of the v distribution
where v is low enough to be physically plausible for an uncontaminated
system, we attribute this behaviour to LOS contamination becoming more
important at larger separations (Section 3.3).

The lack of a trend in the median v is unlikely to be caused by
observational uncertainties, which would generally lead to a larger v
uncertainty at high rgy, due to the lower Newtonian v, [equation (3)].
This would if anything create the appearance of a MOND-like signal
in actually Newtonian data rather than precisely cancel out a genuine
MOND signal (cf. Section 5.2). Moreover, the v uncertainties in our
WB sample are very small (Fig. 4).

Although our results favour the Newtonian model, the distribution
of v contains much more information than just its median value.
Before drawing strong conclusions about the gravity law, we try to
exploit this information using a forward model that considers the
most relevant factors (Section 3). We now turn to the results of a
comparison between this model and the WB data set.

4.1 Gradient ascent with a fixed gravity law

To check if Newtonian gravity indeed provides a better fit to the data
than MOND, we fix the gravity law to Newtonian (g, = 0) and
run a gradient ascent in the remaining model parameters to try and
maximise In P (Fletcher & Powell 1963). The gradient ascent usually
takes about 100 iterations to converge. To further improve the fit, we
supplement this by running a ‘line ascent’” where In P is maximized
with respect to each parameter while holding all the other parameters
fixed. We then repeat this extended version of gradient ascent for
MOND (agray = 1). The parameters of the best-fitting models are
shown in Table 2, whose last line shows the corresponding In P. This
is much lower in the MOND case, with Aln P = 175. This can be
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Table 2. The best-fitting model parameters with a fixed gravity law,
found using gradient ascent. Notice the very substantial difference in
In P (Section 3.5), indicating that MOND provides a much poorer fit
to the data.

Gravity law

Parameter Newton MOND
Abreak (kAU) 5.10 5.30
B —2.66 -2.70
y 1.86 1.96
feB (%) 69.9 65.7
ke (%0) 1.07 2.10
Jros (%) 1.45 1.49
Agray (fixed) 0 1
InP —1457.4 —1632.6

thought of as equivalent to a statistical significance of +2A In P
standard deviations for a single Gaussian variable, implying that the
WBT prefers Newtonian gravity over MOND at 19¢ confidence. The
high significance is in line with earlier forecasts that a few thousand
systems should be more than sufficient for the WBT (see the blue
curves in fig. 5 of BZ18).

Our result broadly agrees with that of PS23 if we consider
their Newtonian and MOND models with a thermal eccentricity
distribution (y = 1), which is the closest distribution they consider
to the slightly superthermal distribution preferred by our fits. Their
analysis gives a difference in x? between the best Newtonian and
MOND models of 525, implying that Newtonian gravity is preferred
over MOND at a significance of +/5250 or about 23¢. We expect
that the actual significance would be somewhat lower because further
exploration of the parameter space should improve the fit, with
MOND benefitting far more due to its 2.6x higher x2. Even so,
it is clear that the WBT favours Newtonian gravity over MOND at
>>50 confidence. We will see later that this conclusion holds up in our
more thorough exploration of the parameter space. Other attempts at
the WBT are discussed in Section 5.2.

To better understand why the Newtonian fit to the WB data set
is much better than the MOND fit, we use Fig. 12 to plot the
v distribution in four different rqy ranges, normalized using the
observed number of systems in each ryy range. The error bars show
binomial uncertainties in the model predictions. The top left panel
has little direct sensitivity to the gravity law because of the low
Tsky, but there is an indirect dependence because the best model
parameters differ depending on the gravity law. The lower fcp in the
best MOND fit (solid blue line) causes the v distribution to peak
earlier at a much higher amplitude and then drop off more rapidly
after the peak compared to the best Newtonian fit (solid black line).
This causes MOND to severely disagree with the data, which may
seem surprising as MOND is not directly expected to be very relevant
at such low rq. The disagreement must arise because of a tradeoff
when simultaneously fitting the data over a wide rg, range, so we
turn to the situation at wider separations. As the gravity law gradually
becomes more important, the predicted mode to the Milgromian v
distribution eventually ‘overtakes’ the Newtonian prediction.!! The
Newtonian and MOND distributions become almost identical at ryy
=3-5KkAU (top right panel). The Newtonian model performs slightly
better around the peak of the distribution because it predicts an earlier

Fig. 3 of BZ18 shows how the eccentricity distribution and the gravity law
affect the v distribution, but here we focus on optimized fits for each gravity
theory to enable a fairer comparison.
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Figure 12. Comparison between the observed v distribution in four different ryy ranges (different panels) with the prediction of our best Newtonian and
Milgromian model (black and blue lines with error bars, respectively). Results with Newtonian (Milgromian) gravity are offset very slightly to the right (left)
from the centre of each v bin for clarity in case the predictions are similar. Uncertainties are calculated using binomial statistics. The results shown here are
normalized based on the observed WB distribution, so the simulated curves in each panel need not have an integral of 1.

and higher peak despite the higher fcg, highlighting that the gravity
law is now one of the dominant factors. This remains true at larger
separations, where MOND always predicts a later peak to the v
distribution. For rgy, = 5 — 12 kAU (bottom left panel), MOND
performs somewhat better in a handful of pixels around the peak
region, though given the uncertainties, the Newtonian model is not
that far off. The rapid decline after the peak and the very low number
counts at v = 1 — 1.5 work better in the Newtonian model. The
situation is similar for rqy = 12 — 30 kAU (bottom right panel),
where MOND again fits slightly better before the peak in the v
distribution. The uncertainties are now discernibly larger due to the
smaller proportion of the total WB sample expected (and observed) to
be in this range compared to the other r, ranges mentioned above.!?
Even so, the peak position is better reproduced in Newtonian gravity,
which also provides a somewhat better match to the sharp observed
decline afterwards over the range 0.5 — 1.5 and the consequent rather
low number counts over the range 1 — 1.5. This range was expected
to be critical for the WBT (section 5 of BZ18) and is also a region
where the model predictions depend almost entirely on the gravity
law, which is obviously not the case near the peak of the distribution
where other factors are also relevant (see their fig. 3). Both models
provide a very good fit to the almost flat v distribution over the range
2.5-5, nicely demonstrating a balance between a declining trend

12Binomial uncertainties in the model prediction for each pixel do not depend
on how many WBs are observed in it.
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from the extended CB tail and a rising trend from LOS contamination
[equation (27)]. The rapid observed decline just beyond the peak of
the v distribution when rgy 2 3 kAU presumably forces the MOND
fit to use a lower fcg, but this also causes the MOND model to provide
a worse fit to precisely this range of v at very low ryy, as shown in the
top left panel. Indeed, the combination of a too-rapid decline after
the main peak at very low rg, with a too-gradual decline at high ry
is just what we would expect of an optimized Milgromian fit if the
predicted change to the shape of the v distribution does not occur in
the real data, as strongly suggested by Fig. 11.

It is of course inevitable that Newtonian gravity would fit better
in some pixels and MOND in others, so it is important to consider
the overall goodness of fit [equation (29)]. To better pinpoint which
regions of parameter space contribute to the much lower likelihood
in MOND, we find the difference in In P between the best-fitting
Newtonian and MOND models for each pixel and sum the results
across one of the dimensions. Fig. 13 shows the sum of the so-
obtained Aln Ppx values for all v pixels at fixed Tsky (left-hand
panel) and vice versa (right-hand panel). The left-hand panel shows
that all rq pixels below 12 kAU show a preference for Newtonian
gravity, which is sometimes very strongly preferred. In particular,
the range ryy, = 5-12 kAU provides the bulk of the evidence in
favour of Newtonian gravity, even though we saw earlier that MOND
works slightly better around the peak of the v distribution at these
separations. Beyond 12 kAU, 4/6 of the ry pixels prefer MOND, but
the preference is very weak in all cases. The right-hand panel shows
that nearly all v pixels prefer Newtonian gravity. The handful of v

€20z Jaquieoaq 0g U0 158N Aq 84Z1E L/€LSY/E/LZS/P10IE/SEIuW/WOo0"dNO"dIUSPEoE//:SAJIY WOI) POPEOJUMOQ



Wide binary orbital velocities challenge MOND

5 10 15 20 25 30

Feky (kAU)

Ln PNewton -Ln PMOND
N
o

4593

-10 e
0 05 1 15 2 25 3 35 4 45 5
@

Figure 13. The difference in log-likelihood between our best Newtonian and Milgromian models, shown here after summing across all pixels in v at each ryy
(left-hand panel) and vice versa (right-hand panel). Blue bars indicate that MOND works better. Most bars are red, indicating a better fit in Newtonian gravity.
Overall, In P is higher in the Newtonian model by Aln P = 175.2, which suggests a preference for Newtonian gravity over MOND by +/2A In P standard
deviations, i.e. at 18.7¢ confidence. We use Fig. C1 to show a pixel-by-pixel comparison between the log-likelihoods returned by each model.

pixels which prefer MOND appear to be randomly distributed. The
mild preference for MOND at very high v could be driven by a deficit
of WBs here at very low rgy due to our sample selection imposing
that vy, < 3 km s~! (Section 2.1). At our lowest considered Tgky Of
2 kAU and assuming M = M, this limit corresponds to v < 4.5,
which would cause only a very mild edge effect considering the very
low number of WBs that we might reasonably expect in the affected
pixels. This issue is further mitigated in a revised analysis where we
use a narrower range of M (Section 5.1.1). We use Fig. C1 to present
the 2D version of the results shown here, with a colour scheme used
to show all the Aln Py values and small white circles to highlight
pixels which work better in MOND, as sometimes occurs to a very
limited extent.

4.2 Markov Chain Monte Carlo (MCMC) analysis

Our main results are based on running an MCMC analysis starting
from the optimal parameters identified by gradient ascent, which
we start at oy = 1/2 to avoid biasing the results in favour
of either gravity theory we are testing.'> MCMC is a standard
statistical method that generates a sequence of parameter values
whose frequency distribution matches the posterior inference on the
model parameters. Starting from some initial guess for the parameters
with likelihood P, the protocol calls for generating a proposal by
adding Gaussian random perturbations to the parameters. The revised
parameters lead to a model with likelihood P... We follow the
Metropolis-Hastings approach to MCMC in which the proposal is
accepted if Pnexe > P, but if not, then it is accepted with a likelihood
of only Ppex/P by using a random number generator. Every time the
proposal is accepted, the parameter perturbations are applied and P
is updated. When the proposal is rejected, the previous parameters
must be recorded again. For best results, the acceptance fraction
should be close to 23.4 per cent (Gelman, Gilks & Roberts 1997).
We ensure it is always in the range 21 per cent — 26 per cent, which
should ensure a well-mixed chain. This is achieved by setting the

3Using gradient ascent to initialize an MCMC analysis worked well in
Asencio et al. (2022), though here we supplement the gradient ascent with
a line ascent stage where only one parameter is varied at a time, with the
gravity law being the last parameter to be optimized prior to the MCMC due
to its importance.

perturbation on each parameter to have a Gaussian dispersion similar
to the estimated uncertainty, which we guess using our gradient
ascent algorithm based on the curvature of In P with respect to that
parameter in the supplementary stage when all the other parameters
are fixed (Section 4.1). We then ran a reduced length MCMC chain
to estimate the parameter uncertainties more precisely and set the
Gaussian dispersion of each parameter to its estimated uncertainty
scaled by a common factor close to 2/3. This factor cannot be varied
inside an MCMC chain, so we ran a few reduced length chains to find
out that this is the appropriate factor to use in our nominal analysis
(slightly different factors were needed in the variations discussed in
Section 5.1).1* All the MCMC analyses presented in this contribution
use 10° trials.

Fig. 14 shows the result of our MCMC analysis as a ‘triangle plot’
(Bocquet & Carter 2016), with the result for our nominal assumptions
shown in red in all such plots. This assumes a uniform prior on
the eccentricity index y [equation (17)] over the range O — 4. The
blue lines show the results assuming instead a Gaussian prior of y
= 1.32 £ 0.09 (Hwang, Ting & Zakamska 2022). The top panel
in each column shows the inference on just one model parameter
marginalized over all others. The other panels show the inference
on every pair of parameters, which clarifies whether there are any
correlations in the uncertainties. There are only two noticeable
cases of correlated errors, both of which are anti-correlations. The
first of these is between the parameters governing the semi-major
axis distribution of the WBs [equation (16)]. This is similar to the
correlation that can arise between the slope and intercept of a linear
regression if the data are clustered about a point offset from the
origin (a similar correlation is evident between the parameters o
and Slopep, in fig. 10 of Asencio et al. 2022). The other correlation
evident from Fig. 14 is between fcp and kcp, which are the only
two parameters that relate solely to the CB population. Reducing
kcp causes the CBs to orbit faster and have a larger impact on v,
spreading out the CB tail over a larger range in v and thus reducing
its amplitude. To match the observed amplitude of the extended tail
to the v distribution in the regime where neither genuine WB orbital
motion nor LOS contamination should be significant, the algorithm
is forced to increase the prevalence of CB companions.

14 An alternative approach is to let the factor vary dynamically and then use
the optimal value in a full length chain.
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Figure 14. Triangle plot showing the posterior inference on each model parameter (top panels in each column) and the 68 per cent confidence region for every
parameter pair (other panels). The red lines show our nominal analysis with a wide uninformative prior on y [equation (17)], while the blue lines impose a
prior of y = 1.32 4= 0.09 based on the angle between the sky-projected separation and relative velocity of each WB (Hwang, Ting & Zakamska 2022). Notice
how this constraint has little effect on the other model parameters, including especially the gravity law, which is clearly Newtonian (bottom right panel). All the
triangle plots in this contribution were prepared using PYGTC (Bocquet & Carter 2016) and show the nominal analysis with solid red lines.

Applying a restrictive prior on y has barely any effect on the
other parameter inferences, though of course the inference on y is
considerably tighter in this case. We see that in our nominal analysis
where y is allowed to vary freely, it prefers a somewhat higher
value than 1.32. This could indicate that the WB orbital eccentricity
distribution is more super-thermal than reported by Hwang, Ting &
Zakamska (2022). We argued previously that this is quite possible
given that CB and LOS contamination were not considered in their
analysis but would tend to drive the distribution of the angle ¥
towards uniform, which is the expected angular distribution if y =
1.

MNRAS 527, 4573-4615 (2024)

The preferred values of the parameters related to the WB semi-
major axis distribution (@preax and f) are roughly in line with the
results of Andrews, Chanamé & Agiieros (2017), with the steeper
decline at high a likely due to our quality cuts selecting against large
separation WBs where it can be harder to get tight constraints on v.
The occurrence rate of CBs (related to the parameter fcp) is slightly
higher than the 50 per cent estimated by Clarke (2020). However,
stars do appear to have binary companions quite frequently, with
observations indicating a fraction exceeding 40 per cent (Hartman,
Lépine & Medan 2022) and usually only placing a lower limit
because the observations are only sensitive to some range of orbital
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Table 3. The posterior inference on each of our model parameters, showing its mode and 1o confidence interval. We provide a reference to the equation or
section where the model parameter is defined. The first row with values shows the uniform prior on each parameter for our nominal analysis. Each subsequent
row shows the result of an MCMC analysis, beginning with the nominal assumptions. Revised analyses are discussed further in Section 5.1. The last column
shows the model with the highest likelihood for each set of assumptions, considering both the MCMC chain and the final result of the gradient ascent used to

initialize it.

Altered Model parameter Best
assumption abreak (KAU) B y fes (%) keg (%o) fios (%) Cgrav InP
Definition equation (16) equation (16) equation (17)  Section 3.2.4  Section 3.2.3 Section 3.3 Section 3.1.3 Section 3.5
Prior (1, 15) (—15,-1) 0,4) (0,99) (1, 750) (0, 60) (—2,3.6) -
Nominal 561103 284700 2.0410%7 6281119  2.524032 1.94+02 —0.021730% —1438.98
y=132+009 5647053  —2.84759 1477508 62.5471% 2377937 1.9979-2¢ 0.02410542 —1445.58
M=(1-2My 578709 3077013 1.867939 63.52H191  2.43%0%8 175793 —0.03873:07¢ —~1329.82
M, > 0.5 Mg 7.13%9%  —2.637044 1.4975-38 61.827]25 393708 1.8270%9 —0.1771008! —1263.68
FlargforCBs 5537535 284705 2150055 0294755 243705 200753 —~0.033% 056 —1441.28
Linear ¢ for CBs ~ 5.667035  —2.887013 2.06%924 6278100 2477027 1.9979-22 —0.00615:057 —1441.18
ke = 0.2 3.84702 273409 4.005:% 67.08+122 200 9.387048 —0.27110:011 —1994.27
Tri 1.5 dex 55179037 —2.83709 2.12102 59.51131  3.40M08 1947932 —0.0167004 —1434.16
Flat 1 dex 5607037 —2.877010 1.9970-29 56.5171 07 2.057938 1957039 0.0177904% —1443.14
fer =03 56502 29700 1.05%09% 30 18.7703 7.33%041 0.14970:03 —1852.05

parameters (Riddle et al. 2015). After correcting for incompleteness,
fig. 1 of Offner et al. (2023) suggests that a reasonable fcg for our
sample might be 50 per cent if most CB companions are not identified
in our faint star catalogue (Section 2.1) or through our cut on the
parameter ipd_frac_multi_peak (Section 2.4.3). We will see later
that we can reduce our inferred fcg from our nominal 63 & 1 per cent
to about this much with some slight changes to the CB model
that have little impact on the other parameters (Section 5.1.3). The
inferred kcp of 2.5 £ 0.3%o is very much in line with our estimate
based on the various selection effects at play (Section 3.2.3), even
though our prior merely imposed that kcg = 1 — 750%c. Only a few
percent of the WBs in our sample appear to be LOS contamination,
which was to be expected from the WB distribution shown in Fig.
6 — though it is also clear that we cannot adequately fit the data
without this ingredient.

Since the non-gravitational parameters seem broadly in line with
what one might expect, we now turn to the inferred gravity law. This is
very consistent with Newtonian (cgr.y = 0) and completely rules out
MOND (otgray = 1). A clear Newtonian result is not surprising in light
of the model-independent Fig. 11, our discussion in Section 4.1, and
the results of PS23 using a somewhat different data set and model for
the WB population (comparisons with their study and other attempts
at the WBT are discussed in Section 5.2).

Our prior for each model parameter is shown in Table 3 along
with the mode and 1o confidence region of its posterior inference
in all of our MCMC analyses (different rows). The alterations to
the modelling assumptions are discussed in Section 5.1. The last
column shows the log-likelihood of the model where this is maximal,
considering both the final result of the gradient ascent and the whole
MCMC chain. Only the analysis with fcp fixed at a rather low
value prefers gy, > 0 at any reasonable significance. However,
this model has an extremely low log-likelihood compared to our
nominal assumptions, suggesting a 290 preference for the latter
(the very severe problems with this model are discussed further in
Appendix D). Thus, it is not realistically possible for the WBT to give
a Milgromian result. We explain later why constraints from galaxy
rotation curves preclude altering the MOND interpolating function
so as to evade our constraint from the WBT (Section 5.3).

5 DISCUSSION

Since the main goal of this contribution is to distinguish Newtonian
gravity from MOND, our a priori expectation was that o,, should
be 0 or 1. Our results strongly prefer 0. If local WBs are actually
Milgromian, there would have to be a confluence of observational
errors and modelling deficiencies that shift g, from a true value
of ~1 down to almost exactly 0. Measurement errors on v are very
small in our WB sample (Fig. 4) compared to the intrinsic dispersion
of ~0.5 (Fig. 12). Moreover, uncertainties would tend to broaden the
distribution, with the broadening occurring preferentially at high ry,
because the same velocity uncertainty in m s~ translates into a larger
uncertainty in v [equation (3)]. Thus, measurement errors would
if anything cause a Newtonian WB population to look somewhat
Milgromian. This is the opposite of what it would take to reconcile
our results with MOND.

The impact of modelling deficiencies is harder to assess, but PS23
implemented the WBT with a somewhat different sample selection
and model for the WB population. Those authors considered WBs
with rgy = 5-20 kAU rather than our adopted range of 2-30 kAU,
leading to a smaller proportion of systems deep into the Newtonian
regime. To get a better handle on the CB properties, they considered
systems with v < 7 rather than v < 5. In addition, they used a linear
mass-luminosity relation rather than our cubic fit over the range most
relevant to the WBT (Fig. 1). Despite these and other differences,
they also found a very strong preference for Newtonian gravity over
MOND, with the Newtonian model fitting the observed number
counts rather well (fig. 12 of PS23). Their analysis with a thermal
eccentricity distribution (y = 1) provides the best fit in both gravity
theories and is also closest to the somewhat superthermal distribution
preferred by our fits. It also better matches the distribution of the
angle between the sky-projected separation and relative velocity of
each WB (Hwang, Ting & Zakamska 2022). For the case y = 1, the
analysis of PS23 prefers Newtonian gravity over MOND at about
230 confidence. This is similar to our result in Section 4.1 that the
best Newtonian model is preferred over the best MOND model at
190 confidence.

An important reason for the similar results is that the gravity law
is mostly sensitive to the main peak region of the v distribution, so
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it is not necessary to have a very accurate model for the extended
tail at v 2 2. This does not of course mean that we can completely
neglect CB and LOS contamination, but it does mean that the manner
in which these effects are included should have little effect on the
inferred gravity law. Even differences in the eccentricity distribution
have a less significant effect on the overall v distribution than whether
gravity is Newtonian or Milgromian (see fig. 3 of BZ18). This is also
evident in Fig. 14, which shows that forcing y to a lower value than
preferred in our nominal analysis only marginally affects the inferred
Qgray and its uncertainty. There is almost no correlation between these
parameters in their joint inference.

We have assumed that y is independent of other parameters like
the WB semi-major axis. A correlation here can masquerade as a
correlation with the WB orbital acceleration because g, depends
more sensitively on the separation than it does on M and the dynamic
range in rg, is larger than in the mass. It is possible that WBs
with smaller separations mostly formed together, while more widely
separated WBs formed via capture of field stars. This could lead to
WBs with larger a being on typically more eccentric orbits [higher
y in equation (17)], which would reduce the median v because the
WB would spend more time near apocentre (see fig. 3 of BZ18). In
principle, this could counteract the MOND prediction that WBs in the
asymptotic regime have enhanced v due to the predicted enhancement
to the gravity binding the WB. However, it seems unlikely that the
cancellation would be sufficiently precise to yield the observed very
flat trend of the median v with respect to ryy /r,, (Fig. 11).

To further explore this quite contrived possibility, we compute
the v distribution for a grid of Keplerian orbits with different
eccentricities. For each orbit, we consider all possible orbital phases
and viewing angles.'> We then assume some eccentricity distribution
governed by the parameter y [equation (17)]. The median of the
resulting v distribution depends on the assumed y, as shown by the
red line on Fig. 15. We add a horizontal solid blue line showing
the median v of 0.64 when y = 1. Bearing in mind that y affects
the distribution of the angle v between r. and vy, this is the
lowest plausible y for Newtonian WBs with separations of only a
few kAU (see fig. 7 of Hwang, Ting & Zakamska 2022). Since lower
y corresponds to a higher median v, 0.64 is a conservative upper limit
to the median v of our Newtonian WBs. This is also evident from the
horizontal grey band showing the median v of the WB population,
which is not that high (see also Fig. 11). To mask a MOND signal,
WBs in the asymptotic regime would need to have a median v
which is smaller by a factor of /77 due solely to changes in the
eccentricity distribution. We illustrate this with a dashed blue line at
0.64/./n = 0.53. It is not possible to reach such a low median v even
if y = 4, which would significantly affect the observed distribution
of ¥ (see fig. 2 of Hwang, Ting & Zakamska 2022). Using this
constraint, their fig. 7 shows that there is no tendency for WBs at
larger separations to prefer systematically higher y (the last three
bins are most relevant for the WBT). Their fig. 10 also shows that
for a slightly superthermal eccentricity distribution (y slightly above
1), their method of determining y would preferentially overestimate
it at large separations, making it even less likely that y > 1 in
this regime. Moreover, the actual distribution of v in their fig. 6
appears fairly symmetric with respect to v — 7w — ¥ for WBs with
I'sky > 1 kAU, providing an important sanity check. The observed
approximate symmetry between systems heading towards and away
from each other makes it unlikely that our results are contaminated

5The computational costs are reduced by only considering the period
between pericentre and apocentre.
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Median v

Figure 15. The median v for an ensemble of Keplerian orbits with a range
of eccentricities viewed from a random viewing angle at a random orbital
phase (red line). The eccentricity distribution is governed by y [equation
(17)]. The horizontal solid blue line shows the result when y = 1. To mask a
MOND signal, the median v would need to be reduced by a factor of /7 to
the level shown by the horizontal dashed blue line. The vertical grey shaded
band shows y = 1.32 & 0.09 based on observations of WBs with separations
similar to those we use for the WBT (Section 3.1.2; see also Hwang, Ting &
Zakamska 2022). The horizontal grey shaded band shows the median v of the
WB population, with the range giving the uncertainty arising from whether
we truncate the v distribution at 1.5, 2, or 2.5 when finding the median. The
WBs are not further binned in rgy /r,, as this has little impact on the median
v (Fig. 11).

much by recently ionized WBs that are currently dispersing. This
is not too surprising given that unbound systems are expected to
disperse quickly and that disruptive encounters with perturbers like
passing stars would be rather infrequent (see section 8.1 of BZ18). It
is therefore extremely unlikely that a rapidly rising trend in y with a
can explain the very clear Newtonian result obtained by our analysis
and that of PS23.

Another possible systematic effect is that WBs with larger separa-
tions could preferentially be younger because they are more fragile
to disruption, which could systematically affect the mass-luminosity
relation. However, it has been estimated that the half-life ¢, of a
WB in the Solar neighbourhood is comparable to the 10 Gyr age
of the Galactic disc (Knox, Hawkins & Hambly 1999) only when a
= 31 kAU (equation 1 of Jiang & Tremaine 2010). Survival rates
of WBs would be reduced modestly in MOND because although
their binding energy is enhanced by the gravity boost factor n, the
impulse from a passing star is also enhanced by the same factor, so
the energy gained per interaction would be enhanced by a factor of
n? if we treat impulses from different sources as contributing to a
diffusive random walk (heating rates from impulsive encounters in
MOND are discussed extensively in section 3.3.2 of Asencio et al.
2022). This would reduce ¢, by a factor of n, but since #, a?
(equation 4 of Bahcall, Hut & Tremaine 1985), we can maintain the
value of #, by reducing a. This would entail reducing the above
estimate of 31 kAU by a factor of /5, which would reduce it to
26 kAU. Even taking this into account, there should only be a mild
tendency for WBs to preferentially be younger at larger separations
when rgy, < 10 kAU, which is the range that mostly contributes
to the WBT preferring Newtonian gravity over MOND (left-hand
panel of Fig. 13). WBs in the Solar neighbourhood must be fairly
robust given the large number identified within 250 pc (PS23) and
the larger number within 1 kpc (El-Badry, Rix & Heintz 2021). In
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fact, the nearest star to the Sun is in a WB (Kervella, Thévenin &
Lovis 2017), with Monte Carlo simulations of this system indicating
a 74 per cent survival probability over 5 Gyr (Feng & Jones 2018).

Even if there is some correlation between the separation of a
WB and the ages of its stars, it is unclear how that would influence
the estimated mass. Main sequence stars increase their brightness
over time as their cores become denser and hotter due to the
fusion of hydrogen into helium, so younger stars would tend to
be less luminous (Hejlesen 1980). This would cause their mass to
be underestimated and their v to be overestimated [equation (3)]. If
this occurs more commonly at large separations, it would enhance
rather than hide a MOND signal in the data. However, stars that are
not yet on the main sequence become fainter as they settle onto it, so
younger stars would be brighter at this evolutionary stage (Hayashi
1961; Hayashi & Hoshi 1961). Depending on the time required to
settle onto the main sequence, it could be that the effect is important
at the low mass end, though we note that most of the stars in our WB
sample have M, > 0.3 M (blue bars in Fig. 5). We further mitigate
this issue by explicitly considering the impact of removing all WBs
where either star has M, < 0.5 My (Section 5.1.1).

We estimate the mass of each star from its apparent G-band magni-
tude and trigonometric parallax. While these should both be reliable,
we also need to assume a relation between the absolute G-band
magnitude and mass. For this, we fit a polynomial which is easily
inverted, thereby smoothing over small-scale features (Section 2.2).
One such feature is the Jao gap (Jao et al. 2018), which arises because
stars with M, < 0.35 M have fully convective cores (Chabrier &
Baraffe 2000). This leads to an unstable range of luminosities marked
by the convective kissing instability (Mansfield & Kroupa 2021).
However, the gap has a width of only 0.05 magnitudes (section 2
of Jao et al. 2018). This has a discernible impact on the luminosity
function of stars (fig. 17 of Gaia Collaboration 2021a), but the impact
on the mass—luminosity relation is very small because 0.05 mag
corresponds to only a 1 per cent difference in mass [equation (7)] and
thus a 0.5 per cent difference in v [equation (3)]. A more significant
issue might be the broad hump evident in the mass—luminosity
relation at M, =~ 0.5 My (Kroupa, Tout & Gilmore 1993; Reid, Gizis
& Hawley 2002), which is probably the same feature evident at M
~ 10 in fig. 16 of Gaia Collaboration (2021a). While the mass-
luminosity relation here is important to our analysis (blue bars in Fig.
5), a smooth polynomial fit to the V-band mass-luminosity relation
only deviates from the data points by a few tenths of a magnitude
(fig. 11 of Reid, Gizis & Hawley 2002). With accurate data, gaps
in the mass—luminosity relation or sharp changes in its gradient can
lead to sharp features in the distribution of absolute magnitudes (as
with the Jao gap), but the steep mass—luminosity relation mitigates
the impact on the estimated M,. Moreover, a polynomial fit to the
mass—luminosity relation should not deviate systematically from the
actual relation: if the fit overestimates the mass at some Mg, then it
should underestimate the mass at a slightly different Mg. In any case,
such modest deviations from our multipart polynomial fit should be
much less substantial than the difference between the cubic fit we
use over most of the relevant range and the linear fit adopted by
PS23 in their equation 3. Since there is a very strong preference
for Newtonian gravity over MOND in both studies and these even
give a similar statistical significance (Section 4.1), it is unlikely
that this preference is caused by issues with the assumed mass-
luminosity relation, which moreover is calibrated with spectroscopic
mass estimates from FLAME (Section 2.3.3).

Another important aspect of the WBT is the presence of undetected
CB companions, which broaden the tail of the v distribution (Fig. 10).
We have assumed that every star in our WB sample is equally likely
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to have such a companion. However, it is possible that fcg depends
on properties of the star and even its WB companion. For this to
affect the WBT, fcg would need to depend on the WB acceleration,
which mostly depends on its separation. Counteracting the effect
of MOND would require more widely separated WBs to have a
smaller fcg, which could hold down the median v in the main peak
region and hide the MOND signal. This seems unlikely because the
CBs relevant to our analysis have a much smaller separation than
the WB (Section 3.2.3), something that is also clear from the fact
that our inferred kcp < 1. We would therefore expect fcp to not
depend very much on the separation of the WB (as also suggested
by spectroscopic searches for binaries; Tokovinin & Smekhov 2002;
Tokovinin, Hartung & Hayward 2010).

To test this expectation, we need a proxy for fcg. We develop one
based on the fact that CBs affect the tail of the v distribution. Even
in MOND gravity, we expect WBs to very rarely have v > 1.5 in the
absence of contaminating effects (Fig. 10). This motivates us to use
the proportion of WBs with higher v as a measure of contamination.
While this arises from both CBs and chance alignments, Fig. 6 shows
that the latter is not very important if we restrict to v < 2.5. This
is because LOS contamination becomes more important at high v
[equation (27)], opposite the situation for CB contamination (PS19).
We therefore argue that the incidence of CBs can be gauged by
finding the likelihood Py thata WB with v < 2.5 also has v > 1.5.

Pa = P(v>15|7<25). (30)

While Py; cannot be equated with fcg, a higher incidence of CBs
would increase Py,;, making it a useful proxy for the prevalence of CB
contamination. We therefore quantify P, and its uncertainty using
binomial statistics. Assuming a uniform prior on Py;, its posterior
distribution is characterized by (equation 32 of Asencio et al. 2022):

N.ois+1

mean = — >, (31)
Nos+2
standard 1 (No1s+1D(Naas — Nops+ 1)
deviation Nos+2 Nos+3 ’

where N_, 5 is the number of WBs with v < 2.5, of which N- | s WBs
also have v > 1.5. If N.15 = N_5 = 0, the posterior distribution
of Py, is uniform over the range 0 — 1 and we obtain the expected
result for its mean and standard deviation.

To check if Py depends on the WB separation, we determine Py
for the WBs in four ry, intervals (the same as those used in Fig. 12).
The result is shown in Fig. 16. There is no discernible trend in Py
a value of 8 per cent can adequately fit all four data points despite
the rather small binomial uncertainties. This makes it very unlikely
that our analysis mistakenly prefers Newtonian gravity due to trends
in the likelihood of a star having a CB companion.

We test the robustness of our falsification of MOND by varying
some of our modelling assumptions (Section 5.1) and considering
WBT results from other authors (Section 5.2). We then consider if
uncertainties in the MOND interpolating function can plausibly allow
WBs in the asymptotic regime to have orbital velocities that deviate
only a few percent from the Newtonian prediction, as indicated by
the WBT (Section 5.3). We will see that it is not possible to reconcile
MOND with the WBT through plausible variations to the modelling
assumptions or the interpolating function. We go on to discuss the
broader implications of this result, focusing on whether the WB data
and the tight observed RAR (Li et al. 2018; Desmond 2023) can
be explained by further adjustments to MOND or by a completely
new theory, bearing in mind other astrophysical constraints like Solar
System ephemerides and the RAR in galaxy clusters (Section 5.4).
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Figure 16. The impact of T'sky on Pyl [equation (30)], which we argue in the
text should correlate with the CB fraction and thus serves as a useful proxy
for the latter. Py, is shown for WBs in the same four rgky bins as those used in
Fig. 12. Error bars in Py, show binomial uncertainties [equation (31)], while
error bars in rgy show the width of each bin.

A Newtonian result from the WBT causes severe difficulties for any
theory which approximately reduces to the MOND field equation on
kAU scales in the Solar neighbourhood, forcing us to consider if
some other approach might be necessary.

5.1 Variations to the nominal analysis

In this section, we vary some of the modelling assumptions in our
nominal analysis. The posterior inferences on the model parameters
are summarized in Table 3.

5.1.1 Restricted mass range for the WB stars

Our model assumes that several quantities like the CB contamination
fraction fcp are independent of the WB mass M. It could be that some
of these quantities do in fact depend on M. Moreover, higher mass
stars are more luminous, allowing us to detect them out to a greater
distance given the requirement that the apparent magnitude mg <
17 (Section 2.1). Since the total mass of a WB affects its MOND
radius and thus the predicted enhancement to its Newtonian gravity,
it is possible that our predicted v distribution in different Tsky bins is
somewhat inaccurate due to using the overall distribution of M as a
prior in all 7, bins.

While it is not feasible to use different M distributions in different
I'sky bins due to the increased complexity and computational cost, we
can use a narrower mass range to mitigate modelling deficiencies
of this kind. Since this reduces the sample size, we roughly centre
our restricted mass range on the mode of our WB sample’s mass
distribution (red bars in Fig. 5). This leads us to consider only WBs
with a mass of 1.0 —2.0 M. Since the impact of CBs depends
on the distribution of M, for the stars in our sample, we need to
recalculate the CB velocity perturbations with revised AM and Job
(equations 18 and 20, respectively). We also adjust the distribution
of M used to marginalise our WB orbit library and rerun our analysis
in Appendix A, which now gives Pegn = 0.03. The results are shown
in brown in the top left panel of Fig. 17. The preferred gravity law
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is now even further from MOND, though it remains very consistent
with the Newtonian prediction and differs only modestly from our
nominal analysis. Shifts to the other parameter inferences are also
small. Since the restricted mass range substantially reduces the scope
for changes to the mass distribution across the parameter range used
for the WBT, our results appear to be robust in this respect.

The WBT relies on having an accurate estimate of M, for every
star in our WB sample. Our M, estimates are based on the mass-
luminosity relation from Pecaut & Mamajek (2013), but their accu-
racy has been improved slightly by calibrating against spectroscopic
estimates from the Gaia FLAME package (Section 2.3.3). This
calibration is only possible when M, > 0.5 M, as there is essentially
no data below this. We therefore consider restricting our WB sample
to only those systems where both stars have M, > 0.5 My, which
reduces Pegm t0 0.01. The results are shown in blue in the top left panel
of Fig. 17. Apart from a 1.6 x increased kcp which we discuss below,
the most noteworthy change is a reduction in o,y to slightly negative
values, causing almost 30 tension with the Newtonian prediction
(@gray = 0). This shift in the inferred gravity law could indicate that
the higher typical M, of the sample increases the lowest aj, that we
need to consider for the CBs. Our estimate for this in Appendix B
assumes that the M, distribution easily extends down to 0.4 Mg,
which is correct for our nominal sample (blue bars in Fig. 5) but
is no longer true if we require M, > 0.5 M. A higher mass would
increase the separation corresponding to the same orbital period.
Since this does not affect our argument in Section 3.2.3 about the
upper limit to the relevant range of a;,, the dynamic range of ajy,
might be less than our nominal assumption of 1.5 dex. Keeping
it fixed at 1.5 dex to minimize the changes could then force the
analysis to raise the upper limit to a;,, by increasing kcg, which does
indeed happen (see Table 3). We note that in a different extension
analysis, reducing the allowed range of aiy to 1 dex increases the
inferred agray by 0.04 (Section 5.1.3). A similar change to the result
of our M, > 0.5 My analysis would reduce the discrepancy with
Newtonian gravity to about 2o

5.1.2 The CB mass ratio distribution

We assume that the CB mass ratio distribution o< ¢** (¢ < 1) based
on Korntreff, Kaczmarek & Pfalzner (2012). We showed in Fig.
9 that this provides a good match to our WB sample, especially
when bearing in mind that selection effects can make very low ¢
systems hard to detect. Since the CBs are undetected, it would also
be reasonable to consider a flat prior on g or a linear prior, both of
which seem marginally plausible. Considering these revised priors on
q should thus bracket the uncertainty in its distribution. In particular,
a flat distribution roughly approximates the three-part power law
recommended in fig. 7 of El-Badry et al. (2019).

The results of these two revised analyses are shown in the top right
panel of Fig. 17, with the linear prior shown in blue and the flat prior
shown in brown. While the actual distribution of ¢ is inevitably more
complicated than the power-law forms considered in this study, the
posterior inferences of all seven model parameters and the overall
goodness of fit barely change in both analysis variants (Table 3). Our
results thus seem robust to what exactly we assume here.

5.1.3 The CB semi-major axis distribution

The impact of CBs on the WB v depends on the distribution of
aint, SO We consider variations to our assumptions regarding it. We
would generally expect any CB to become unstable if kcg = 0.3
(PS23), but our analysis prefers a value of only 2.5%.. We argued
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Figure 17. Triangle plot similar to Fig. 14, but now comparing the nominal analysis (solid red lines in all panels) to revised analyses where the total mass of
each WB is restricted to the range 1.0 — 2.0 M, or the individual stars in each WB are required to have M, > 0.5 My, (top left; Section 5.1.1), the CB mass
ratio distribution is altered to bracket the uncertainties as illustrated in Fig. 9 (top right; Section 5.1.2), the maximum semi-major axis of the CBs is fixed at
20 per cent of the WB semi-major axis (bottom left; Section 5.1.3), and the logarithm of the CB semi-major axis is assumed to have a triangular distribution of
width 1.5 dex or a flat distribution of width 1 dex (bottom right; Section 5.1.3). The posterior inferences on the model parameters in these revised analyses are

compared with the nominal analysis in Table 3.

that this is to be expected given the various selection effects at
play as part of our strategy to minimize CB contamination and
model the remaining CBs (Section 3.2.3). In particular, the faint star
catalogue (Section 2.1) and the use of the Gaia catalogue parameter
ipd_fracmulti_peak (Section 2.4.3) should remove CBs based on
their outright or marginal detection, respectively.

Even so, it is worth considering what happens if we fix kcg = 0.2
in equation (22). The results are shown in the bottom left panel of
Fig. 17, but with the rows and columns for kcg omitted as this is
now fixed. Compared to our nominal analysis where kcp is a free

parameter, the fits are pushed towards unrealistically high values of
y, contradicting the results of Hwang, Ting & Zakamska (2022).
This could be due to the much higher kcp reducing the velocity
perturbations from CBs and making it harder to fit the extended
tail to the v distribution. This problem can be slightly alleviated by
postulating higher orbital eccentricities, a higher fraction of CBs, and
a higher fraction of chance-aligned WBs — all of which are evident
from the posteriors. The inferred fi os of 9.4 per cent is particularly
high compared to the 1.9 per cent in our nominal analysis. It is hard
to imagine that the small number of WBs towards the upper right
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of Fig. 6 is consistent with 9 per cent of the full sample of WBs
being chance alignments, which would be less common at lower v
[equation (27)]. These issues are reflected in the much poorer overall
fit by a factor of exp (555; last column in Table 3). Even if we leave
aside these very serious issues, the inferred gravity law is further
from Milgromian than in our nominal analysis to such an extent that
it is now barely consistent with Newtonian, indicating that a higher
kcp cannot reconcile MOND with the WBT.

We also expect our results to depend somewhat on the width of the
aiy distribution [equation (22)]. We have assumed a flat logarithmic
distribution for simplicity. We might expect the distribution to decline
to zero more gradually at the edges. We therefore also consider a
triangular logarithmic distribution in which the mode occurs at the
centre of the considered range, i.e. 0.75 dex from either end. This
extension analysis is labelled “Tri 1.5 dex’ in Table 3, where we see
that the fit improves slightly compared to our nominal analysis. The
only noticeable shift to the parameter inferences is a slight decrease
to fcg and corresponding increase to kcp, roughly parallel to the
direction along which their errors are anti-correlated (bottom right
panel of Fig. 17). Importantly, the change to the inferred gravity law
is about 10x smaller than its uncertainty.

Our nominal analysis assumes a 1.5 dex width in a;,, for reasons
discussed in Section 3.2.3. To check how much this assumption
affects our results, we now reduce this to 1 dex while continuing
to assume a flat logarithmic distribution. This extension analysis is
labelled ‘Flat 1 dex’ in Table 3, where we see that the fit becomes
slightly worse than in our nominal analysis. The only parameter
shift that is much larger than the random uncertainty is a significant
reduction in fcg, which is reduced from 63 per cent to 57 per cent.
Despite significantly narrowing the allowed range of ajy, there is
only a modest reduction to the inferred kcp, bolstering our argument
in Section 3.2.3 that it should be about 2.5%o. The inferred gravity
law also barely changes. On the other hand, the reduced incidence
of CBs suggests that it is difficult for our model to reliably estimate
just how common they actually are.

This difficulty probably involves CBs with low separations that
cause large v perturbations, leading to a much broader low amplitude
tail to the v distribution. Since we only consider WBs with v < 3, it
is possible that such tight CBs actually matter less for our analysis. In
that scenario, there would be a degeneracy between the frequency of
these very tight CBs and the overall CB fraction. Roughly speaking,
suppose that we have a CB model where 50 per cent of the CBs
create such large velocity perturbations that any WB containing such
a subsystem would very likely have v > 5 and thus be rejected from
our sample, while the remaining CBs create more palatable velocity
perturbations. If our analysis then needs 30 per cent of the WBs in
our sample to contain a CB in order to adequately fit the extended
tail at v 2 1.5, then we would have to assume that the likelihood of a
WB containing a CB is about 46 per cent. This is because half of the
contaminated systems would exit our sample altogether rather than
contribute to the extended v tail, so the proportion of the remaining
WBs which contain a CB would be about 23/(100 — 23) = 0.3.
However, we can envisage a different model in which none of the
CBs are very tight, so any instance of CB contamination is very
unlikely to cause the WB to have v > 5. In this case, it would be
possible to make do with a lower overall incidence of CBs while
still adequately explaining the extended v tail. While this would
inevitably affect the detailed shape of the distribution, this could
be hard to tell given that our model has other degrees of freedom
related to the WB population and the extent of LOS contamination.
Moreover, our motivation for truncating the aj, distribution at the
low end is related to the short orbital period (Appendix B) rather than
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the velocity perturbations becoming so large that the contaminated
WB is likely to exit our sample, an effect that is already included in
our analysis. It is beyond the scope of our model to directly consider
the astrometric oscillations that must arise with very tight CBs and
how they would impact v. These issues might be mitigated in future
Gaia data releases with a longer baseline, which would increase the
minimum a;,, that we need to consider and thus reduce the maximum
possible perturbation to v. Once this maximum is sufficiently small, it
will be clear that WBs should remain in our sample despite receiving
velocity perturbations from undetected CBs. This would correspond
to a narrower range of aj,, and most likely reduce fcg.

These difficulties could explain why changing from a flat to a
triangular logarithmic distribution of a;,, reduces fcg by 0.033 and
narrowing the width from 1.5 dex to 1 dex reduces the inferred fcp
by 0.063. One can envisage that combining these changes would
reduce fcg by 0.1 from its nominal value of 0.63. Further fine-
tuning of the aj, distribution could perhaps reduce fcg to about
0.5. It seems unlikely that fcg could be much smaller than this (see
Appendix D). Even so, it is clear that unlike the inferred gravity law,
the inferred incidence of CB companions is not as robust within its
formal uncertainty. We therefore suggest that one should not read too
much into the somewhat high fcg inferred by our analysis.

5.1.4 The frequency of CB companions

Given that LOS contamination would cause a rising v distribution
[equation (27)] and that v uncertainties are very small (Fig. 4), our
model must explain the extended declining tail towards high v (Fig.
12) using mostly undetected CBs. This was also suggested by several
other workers (Section 3.2) and expected a priori (BZ18). We argued
previously that trends in the CB fraction with the WB separation are
unlikely to mask the MOND signal (Fig. 16). However, this still
leaves open the possibility that fcg could have a different value to the
63 + 1 per cent inferred by our analysis. Since the properties of the
extended tail are to some extent degenerate with the inferred gravity
law, we consider whether we can push this towards MOND by fixing
fes = 0.3, which is close to half the somewhat high value inferred
by our nominal analysis. The idea is that the model cannot easily fit
the extended tail using CBs, so it might try to do so by changing the
gravity law.

The results of this exercise are shown in Fig. 18. The inferred
gravity law shifts moderately towards MOND, but it still remains
much more consistent with the Newtonian prediction, which now
faces just over 30 tension. Since this reanalysis is the only one to
substantially raise the inferred agr,y, We consider this model in more
detail in Appendix D. We argue that since the likelihood of the
best overall fit is lower than in our nominal analysis by a factor of
exp (413), there is a 290 preference for the latter. We trace this to a
visible failure to match nearly all aspects of the WB data set when
fcs = 0.3 (Fig. D1).

5.2 Comparison with prior WBT results

Our approach to the WBT is very similar to PS23, who also
considered the distribution of (rsky, '17). Our stellar mass estimates
should be more reliable because we use a cubic rather than linear
mass-luminosity relation and calibrate the resulting mass estimates
with spectroscopic FLAME masses [equation (9)]. We calculate the
relative velocity of each WB much more carefully, including an
allowance for perspective effects due to the systemic RV. Our sample
selection is also much stricter in several ways (Section 2.4), including
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Figure 18. Triangle plot comparing the nominal analysis (red) to a revised
analysis in which the likelihood of a star in our sample having an undetected
CB companion is fixed at 30 per cent (Section 5.1.4).

through a quality cut on the carefully calculated v uncertainty. On the
theoretical side, we improve upon their WB model by using orbits
integrated in a rigorously calculated gravitational field (BZ18) and
allow the eccentricity distribution to be superthermal, which seems
very likely observationally (Hwang, Ting & Zakamska 2022). Our
CB model is also an improvement because we allow both stars in
a WB to have an undetected CB companion and model the CBs
themselves in a somewhat different way, paying particular attention
to the relevant range of CB orbit sizes and the inflation of the
WB system mass due to undetected companion(s). Our treatment of
chance alignments with unbound stars is simpler for computational
reasons (Section 3.3), though it should still be adequate given that
the inferred fi og is only about 2 per cent (Table 3). Our exploration of
the parameter space is vastly more thorough thanks to an optimized
algorithm (Banik, Pittordis & Sutherland 2021). In addition, we
conduct a much broader range of extension analyses where we vary
the sample selection and model assumptions, thus demonstrating
the robustness of our results to a much greater extent (Section 5.1).
Despite these changes, our overall conclusions are very similar with
regards to how strongly Newtonian gravity is preferred over MOND
(Section 4.1).

While this study was under review, two additional publications
appeared which argue that the WBT prefers MOND (Chae 2023;
Hernandez 2023). The study of Hernandez (2023) focused on
building a very clean sample of WBs where CB contamination should
be very small. While this could simplify the interpretation of the
results, the sample size is unfortunately also rather small (see its fig.
8). In the following, we therefore focus on the work of Chae (2023).
The particular issue that we identify could also affect the analysis of
Hernandez (2023), though we have not checked this in detail.

The WB analysis of Chae (2023) uses the WB sample of El-Badry,
Rix & Heintz (2021), but it attempts to infer the 3D separation and
relative velocity from the available projected information instead of
modelling into the space of the observables. Various complicated
procedures are used to deal with the fact that WBs are expected to
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have a wide range of eccentricities and to be viewed from a random
direction at a random orbital phase. The eccentricity is constrained
using the angle between the projected separation and relative velocity,
making heavy use of the approach pioneered by Hwang, Ting &
Zakamska (2022). The overall result is that MOND is preferred at a
confidence of 100 using the nominal sample of 26 615 WBs. This
sample is not very well suited to the WBT due to a mass-dependent
cutoff to the allowed v, but as this seems to have only a modest
impact, we defer discussion of this issue to Appendix E.

Chae (2023) follow equation 4 of El-Badry, Rix & Heintz (2021)
in neglecting the systemic RV and setting

Usky = gl”vre]a Ml = (32)

=
Srs
|—*|

where d is the inverse variance weighted mean of the parallax
distances to the stars A and B that make up the WB, pire] = |y is the
relative proper motion, /4, « is the proper motion along the East-West
direction, ps is the proper motion along the North-South direction,
and ‘rel’” superscripts denote relative values found by subtracting the
value for star B from the value for star A (e.g. ui! = g — ud).
The proper motion p; = §, where § is the declination and an overdot
denotes a time derivative. To account for the spherical geometry of
quantities on the sky, the proper motion component iy . = ¢ COS 6,
where o is the right ascension. Both stars are assumed to be at the
same distance, which should be correct on average if we assume that
uncertainties in trigonometric distances are much larger than actual
separations along the LOS. Neglecting the perspective effect due to
the systemic RV should also be reasonable given the typically small
angular separations of WBs (Section 2.3.1).

We now try to reproduce the claimed detection of MOND by Chae
(2023). Without going into the details of the deprojection algorithm
or the model for the CB and WB populations, a simple way to
consider the WBT is to find the median v in different ranges of
Tsky/T,,- Bearing in mind the above small caveat about perspective
effects and the need to accurately estimate the stellar masses, these
quantities can all be unambiguously calculated with no assumptions
about how exactly WBs behave, how eccentric their orbits typically
are, etc. The only assumption we need to make is that in the theories
under consideration, WBs would very rarely have v > 1.5, so values
much beyond this are indicative of some sort of contamination.
It is therefore important to focus on only those WBs with v < 2
when calculating the median, since otherwise trends in the level
of contamination could create the appearance of an acceleration-
dependent trend in the WB dynamics (magenta line in Fig. 11). For
the nominal sample of 26 615 WBs used by Chae (2023), the result
of this exercise is shown in the left-hand panel of Fig. 19 based on
masses and vy values from that study. Due to the larger sample size
compared to our study, we are able to use 50 bins while keeping
the scatter low. A rising trend is immediately apparent, especially
for the subsamples with v < 2 or 2.5. This could arguably indicate
that a limit of 1.5 is too restrictive and loses some of the MOND
signal, which is possible given that the upper limit to v for a bound
Milgromian WB is about 1.7 (BZ18). The results agree very well
with the dashed grey line, which shows the shape that we expect in
MOND (the normalization has been adjusted to fit the results at high
accelerations or low rgy/r,,). The median v undergoes some scatter
but with little trend when rqy /r,, < 0.2.It then rises rapidly at about
the expected rate before flattening out. While we do not expect the
observed rising trend at rgy/r, 2 1.5 (see Fig. 7), the median v is
only rising quite slowly by this point and is broadly in agreement
with the expected flat trend. All this seems to provide compelling
evidence in favour of local WBs following Milgromian gravity.

MNRAS 527, 4573-4615 (2024)
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Figure 19. The median v as a function of the median rgy /r,, for the nominal sample of Chae (2023), which requires both proper motion components of both
stars in each WB to be more precise than 1 per cent (left-hand panel). This is tightened to 0.3 per cent in the right-hand panel, as done in their appendix B and
Chae (2024). The sample size and number of bins are shown at the top. Similarly to Fig. 11, each point corresponds to the same number of WBs apart from the

last point, which has a slightly different number due to rounding.

A critical consideration for the WBT is the accuracy of vy, which
is the main source of uncertainty in v. We quantify its uncertainty
very carefully in order to limit the v uncertainty of the WBs in our
sample (Section 2.4.6). As argued there, since the main peak to the
v distribution lies at v ~ 0.5 (Fig. 12) and v uncertainties would
add in quadrature to the intrinsic width of the v distribution, we
need the uncertainty in v to be < 0.1 in the regime most relevant to
the WBT. An uncertainty of 0.1 would inflate the dispersion from
0.5 to +/0.52 + 0.12 = 0.51, implying only a 2 per cent broadening
— too little to affect the inferred gravity law. While this approach
might seem somewhat conservative, we have seen that it still leaves
areasonable sample size, partly because we impose a less strict limit
to the v uncertainty outside the main peak region [equation (10)].

Unfortunately, Chae (2023) do not estimate the uncertainty in v or
in vgy. Their approach is to require a maximum 1 per cent uncertainty
on the heliocentric proper motions 11/ ,, 2, pi', and juf of the stars
in each WB. To see why this approach is not sufficient, suppose that
both stars have a heliocentric velocity of 30 kms~! in the East-West
and North-South directions (the small difference due to WB orbital
motion is not relevant here). The sky-projected heliocentric velocity
of each star could then have an uncertainty of 300 ms~! along each
direction. Since we need to combine four proper motion components
to calculate v, [equation (32)], this has an uncertainty of ~ 300/4
or 600 ms~!. However, the Newtonian v, of two Sun-like stars with
a 10 kAU separation is only 420 ms~!, implying a very poorly
constrained v. This completely undermines the WBT because its
main idea is that some typical measure of v « ,/g/g, . making it
absolutely essential to have precise constraints on v.

To try and address this issue, Chae (2023) conduct an extension
analysis in their appendix B where the 1 per cent requirement
mentioned above is tightened to 0.3 per cent. This is unlikely to be
enough because in the previous argument, we would have a maximum
allowed o (vgy) of 180 m s~! rather than 600 ms~!, where o (Q) is
the uncertainty on any quantity Q. However, if the Newtonian v, is
420 ms~! and the mode of the ¥ distribution is at 0.5, the intrinsic
velocity dispersion is 210 ms~', which is not much larger than the
upper limit to o (v ). Alternatively, the plausible scenario described
above would lead to o (V) = 180/420 = 0.43, which is still too
large for the WBT. Even so, we repeat the median v analysis with
all four relevant heliocentric proper motions required to have an
accuracy of at least 0.3 per cent. The sample size is almost halved

MNRAS 527, 4573-4615 (2024)

by this much stricter cut, so we use only half as many bins to reduce
the scatter. Despite this, we still achieve a good range in ryy/r,,
and probe well into the asymptotic regime (right-hand panel of Fig.
19). A rising trend is evident here, though the agreement with the
MOND expectation is somewhat less good. Importantly, it is not
really possible to fit the results with a flat line, as would be expected
in Newtonian gravity.

A more rigorous but still very simple way to estimate the
uncertainty in v, is provided by equation 5 of El-Badry, Rix &
Heintz (2021). If we neglect other sources of error like perspective
effects and the small error in d, we can approximate that the only
uncertain term is fiq. Its uncertainty is

Vo () + o ()

0 () = . , (33)
o () = \Jo? (ud) +0% (ub.), (34
o (1) = \Jor (1) + 02 (u]) (9)

This result is based on the fact that at first order in o (4re1 )/ fdre1, the un-
certainty in i, arises only from the proper motion uncertainty along
the direction (/ij'*, ;,Lgel) because uncertainty in i, in the orthogonal
direction mainly affects its direction rather than its magnitude. This
approximation becomes inaccurate if o (i) 2 Urel, SO @ Monte
Carlo approach might be preferable even if we could assume that
the uncertainty arises entirely from uncorrelated astrometric errors
in the proper motions.

With the above approximations, the uncertainty in vy is simply
o (vay) = do (prel) - (36)

Dividing this by the Newtonian v, then yields an estimated v
uncertainty. We suggest that such an approach would capture the
major uncertainties affecting v because the mass and systemic
distance should both have small uncertainties, while perspective
effects should likewise have little effect (Section 2.3.1).

We can now check whether the result of Chae (2023) is robust
against a quality cut based on the estimated v uncertainty of each WB.
We begin by quantifying the proportion of WBs in each ryy/r,, bin
with o ('17) > 0.1 max (1, v/ 2), the cut imposed in our own analysis
[equation (10)]. The result is shown in Fig. 20. It is clear that most
WBs in the asymptotic regime fail to pass our quality cut on o ('17)
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Figure 20. The fraction of WBs in each ryy/r,, bin of the nominal Chae
(2023) sample with o (5) > 0.1 max (1, 5/2). This applies to most of the
WaBs in the asymptotic regime critical to testing MOND.
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Figure 21. Similar to the left-hand panel of Fig. 19, but with the Chae
(2023) nominal sample restricted to WBs with an estimated o ('17) <
0.1 max (1, 9/2) according to equations (33) and 36. The median U is now
flat with respect to our proxy for the WB acceleration thanks to this cut on
the estimated v uncertainty, which is critical to reliably conducting the WBT.

This raises the possibility that the MOND-like trend in Fig. 19 is
caused by measurement errors broadening the v distribution at low
accelerations.

To analyse the data set of Chae (2023) more robustly, we restrict
their nominal sample to the same limiting o (U) as we used in our
own analysis [equation (10)]. The result is shown in Fig. 21. The
sample size only decreases by about 1/5, allowing us to continue
using 50 bins in rgy/r,, albeit with a somewhat reduced range
given that the sample is reduced by half at the MOND radius and
slightly more beyond that. Even so, we still have many WBs well
into the asymptotic regime. These show that the median v is now
almost completely flat with respect to rgy/r,,. There is clearly a
major disagreement with the dashed grey line showing the MOND
expectation calibrated to the high-acceleration end. This dramatic
difference is caused by removing only 1/5 of the WBs, indicating
that the issue we identified is indeed extremely serious.

The MOND-like rising median v trend in the nominal sample of
Chae (2023) persists despite an apparently tight 0.3 per cent cut on
the proper motion errors, which leads to an even smaller sample size
than in Fig. 21. This highlights that the important quantity for the
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WBT is the relative velocity of the stars in each WB rather than
the heliocentric velocity of each star. While one can envisage that
a sufficiently restrictive cut on the latter would be sufficient, this is
simply not targeting the relevant quantity, so the sample size is likely
to become insufficient before the cut has been adequately tightened
for the purpose of the WBT. As an exercise in this direction, we
found that requiring a 0.1 per cent precision reduces the sample to
only 4977 WBs and makes the median v nearly flat with respect to
Tsky /T, 50 perhaps this cut is tight enough. However, the sample size
can be much larger while still maintaining sufficient accuracy on v
provided that the quality cut is targeted at v, or at least at ji .

The importance of this issue stems from the fact that for the
same o (Vgiy) in ms~!, o (U) & ,/Fsky because the Newtonian v, o
1//Tsky, making it increasingly difficult to pass a strict quality cut on
o ('17) (Fig. 20). Without such a cut, as we get to large rq, and thus
also ryqy /7, , the v distribution might be broadened by measurement
errors to a greater extent, pushing up the median v and creating
a fake Milgromian signal. This raises the more general issue that
any systematic trend with rgy can appear to be an acceleration-
dependent trend. In principle, one could disentangle the two because
our proxy for the WB internal acceleration depends on both 7, and
M. However, the former is by far the main factor because of its large
range and the fact that r,, scales only as /M, making the WB mass
relatively less important. There is also an issue with the data set
of Chae (2023) pertaining to the masses that makes it difficult to
use a broad range (Appendix E). One therefore has to be cautious
before concluding that any trend discovered in the WB data is best
understood as causally related to their internal acceleration.

Given our results in this section, it seems extremely unlikely that
local WBs prefer Milgromian over Newtonian gravity once the WB
sample is selected carefully to ensure that v is accurately known.
It should be straightforward to alter the quality cut related to the
astrometric accuracy by focusing on how precisely we know the
relative velocity within each WB, since this is what enters into the
calculation of the physically relevant v parameter.'® We stress that
even if v is not calculated explicitly, the WBT is ultimately about the
ratio between the relative velocity and the Newtonian circular orbit
prediction because the WB orbits are too long to directly measure
the acceleration (Banik & Kroupa 2019a). The uncertainty on this
velocity ratio is therefore of critical importance to the WBT and must
be quantified, with systems rejected if the uncertainty is too large.

This concern likely also applies to the analysis of Hernandez
(2023): its section 4 states that vy, should exceed 1.5x its uncer-
tainty. This translates to a fractional v accuracy of 2/3, so a system
with ¥ = 1 might have o (5) = 0.6 (this concern also applies to
Hernandez et al. 2024). Addressing this issue similarly to our study
would reduce the already small sample size. However, our work
suggests that the loss might be modest, especially given the high
overall quality of the WB sample used in their study.

5.3 The MOND interpolating function

Our results for the WBT depend on the assumed MOND interpolating
function because local WBs are subject to the Galactic external field
of magnitude 1.8a, (Section 3.1; see also section 7.1 of BZ18).
Thus, our falsification of MOND could in principle be avoided with a
sufficiently rapid transition to Newtonian behaviour when g, > a,.

16This would allow to relax the requirement for the heliocentric proper
motion components to have a 1 per cent precision, increasing the sample
size somewhat.

MNRAS 527, 4573-4615 (2024)
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Table 4. The enhancement factor n to the radial gravity [equation (15)]
and our corresponding estimate for gy [equation (39)] with different
MOND formulations and interpolating functions. Results differ little between
AQUAL and QUMOND and between the MLS and simple functions.

Interpolating AQUAL QUMOND
function n Qgray n Qgray
Simple 1.4056 0.96 1.4228 1
MLS 1.3508 0.84 1.3692 0.88
Standard 1.0661 0.17 1.0726 0.18
Sharp 1 0 1 0

However, this is in strong tension with rotation curve constraints.
This is because the enhancement to g, needed to fit the host galaxy
rotation curve is very similar to the predicted enhancement to the
gravity binding a WB in the asymptotic regime. This remains true in
both AQUAL and QUMOND, which give almost the same boost
for the same interpolating function (Fig. 7). We clarify this by
briefly giving the main analytic results relevant to EFE-dominated
WBs and thereby estimate the predicted agp,y With different MOND
formulations and interpolating functions (for further details, see
sections 2.2 and 7.1 of BZ18).

The WBT is mostly sensitive to n [equation (15)] in the asymptotic
regime. In QUMOND, equation 16 of BZ18 tells us that

- K, K dlnv, 37)
= Ve - | e = s
7 3 dlng,.

where v, is the QUMOND interpolating function if we set its
argument to the Newtonian-equivalent Galactic gravity g, , [equation
(14)]. This result matches equation 57 of Milgrom (2010).

AQUAL does not directly use v but instead uses the interpolating
function p, which is defined so that g = g, in spherical symmetry.
‘We can talk of AQUAL and QUMOND theories as having the ‘same’
interpolating function if they give the same relation between g and
g, in spherical symmetry, which requires that u(g)v (g,) = 1.
According to equation 35 of BZ18, the AQUAL version of equation
37) s

tan~! /L, Oln .
p = o Mg, = SR (38)
Men/Le Olng,

where L, is the AQUAL interpolating function considering only the
Galactic gravity g.. We can find L, from the QUMOND K, using the
relation (1 + L.)(1 + K,) = 1 (equation 38 of BZ18). The angle-
averaged enhancement to g, shown above matches that stated in
equation 65 of Milgrom (2010) once we use the relation sin’f =
tan 20/(tan 20 + 1).

The observable in the WBT is the relative velocity and this is
related to the circular velocity, which scales as /5. Moreover, the
parameter agr,, only captures deviations from the Newtonian result
because it is defined to be 0 in the Newtonian case, when n = 1.
Thus, we can approximate that the predicted argray ¢ /7 — 1. Since
the normalization must be chosen such that oy, = 1 if we use
QUMOND with the simple interpolating function,

E . (39)
0.193

Table 4 shows 7 and the estimated o, for different MOND for-
mulations and interpolating functions. Differences between AQUAL
and QUMOND are very small, as stated in section 5.1 of Milgrom
(2010) and explained further in section 7.2 of BZI18, which is
devoted to a comparison of the two MOND formulations. The simple
and MLS (v™' =1 — exp (—+/%, /a,); McGaugh 2008; Famaey &

Ugray =

MNRAS 527, 4573-4615 (2024)

McGaugh 2012; McGaugh, Lelli & Schombert 2016) interpolating
functions give similar predictions for the WBT because they are
numerically very similar. The main difference is that the MLS
function converges to Newtonian gravity much faster when g 2> 104,
due to the exponential term, but this is not important for the WBT
because WB observations are sensitive to the gravity binding it
rather than merely how much that deviates from g, .!” Compared
to the simple and MLS cases, the standard interpolating function
significantly reduces the predicted signal for the WBT, though even
then the predicted o,y = 0.18 is still much higher than inferred by
our nominal MCMC analysis (bottom right panel of Fig. 14). But
since some variations to the modelling assumptions do increase the
inferred ag,y somewhat (Table 3), it can be argued that the WBT is
marginally consistent with the standard interpolating function

, 1 1 (ao )2
Vo= 4y -+ =) . (40)
2 4 8
However, this is in tension with rotation curve constraints (section 7.1
of BZ18). We revisit their arguments in more detail below.
Equations (37) and (38) show that n = v, = 1/u, up to a
modest correction for azimuthal averaging. This is because v, can
be arbitrarily large, but K, is always between —1/2 and O while L,
is between 1 and 2, with low K, and high L, corresponding to the
deep-MOND limit (K, = —0.26 in the Solar neighbourhood). As
a result, the enhancement to the orbital velocities of WBs in the
asymptotic regime should be only slightly less than the enhancement
to the Newtonian baryonic rotation curve of the parent galaxy in the
vicinity of the WBs. This means a very stringent null detection of
MOND effects in the WBT can only be reconciled with MOND if
the Galactic rotation curve at the Solar circle has almost the same
amplitude as it would do in Newtonian gravity with baryons alone.
We test this in Fig. 22, where the cyan squares with error bars
show binned observational results and the dotted blue vertical line
shows the Solar circle radius of 8.2 kpc (the uncertainty on this is
very small; Gravity Collaboration 2019). The largest uncertainty in
the kinematics comes from the peculiar (non-circular) velocity of
the Sun and hence on the actual value of v. o, which normalizes
the entire curve. However, the resulting uncertainty has been sub-
stantially mitigated by the direct measurement of the Solar System’s
acceleration relative to distant quasars (Gaia Collaboration 2021b),
which is a direct probe of g,.. Besides the kinematics, there is also
some systematic uncertainty in the Newtonian rotation curve of the
Galactic disc because we do not perfectly know its actual mass-
to-light ratio and gas content. With these small caveats in mind,
the Newtonian rotation curve of the baryons alone (orange line) is
clearly below the actual rotation curve at the Solar circle, which is
also much flatter. Since scaling the Newtonian rotation curve (e.g. to
raise the mass-to-light ratio) would make the predicted decline even
steeper, it is clear that MOND can only work with an interpolating
function that significantly enhances Newtonian gravity at the Solar
circle. Indeed, the solid green line shows that QUMOND with the
simple interpolating function fits rather well — even the bumps
and wiggles apparent in the observations are reproduced nicely if
we consider similar features in the Galactic surface density profile
(McGaugh 2018). However, the required significant Milgromian
enhancement to the local amplitude of the rotation curve contradicts

"The simple interpolating function provides a good match to the velocity
dispersion profiles of elliptical galaxies up to almost 100 a, (Chae & Gong
2015; Chae et al. 2019, 2020a), beyond which the MOND enhancement to
gy must be very small.
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Figure 22. The MW rotation curve as measured by averaging different
observational determinations (cyan squares with error bars; Eilers et al. 2019;
Mréz et al. 2019; Chrobdkovd et al. 2020) and as predicted in different gravity
theories using the baryonic mass distribution from Wang, Hammer & Yang
(2022). Notice that the Newtonian model with only baryons (orange line) falls
well short of the observed rotation curve at the Solar circle radius of 8.2 kpc
(dotted blue vertical line). This deficiency can be rectified by adding dark
matter (blue line), but the halo parameters must be inferred from the data and
are not predicted a priori. An alternative solution with very little flexibility is
QUMOND with the simple interpolating function [green line; equation (13)],
but this only works because this function predicts a significant enhancement
to Newtonian gravity at the relevant acceleration (compare the simple and
sharp interpolating functions in Table 4). This enhancement should also be
detectable in local WBs. Reproduced from fig. 1 of Zhu et al. (2023), modified
by Haixia Ma.

our stringent null detection of MOND effects in the WBT, which
implies an enhancement by at most a few percent. This contradiction
is underpinned by the directly measured acceleration of the Solar
System relative to distant quasars (Gaia Collaboration 2021b), which
precludes substantial deviations from the kinematically deduced
g. (Section 3.1). If we very conservatively assume that v ¢ is at
most 10 kms~' higher than our adopted 232.8 kms~', then the
stronger EFE would only reduce the QUMOND o, for the simple
interpolating function from 1 to 0.92, while an even higher v, o
= 250 kms~! would give gy = 0.87. Such a large deviation of
V., o from our adopted value is almost inconceivable given the many
decades of research on this issue. Turning instead to the possibility
of a much sharper interpolating function, the required enhancement
to the baryonic surface density would need to be truly substantial,
which seems rather unlikely.

Another interesting aspect of Fig. 22 is the failure of Moffat gravity
(MOG:; Moffat 2006), whose prediction is shown as the red line.
MOG modifies gravity only beyond a certain distance, so it passes
the WBT (see section 2.3 of Roshan et al. 2021a). However, MOG
underpredicts the Galactic rotation curve (as shown previously by
Negrelli et al. 2018). Moreover, a joint fit to the velocity dispersion
profile and star formation history of Dragonfly 44 rules out MOG
at 5.50 confidence (Haghi et al. 2019). This shows how difficult it
is for a modified gravity theory to remain consistent with the WBT
and simultaneously explain galaxy dynamics, even if we neglect
extragalactic data.

Of course, one should also consider the rather precise constraints
on MOND available nowadays from extragalactic rotation curves. In
particular, the Spitzer Photometry and Accurate Rotation Curves
(SPARC; Lelli, McGaugh & Schombert 2016) catalogue reveals
a tight RAR, which we show in Fig. 23 as the ratio between the
observed g at fixed g, and the prediction g, with different interpo-
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Figure 23. The ratio between the observed g at fixed baryonic g, (McGaugh,
Lelli & Schombert 2016) and the prediction g, according to different MOND
interpolating functions for the canonical @, = 1.2 x 10~ 10 ms=2 (Begeman,
Broeils & Sanders 1991; Gentile, Famaey & de Blok 2011; Lelli et al. 2017b).
Observational uncertainties are found by dividing the dispersion in logjo g
at each g, by VN, where N is the number of data points in the bin. Due to
the numerical similarity of the simple and MLS functions (black and blue
lines, respectively); error bars are omitted for the latter, but they are shown
on the standard interpolating function [red; equation (40)] and for the case
of an infinitely sharp transition between the Newtonian and MOND regimes
[green; equation (41)]. The dashed vertical line shows the Solar circle g,
assuming the simple interpolating function adopted for this study [equation

(13)].

lating functions.'® The error bars show the logarithmic dispersion
in g, about a smooth relation scaled down by /N, where N is the
number of data points in the g, bin. It is clear that the MLS and
simple functions are numerically rather similar and both match the
observations fairly well. However, the standard interpolating function
[equation (40)] deviates very substantially from observations (this is
also apparent in fig. 1 of Tian & Ko 2019). As with other analyses,
the crucial assumption is the stellar mass-to-light ratio from stellar
population synthesis models (Schombert, McGaugh & Lelli 2022),
which would need substantial modifications to allow the standard
interpolating function to match the data.

This discrepancy is worsened by using an infinitely sharp transition
between the Newtonian and deep-MOND regimes, i.e.

v = max <1, a—") . 1)
8y

This yields no enhancement to gravity at the Solar circle (ogr.y =
0), so the results of the WBT work best with this function given that
our posterior inference on ogy = —0.0ZIfg:ng. Even the modest
enhancement predicted by the standard interpolating function causes
30 tension with our WB results. At the same time, this enhancement
is too little to explain extragalactic rotation curves across almost
the full range of g, that they probe (Fig. 23). Similar conclusions
can be drawn from the Galactic rotation curve, which barring major
systematics shows that g > g, by about 50 per cent at the Solar circle
even though both slightly exceed a, (Fig. 22). Therefore, it seems
impossible for MOND to simultaneously match galaxy dynamics

18 A unique relation is not expected in modified gravity theories because disc
galaxies are not spherically symmetric, but deviations from the spherically
symmetric relation should be very small (Jones-Smith et al. 2018; Chae 2022).
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and Gaia data on local WBs. This falsifies classical modified gravity
versions of MOND at high significance.

5.4 Broader implications

So far, we have assumed that MOND should be understood as a
modification to Newtonian gravity in the weak-field regime [equation
(1)]. Given the failure of this approach in local WBs, it is helpful
to consider MOND as a modification to inertia at low accelerations
while preserving Newtonian gravity (Milgrom 1994, 2011, 2022).
This may avoid significant MOND effects in local WBs because
their internal orbital motion has a much higher frequency than their
Galactocentric orbit (e.g. see fig. 14 of BZ18). We can consider this
in terms of an effective Newtonian external field ge“ defined such
that the boost to the grav1ty binding a WB is still given by equation
(37), but with argument g7 ' instead of the Newtonian gravity g Ne
sourced by the rest of the Galaxy Since the MOND model considered
in the main part of our study predicts a 42 per cent enhancement
to the average radial gravity (Table 4) and our results show that
Qgray < 0.2 at quite high confidence (Table 3), we can interpret the
WBT as constraining the average gravity binding a WB to within
8 per cent of the Newtonian prediction in the asymptotic regime
where the Galactic gravity dominates over the internal gravity. The
corresponding lower limit on gerf is 7.8a, (4.64,) for the simple
(MLS) interpolating function. In both cases, this is several times
larger than the expected value of ~ 1.2a, (Section 3.1.1). The high
g;ﬂ could indicate that the Galactic EFE suppresses the gravity of
a local WB by much more than we have assumed, making it very
nearly Newtonian.

Modified inertia theories of MOND are still at an early stage of
development, so it is not yet possible to conduct detailed simulations
of situations like interacting galaxies with a low degree of symmetry.
Even so, focusing on systems where the predictions are clear led to
the first attempt to distinguish whether MOND is better understood
as a modification to gravity or inertia (Petersen & Lelli 2020). The
results mildly prefer modified gravity at ~1.50 confidence. Modified
inertia theories make the very strong prediction that test particles on
circular orbits will have a unique relation between their kinematic
acceleration and the gravity g, that they experience. As a result,
the inner and outer parts of galaxy rotation curves should fall on the
same RAR. A difference is expected in modified gravity, essentially
because the vertical gravity just outside the disc plane is higher
nearer the galactic centre, reducing the MOND enhancement (Banik,
Milgrom & Zhao 2018). Recently, a stacked analysis of SPARC
rotation curves identified a 6.9¢0 difference between the RAR traced
by data points from the inner and outer parts of galaxy rotation curves
if the observational uncertainties are taken at face value (Chae 2022).
The difference in the RAR evident in their fig. 6 is similar to that
expected in modified gravity formulations of MOND. This could be
a coincidence caused by unknown systematic errors, but this seems
unlikely because almost the same signal is detected when excluding
galaxies with a significant bulge or with a high luminosity, which
could be signs of a greater degree of pressure support and thus
possibly mean a larger uncertainty on the data points at low radii.
This suggests that we should take seriously the observed difference
in the RAR traced by the inner and outer parts of rotation curves.
The high formal significance of the difference evident in their fig. 7
is a priori not expected in the modified inertia interpretation of
MOND. One caveat is that gas motions are not perfectly circular, so
until we have a fully fledged formulation of modified inertia theories
capable of handling somewhat eccentric orbits, it is impossible to
fully conclude on whether the results of Chae (2022) indeed rule out
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such theories. But taking their results at face value and given also that
the WBT rules out MOND as modified gravity (though see Milgrom
2023a, b), we most likely need to fundamentally change MOND if it
is to survive the latest constraints, which questions its validity on all
scales.

WBs are not the only bound systems that challenge MOND.
Its predicted gravity in galaxy clusters generally falls short of the
observed value, though one can assume a non-baryonic dark mass
component that makes up about half of the gravitating mass (e.g.
Sanders 2003; Angus, Famaey & Diaferio 2010). This discrepancy
was recently illustrated in terms of the cluster RAR, as shown in
fig. 8 of Eckert et al. (2022a) and fig. 5 of Li et al. (2023). The
RAR traced by galaxy clusters lies about 0.3 dex (2x) above the
RAR traced by galaxies when g, = 0.1a, (McGaugh 2020, and
references therein). This gap narrows further and almost vanishes
at the low acceleration end. The discrepancy with the Newtonian
expectation without DM is of course larger at about 0.8 dex or 6x,
which matches the ratio between total and baryonic mass in ACDM
fits to the power spectrum of anisotropies in the cosmic microwave
background radiation (Planck Collaboration VI 2020).

The WBT tests MOND on a much smaller scale than the traditional
galaxy-scale tests with rotation curves, velocity dispersions, and
weak lensing (section 3 of Banik & Zhao 2022, and references
therein). This raises the possibility of suppressing MOND effects
at short range, for instance with a length-dependent cutoff to any
MOND enhancement to gravity below a scale of 0.1 pc. Babichev,
Deffayet & Esposito-Farese (2011) proposed an extended version of
the Vainshtein screening mechanism in massive gravity (Vainshtein
1972; Babichev, Deffayet & Ziour 2010) in which MOND effects
are suppressed below a length r, o« M'/* around a point mass M.
Since r, rises slower than the MOND radius (r,, o« M'/?), we get
that in a sufficiently massive system, the suppression of MOND
effects arises only in the Newtonian regime and thus has no effect.
But in a very low mass system, a new regime appears where the
distance r lies in the range r,, < r < r,. In this regime, MOND as
classically formulated predicts a departure from Newtonian gravity,
but the behaviour becomes Newtonian with the extended screening
mechanism (Babichev, Deffayet & Esposito-Farese 2011).

Another way to think of this is in terms of the phantom dark matter
(PDM) density ppam generated by MOND, which is defined such that

V.-g = —4nG (,O+ppdm) , (42)

where g must be found by solving equation (12) and p is the
physical mass density. Since g o< v/M/r in the deep-MOND limit
[equation (1)], ppam VM /r2. If we focus on the PDM density
at r =r, & MV, we get that ppgy is a constant. Thus, we can
think of the model as providing a maximum limit to |0pam| (the
modulus is needed because the PDM density can be negative in
more complicated geometries; see Milgrom 1986b; Oria et al. 2021).
Such an upper limit arises in some attempts to unify the acceleration
discrepancies in galaxies with the late-time accelerated expansion
of the Universe (Zhao 2007). We can use the WBT to estimate an
upper bound on p,, the maximum possible | ppam|. Since our analysis
indicates that agr,y < 0.2 at rather high confidence (Table 3), we can
assume that there is at most a 4 per cent enhancement to the orbital
velocities of WBs in the asymptotic regime. This corresponds to an
enclosed phantom mass equal to 8 per cent of the actual mass in the
stars. Assuming our results are sensitive down to M = 1 M and up
to separations of » = 20 kAU or 0.1 pc, we can estimate that

3

4r 3
0, < 0.08 Mg + = 20Mgy/pc’. 43)
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This is three orders of magnitude above the local DM density inferred
from a Newtonian dynamical analysis of Galactic data (Read 2014;
Hagen & Helmi 2018; Salomon et al. 2020; de Salas & Widmark
2021). While we expect ppam to be somewhat higher in a dwarf
galaxy due to its lower mass, it is clear that the application of
MOND to galaxies would be unaffected by a maximum limit to
|opam| of order 20 Me/pc®. The impact on larger scales would
be even less significant, leaving open the issue of how MOND
might be reconciled with observations of galaxy clusters and larger
structures.

A maximum limit to | opam | capable of reconciling MOND with the
WBT would substantially reduce MOND effects in the Solar System,
invalidating attempts to explain some peculiarities of the Kuiper
Belt using MOND (Brown & Mathur 2023; Migaszewski 2023)
but improving the agreement with the rather tight bound on non-
standard effects provided by Cassini radio tracking measurements of
the Earth-Saturn range (Hees et al. 2014, 2016). This bound is already
so tight that it formally rules out even the exponentially truncated
MLS interpolating function at 80 confidence (see equation C15 of
Brown & Mathur 2023), so it could be difficult to reconcile Solar
System ephemerides with galaxy dynamics in classical modified
gravity theories of MOND (Desmond et al., in preparation). Since
the PDM density at the MOND radius of an isolated point mass M
scales as Ppdm X 1/ /M and we are roughly at the MOND radius of
the MW with M = 7 x 10'° M, (Banik & Zhao 2018b), adding p,
as a new constant of nature would suppress MOND effects only in
systems up to six orders of magnitude less massive than the MW,
i.e. up to about M = 103 M. This is in the regime of massive star
clusters and globular clusters, which might help to explain why the
internal kinematics of the outer halo globular cluster NGC 2419 are
consistent with Newtonian expectations despite feeling little gravity
from the Galaxy by virtue of its distance (Ibata et al. 2011a, b). While
it has been argued that the observations are consistent with MOND
as classically understood (Sanders 2012a, b), this requires one to
invoke observational systematics like a radially varying polytropic
equation of state. Since the mass of NGC 2419 is 9 x 10° M, a
clear detection or exclusion of MOND effects here would help to
constrain how MOND effects must be suppressed on small scales
to ensure consistency with the WBT. Interestingly, MOND correctly
predicts the velocity dispersions of isolated LG dwarf galaxies down
to 10° M (fig. 3 of McGaugh et al. 2021), while tidal stability
considerations of Fornax Cluster dwarfs reach down to about the
same mass (fig. 7 of Asencio et al. 2022). It is therefore possible that
MOND as classically formulated breaks down at lower masses and
that hints of this are already apparent in NGC 2419. A problem with
this scenario is the asymmetric tidal tails of star clusters in the Solar
neighbourhood, which have been argued to favour MOND (Kroupa
et al. 2022; Pflamm-Altenburg et al. 2023). Further investigation is
needed to see if the results can be explained in Newtonian gravity
with a more complicated Galactic model that includes bars and spiral
arms, though recent work indicates that the bar is not sufficient by
itself for any pattern speed (Thomas et al. 2023). If MOND effects
persist down to order 10° M, but are not apparent in the WBT, then
this would give a tight constraint on where classical MOND breaks
down.

A limit to the PDM density might also limit the predicted
Milgromian enhancement to the vertical gravity of the Galactic disc,
which for now is neither confirmed nor rejected (Zhu et al. 2023).
If it becomes clear that the enhancement is smaller than predicted,
this would be interesting because the Galactic rotation curve works
very well in MOND (McGaugh 2018; Zhu et al. 2023) and probes
scales which are not much larger than the disc thickness, thereby
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pinning down the boundary between where MOND works and where
additional physics must be invoked to suppress MOND effects. While
such tests would be useful, for MOND to be valid on kpc scales and
ultimately provide the correct explanation for the RAR, we have
to invoke at least two new fundamental constants (a, and p, or a
fundamental length). This seems rather contrived and not in line
with Occam’s Razor, especially as p is not obviously related to any
cosmological density scale (unlike a,) and cannot be substantially
reduced below our estimate in equation (43) if we are to preserve
the successes of MOND in dwarf galaxies (McGaugh et al. 2021;
Asencio et al. 2022). We therefore discuss other theories that may be
able to explain galaxy dynamics while passing the WBT.

Since we do not have a fully fledged quantum gravity theory,
the idea of emergent gravity (EG; Verlinde 2017) is that gravity is
an entropic force arising from underlying microscopic degrees of
freedom that are currently not understood — and do not always need
to be, much like how a very detailed understanding of molecules
is not needed to understand the ideal gas law. EG faces major
issues on galaxy cluster scales (Tamosiunas et al. 2019) and fails
in galaxies because it predicts hook-shaped deviations from a single
universal RAR that cannot be hidden within the uncertainties (Lelli,
McGaugh & Schombert 2017a). While its prediction for the WBT
is unclear, EG as presently formulated is strongly inconsistent with
Solar System ephemerides (Hees, Famaey & Bertone 2017; Chan
& Lee 2023). These precise constraints also rule out gravitational
dipoles (Hajdukovic 2020; Banik & Kroupa 2020a) and scale-
invariant dynamics (Maeder & Gueorguiev 2020; Banik & Kroupa
2020b). The WBT greatly exacerbates the already severe difficulties
faced by modified gravity theories in explaining the RAR without
DM while leaving no discernible trace in highly precise Solar System
ephemerides, which our work effectively extends to 20 kAU at
lower precision. We thus explore whether some form of DM on
galaxy scales might provide a tight RAR (Famaey & McGaugh
2012) while lessening the very severe difficulties encountered by
the standard CDM approach in other respects (Kroupa et al. 2010;
Kroupa 2012, 2015; Di Valentino 2021; Banik & Zhao 2022, and
references therein). We stress that the failures of ACDM identified in
those works are unrelated to the validity of any alternatives proposed
as solutions.

A hybrid MOND-DM model is provided by superfluid dark
matter (SFDM; Berezhiani & Khoury 2015). Its basic idea is that
galaxies are embedded in DM haloes, but their total mass within
the region traced by rotation curves is not significant compared to
the baryonic mass. Instead, the flat rotation curve problem is solved
by postulating additional non-gravitational interactions between the
baryons. These are mediated by phonons propagating in the DM halo,
which is possible in its central superfluid core. On larger scales,
SFDM reduces to ACDM as the superfluid phase only arises at
low temperature and high density, so it arises in galaxies but not in
galaxy clusters. SFDM should alleviate the problem faced by ACDM
with the fast observed rotation speeds of galaxy bars (Roshan et al.
2021b) thanks to reduced dynamical friction on subsonic flows like
a rotating galaxy bar (Berezhiani, Elder & Khoury 2019). However,
the LG satellite planes are still very difficult to understand in SFDM
because their anisotropy strongly suggests a tidal origin but their
internal velocity dispersions imply some enhancement to the forces
binding the satellites, which is hard to understand as the more distant
satellites in these structures would be outside the superfluid portion
of the halo (see section 5.6 of Roshan et al. 2021a). Another major
issue is that the phonon-mediated forces at the heart of how SFDM
reproduces the MOND phenomenology only enhance the forces
on baryons, so it is difficult to understand why the RAR inferred
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from rotation curves is also evident in strong lensing (Mistele,
McGaugh & Hossenfelder 2022) and weak lensing data down to
gy ~ 1073 a, (Brouwer et al. 2021) — the latter are particularly
problematic for SFDM (Mistele, McGaugh & Hossenfelder 2023).
These observational difficulties need to be considered alongside
theoretical difficulties in making a stable covariant theory of DM
superfluidity that reduces to MOND in galaxies (Hertzberg, Litterer
& Shah 2021) and avoids significant orbital decay of stars due to
Cherenkov-like radiation caused by their orbital velocity exceeding
the local sound speed in the superfluid (Mistele 2022). If these
difficulties are ultimately overcome, a positive aspect of SFDM is
that the superfluid phase reduces to a normal phase near a star due
to the steep potential gradient, avoiding any anomalous effects in
the Solar System. However, this screening mechanism only works
within a few hundred AU of a Sun-like star, beyond which MOND-
like behaviour would be recovered (equation 86 of Berezhiani &
Khoury 2015). Therefore, the WBT falsifies SFDM as presently
understood. To pass the WBT, the force binding each WB should
differ from the Newtonian expectation by < 8 per cent out to the
separation limit of our WB sample. In the context of SFDM, this
would require the normal phase bubble around every local Sun-like
star to extend out to = 20 kAU. This might be difficult to achieve
by tuning the model parameters given constraints from galaxies and
galaxy clusters (Hodson et al. 2017).

Thus, the extra forces needed to explain flat galaxy rotation
curves might come from the mass of the DM rather than through
it mediating a MOND-like interaction between the baryons. While
the severe difficulties encountered by ACDM make this approach
very unlikely (e.g. Banik & Zhao 2022, and references therein),
the hypothetical DM particles might interact with each other —
the standard assumption that they only interact gravitationally for
all practical purposes is only made for simplicity. Self-interacting
dark matter (SIDM; Spergel & Steinhardt 2000) offers a promising
explanation for galaxies following a tight RAR (Ren et al. 2019).
The required self-interaction cross-section is much larger than the
upper limit imposed by the Newtonian dynamical mass profiles of
galaxy clusters (Eckert et al. 2022b), but this could indicate that the
cross-section depends strongly on the velocity. SIDM would limit
the central DM density in galaxies, reducing dynamical friction on
galaxy bars and thus possibly alleviating the 130 fast bar tension
faced by ACDM (Roshan et al. 2021b). SIDM would reduce to
ACDM on large scales and thus still suffer the same issues with
regards to the KBC void and Hubble tension (Haslbauer, Banik &
Kroupa 2020) and the early formation of galaxies (Haslbauer et al.
2022) and galaxy clusters (Asencio, Banik & Kroupa 2021, 2023).
In addition, SIDM does not provide an obvious explanation for the
LG satellite planes because DM self-interactions do not have any
obvious effect on the positions and velocities of satellite galaxies
around their host — though the frequency of satellite planes in SIDM
should be checked. Moreover, it is unclear how SIDM can explain the
observed signs of tidal disturbance in Fornax Cluster dwarf galaxies
and the lack of low surface brightness dwarfs towards the cluster
centre (Asencio et al. 2022). Reducing the central DM density would
make the situation less problematic, but the DM fraction within the
baryonic extent of the Fornax dwarfs would need to be less than
for isolated LG dwarfs with accurately measured internal velocity
dispersions — these require a considerable amount of DM in a
Newtonian context. Thus, SIDM models face some challenges but
also appear to hold some promise, especially as they may explain
some of the MOND phenomenology while being consistent with the
WBT and Solar System ephemerides due to the lack of any change in
the gravity sector. The same is true if we postulate a long-range non-
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gravitational interaction between baryons and dark matter beyond
their self-interactions (Famaey et al. 2020).

5.5 Future prospects

The significant challenge to MOND presented by the WBT is an
important result which should be confirmed with additional data.
There are good prospects for future improvement: the next Gaia data
release (DR4) is anticipated at the end of 2025. DR4 will double
the time baseline analysed in DR3, giving an ~2.8x improvement
in proper motion precision and reducing the impact of CBs at AU
separations (Appendix B). We estimate that using DR4 with a similar
selection to our main analysis but extended to mg < 17.6 and d <
400 pc would approximately double the search volume and almost
triple the final sample size, bearing in mind that more precise proper
motions will lead to more systems passing our cut on the v precision
[equation [10)].

Systems rejected here due to a lack of either star’s RV can also
be recovered from ground-based RV observations at a moderate
precision of 21 km s~!. This would increase the sample size by about
10 per cent, but the more useful gain could be that the contamination
rate can be reduced if the RV is known for both stars.

There are also interesting prospects for directly constraining the
triple population to reduce the degrees of freedom inherent in
our modelling (Manchanda, Sutherland & Pittordis 2023). Their
simulations have shown that we should be able to detect nearly
all triples with a single main sequence star orbited by a CB whose
inner period 2 3 years, which is long enough to give a substantial
time-averaged perturbation to the photocentre velocity (Appendix B).
Such hierarchical systems can be found either by Gaia astrometric
accelerations in the 10-yr final data set (for separations < 25 AU);
or by direct, speckle, or coronagraphic imaging (for separations
2 20 AU). The required imaging observations are much less time-
consuming than high-precision RV measurements, so they may be
feasible for a substantial fraction of the WB sample, especially for the
high v tail. This would provide an important check on our estimated
CB contamination fraction.

In principle, it is possible to refine the WBT via the addition of
binary RV differences. This would allow the use of 3D velocities and
2D projected separations, which would reduce the scatter in the v
distribution inherent from projected velocities. However, this would
require high precision (order 0.05 kms~') RVs for all stars, which
would be very costly in observing time and require corrections for
gravitational redshift (Loeb 2022) and convective blueshift (Liebing
et al. 2021). A fully 3D version of the WBT would also require
much more precise astrometry to obtain kAU-level constraints on
the relative heliocentric distances to the stars in each WB. This is not
envisaged in the foreseeable future for a statistically large sample of
WBs. More precise information is available for some very nearby
systems (Kervella et al. 2016; Kervella, Thévenin & Lovis 2017),
but an individual WB cannot test MOND using velocities alone even
if 7 > +/2 because a single snapshot would not prove that the WB is
bound (though a chance flyby is unlikely; see section 8.1 of BZ18).
A test is possible if the acceleration can be directly measured, which
may become feasible with future observatories (Banik & Kroupa
2019a).

Our work has assumed that the potential of a star at kAU distances
must be traced by another star. It is possible for a spacecraft to serve as
the tracer instead (Banik & Kroupa 2019b). The predicted aspherical
shell of PDM concentrated around the Solar MOND radius would
also affect Solar System ephemerides (Hees et al. 2014, 2016; Brown
& Mathur 2023).
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6 SUMMARY AND CONCLUSIONS

MOND has enjoyed unparalleled predictive success with regards to
galaxy dynamics (Famaey & McGaugh 2012; Banik & Zhao 2022,
and references therein). Its central postulate is that the dynamics of
a system deviates from Newtonian expectations when the gravity
g < a,. This could in principle occur at any distance from a system
provided it has a sufficiently low mass [equation (2)]. Since the
MOND radius of a star is 7./M /Mg kAU, MOND ought to have
detectable effects on local WBs with kAU separations. Indeed,
simple analytic estimates backed up by detailed calculations show a
20 per cent enhancement to the orbital velocity over the Newtonian
expectation (BZ18), as also evident in N-body simulations of local
star clusters for much the same reason (Kroupa et al. 2022).

We test this prediction using an observational sample of 8611 WBs
from Gaia DR3 (Gaia Collaboration 2023) where the uncertainty on
v [equation (3)] is very small and other quality cuts have been applied
(Sections 2.1 and 2.4). Dividing our sample into ten equally sized
subsamples shows no trend in the median v with respect to ryy /r,,
once we restrict our attention to v < 2, which should significantly
reduce contaminating effects while preserving a genuine MOND
signal (Fig. 11). Observational uncertainties would be expected
to broaden the v distribution preferentially at large separations
because the same uncertainty on the relative velocity implies a
larger uncertainty in v. This would if anything lead to a broader v
distribution at low accelerations. As a result, the flat behaviour of the
median v with respect to our proxy for the internal WB acceleration
strongly suggests that local WBs are Newtonian.

We then present the most detailed statistical hypothesis test of
MOND to date using local WBs. Our model includes a rigorous
calculation of the MOND gravitational field under an EFE of
strength g, = 1.8 a, (Section 3.1), an allowance for an undetected
CB companion to one or both of the stars in each WB (Section 3.2),
and LOS contamination (Section 3.3). The procedure was fixed in
advance as much as possible to minimise biases that could arise
when conducting the WBT (Banik, Pittordis & Sutherland 2021).
The model parameters relate to those of:

(i) The WBs, for which we need the ag,, parameter interpolating
between different gravity laws [see equation (39) for its relation to
the gravity law] and the distribution of semi-major axes [dpgeax and 8;
see equation (16)] and orbital eccentricities [y ; see equation (17)];

(ii) The CBs, for which we assume the same y parameter but also
need the fraction fcp of stars in our WB sample with an undetected
CB companion (Section 3.2.4) and the upper limit to the CB semi-
major axis, which is defined by kcp [see equation (22)]; and

(iii) The LOS contamination fraction fi os due to chance align-
ments (see Section 3.3).

These seven parameters are allowed to vary freely so as to best
match the observed distribution of (rgy, ) in 540 pixels (Table 1).

Our best-fitting Newtonian model significantly outperforms our
best-fitting MOND model: the likelihood ratio of exp (175) implies
a preference for Newtonian gravity at 190 confidence according
to our analyses with fixed &gry. This is in line with the result of
PS23, who conducted a less detailed version of the WBT using a
somewhat different rq, range of 5-20 kAU and considered WBs
with v < 7. Their analysis also differs from ours in several other
respects, including their use of a linear rather than cubic mass-
luminosity relation (Fig. 1), their CB model, and their much more
limited exploration of the parameter space. Those authors found
that the x2 of their best Newtonian model is smaller than that of
their best MOND model by 525, suggesting a 230 preference for

4609

Newtonian gravity. While our best-fitting Newtonian model is not
a perfect representation of the WB data set, it is clear that the data
do not show the predicted broadening to the v distribution at larger
separations (Fig. 12).

In our main analysis, we allow the gravity law to interpolate
between Newtonian and Milgromian. For this, we use the gravity law
parameter ®gr,y, which is 0 in Newtonian gravity and 1 in MOND.
Using 10> MCMC trials to explore the parameter space, we find
that the inferred agry = —0.021f8:8§§. This is very consistent with
Newtonian dynamics but rules out MOND at 160 confidence, which
is in line with the results of PS23 and our results for fixed ogray. Our
result is robust to various changes in the modelling assumptions and
the sample selection (Table 3), including when we use a narrower
mass range to minimize possible trends in the mass distribution
across the parameter range used for the WBT (Section 5.1.1). We
also explain in some detail why, without a drastic change to our
understanding of baryonic surface densities, the MOND interpolating
function cannot be chosen to simultaneously pass the WBT and
constraints from the rotation curves of galaxies, including our own
(Section 5.3).

Our conclusion disagrees with two studies that were published
while this work was under review (Chae 2023; Hernandez 2023).
In Section 5.2, we focus on the study of Chae (2023) due to its
much larger sample size and its claim to have detected the predicted
MOND enhancement to Newtonian gravity at 100 confidence. We
find that the nominal sample of 26615 WBs used in that study
does indeed show a clear signal that closely resembles the MOND
expectation and appears to rule out Newtonian dynamics (Fig. 19).
However, we then identify a major deficiency with the handling
of astrometric uncertainties. Despite the importance of the relative
velocity between the stars in each WB, the uncertainty on this
quantity is not estimated in Chae (2023). Instead, the focus is on
ensuring that the heliocentric velocity of each star is very precise.
This is insufficient to ensure a precisely known relative velocity and
thus a reliable v, which however is essential to conducting the WBT.
We therefore use equation 5 of El-Badry, Rix & Heintz (2021) to
estimate the uncertainty in vy, and thus in v. We then impose an
additional condition on the v uncertainty matching that used in our
own analysis [equation (10)]. This completely removes the apparent
MOND signal despite only reducing the sample size by about 1/5
(see Fig. 21). We argue that a similar issue may well have affected
the analysis of Hernandez (2023) based on some statements in that
paper, though we do not study its WB sample in detail. We also
find that the WB sample used by Chae (2023) artificially imposes
that v < /5 My/M, making it not very well suited to the WBT
(Appendix E).

We conclude that the gravity law inferred from our analysis of
local WBs is consistent with Newtonian expectations but rules out
MOND as modified gravity at 3>5¢ confidence in both our nominal
analysis and a considerable range of variations to it. This conclusion
is of course reliant on our modelling approach, which is not a perfect
match to the data (Fig. D1).!° Even so, neither our main analysis
nor any of the variations considered can significantly improve the fit
by using a gravity law different to Newtonian. This is also evident
from the model-independent Fig. 11, which considers the median v
in subsamples with different gy /r,, as a proxy for the WB internal

19This is similar to the rotation curve predictions in MOND, which often do
not match the data within formal uncertainties but visually provide a good
fit, which is typically considered sufficient given the inevitable modelling
deficiencies (Kroupa et al. 2018; Cameron, Angus & Burgess 2020).
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acceleration. It has been argued that modified inertia interpretations
of MOND could reduce the predicted enhancement to the Newtonian
acceleration and thus remain consistent with the WBT (Milgrom
1994, 2011, 2022). This would lead to the inner and outer parts of
galaxy rotation curves following the same RAR, but a difference is
detected at 6.90 confidence (Chae 2022). Although the predictions
of modified inertia for slightly non-circular orbits are not known,
the magnitude of the above-mentioned difference is consistent with
expectations of MOND as modified gravity — but this is ruled out
by the WBT. Further modifications to MOND could preserve its
successes on galaxy scales, especially with regards to issues like the
LG satellite planes, which are difficult to understand any other way
(Pawlowski 2021a, b; Banik et al. 2022). This entails at least one new
fundamental scale beyond a,, marking the end of MOND as a purely
acceleration-dependent modification to standard physics. Limiting
the MOND phantom density to ’ppdm| <20 Mg/pc® would yield
consistency with the WBT and also alleviate tensions related to the
null detection of MOND effects in Cassini radio tracking data from
Saturn (Hees et al. 2014, 2016; Brown & Mathur 2023). It might also
improve the agreement with observations of globular clusters and the
vertical gravity from the Galactic disc. Limiting |ppam| would have
little effect on larger scales, similarly to the Vainshtein mechanism
used to screen modified gravity effects in the Solar System (Babichev,
Deffayet & Esposito-Farese 2011). This would preserve MOND’s
successes in galaxies but leave open the issue of galaxy clusters and
large-scale structure, for which the hybrid vHDM paradigm may
be a promising approach (section 9.2 of Banik & Zhao 2022, and
references therein). While our results falsify MOND as currently
understood, given the many problems for ACDM discussed in that
work, our results cannot be used to argue that it is the correct model
either — both models are clearly incomplete. Hybrid models like
SFDM struggle to explain galactic-scale observations like lensing
(Mistele, McGaugh & Hossenfelder 2022, 2023) and the WBT, while
non-MOND modifications to gravity like EG and MOG usually fail
in galaxies (Section 5.4). SIDM may be a promising approach but
it is very similar to ACDM on large scales, thus encountering the
same difficulties with the KBC void (Keenan, Barger & Cowie 2013;
Haslbauer, Banik & Kroupa 2020; Wong et al. 2022) and Hubble
tension (Di Valentino 2021). This significant anomaly for standard
cosmology appears to persist in the JWST era (Yuan et al. 2022)
and must be solved consistently with the ages of the oldest stars
(Cimatti & Moresco 2023, and references therein). We hope that our
results from local WBs motivate the development of a more complete
theory, which is likely to borrow some elements from both ACDM
and MOND given their successes in different domains.
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APPENDIX A: EXACTLY EQUAL MASS
BINARIES

Although we might expect the mass ratio distribution of binaries to
be smooth, observations indicate a population of exactly equal mass
WBs (El-Badry et al. 2019). We therefore include an allowance for a
d-function in the g distribution at 1/2, where g is the fraction of the CB
mass in the less massive star. To find the likelihood Py, of a binary
having exactly equal mass stars, we plot the cumulative distribution
of 0.5 — g for the WBs in our sample, which we restrict to v < 1
to try and mitigate CB contamination. The idea is to extrapolate the
distribution down to zero and look for a positive intercept. Since a 8-
function would be smeared somewhat by observational uncertainties,
we need to start our fit at some slightly positive value of 0.5 — g. We
also need to avoid extending our fit to very high 0.5 — g because our
polynomial fitting function might become inaccurate.

The results in the top panel of Fig. Al show real data and a cubic
fit over the range 0.05 — 0.2. The data are shown in black, while the
cubic fit is shown in red — a cubic is the lowest degree polynomial
which provides an accurate match to the data. The bottom panel
of Fig. Al shows the intercept as a function of the upper limit to
0.5 — g, with each coloured line used to show results for a different
lower limit. All analysis variants show a positive intercept, whose
value converges at close to 0.04 for a wide range of lower and upper
limits to 0.5 — g. We therefore adopt Pegm = 0.04 for the CB model
in our main analysis. This assumption is not relevant to modelling
uncontaminated WBs, whose actual mass ratio distribution is used
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Wide binary orbital velocities challenge MOND
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Figure A1. Top: The cumulative distribution of 0.5 — g for WBs with v < 1
(black line). We only show results over the range 0.05 — 0.2 because a §-
function in the probability distribution at zero would be smeared somewhat
by observational uncertainties. The red line shows a cubic fit over this range,
but also extrapolates it down to zero. Notice that the intercept is slightly
positive, indicating the presence of a population of WBs with an exactly equal
mass (consistent with El-Badry et al. 2019). Bortom: The above-mentioned
intercept is plotted as a function of the upper limit to the fitting range. Different
lines show results with different lower limits, as indicated in the legend.
Notice that for a wide range of fitting ranges, the results converge around
0.04, which we assume is the likelihood Pegm of a binary having exactly
equal mass components.

when needed (Section 3.2.4). An equal mass fraction of a few percent
is in line with the double main sequence apparent in the colour—
magnitude diagram of our WB sample (Fig. 2).

APPENDIX B: WHEN ORBITAL MOTION
BECOMES NON-LINEAR

We assume uniform rectilinear motion for the WB and any undetected
CB companions, implicitly assuming that the orbital periods are very
long. This should be a very good approximation for the WB given the
kAU separations of even the tightest WBs we consider. However, CB
orbital periods can be much shorter. This can substantially reduce
the mean motion of the CB over the Gaia DR3 observing baseline
of 1 = 34 months. In this section, we estimate the CB orbital period
below which we can no longer safely assume a very long orbital
period P. This is used to estimate a minimum CB semi-major axis
aine When setting up its distribution in Section 3.2.3.

For simplicity, we assume that the CB is on a circular orbit and
that the line connecting its components rotates by some angle 6 over
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the Gaia observing baseline. We consider the impact of increasing 6
by reducing the CB separation while not altering the other CB orbital
parameters. The induced recoil velocity on the star detected as part
of the WB depends on the CB orbital velocity v o 1/,/aiy. Bearing
in mind Kepler’s Third Law that P o a;\>, we get that v oc P13,
Since the CB rotation angle 6 over a fixed duration of time varies as
0 o 1/P, we get that

v x 673, (B1)

The positive exponent captures the fact that larger 6 is associated
with a tighter CB on a faster orbit.

However, the mean velocity v will in general involve some
additional shape factor s(0) that accounts for the extent to which the
orbital arc over the Gaia observing baseline deviates from a straight
line. Basic trigonometry tells us that the linear distance between two
points on a circle is smaller than the distance between them along
the circumference by a factor of sinc (6/2). Putting this extra factor
into equation (B1) tells us that

sin (g) ' . (B2)

Treating this as a function of u = 6/2, we find that the maximum
occurs when tan u = 3u/2. The first non-trivial solution is u = 0.97
or # = 111°. Rotation by this angle over 5 implies P = 3.251t¢, so
we expect our linear motion approximation to break down when P <
110 months or 9.2 yr.

The corresponding orbital separation depends on the mass of the
CB. For a low-mass undetected companion, the CB total mass would
only slightly exceed the mass of the contaminated star, which is just
one of the two stars detected as a WB. The blue bars in Fig. 5 show
that the stars in our WB sample easily reach down to 0.4 M. At
this mass, an orbital period of 9.2 years corresponds to @iy = 3.2
AU. While CBs with even smaller separations would still affect the
inferred WB orbital velocity, the impact rapidly becomes smaller
than implied by equation (B1).

We note that 3.2 AU is much larger than the minimum a;,; of 0.1
AU considered in the orbit integrations of PS23 (see their section
3.2). CBs with a separation of 0.1 AU would complete many orbits
over g, so the effect of such tight CBs may have been overestimated
in their analysis.

7o 9723

APPENDIX C: COMPARING THE BEST
NEWTONIAN AND MOND MODELS

In Fig. 13, we presented the difference in log-likelihood between our
best-fitting Newtonian and Milgromian models. The panels in this
figure showed the results for each ryy but with all v pixels summed
over, and vice versa. To give a better understanding of which pixels
work better in which theory, we show the full 2D distribution of
Aln P between these models in Fig. C1. Since Aln P is close to zero
in several pixels, we clarify which model does better by adding an
open white circle at the centre of a pixel if MOND fits it better. Out
of the 540 pixels used in our analysis (Table 1), only 221 pixels
(41 per cent) prefer MOND while the remaining 59 per cent prefer
Newtonian gravity. However, we also need to consider that the pixels
which prefer MOND only do so to a rather small extent, while
sometimes pixels which prefer Newtonian gravity do so to a very
large extent.

MNRAS 527, 4573-4615 (2024)
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Figure C1. The relative performance of our best-fitting Newtonian and
MOND models, shown here for every pixel. The binomial log-likelihood
of each model is found by comparison with the observed number of WBs
in each pixel (Fig. 6). Open white circles indicate pixels for which MOND
outperforms Newtonian gravity. The combined difference in log-likelihood
at each rgy summed across all v (and vice versa) is shown in Fig. 13.

APPENDIX D: THE BEST FIT MODEL WITH
REDUCED CB CONTAMINATION

The only alteration to our nominal analysis which gives an appre-
ciable preference for ctgroy > 0 is the one in which we fix fcg = 0.3
(Table 3). We explore this model in more detail to understand if it
plausibly fits the WB data with a gravity law closer to Milgromian.

In Fig. D1, we compare the observed v distribution to the
prediction of the best model with our nominal assumptions and with
fes = 0.3, considering both the final result of the gradient ascent and
the whole MCMC chain in each case. It is clear that fixing fcp to
such a low value causes a catastrophic disagreement with nearly all
aspects of the observations. The lack of sufficient CB contamination
causes the peak of the v distribution to be more pronounced than
in the Gaia number counts at very low rgy, though we see that both
models struggle somewhat in the peak region at intermediate 7y, . The
most important differences concern the tail of the distribution, which
cannot be adequately fit with so few CBs. The analysis has to try
and fit the extended tail with substantially more LOS contamination,
quadrupling the inferred fi os. This may help somewhat at low rgy,
but it leads to a rapidly rising v distribution at high ryy, in strong
disagreement with the observations (bottom right panel).

These very serious issues cause the overall fit to be poorer than
in our best-fitting nominal analysis by Aln P = 413, which implies
that the latter is preferred at a confidence equivalent to +/2AIn P =
290 for a 1D Gaussian. Clearly, assuming a substantially lower
likelihood of CB contamination is not a viable proposition. In any
case, this only shifts the inferred gravity law towards MOND by a
small amount, with Newtonian gravity still strongly preferred despite
facing just over 3¢ tension (Fig. 18). Itis therefore extremely difficult
to reconcile our WB results with MOND as usually understood given
other constraints.
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APPENDIX E: THE ARTIFICIAL VELOCITY
LIMIT IN THE CHAE (2023) ANALYSIS

In Section 5.2, we discussed several problems with the WB analysis
of Chae (2023). One additional problem which may be noteworthy
is that the sample is based on the WB catalogue of El-Badry,

Rix & Heintz (2021). Each WB is assigned a likelihood of being
genuine based on several factors, one of the most important being

the magnitude of vy (see their equation 7).2° Unlike our limit that
v < 5, their limit to vy, does not easily translate into a limit on v
because there is no allowance for more massive WBs having a faster
Newtonian v.. Those authors require that

kAU

Fsky

vy < 2.1 kms™', (ED)

which in terms of v corresponds to

7 < )2 Mo (E2)
M

We illustrate this cutoff in Fig. E1, where we plot v as a function
of M for the 26615 WBs in the nominal sample of Chae (2023).
Nearly all of these WBs lie below the blue line showing the limit
given by equation (E2). This is not a completely strict limit because
each WB is required to be consistent with this bound within the 20
observational uncertainty on vy (see section 2 of El-Badry, Rix &
Heintz 2021). Even so, it should be clear that a WB sample selected
in this way is not ideal for the WBT.?!

To check if our results in Section 5.2 remain reliable despite this
complication, we need to impose an upper limit on the mass so that
results remain reliable up to some maximal v. This is equivalent
to drawing a rectangular cut towards the bottom left of Fig. E1. To
retain most of the WB sample while having reliable results beyond the
main peak of the v distribution, we impose a limit of M < 1.25 M.
With this mass limit, regardless of the mass of a WB, there is no
truncation to the v distribution for v < 2. We then use Fig. E2 to
show the median v as a function of rg/r,, for the case where the
sample is further limited to only those WBs where the estimated
o (V) < 0.1max (1,v/2), as done in Fig. 21. Both figures show
very similar results, indicating that the v limit imposed by equation
(E2) has little impact on the flat trend of the median v with respect
to our proxy for the internal WB acceleration. This is presumably
because the main peak of the v distribution lies at v < 1, which is
not much affected by this cut (Fig. E1). Even so, having a mass-
dependent limit to v could in principle bias the WBT because a WB
with a lower mass also has a lower acceleration at the same rgy.
Since the main idea of the WBT is that some typical measure of
v o 1/g/g,, one should be cautious about a sample selection that
allows lower mass systems to reach a higher v than higher mass
systems.

20This is estimated using the difference in proper motions without allowing
for the systemic RV, which should be a reasonable approximation given the
small angular sizes of WBs.

2IK. El-Badry, private communication.
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Figure D1. Comparison between the observed v distribution in four different ry, ranges (solid red bars in different panels) with the prediction of our best
model from our nominal analysis (black lines with error bars) and from our revised analysis with fixed fcg = 0.3 (blue lines with error bars). This revised
analysis is the only one to appreciably shift the inferred gravity law towards MOND (Fig. 18). The fit is much poorer in this case. The results shown here are
normalized based on the observed WB distribution, helping to highlight that the fcg = 0.3 model predicts too many WBs at high ry.
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Figure E1. The red dots show the distribution of WB mass and ¥ for the Figure E2. Similar to Fig. 21, but restricted further to only WBs with M <

nominal sample of Chae (2023). Notice how the vast majority of WBs lie 1.25 M. This ensures that the artificial limit to the ¥ distribution in the Chae
below the solid blue line [equation (E2)] due to selection effects (equation 7 (2023) sample (blue line in Fig. E1) does not influence the results for v < 2.
of El-Badry, Rix & Heintz 2021). The mass limit has little impact on the results, which continue to show a flat

trend once we impose that o (V) < 0.1 max (1, 7/2), as done here.
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