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A B S T R A C T 

We test Milgromian dynamics (MOND) using wide binary stars (WBs) with separations of 2–30 kAU. Locally, the WB orbital 
velocity in MOND should exceed the Newtonian prediction by ≈ 20 per cent at asymptotically large separations given the 
Galactic external field effect (EFE). We investigate this with a detailed statistical analysis of Gaia DR3 data on 8611 WBs 
within 250 pc of the Sun. Orbits are integrated in a rigorously calculated gravitational field that directly includes the EFE. We 
also allow line-of-sight contamination and undetected close binary companions to the stars in each WB. We interpolate between 

the Newtonian and Milgromian predictions using the parameter αgrav , with 0 indicating Newtonian gravity and 1 indicating 

MOND. Directly comparing the best Newtonian and Milgromian models reveals that Newtonian dynamics is preferred at 19 σ

confidence. Using a complementary Markov Chain Monte Carlo analysis, we find that αgrav = −0 . 021 

+ 0 . 065 
−0 . 045 , which is fully 

consistent with Newtonian gravity but excludes MOND at 16 σ confidence. This is in line with the similar result of Pittordis and 

Sutherland using a somewhat different sample selection and less thoroughly explored population model. We show that although 

our best-fitting model does not fully reproduce the observations, an o v erwhelmingly strong preference for Newtonian gravity 

remains in a considerable range of variations to our analysis. Adapting the MOND interpolating function to explain this result 
would cause tension with rotation curve constraints. We discuss the broader implications of our results in light of other works, 
concluding that MOND must be substantially modified on small scales to account for local WBs. 

Key words: gravitation – methods: statistical – celestial mechanics – binaries: general – stars: kinematics and dynamics –
galaxies: kinematics and dynamics. 
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 I N T RO D U C T I O N  

ur current best understanding of gravity is encapsulated by the 
heory of General Relativity (GR; Einstein 1915 ). This reduces 
o Newtonian dynamics in the weak-field non-relativistic limit 
Rowland 2015 ; de Almeida, Piattella & Rodrigues 2016 ; Ciotti
022 ). According to this theory, the gravity from a point mass
ollows an inverse square law, which historically was inferred from 

he fact that the rotation velocity v c of a planet around the Sun
eclines with its heliocentric distance r as v c ∝ 1 / 

√ 

r . In principle,
his Keplerian decline should also apply to galaxies as a whole 
f one considers tracers of their potential far beyond the bulk of
heir detectable baryonic mass (stars and gas). Ho we ver, it is well
nown that galaxy rotation curves are flat (Bosma 1978 ; Rubin,
ord & Thonnard 1978 ; Faber & Gallagher 1979 , and references

herein) − this is nicely illustrated in fig. 15 of F amae y & McGaugh
 2012 ). 
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Sev eral e xplanations hav e been put forward for this missing
ravity problem, which is also apparent in a number of other
 ays lik e dw arf galaxy velocity dispersions (fig. 11 of Mc-
onnachie 2012 ) and weak gravitational lensing (Brouwer et al. 
021 ). The most popular idea is that the extra gravity needed
o bind galaxies and enhance their effect on passing photons 
omes from an otherwise undetected halo of particles beyond 
he well-tested standard model of particle physics (for a re vie w,
ee Peebles 2017 ). This forms the basis for the currently pre-
ailing Lambda cold dark matter ( � CDM) standard model of
osmology (Efstathiou, Sutherland & Maddox 1990 ; Ostriker & 

teinhardt 1995 ). Ho we v er, DM particles hav e not been found
espite decades of highly sensitive searches for collisions with 
errestrial detectors (LUX Collaboration 2017 ; Lux-Zeplin Col- 
aboration 2023 ). Similarly, there is no sign of γ -rays from DM
nnihilation or decay processes in supposedly DM-dominated Galac- 
ic satellites, providing stringent limits on the allowed properties 
f the hypothetical particles (Hoof, Geringer-Sameth & Trotta 
020 ). 
This has led some w ork ers to consider that the missing gravity

roblem might not be due to seemingly undetectable particles. The 
is is an Open Access article distributed under the terms of the Creative 
h permits unrestricted reuse, distribution, and reproduction in any medium, 
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ost de veloped alternati ve is Milgromian dynamics (MOND; Mil-
rom 1983 ). It proposes that the gravity g in an isolated spherically
ymmetric system is asymptotically related to the Newtonian gravity
 

N 
of the baryons alone according to 

 → 

{
g 

N 
, if g 

N 
� a 0 , √ 

a 0 g N , if g 
N 

� a 0 . 
(1) 

OND introduces a fundamental acceleration scale a 0 below which
he gravitational field deviates substantially from Newtonian ex-
ectations. 1 Just like with the Newtonian constant G , we must
etermine a 0 empirically. Using the rotation curves of a handful
f disc galaxies with properties similar to our own, it has been found
hat a 0 = 1 . 2 × 10 −10 m s −2 (Begeman, Broeils & Sanders 1991 ).
his value has remained very stable o v er man y decades (Gentile,
 amae y & de Blok 2011 ; McGaugh, Lelli & Schombert 2016 ; Chae
022 ). 
MOND works remarkably well at predicting the dynamics of

alaxies across a huge range in baryonic mass, surface brightness,
nd gas fraction (F amae y & McGaugh 2012 ; McGaugh, Lelli &
chombert 2016 ; Lelli et al. 2017b ; Kroupa et al. 2018 ; Li et al.
018 ). Observ ations sho w that galaxies follo w a remarkably tight
radial acceleration relation’ (RAR) between the radial components
f g and g 

N 
as deduced from rotation curves and the baryonic

ass distribution, respectively (McGaugh 2020 ). This conclusion
s not much dependent on assumptions about the stellar mass-to-
ight ratio because one can restrict attention to gas-rich galaxies
McGaugh 2012 ). The intrinsic scatter in the RAR is only 0.034
e x, which giv en the uncertainties is consistent with zero (Desmond
023 ). The RAR also extends to elliptical galaxies and even to weak
ravitational lensing down to g 

N 
≈ 10 −5 a 0 (Brouwer et al. 2021 ).

he gravitational forces in virialized galaxies are thus very well
escribed by MOND (for a re vie w, see section 3 of Banik & Zhao
022 ). 
These successes are complemented by recent numerical MOND

imulations of galaxies, which allow an exploration of non-
xisymmetric dynamical features like bars and spiral arms (Banik
t al. 2020 ; Roshan et al. 2021a ). MOND has also been shown
o get about the right star formation rates in disc galaxies with
n appropriate size and gas fraction for their stellar mass (Nagesh
t al. 2023 ). While these works typically target isolated galaxies,
OND has also been applied to interacting galaxies, in particular

o understand the Antennae (Renaud, F amae y & Kroupa 2016 ), the
idal stability of dwarf spheroidal galaxies in the gravitational field
f the Fornax Cluster (Asencio et al. 2022 ), the asymmetric tidal
ails of the globular cluster Palomar 5 (Thomas et al. 2018 ) and open
tar clusters in the Solar neighbourhood (Kroupa et al. 2022 ), and
he formation of the Local Group (LG) satellite planes around the

ilky Way (MW) and M31 from tidal debris expelled by a past flyby
ncounter between their discs around 8 Gyr ago (Zhao et al. 2013 ;
 ́ılek et al. 2018 ; Banik et al. 2022 ). 
Many of these results were moti v ated by tensions and inconsis-

encies within the � CDM paradigm. For instance, it is known to
ace se vere dif ficulties explaining the LG satellite galaxy planes
P a wlowski 2021b , and references therein). Hydrodynamical MOND
imulations of M33 (Banik et al. 2020 ) were moti v ated by difficulties
n understanding why it is weakly barred, bulgeless, and has a two-
rmed spiral − behaviour which is in many ways the opposite of
hat arises in Newtonian simulations with a live halo (Sell w ood,
hen & Li 2019 ). Problems understanding galaxy bars in � CDM
NRAS 527, 4573–4615 (2024) 

 This is true in percentage terms, but the difference in absolute terms is � a 0 . 

M  

i  

p  
re certainly not confined to M33: the model faces a 13 σ tension
hen confronted with the observed ratios between bar lengths and

orotation radii (Roshan et al. 2021b ). This fast bar tension has been
ather directly linked to dynamical friction between the rotating bar
nd the hypothetical CDM halo (fig. 12 of Roshan et al. 2021a ).
hose authors demonstrated that the problem is alleviated in MOND

see their fig. 20), with a similar result found in subsequent more
etailed simulations that include hydrodynamics and star formation
see fig. 16 of Nagesh et al. 2023 ). The presence of bars in galaxies
ith a low surface brightness is also very problematic for � CDM
ecause these galaxies are supposedly embedded in a dominant dark
alo, which reduces the role of disc self-gravity (Kashfi, Roshan
 F amae y 2023 ). Milgromian disc galaxies are al w ays completely

elf-gravitating, making it easier to understand why even galaxies
ith a large enhancement to their Newtonian baryonic rotation

urve commonly have bars and spiral arms (McGaugh, Schombert
 Bothun 1995 ; McGaugh & de Blok 1998a , b ). 
MOND has also been applied on galaxy cluster and cosmological

cales with the neutrino hot dark matter ( νHDM) paradigm developed
y Angus ( 2009 ) and the aether scalar tensor (AEST) model (Skordis
 Zło ́snik 2019 , 2021 , 2022 ) − for a re vie w, we refer the reader

o section 9 of Banik & Zhao ( 2022 ). Here again some of the
uccesses relate to situations which are severely problematic for
 CDM, in particular the KBC void and Hubble tension (Keenan,
arger & Cowie 2013 ; Haslbauer, Banik & Kroupa 2020 ) and the El
ordo massive galaxy cluster collision at redshift z = 0.87 (Asencio,
anik & Kroupa 2021 , 2023 ). Thus, the successes of MOND extend
ell beyond its initial moti v ation forty years ago from the rotation

urves of high surface brightness disc galaxies. At the same time,
he moti v ation for considering alternati v es to � CDM e xtends well
eyond a mere failure to detect the hypothetical particles (for an
 xtensiv e review, see Banik & Zhao 2022 ). 

.1 The importance of wide binaries (WBs) 

n this contribution, we seek to test the validity of MOND on very
mall length scales by galactic standards, greatly diminishing the
ole of DM (Acedo 2020 ). One might think that the role of MOND
ould also be diminished, but since MOND does not introduce a

undamental new length scale, it should remain valid in systems with
 much smaller mass and size than a typical galaxy provided the
ccelerations are low enough. Equation 1 indicates that Newtonian
nd Milgromian gravity diverge when g � a 0 . Around an isolated
oint mass M , this occurs beyond its MOND radius 

 

M 
≡

√ 

GM 

a 0 
. (2) 

he MOND radius of the Sun is 7000 AU (7 kAU) or 0.03 pc. This is
uch smaller than the typical separation between stars in the Solar

eighbourhood, where the Newtonian Jacobi or tidal radius for a
ystem with M = 2 M 	 is 350 kAU (equation 43 of Jiang & Tremaine
010 ). It is thus possible to test MOND at kAU distances from a
tar provided suitable tracers can be found. The properties of long-
eriod comets that reach kAU distances have been used to argue in
a v our of the Milgromian enhancement to the Solar potential (Penner
020 ), while its predicted anisotropy may explain the apparent orbital
lignment of Kuiper belt objects with a large pericentre (Brown &
athur 2023 ; Migaszewski 2023 ). However, this evidence is rather

ndirect. More direct evidence could be obtained using interstellar
recursor missions travelling at a few percent of the speed of light
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ṽ

w
a  

r  

t
s  

s
(  

a  

d
3
u
o
f
i  

w
t  

i  

t
o

t
o  

s
&
o  

d
r  

G
i  

r
b  

e
i
i

2

t  

v
(

 

a  

e
e
e  

d  

i  

r
r  

o  

b
(  

t
p  

&  

T  

w  

r  

n  

Z  

q
t  

r  

t  

e
 

k  

S
a  

d  

2  

d
E  

v  

i
s  

r  

N
c  

t  

t
 

s  

t
c  

W  

s  

a  

c  

C  

l  

n  

o
o  

h  

G

D
ow

nloaded from
 https://academ

ic.oup.com
/m

nras/article/527/3/4573/7342478 by guest on 30 D
ecem

ber 2023
 (Banik & Kroupa 2019b ), but this remains well beyond current
echnology. 

These difficulties can be o v ercome by using stars in WBs, defined
n this work as binary stars with orbital acceleration � a 0 , implying
AU-scale separations. The nearest star to the Sun is in such a WB
Beech 2009 , 2011 ). MOND can thus be tested using the orbital
cceleration of Proxima Centauri around α Centauri A and B, which 
av e a v ery small separation and can be treated as one object
Kerv ella, Th ́ev enin & Lovis 2017 ). Unfortunately, the ≈ 0 . 5 μas
strometric precision required is roughly two orders of magnitude 
eyond the reach of current instruments (Banik & Kroupa 2019a ). 
nstead of using the acceleration, it is much more promising to 
se the relative velocity, but then the wide binary test (WBT) of
ravity has to be done statistically by considering a large number 
f WBs to av erage o v er orbital phases and projection effects. This
as first suggested by Hernandez, Jim ́enez & Allen ( 2012 ), with
ittordis & Sutherland ( 2018 ) later exploring the behaviour of WBs

n several gravity theories. Since WBs come in a range of masses and
eparations, the WBT is usually phrased as a statistical test involving 
he distribution of the dimensionless parameter 

  ≡ v rel ÷

Newtonian v c ︷ ︸︸ ︷ √ 

GM 

r sky 
, (3) 

here M is the total mass of a WB with sky-projected separation r sky 

nd relative velocity v rel , with v ≡ | v | for any vector v . Thus, the
elativ e v elocity is normalized to the Newtonian circular velocity at
he projected separation. Since the actual separation is larger, ˜ v is 
maller than if the Newtonian v c had been calculated using the 3D
eparation. Moreo v er, we only consider the sky-projected part of v rel 

which we denote v sky ) as the data is not yet accurate enough for
 3D version of the WBT (though see Section 5.5 ). This is mainly
ue to the parallaxes being too inaccurate to reliably constrain the 
D separation (Section 2.3.2 ), though there is also some additional 
ncertainty from the required correction for the gravitational redshift 
f each star (Loeb 2022 ). Considering only sky-projected quantities 
urther reduces ˜ v , which in this contribution is based on using v sky 

n equation ( 3 ) − we do not use the full 3D ̃  v . Note that even though
e will mostly be dealing with the magnitudes of r sky and v sky in 

his work, these are actually 2D vectors within the sky plane. This is
mportant to the work of Hwang, Ting & Zakamska ( 2022 ), who used
he angle ψ between r sky and v sky to obtain interesting constraints 
n the WB orbital eccentricity distribution (Section 3.1.2 ). 
The first detailed MOND calculations of WB orbits showed that 

he Milgromian circular velocity would be enhanced by 20 per cent 
 v er the Newtonian expectation in the asymptotic regime of large
eparations, a result which can be understood analytically (Banik 
 Zhao 2018c , hereafter BZ18 ). 2 Numerical MOND simulations 

f nearby star clusters also show a 20 per cent enhanced velocity
ispersion o v er their Newtonian counterparts for essentially the same 
eason (Kroupa et al. 2022 ). The enhancement is limited by the
alactic gravity on the Solar neighbourhood, which is important 

n MOND because it is a non-linear theory [equation ( 1 )]. As a
esult, the internal behaviour of a self-gravitating system is influenced 
y an external source of gravity, even in the absence of tidal
ffects. This non-standard external field effect (EFE) has been an 
mportant aspect of MOND since the beginning, not only because 
t is theoretically inevitable in a non-linear theory, but also because 
 ˜ v in this contribution has the same meaning as ̃  v sky in BZ18 . 

t  

c
r

he EFE is necessary to suppress the MOND enhancement to the
elocity dispersions of the Pleiades and Praesepe open star clusters 
see section 3 of Milgrom 1983 ). 

Many further arguments for the EFE can be made nowadays (for
 re vie w, see section 3.3 of Banik & Zhao 2022 ). It significantly
nhances the tidal susceptibility of dwarf galaxies in a cluster 
nvironment by weakening their self-gravity, thereby helping to 
xplain the observed signs of tidal disturbance in the Fornax Cluster’s
warf galaxies and the lack of low surface brightness dw arfs tow ards
ts centre (Asencio et al. 2022 ). As explained in that work, tidal
adii are necessarily in the EFE-dominated regime, making their 
esults particularly sensitive to the EFE. Its subtle imprint on the
uter parts of disc galaxy rotation curves has recently been detected
y comparing galaxies in isolated and more crowded environments 
Chae et al. 2020b , 2021 ). The EFE is also crucial when calculating
he escape velocity from a mass distribution, since the Milgromian 
otential of an isolated mass is infinitely deep (F amae y, Bruneton
 Zhao 2007 ; Zhao, Li & Bienaym ́e 2010 ; Banik & Zhao 2018b ).
his is not true once the EFE is included because at large distances
here the EFE dominates, the gravitational field of a point mass

eturns to the Newtonian inverse square law, albeit with a higher
ormalization and some angular dependence (see fig. 1 of Banik &
hao 2022 ). This EFE-dominated regime is sometimes known as the
uasi-Newtonian regime, though in this contribution we simply refer 
o it as the asymptotic regime because local WBs lack an extended
egion in which they are isolated and at low acceleration. This is due
o the Galactic external field g e being slightly stronger than a 0 , as
vident from the Galactic rotation curve (e.g. Zhu et al. 2023 ). 

Given the importance of g e for the WBT, it is fortunate that we
now g e from a direct measurement of the acceleration of the Solar
ystem relative to distant quasars using their changing aberration 
ngle, which directly tells us that g e /c = 5 . 05 ± 0 . 35 μas/yr in a
irection very close to that of the Galactic centre (Gaia Collaboration
021b ). This precludes substantial deviations of g e from the value
educed kinematically from the Galactic rotation curve (Section 3.1 ). 
ven so, the predicted 20 per cent enhancement to the orbital
elocities of local WBs is related to the shape of the MOND
nterpolating function in the regime close to the critical acceleration 
cale a 0 . It is thus somewhat model-dependent as it does not directly
elate to the weak-field asymptotic limit at the heart of MOND.
evertheless, recent detailed rotation curve studies have mostly 

onverged on the form of the interpolating function in this regime,
hough of course slight variations are still possible. We will return to
his point in Section 5.3 . 

Prospects for the WBT were discussed e xtensiv ely in BZ18 , whose
ection 8 clarified the main systematic effects that would likely have
o be considered. The main issue was expected to be undetected 
lose binary (CB) companions to one or both of the stars in a

B. Indeed, the nearest star to the Sun is in just such a triple
ystem: Proxima Centauri is on a wide orbit about α Centauri A
nd B, whose mutual orbital semi-major axis of 23 AU is negligible
ompared to the 13 kAU distance from their barycentre to Proxima
entauri (Kervella et al. 2016 ; Kerv ella, Th ́ev enin & Lovis 2017 ). At

arger distances from the Sun, it is possible that a similar CB would
ot be resolved, but it would still have significant effects on the
bserved kinematics that would not arise if Proxima Centauri were 
rbiting a single star (Section 3.2.1 ). Pittordis & Sutherland ( 2019 ,
ereafter PS19 ) considered the WBT in light of actual data from
aia Data Release 2 (DR2; Gaia Collaboration 2018 ), highlighting 

hat there is indeed an extended tail towards much higher ˜ v than
ould plausibly arise from genuine WB orbital motion, which cannot 
ealistically yield ̃  v � 2 for any reasonable modification to gravity. 
MNRAS 527, 4573–4615 (2024) 
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he possible presence of CBs was strongly suggested by the analysis
f Clarke ( 2020 ) and later by Belokurov et al. ( 2020 ), who argued
hat some of the WBs with unexpectedly large relative velocities also
ave a Gaia astrometric solution that poorly fits the observations.
ince the astrometric solution only includes parallax and proper
otion, it was argued that the excess ‘noise’ could be due to

strometric acceleration induced by a CB, which was previously
hown to typically induce a much larger orbital acceleration than
he WB orbital motion (see section 8.2 of BZ18 ). Further follow-up
bservations should be able to confirm the existence of CB compan-
ons around some WBs (Manchanda, Sutherland & Pittordis 2023 ),
specially once the astrometric time series are published in Gaia DR4
see Section 5.5 ). 

Some line-of-sight (LOS) contamination is also inevitable, though
his is expected to be rather modest thanks to the excellent quality of
he Gaia data (see section 3 of PS19 ). Their work shows a clear main
eak to the ˜ v distribution due to WB orbital motion. Investigation
f its properties already decisively rejects theories where local WBs
ehave like isolated MOND systems without the weakening of their
elf-gravity due to the Galactic EFE (see their fig. 11). This is because
he gravity binding WBs can be deduced from the main peak to the
  distribution at ̃  v � 2, with CB and LOS contamination leading to
n extended low amplitude tail out to much higher ˜ v . If the orbital
elocity becomes asymptotically flat with increasing separation, we
ould expect the mode of the ̃  v distribution to be significantly higher

n systems with large r sky . The predicted peak shift is in catastrophic
isagreement with the observ ations, which sho w at most only a
odest peak shift. This still leaves open the possibility that WBs

bey MOND with its inevitable EFE, but it falsifies the quantized
nertia proposal (McCulloch & Lucio 2019 ) and repeated claims
o have confirmed that WBs follow the isolated MOND prediction
ithout considering the full ˜ v distribution (Hernandez et al. 2019 ;
ernandez, Cookson & Cort ́es 2022 ). 
In this contribution, we conduct a detailed statistical analysis to

est the MOND prediction for local WBs. We use a rigorous grid
olution to the MOND field equation including the EFE ( BZ18 ) and
hen add possible perturbations from undetected CBs around one or
oth of the stars in each WB. We jointly infer properties of the WB
opulation, the undetected CB population, and the extent of LOS
ontamination, which becomes important towards large r sky and ˜ v .
oth the model used and the exploration of its parameter space are
uch more detailed than in any previous attempt at the WBT. To
itigate possible biases, the plan was prepared in advance (Banik,
ittordis & Sutherland 2021 ) and has barely been modified to deal
ith the actual Gaia DR3 (Gaia Collaboration 2023 ). 
In the following, we explain how we reduce the Gaia data set to

 form suitable for our analysis and what quality cuts we employ
Section 2 ). We then introduce our detailed model for the WB data
et and explain how we compare it to observations (Section 3 ). Our
esults are presented in Section 4 and discussed in Section 5 , which
ncludes a comparison with prior WBT results (Section 5.2 ). We
onclude in Section 6 . 

 T H E  OBSERV ED  W B  DISTRIBU TION  

he primary data set for the WBT comes from the precise results
btained by the Gaia mission (Gaia Collaboration 2016 ). Local WBs
ere extracted from the Gaia data set using the methods described in
ittordis & Sutherland ( 2023 , hereafter PS23 ), who slightly adapted

he methods in an earlier work (section 2 of PS19 ) based on Gaia DR2
Gaia Collaboration 2018 ) due to the impro v ed quality in Gaia Early
ata Release 3 (EDR3; Gaia Collaboration 2021a ). We supplement
NRAS 527, 4573–4615 (2024) 
DR3 with radial velocities (RVs) from the full Gaia DR3 (Gaia
ollaboration 2023 ). 
In Section 2.1 , we describe the basic quality cuts that we impose.
e then conduct a Monte Carlo propagation of the uncertainties

Section 2.3 ). This leads us to impose further quality cuts, which we
riefly summarize in Section 2.4 alongside our choice of restrictions
n the parameter ranges. 

.1 The Gaia DR3 sample and basic quality cuts 

he details of the sample selection are given in PS23 , whose main
oints we summarize below. We begin by selecting all stars from
aia EDR3 at a Galactic latitude | b | > 15 ◦ with an apparent Gaia -
and ( G -band) magnitude m G < 17 and measured parallax 	 >

 mas (estimated distance < 250 pc) uncorrected for parallax bias
Lindegren et al. 2021 ). From this sample of 2.1 million single stars,
andidate WBs are selected by requiring: 

(i) Projected separation r sky ≤ 50 kAU; 
(ii) Star distances consistent with each other within the lesser

f 8 pc or 4 × the combined distance uncertainty, i.e. | d A − d B | ≤
in ( 4 σd , 8 pc ) , where A and B label the stars in each candidate WB;

nd 
(iii) Projected velocity difference between the stars of v sky <

 km s −1 , as inferred from the difference in proper motions but assum-
ng both stars are at the mean estimated distance d̄ ≡ ( d A + d B ) / 2. 

From this preliminary list of binaries (WB-EDR3), sky regions are
emo v ed around four known open clusters (see table 1 of PS23 ). 

To remo v e some probable triple systems or groups, we reject all
Bs in which either star is common to more than one candidate

inary in WB-EDR3. We also search for comoving companion stars
o a fainter limit using a ‘faint star’ sample constructed from Gaia
DR3 stars with m G < 20 and parallax 	 > 10/3 mas. For each star

n each candidate WB, we search for companions in the faint star
ample with the following criteria: 

(i) Parallax distance consistent with the main star at 4 σ ; 
(ii) Angular separation less than 2/3 of the main binary separation

since hierarchical triples are expected to be unstable if the inner
rbit separation � 0 . 4 × the outer separation); 
(iii) Angular separation > 0.5 arcsec to a v oid barely-resolved

ompanions; and 
(iv) Projected velocity difference from the main star ≤5 km s −1 . 

If any such ‘third star’ is found, the candidate binary is rejected.
ote ho we ver that this will not reject triples with an inner orbit closer

han about 100 AU or where the third star is so faint that m G > 20,
o it remains crucial to model the CB population. We return to this
oint in Section 3.2.3 . 
PS23 also applied a per-star quality cut based on the Gaia

arameters (see equation 1 of Arenou et al. 2018 ). WBs were only
onsidered if both stars satisfy 
 

χ2 

ν
≤ 1 . 2 max ( 1 , exp [ −0 . 2 ( m G 

− 19 . 5 ) ] ) , (4) 

χ2 ≡ ast romet ri c chi 2 al , 

ν ≡ ast romet ric n go o d o bs al − 5 . 

his cut is based on Gaia DR2, so it should be fairly conserv ati ve in
aia DR3 given the greater number of observations per star and the

onger time baseline. Throughout this study, any quality cuts applied
t the individual star level are implemented by excluding the whole
B if either of its two stars fails to pass the rele v ant quality cut. 
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Figure 1. The relation between the mass of a star and its absolute G -band 
magnitude (red line). Results are based on the absolute V -band magnitude 
and ( V − I ) colour tabulated in Pecaut & Mamajek ( 2013 ) and the relation 
between ( V − I ) and ( G − V ) colours from the first Johnson-Cousins relation 
in table C2 of Riello et al. ( 2021 ). Our cubic fit to the data [blue line; equation 
( 6 )] is used o v er the mass range between the vertical solid grey lines. Outside 
this range, a linear relation is assumed, as indicated by the solid purple lines. 
The dotted vertical line shows the maximum mass of any star in our WB 

sample. 
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Applying all the abo v e quality cuts yields a sample of 73k candi-
ate WBs. The majority have r sky ≤ 1 kAU, which is not very useful
or the WBT. We therefore publicly release a smaller version of this
ample consisting of 19 786 WBs that satisfy 1 . 5 < r sky / kAU < 40,
hich is somewhat wider than the parameter range we use for the
BT. 
From the Gaia DR3 WBs that pass the abo v e quality cuts, we

estrict ourselves to the range r sky = 2–30 kAU and ˜ v ≤ 5. These
hoices were fixed in advance to limit the possibility of biasing the
esults (Banik, Pittordis & Sutherland 2021 ). The upper limit to ̃  v is
uch larger than can plausibly arise from WB orbital motion. This is

ecessary to properly sample the extended tail to the ̃  v distribution, 
hich we need in order to properly constrain the CB and LOS

ontamination causing the tail. In particular, LOS contamination 
s expected to become more significant at high ̃  v because ̃  v is a 2D
uantity, so we can get much better leverage on the extent of LOS
ontamination if we have data at high ˜ v . Even so, we do not want
o include data at very high ̃  v because the likelihood of systematics
ncreases the wider the ‘aperture’ used for the WBT. 

We could increase the sample size substantially by going down to 
 ven lo wer separations, but then there would be a risk of swamping
he analysis with data on Newtonian systems. In this case, small
mpro v ements to the fit in the Newtonian regime would become

ore important to the statistical analysis than checking whether the 
  distribution differs between systems within their MOND radius 
nd those with larger separations. On the other hand, we need to go
own to rather low r sky to provide a ‘Newtonian anchor’ population 
hat cannot be affected by MOND, especially since the RAR requires 
 fairly smooth MOND interpolating function such that significant 
OND ef fects persist e ven when the accelerations slightly exceed 

 0 (Section 5.3 ). Model parameters besides the gravity law can be
onstrained much better if we have a significant number of WBs
hich cannot be much affected by MOND, since then the parameters 

nferred here will not be degenerate with the gravity law. In particular,
 Newtonian anchor population should be extremely valuable in 
onstraining the CB population parameters − WBs are expected to 
ave similar CB populations regardless of whether their WB orbital 
cceleration is below or abo v e a 0 . Our analysis does not explicitly
onsider some subset of our sample to be completely immune to 
OND (unlike Chae 2023 ), but instead relies on the predicted 
OND effects being different at low and high r sky . We will see later

hat since our sample goes up to M = 4 M 	 and thus has systems
ith MOND radii of up to 14 kAU [equation ( 2 )], we have plenty
f WBs separated by a small fraction of their MOND radius. This is
specially true given the steeply declining r sky distribution of WBs 
 BZ18 , PS19 , PS23 ), which also implies that the 3D separation is
ikely to only slightly exceed r sky [equation ( 8 )]. 

.2 The mass–luminosity relation 

e estimate the mass of each star in our WB sample from its absolute
 -band magnitude M G using a similar technique to PS19 , which we
riefly describe below. We use the M V and ( V − I ) colour at different
tellar masses M as tabulated in Pecaut & Mamajek ( 2013 ). 3 We
elate this to Gaia photometry using the relation between ( V − I ) and
 G − V ) colours from the first Johnson-Cousins relation in table C2
 https:// www.pas.rochester.edu/ ∼emamajek/ EEM dwarf UBVIJHK colors 
eff.txt [3.3.2021] 

r  

i  

u  

i

M

f Riello et al. ( 2021 ), which states that 

( G − V ) = −0 . 01597 − 0 . 02809 ( V − I ) − 0 . 2483 ( V − I ) 2 

+ 0 . 03656 ( V − I ) 3 − 0 . 002939 ( V − I ) 4 . (5) 

We now have a complete set of equations to obtain M G for any M .
o we ver, this is difficult to invert because of small-scale irregularities

n the relation arising from the complexities of stellar astrophysics 
Fig. 1 ). We therefore fit the relation using the cubic 

 G 

= 4 . 887 − 5 . 693 x + 0 . 4164 x 2 + 0 . 9611 x 3 , (6) 

here x ≡ ln M / M 	. Since each unit decrease in M G corresponds to
lightly less than an e-fold increase in luminosity L , equation ( 6 ) tells
s that L 

∝ ∼M 

5 when M = M 	 ( x = 0), representing a steep mass–
uminosity relation. We use our cubic fit o v er the range 0.6 < M G <

1.1. At the low (high) mass end, we assume the relation becomes
inear and has a slope of −3.3 ( −2.9). The fitted relation between
 G and x is shown as the solid blue line, confirming that the abo v e

ubic provides a fairly good fit o v er the range we use it, i.e. between
he vertical solid grey lines. The purple lines outside this range show
hat a linear relation here also provides a reasonably good fit, at least
p to the dotted vertical grey line showing the maximum mass of
ny star in our sample. A cubic is the lowest order polynomial which
eems to provide a good match to the tabulated data in Pecaut &
amajek ( 2013 ), mainly because the slope is similar at low and high
asses but there is a steepening at intermediate masses. 
We invert our piece-wise analytic relation between ln M / M 	 and
 G to obtain the mass of any star from its M G , which we obtain from

ts apparent magnitude using its trigonometric parallax. The linear 
elations assumed at very low and very high masses can be readily
n verted. We in vert our cubic fit over most of the mass and M G range
sing the Newton–Raphson method. To speed this up, we obtain an
nitial guess for the mass using a linear fit of the form 

 G 

≈ 5 . 023 − 5 . 102 x . (7) 
MNRAS 527, 4573–4615 (2024) 
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4 We combine the RV measurements when these are known for both stars 
because the typical RV uncertainty is around 1 km s −1 , which is much more 
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understood as due to random errors rather than intrinsic WB orbital motion. 
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his can be inverted analytically without iterative techniques. Our
stimate that − d ln M 

dM G 
= 0 . 20 is similar to previous estimates of

.074ln 10 = 0.17 (equation 3 of PS23 ) and 0.0725ln 10 = 0.17
equation 3 of PS19 ). 

We consider uncertainties in M G arising from those in the
rigonometric parallax and the Gaia photometric uncertainty in the
pparent magnitude, which we convert from a fractional uncertainty
o a magnitude uncertainty. We also allow a small uncertainty in
he conversion of luminosity to mass. This must play some role,
ut the ≈ 42 per cent asymptotic enhancement to the radial gravity
redicted in MOND combined with our estimate that dM G 

d ln M 

= −5 . 1
equation ( 7 )] implies that the MOND signal corresponds to a
ifference in M G of about 5.1ln 1.4 = 1.7 mag, which is very large
ompared to the slight fluctuations about our cubic mass-luminosity
elation evident in Fig. 1 . In other words, the steep mass-luminosity
elation implies that mass uncertainties should have a very small
mpact compared to uncertainties in the relative velocity arising from
ncertain proper motions, especially when the key quantity entering
 

 is essentially the relative proper motion between the two stars
n each WB. The mass of a star with known absolute magnitude
an be constrained to within ≈ 6 per cent (Eker et al. 2015 ; Mann
t al. 2015 ), but due to the square root term in equation ( 3 ), this
ould have only a 3 per cent impact on ˜ v . The impact on the
BT is further reduced because it is mostly concerned with the
idth of the ̃  v distribution, which is only affected at second order by
easurement uncertainties. Even so, we do assign a modest 0.024

ex or 5.5 per cent uncertainty to our stellar mass estimates at fixed
uminosity for reasons discussed in Section 2.3.3 . We will see later
hat our main conclusion is the same as a different study which used
 linear relation between M G and x o v er the full mass range rele v ant
or the WBT, thus leading to rather different errors in the conversion
f absolute magnitudes to masses ( PS23 ). 

.3 Monte Carlo error propagation 

e use the full 5 × 5 Gaia covariance matrix to propagate
ncertainties in the sky position, parallax, and proper motion of
ach star in our WB sample into an uncertainty in ˜ v . We will see
ater that this uncertainty is very small for a large number of WBs,
o our approach is to consider only those systems and obtain their
r sky , ̃  v 

)
directly from the raw observables. The resulting 

(
r sky , ̃  v 

)
istribution is then used in our main analysis, which therefore does
ot directly include measurement uncertainties − these are included
ndirectly in the sample selection. Our procedure a v oids adding mea-
urement errors to values that already contain measurement errors,
s that would lead to adding measurement errors twice to the latent
alues. 

For our Monte Carlo error propagation, we diagonalize the corre-
ation matrix and generate Gaussian random numbers to propagate
ncertainties along each of the eigenvector directions, bearing in
ind also the eigenvalues. The correlation matrix is dimensionless,

o we relate it to the covariance matrix using the Gaia catalogue
ncertainty of each parameter. Uncertainties in the parallax and
roper motion are important, but we do not propagate the uncertainty
n the sky position of each star at the reference epoch, instead taking
he published position at face value. This simplifies our analysis
reatly because it enables us to work with a fixed definition of the
ky plane for each WB, which we take to be the plane whose normal
ector is the angular bisector of the directions toward each of the
tars in the WB. Since the sky positions of the stars in our WB
atalogue are expected to be particularly precise, there should be
egligible uncertainty associated with this definition. Apart from this
NRAS 527, 4573–4615 (2024) 
inor change, we follow the same method as that described in Banik
 2019 ) using mock parallax and proper motion data which samples
he Gaia error distribution as described abo v e. We assume that the
rojected separation of each WB has only a negligible uncertainty,
o we obtain r sky from the raw data. 

.3.1 The systemic RV 

ompared to the detailed plan we set up earlier (Banik, Pittordis
 Sutherland 2021 ), a major simplification has become possible
ith regards to the systemic RV of each WB because we can
enerally obtain this directly from Gaia DR3 (Gaia Collaboration
023 ) without having to guess it from the proper motion and distance
o the Galactic disc plane. The RV of each star enters the calculation
f v sky through perspecti ve ef fects (Shaya & Olling 2011 ; Banik
019 ; El-Badry 2019 ) − a receding WB with no internal motion
ill have a shrinking apparent separation on the sky. The impact is

uppressed by the angular separation of the WB on our sky plane, but
he systemic RV still cannot be completely neglected: for a WB with
 sky = 10 kAU, a typical systemic RV of 20 km s −1 translates into
n apparent proper motion of 10 m s −1 at a heliocentric distance of
00 pc. Since the Newtonian v c of two Sun-like stars with a 10 kAU
eparation is 420 m s −1 , the impact on ̃  v would be � 0 . 03 depending
n the geometry. While this is small, we opt to try and include the
mpact of recessional motion because WBs can be even closer and/or
ave a larger RV. 
We can see from the abo v e that the at most km s −1 level difference

n RV between the stars in each WB would have only a negligible
mpact on ˜ v . This is because relative motions along the LOS and
ithin the sky plane should be comparable, but the impact of the

ormer are suppressed by the angular WB separation on the sky.
onsequently, we limit ourselves to including only the systemic RV
f each WB. We find the systemic RV by taking an inverse variance
eighted mean of each star’s RV when this is available for both stars,

eading to an uncertainty smaller than either star’s RV uncertainty. 4 

f the RV is only available for one star, we adopt this as the systemic
alue. We then assign both stars a recessional velocity equal to the
ystemic RV, errors in which are propagated as part of the Monte
arlo error propagation. 

.3.2 Reducing uncertainty in the relative distance 

nother source of perspective effects (discussed further in Shaya &
lling 2011 ) is the difference in heliocentric distances to the stars in

ach WB. The relative LOS separation is important because proper
otions must be multiplied by distances to convert them from angular

o physical velocities. The Gaia parallaxes typically do not provide
ery tight constraints on the LOS separation: while the astrometry is
pectacular by historical standards, trigonometric distances to stars
00 pc away are not accurate at the kAU level (the typical uncertainty
s about 80 kAU; see section 6.2 of BZ18 ). Using the same arguments
s in Section 2.3.1 , a system with a tangential motion of 20 km s −1 

ut whose LOS separation is uncertain by 80 kAU would have an
lmost 80 m s −1 uncertainty in v sky . This translates to an uncertainty
n ˜ v of up to 0.2 depending on the geometry, which could hamper
he WBT. 
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We intuitively expect that a WB’s 3D separation is not much larger
han its r sky , as suggested by the referee to Banik ( 2019 ). We exploit
his insight using the technique discussed in its section 2.3, which 
e briefly summarize here. The mean of the heliocentric distances 

o the two stars is taken to be the inverse variance weighted mean
f the parallax distances to each of the stars in the WB, causing the
ean distance to vary slightly between trials and thereby affect the 

istance modulus. Assuming a power-law prior on the 3D separation 
 of the form P ( r ) ∝ r −1.6 (L ́epine & Bongiorno 2007 ; Andrews,
hanam ́e & Ag ̈ueros 2017 ; El-Badry & Rix 2018 ), we obtain a
osterior inference on the ratio x ≡ r / r sky . Following equation 18 of
anik ( 2019 ), we obtain that 

 ( x ) ∝ 

x −2 . 6 

√ 

x 2 − 1 
, x ≥ 1 . (8) 

s part of the Monte Carlo error propagation, we then randomly 
ample this distribution to obtain the separation of each WB along 
he LOS. We then push one of the stars away from us and bring
he other star towards us by half this amount, with the displacement
f each star being purely along its sky direction at the reference
poch. We use a random coin toss in each Monte Carlo trial to
ecide which star is to be pushed away from us. The revised distance
o each star alters its estimated absolute magnitude and thus its

ass. 
This technique drastically reduces the uncertainty on the relative 

OS distance in systems with a very low r sky (compare the black
nd blue points in fig. 3 of Banik 2019 ). One disadvantage is that
t implicitly assumes that the WB is genuine, so our results are less
obust against LOS contamination. Ho we ver, we mitigate this in our
tatistical analysis by including an allowance for LOS contamination 
Section 3.3 ). 

Our approach is similar to that used in Nelson et al. ( 2021 ), though
hey used a prior of r −1.5 instead of r −1.6 . A more important difference
s that those authors were only interested in the 3D separation 
etween the stars, whereas we need to find the heliocentric velocity of 
ach star, which requires knowledge of the individual LOS distances. 
his causes our calculated ˜ v parameter to depend on which star is
loser to us. Since we do not have this information, we use Monte
arlo trials to quantify the resulting uncertainty. We stress that in 
ur main analysis, the adopted value of ̃  v is based on assigning the
ame LOS distance to both stars. The purpose of our deprojection is
o quantify the uncertainty and combine this with other sources of
ncertainty so that we can remo v e systems with insufficiently precise
  . 
The technique discussed abo v e assigns the relative LOS distance 

 value of zero and a non-Gaussian uncertainty of ≈r sky . This would
nly reduce the uncertainties if the parallaxes were not accurate 
nough to directly constrain the relative distance. Thus, we only 
pply the abo v e technique if r sky is smaller than the uncertainty in
he relative LOS distance given by the Gaia trigonometric parallaxes. 

hile we generally expect this to be the case, we do not enforce
t. The 3D geometry of nearby WBs may well be clear from
xisting Gaia data, with the definition of ‘nearby’ extending to larger 
istances as the data impro v es. Our approach is thus to use whichever
ethod is expected to be more accurate. Note that if Gaia parallaxes

re used directly, then the relative distance along the LOS may have
 non-zero mean value when averaged across different Monte Carlo 
rials as these would propagate uncertainties in each parallax. In this
ase, the nominal values adopted for our main analysis do not rely
n the deprojection algorithm outlined abo v e because each star is
ssigned its observed parallax distance. 
.3.3 Improved mass estimates 

t is possible to slightly impro v e the accuracy of our mass estimates
y using the Final Luminosity, Age and Mass Estimator (FLAME; 
ichon 2007 ) work package in Gaia DR3. Masses obtained in this
ay are not available for all stars, but when they are available,

hey should be much more precise because they involve a detailed
nalysis of the spectrum. Fig. 3 of Hernandez ( 2023 ) shows that
LAME masses can differ by ≈ 0 . 05 M 	 from estimates using
 linear relation between absolute magnitude and the logarithmic 
ass. Unfortunately, restricting to only WBs where both stars have a
LAME mass would reduce the sample size too much for the WBT

o be feasible. We therefore apply a small correction to the masses
stimated using our cubic fit to the Pecaut & Mamajek ( 2013 ) mass-
uminosity relation [equation ( 6 )]. Denoting these masses by M PM 

nd the revised masses with the FLAME calibration as M F , a good
t is given by 

 F = M PM 

− 0 . 07 tanh 

(
M PM 

− 0 . 75 M 	
0 . 16 M 	

)
f , (9) 

f = 

⎧ ⎪ ⎪ ⎨ ⎪ ⎪ ⎩ 

exp 
(

2 − M 	
M PM 

)
, if M PM 

≤ 0 . 5 M 	 , 

1 , if 0 . 5 M 	 ≤ M PM 

≤ 0 . 75 M 	 , 

exp 
(

0 . 75 M 	−M PM 

2 M 	

)
, if M PM 

≥ 0 . 75 M 	 . 

he adjustment is tapered using the factor f so it rapidly decays
or stars with mass M < 0 . 5 M 	 as there are no FLAME masses
elow this, so we assume that M PM 

becomes very reliable at the low-
ass end. We will see later that our results are not much affected

y restricting our WB sample to systems where both stars have
 > 0 . 5 M 	, which has the advantage that FLAME results can serve

s a calibration. M PM 

and FLAME masses gradually converge when 
 � 0 . 75 M 	. 
Our small adjustment to M PM 

is designed to eliminate a small
ystematic discrepancy with the FLAME mass in the stars for which
he latter is available. Even so, our calculated M F does not exactly
oincide with the FLAME mass. Based on the typical difference 
etween the two mass estimates and assuming that the FLAME 

asses are very accurate, we assign our estimated masses a random
aussian uncertainty of 0.024 dex or 5.5 per cent at fixed absolute
agnitude. A 5.5 per cent uncertainty is in line with the fact that
asses estimated directly from luminosities were expected to have a 
 per cent uncertainty (Eker et al. 2015 ; Mann et al. 2015 ), as argued
n section 6.3 of BZ18 . Note that our mass estimates also include
ncertainty in the absolute magnitude due to that in the apparent
agnitude and the trigonometric parallax. 

.4 Refined quality cuts for the WBT 

he quality cuts discussed in Section 2.1 provide a reasonably 
arefully prepared sample of WBs that can be used in further
nalyses. Unfortunately, some of these WBs are unsuitable for our 
ighly precise analysis. The additional quality cuts in this work 
eyond those mentioned there are to exclude: 

(i) Stars in sky directions with a high total Galactic extinction 
owards an extragalactic source (Section 2.4.1 ); 

(ii) Stars which are substantially below the main sequence on 
 colour–luminosity diagram, which can make the mass estimate 
naccurate (Section 2.4.2 ); 

(iii) Stars which sometimes appear as multiple peaks in the 
aia images, suggesting the presence of a CB companion that can

ometimes be resolved (Section 2.4.3 ); 
MNRAS 527, 4573–4615 (2024) 



4580 I. Banik et al. 

M

 

 

m
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Figure 2. The colour–magnitude diagram of our sample just prior to 
removing 66 WBs where one star is below the solid blue line, which is 
designed to remo v e the white dwarfs evident at the lower left. The two dashed 
gre y lines hav e an offset corresponding to a factor of two in luminosity. The 
lower line passes through the main sequence, while the upper line passes 
through the secondary track evident at higher luminosity. We attribute this 
double main sequence to unresolved binaries where the stars have an exactly 
equal mass (Appendix A ). 
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(iv) WBs where the RV is unknown for both stars (Section 2.4.4 );
(v) WBs where the RV is known for both stars and there is a
ismatch at > 3 σ confidence (Section 2.4.5 ); and 
(vi) WBs whose ̃  v is too uncertain (Section 2.4.6 ). 

We also restrict ourselves to WBs with 2 < r sky / kAU < 30 and
  < 5 for reasons discussed earlier. To reduce the computational cost,
e only consider WBs with a total mass of 0 . 464 − 4 . 31 M 	. These

uts are now described further. 

.4.1 Dust extinction 

s discussed in Section 2.2 , our estimated mass for each star
elies entirely on its absolute G -band magnitude, which in turn is
nferred from its apparent magnitude and trigonometric parallax. The
ifference between apparent and absolute magnitudes is assumed to
rise purely from the distance modulus, which implicitly assumes
e gligible dust e xtinction. This should be a good assumption for
tars within 250 pc and > 15 ◦ from the Galactic disc, especially as
nown star clusters are excluded (table 1 of PS23 ). Even so, we can
urther reduce the impact of dust by considering only WBs where
oth stars have a V -band extinction A V < 0.5 based on the dust maps of
chlegel, Finkbeiner & Davis ( 1998 ), which reduces our sample size
y 8.5 per cent. We note that their published values refer to the total
alactic extinction along the LOS towards an extragalactic source.
ince the WBs in our sample are all within 250 pc, the extinction

owards any of the stars in our sample should be far smaller, making
ur cut on A V quite conserv ati ve. 

.4.2 Colour–ma gnitude dia gram 

ur mass estimates also rely on a mass-luminosity relation designed
or main sequence stars (Pecaut & Mamajek 2013 ). To check if this
s a good assumption, we use Fig. 2 to plot the relation between
he absolute G -band magnitude and the colour, which we define as
he difference in apparent magnitude between the Gaia blue and red
assbands. As expected, the vast majority of the stars in our sample
re on the main sequence. Ho we ver, a small number of stars are
ery far below the main sequence − these are probably white dwarfs
WDs). We remo v e these by excluding stars below the solid blue
ine, which achieves a good separation between the main sequence
nd the WD track. Only a very small number of WDs are remo v ed by
his cut and these are all well separated from the main sequence, so
ny remaining WDs should have a negligible impact on our results. 

An interesting feature of our main WB sample’s colour–magnitude
iagram is a concentration of stars parallel to but brighter than the
ain sequence (Fig. 2 ). This ‘double main sequence’ is caused

y unresolved CBs where both stars have an exactly equal mass,
s demonstrated by the parallel dashed grey lines with an offset
orresponding to a factor of two in luminosity. We do not exclude
tars belonging to this double main sequence because our analysis
lready accounts for it (Appendix A ). 

A major complication to the WBT is the presence of undetected
B companions (Section 1 ). We follow a ‘mitigate + simulate’

trategy to minimize the uncertainties introduced by CBs. This
ntails reducing the presence of CB companions and modelling the
istribution of those that remain. Since we do not aim to have a
ample that is completely free of stars with a CB companion, we
enefit from a much larger sample size than the study of Hernandez
 2023 ). We discuss below how we attempt to reduce the proportion
f contaminated WBs. Details of our CB model will be presented
ater (Section 3.2 ). 
NRAS 527, 4573–4615 (2024) 
.4.3 Multiple peaks in Gaia ima g es 

f there is a clearly detected CB companion to a star in a WB and
t is reasonably likely that the third star is bound to the WB, then
he system is excluded from our analysis (Section 2.1 ). Ho we ver,
Bs which are fainter and/or on a tighter orbit might not be clearly

esolved. The contaminated star might then appear resolved into
wo sources in only some Gaia focal plane transits. We exploit this
y using the parameter ip d f rac multi p eak in the Gaia DR3
atalogue (see also section 5 of El-Badry, Rix & Heintz 2021 ). This
s the percentage of successful focal plane transits in which a source
s detected as multiple peaks in the image. A genuinely isolated star
ould ideally give ip d f rac multi p eak = 0, but since it might

puriously show up as multiple peaks in the Gaia images due to
ssues like cosmic ray hits, we allow ip d f rac multi p eak ≤ 2 (a
hreshold of 2 was also used in Pace, Erkal & Li 2022 ). We reject
ny star that is detected as multiple peaks more frequently. 

Fig. 3 shows the distribution of ip d f rac multi p eak for the
Bs in our sample prior to imposing this quality cut, with the

igher v alue sho wn for the two stars in each WB. It is apparent
hat our quality cut does not reduce the sample size very much. At
he same time, it seems unlikely that a star really has a marginally
etected companion if it appears to be isolated 98 per cent of the
ime. Ho we ver, if a star frequently appears as multiple peaks in the
aia images, then we might reasonably suspect it to be part of a CB.

.4.4 Having a systemic RV 

ven though we are implementing a 2D version of the WBT using
nly motions within the sky plane, the systemic RV of each WB
oes still enter into our analysis, albeit scaled down substantially by
he angular separation of the WB (Section 2.3.1 ). For our technique
o work, we are forced to reject WBs where the RV is unknown for
oth stars, which loses roughly 1/3 of our sample. We accept systems
here the RV is known for only one star because the systemic RV is
ot needed very precisely and the RVs of the stars in a WB would
iffer by at most a few km s −1 , especially for the more widely
eparated systems where perspecti ve ef fects are more important.
equiring both stars to have a measured RV reduces the sample
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Figure 3. Distribution of the Gaia DR3 parameter ip d f rac multi p eak 

for the WBs in our sample prior to imposing the quality cut related to this 
parameter. For each WB, we take the star with the higher value. Although 
ip d f rac multi p eak can be as high as 100, it is typically 0, as expected 
for a single source. 
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Figure 4. The frequency distribution of the ̃  v uncertainty as estimated from 

Monte Carlo error propagation of the 5 × 5 Gaia DR3 covariance matrix 
(Section 2.3 ). Different curves show results for different ranges of ˜ v , as 
indicated in the legend. We only consider WBs whose ˜ v uncertainty is at 
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(
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)
, truncating each error distribution at the right. The 

truncation at the left is caused by the 0.024 dex mass uncertainty at fixed M G 

imposing a minimum fractional uncertainty in ̃  v . 

t  

t  

s
 

r  

m  

u  

m  

a  

v  

p  

ṽ
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ize from 8611 to 5504, but the proportion of systems with ̃  v > 2 . 5
which is a rough proxy for the level of contamination) only drops
rom 10.2 per cent to 9.5 per cent. 

.4.5 Similar RVs when both are available 

hile we do not require both stars in a WB to have a known RV, this
s often the case. When available, we use this information to reject

Bs whose two stars have RVs that differ from each other by more
han triple the quadrature sum of the RV uncertainties or triple the
e wtonian v c , whiche ver is larger. 5 This reduces the sample size by
.5 per cent (we lose 308 WBs out of 8919 without this cut). Since
lmost 2/3 of the systems in our WB sample have a reported RV for
oth stars, the fact that only a small proportion of WBs consist of
tars with discrepant RVs suggests that our selected WBs are mostly
enuine. The use of systemic RVs constrained to km s −1 precision 
y Gaia spectroscopy substantially reduces the scope for perspective 
ffects to alter the results obtained in this contribution. 

.4.6 The ̃  v uncertainty 

he abo v e quality cuts are designed to reduce systematic uncertain-
ies in the WB parameters. These also have random uncertainties, 
hich we need to quantify. As discussed in Section 2.3 , we use
onte Carlo error propagation to obtain the uncertainty in the all- 

mportant ̃  v using 2 12 trials. We find that the uncertainty is very small
or a large proportion of the WBs in our sample (as expected from
 simpler analysis of Gaia DR2 results; Banik 2019 ). We therefore
pply a quality cut such that 

rror in ˜ v ≤ 0 . 1 max 

(
1 , ̃

 v 

2 

)
. (10) 

e found that this achieves a good balance between the quality and
uantity of data. The uncertainty is allowed to be somewhat larger 
t higher ˜ v because we use wider bins in ˜ v here when comparing 
 Even if we had perfect data, the RVs of the stars in a WB could still differ 
y order their Newtonian v c . 

t  

M  

s  

i

o theory (Section 3.5 ). Moreo v er, such systems are less crucial for
he WBT as they are not part of the main peak at ˜ v � 2, implying
ignificant contamination from some source. 

The distribution of ̃  v uncertainties is shown in Fig. 4 for different ̃v 
anges of our WB sample. As the WBT is mostly concerned with the
ain peak to the ̃  v distribution at ̃  v � 2, our cut implies a maximum ̃v 

ncertainty of only 0.1 in the most crucial parameter range. Since the
ode of the main peak is at ̃  v ≈ 0 . 5, measurement uncertainties that

dd an extra 0.1 in quadrature would only boost the root mean square
alue by about 2 per cent, which is negligible in comparison to the
redicted MOND enhancement of 20 per cent. Moreo v er, the typical
  uncertainty for such systems is much smaller than the maximum 

ermitted by our selection. Indeed, PS19 found the ˜ v distribution 
n Gaia DR2 changed little when restricting to systems where the
ncertainty is below 0.25 (compare their figs 12 and 13). We therefore
eglect ˜ v uncertainties in the rest of our analysis, bearing in mind
hat our WB sample has already been chosen to have an accurate ̃  v . 

We need to integrate WB orbits for a range of masses co v ering
he mass range of our sample. This is because larger mass systems
ave a larger MOND radius [equation ( 2 )], reducing the impact of
OND at fixed separation ( BZ18 ). To limit the computational cost,
e restrict our analysis to WBs with a total mass of 0 . 464 − 4 . 31 M 	.
his reduces our sample size very slightly. Including the remaining 
Bs would require a considerable broadening of the mass range 

o v ered by our WB orbit library or a substantial worsening of its
ass resolution, but there would be very little gain in sample size.

t would also leave our results more vulnerable to systematic issues
ith very low or very high mass stars. 

.5 The WB sample 

fter applying the quality cuts described so far, we are left with a
nal sample of 8611 WBs. Their mass distribution is shown in Fig. 5 ,
ith blue bars showing individual stars and red bars showing binary

otal masses. The latter are more rele v ant physically, so we will use
 to mean the binary total mass and M � to denote the mass of a single

tar − unless it is clear that the discussion refers to stars considered
ndividually. 
MNRAS 527, 4573–4615 (2024) 
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M

Figure 5. The mass distribution of all the stars in our WB sample (blue bars). 
The red bars show the distribution of the total mass of each binary. The outer 
edges of the outermost bins show the range of the data. 

Figure 6. The number of WBs in different pixels of 
(
r sky , ̃  v 

)
. Results are 

shown binned according to our pixellation scheme, which was fixed prior 
to any detailed analysis (the pixel widths increase gradually towards higher 
values). The comparison with theory is based on the likelihood of matching 
the number counts shown here, which we find by multiplying together the 
binomial likelihood for each pixel (Section 3.5 ). Notice the lack of WBs at 
˜ v ≈ 2 for the highest r sky (empty pixels are shown in white). We interpret 
this as due to dilution of the CB contamination o v er a wide ̃  v range due to the 
lo w Ne wtonian v c of the WB. There is also little LOS contamination here: it 
only becomes important when r sky and ̃  v are both large (Section 3.3 ). 
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As with previous detailed investigations into the WBT ( PS19 ,
S23 ), we perform it by decomposing the data into pixels in the
pace of r sky and ˜ v (Fig. 6 ). It is clear that there are many more
ystems at low r sky than at high r sky , in line with earlier results
e.g. Andrews, Chanam ́e & Ag ̈ueros 2017 ). The main peak to the
  distribution is quite prominent, with the mode located at ̃  v ≈ 0 . 5.
here is also an extended tail going out to much larger ˜ v , which
as previously reported ( PS19 ) and attributed to undetected CBs

Belokurov et al. 2020 ; Clarke 2020 ). Interestingly, a gap appears in
he distribution at ˜ v ≈ 2, but only at high r sky . We attribute this to
he minimum in the ̃  v distribution at ̃  v ≈ 1 . 5, which is evident also
t lower r sky . This minimum is caused by WBs having a sharp peak
o their ˜ v distribution at ˜ v ≈ 0 . 5 followed by a rapid decline as a
onsequence of orbital mechanics and projection effects (e.g. BZ18 ,
S19 ). There is an extended tail due to CB contamination, but this too
NRAS 527, 4573–4615 (2024) 
ould generally lead to a declining ̃  v distribution because a slower
B orbital velocity corresponds to a wider CB separation, which is

ess likely (a more detailed explanation is given in Banik, Pittordis &
utherland 2021 ). Ho we v er, we e xpect an increasing contribution
rom chance alignments at larger ˜ v because their distribution is
xpected to be linear in ˜ v [see equation ( 27 )]. The minimum in
he ̃  v distribution is not very apparent at r sky � 5 kAU, where WBs
re very common and chance alignments are relatively unimportant.
he minimum becomes readily apparent at larger r sky where WBs are
uite rare, increasing the relative contribution of chance alignments
ecause they should have a flat distribution with respect to r sky 

equation ( 27 )]. The fact that WBs are much less common at high
 sky naturally leads to empty pixels around the minimum of the ṽ 
istribution, with the ̃  v range co v ered by these empty pixels expected
o gradually widen with increasing r sky . 

It is clear that we need a detailed model including CB and LOS
ontamination if we are to infer the law of gravity at low accelerations
nd search for the predicted MOND signal. This is the subject of the
ext section. 

 M O D E L L I N G  T H E  W B  DATA  SET  

he 
(
r sky , ̃  v 

)
distribution of our WB sample is a consequence of

everal simultaneously occurring physical processes and projection
ffects, which we try to model in this section to best reproduce Fig. 6 .
n addition to WB orbital motion (Section 3.1 ), we also consider how
n undetected CB population affects the observables (Section 3.2 )
nd take into account the possibility of some LOS contamination
Section 3.3 ). This might be field stars, but it could also be from stars
hat formed in the same star cluster. Given the results of PS19 and
he excellent quality of Gaia DR3, we expect LOS contamination to
nly slightly affect our WB sample and to become important only at
arge separation and ̃  v . 

LOS contamination can be included in our model fairly easily.
oreo v er, detailed WB orbit modelling has previously been con-

ucted in Newtonian and Milgromian gravity in a manner that can
eadily be repurposed for the WBT ( BZ18 ). As a result, the main
omplication that we need to handle is the possibility of an undetected
B companion around 0, 1, or 2 of the stars in a WB. Since recoil
otion and additional mass created by an undetected CB physically

ffect the WB rather than merely contribute an extra population
o the statistics, including CB contamination greatly increases the
omplexity and computational cost of the WBT. We were eventually
ble to devise a detailed plan that captures the essential physics
n a computationally feasible way (Banik, Pittordis & Sutherland
021 ). We refer the reader to that work for a more detailed look
t the computational techniques needed to implement the WBT in
 reasonable timeframe. This allows us to prepare the first detailed
odel of the WB population whose parameter space is thoroughly

xplored using standard statistical techniques. 

.1 The WB population 

e set up a library of WB orbits using the prior work of BZ18 with
inimal adjustments, which we briefly describe. We need to run

alculations o v er a wider mass range in order to co v er the range of
B masses in our sample (red bars in Fig. 5 ). We also found that

he computational cost of including CB contamination can be greatly
educed if instead of recording results with respect to the projected
eparation r sky , we use 

 

 sky ≡ r sky 

a 
, (11) 
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here a is the semi-major axis of the WB (this is moti v ated in
ection 3.2.3 ). An incidental benefit of this approach is that at low
 , recording probabilities into different bins in ̃  r sky rather than r sky 

mpro v es the resolution in r sky . Since we record results separately
or different a and only marginalize o v er a at a much later stage, we
an reco v er r sky ≡ a ̃  r sky as and when needed, which is necessary for
 comparison with observations because a is generally not known. 

In MOND, the Galactic EFE plays a crucial role ( BZ18 ). This can
e estimated as g e = v 2 c, 	/R 0 , where R 0 is the Galactocentric distance
f the Sun and v c , 	 is the Galactic rotation curve amplitude at the
olar circle (sometimes called the Local Standard of Rest or LSR).
s in section 3.6 of BZ18 , we assume that v c , 	 = 232.8 km s −1 and
 0 = 8.2 kpc (McMillan 2017 ), which implies that g e = 1 . 785 a 0 .
ubsequent studies show that R 0 must be very close to 8.2 kpc based
n combining astrometry and spectroscopy of the star S2 near the 
alactic centre black hole (Gravity Collaboration 2019 ). Since its 
roper motion is precisely known (Reid & Brunthaler 2004 ; Gordon, 
e Witt & Jacobs 2023 ), the Galactocentric tangential velocity of the
un now has very little uncertainty, constraining the LSR velocity 

o very close to 233 km s −1 (McGaugh 2018 ; Zhou et al. 2023 ) if
he non-circular motion of the Sun is taken to be precisely known
rom Sch ̈onrich, Binney & Dehnen ( 2010 ). The latter is somewhat
ore uncertain than the other parameters entering into the LSR 

elocity (Sch ̈onrich 2012 ; Francis & Anderson 2014 ; Bovy et al.
015 ), but it is still clear that v c , 	 is very unlikely to differ from
ur assumed value by more than 10 km s −1 , which implies that
ncertainty in v c , 	 has little effect on the predicted MOND signal 
n local WBs (Section 5.3 ). Moreo v er, g e has recently been directly
etermined by the measurement of the Solar System’s acceleration 
elative to distant quasars (Gaia Collaboration 2021b ). Their work 
isco v ered the changing aberration angle of distant quasars due to
he changing velocity of the Solar System barycentre. Its directly 

easured acceleration points directly towards the Galactic centre 
ithin a small uncertainty (see their fig. 10) and has a magnitude of
 e = 1 . 94 ± 0 . 13 a 0 . Since gravitational fields from objects beyond
he Galaxy are thought to be negligible in comparison to the Galactic
ravitational field, this provides a completely independent and very 
irect confirmation of the kinematic estimate of g e used in BZ18 and 
n this contribution. 

.1.1 Orbit modelling 

Bs are bound together by their mutual gravity. This is easy to
alculate in the Newtonian case but is somewhat more complicated 
n MOND, as discussed next. Our calculation of the Milgromian 
ravitational field and integration of WB orbits in this field use the
ame approach as BZ18 , to which we refer the reader for further
etails. 
In an isolated spherically symmetric mass distribution, the asymp- 

otic MOND behaviour is given by equation ( 1 ). To interpolate
etween the Newtonian and deep-MOND regimes, we have to use 
n interpolating function ν with argument g 

N 
such that g = νg 

N 
. In

he quasilinear formulation of MOND (QUMOND; Milgrom 2010 ), 
his can be generalized to a more complicated geometry by taking 
he divergence of both sides. 

 · g = ∇ · (νg 
N 

)
. (12) 

n this contribution, we adopt the simple interpolating function 
F amae y & Binne y 2005 ) for reasons discussed in section 7.1 of
Z18 . 

= 

1 

2 
+ 

√ 

1 

4 
+ 

a 0 

g 
N 

. (13) 

he WBT depends significantly on the adopted interpolating function 
ecause local WBs have an intermediate total acceleration. Using a 
ery sharp transition can cause WBs to be completely Newtonian 
ven if MOND is correct. However, this would not be consistent
ith the RAR (we discuss this further in Section 5.3 ). 
Since local WBs are significantly affected by the Galactic EFE, 

e need to include the Galactic g e . This is assumed to point directly
owards the Galactic centre and to have a magnitude of 1 . 785 a 0 based
n the Galactic rotation curve, as discussed abo v e. In QUMOND,
e need the Ne wtonian-equi v alent external field g 

N,e 
, which is what

he Galactic gravity on the Solar neighbourhood would have been 
n Newtonian gravity without DM. As discussed in section 9.3.1 of
Z18 , we can use the spherically symmetric relation between g e and

g 
N,e 

because the Sun is many disc scale lengths from the Galactic
entre, reducing the importance of the Galaxy’s disc geometry. 

g e ν ( g e ) = g 
N,e 

. (14) 

olving this implicitly gives g 
N,e 

= 1 . 144 a 0 in the Solar neighbour-
ood. The Newtonian gravity in a WB is then found by adding g 

N,e 

o the contribution from the WB itself, which is called g 
N,i 

in some
orks as it is internal to the WB. 
To limit the computational cost, we treat each WB as a test

article orbiting a point mass containing the binary total mass M .
his approach is valid in Newtonian gra vity, b ut it was shown in
ection 7.3 of BZ18 that it remains a very good approximation in
OND. This is because the fairly strong Galactic EFE causes local
Bs to lack an extended regime in which they are isolated and at

ow accelerations. For all intents and purposes, WBs are either in
he Newtonian regime or they are dominated by the EFE. In either
ase, MOND becomes linear in the mass distribution, allowing the 
otentials of the two stars to be superposed. 
With this approximation, the problem becomes axisymmetric 

bout g e . We then solve equation ( 12 ) using the ‘ring library’ protocol
iscussed in BZ18 . This involves finding the source term ∇ · (νg 

N 

)
t every point in a 2D grid and then using direct summation to find

g . The calculations are accelerated at off-axis locations by scaling 
he previously calculated Newtonian gravity of a unit mass and 
nit radius ring, a v oiding the need to sum contributions to g from
ifferent positions around each ring. An analytic allowance is made 
or ∇ · (νg 

N 

)
being non-zero outside the rather large region used 

n the integration (the extra contribution to the potential is given in
quation 9 of BZ18 ; see their appendix A for a deri v ation). 

The Milgromian potential of a point mass is not spherically 
ymmetric in the presence of the EFE (Milgrom 1986a , 2010 ; Banik
 Zhao 2018a ). This has some interesting consequences (Candlish 

t al. 2018 ; Thomas et al. 2018 ; Banik & Kroupa 2019b ; Banik
t al. 2020 ; Kroupa et al. 2022 ). Since the WB separation r is
xpected to sample a range of directions relative to the EFE, the

BT is mostly sensitive to the angle-averaged inward radial gravity, 
hich we denote 〈 g r 〉 . Since the use of ̃  v rather than actual velocities

f fecti vely di vides out the Ne wtonian prediction g 
N 

, the WBT is
eally about the parameter 

≡ 〈 g r 〉 
g 

, (15) 
MNRAS 527, 4573–4615 (2024) 
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Figure 7. The azimuthally averaged boost factor η to the radially inward 
gravity compared to the Newtonian expectation for WBs with different 
separation relative to their MOND radius, assuming the simple interpolating 
function [equation ( 13 )]. The solid red (blue) horizontal line shows the 
asymptotic analytic expectation in Q UMOND (AQ UAL), which we give 
in equation ( 37 ) [equation ( 38 )]. The numerical QUMOND result central to 
our study (solid black line; BZ18 ) has the expected asymptotic behaviour. The 
dashed blue line shows equation 15 of Chae & Milgrom ( 2022 ), which has 
the wrong asymptotic limit (mismatch between blue lines towards the right) 
and is based on numerical calculations that only deal with a weak external 
field rather than a dominant one (see the text). The red histogram shows the 
distribution of r sky /r M for the WBs in our sample. The outer edges of the 
most extreme bins show the full range of the data set. 
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hose square root is probed by velocity measurements. We use Fig.
 to show η as a function of r/r 

M 
(solid black line). 6 There is no

oost to the Newtonian expectation when r � r 
M 

, but this changes
apidly until r ≈ r 

M 
, beyond which the Milgromian enhancement

o 〈 g r 〉 saturates at just o v er 40 per cent due to the EFE. Without
t, the boost factor would continue growing linearly with r . In the
symptotic or quasi-Newtonian regime (discussed further in section
.3 of Asencio et al. 2022 ) where the enhancement factor has reached
ts maximum, the WB gravity can be treated as a small perturbation
bout the Galactic gravity, making the potential analytic (equation
0 of Banik et al. 2020 ). The analytic expectation is shown using
 horizontal red line, revealing an excellent match to the numerical
esult when r > r 

M 
. 

In this contribution, we focus on the QUMOND formulation
ecause it is more computer-friendly than the earlier aquadratic
agrangian formulation (AQUAL; Bekenstein & Milgrom 1984 ).
he asymptotic AQUAL result is shown in Fig. 7 using a horizontal
lue line (equation 35 of BZ18 ). As discussed there, this result is very
imilar to the QUMOND result for the same interpolating function,
.e. the same relation between g and g 

N 
in spherical symmetry.

umerical AQUAL results are not available in the transition zone
here the EFE is neither negligible nor dominant, but we can get a
eneral idea using equation 15 of Chae & Milgrom ( 2022 ), which
s a fit to numerical results for a weak EFE as rele v ant to galaxy
otation curves. We show this using a dashed blue line. It is clear
hat this equation has the wrong asymptotic limit, as can also be seen
rom the equation: when the EFE dominates, it takes the argument
 . 1 g 

N,e 
rather than g 

N,e 
. Even if this issue is fixed, the functional
NRAS 527, 4573–4615 (2024) 

 Zonoozi et al. ( 2021 ) provide an analytic fit to these results for arbitrary g e 
ith the correct asymptotic behaviour (see their equations 23 and 24). 

w  

r  

i  

o  
orm is not compatible with the EFE-dominated point mass potential
n AQUAL (equation 66 of Milgrom 2010 ) or the resulting radial
ravity (equation 32 of BZ18 ). Despite these issues when the EFE
s strong, equation 15 of Chae & Milgrom ( 2022 ) should still give a
easonable idea of the AQUAL enhancement to 〈 g r 〉 when r � r 

M 

ecause it is a fit to numerical results in this regime. We see that when
 � 0 . 5 r 

M 
, the AQUAL and QUMOND results are almost identical.

herefore, results for the WBT are not sensitive to which formulation
f MOND we use. We discuss this further in Section 5.3 . 
Another aspect of Fig. 7 is the distribution of r sky /r M , which we

how using red bars (the left edge of the first bar shows the minimum
alue). Our sample co v ers down to r sky /r M = 0 . 14, so we consider
t to be reasonably sensitive down to r/r 

M 
= 0 . 2, leaving some

llowance for 3D separations exceeding r sky . A WB separated by only
 

M 
/ 5 has an acceleration of g 

N 
= 25 a 0 and can thus be considered

solated. In this case, ν = 1 / 2 + 

√ 

1 / 4 + 1 / 25 = 1 . 04, which is very
mall compared to the predicted enhancement to g 

N 
for more widely

eparated WBs. This is even truer for interpolating functions that
ave a somewhat faster return to Newtonian behaviour at high
ccelerations in order to better match Solar System ephemerides
Hees et al. 2014 , 2016 ). At the other end, our sample probes well into
he asymptotic regime where we would expect almost the maximum
ossible enhancement to g 

N 
given the Galactic EFE. Our sample thus

o v ers a wide enough range of internal WB accelerations to allow
 sensitive search for the predicted MOND effect. While our WBs
xperience a narrower range of total gravitational field strengths
ecause the Galactic EFE essentially imposes a lower limit, we
rgue later that this is not a major limitation given rotation curve
onstraints on the MOND interpolating function in the transition
one (Section 5.3 ). 

We use the assumed gravity law to integrate WB orbits with a range
f mass M , semi-major axis a , and orbital eccentricity e , defining a
nd e for a generalized gravity theory as in section 2.3.1 of BZ18 .
ollowing their approach, each orbit is started at a separation of a
nd integrated for 20 revolutions. This should be more than sufficient
n the Newtonian case, but it is also adequate in MOND because
he resulting statistical distribution is similar to that yielded by a
uch longer 5 Gyr integration (see their fig. 15). We also consider
 range of inclinations i between the orbital pole and the Galactic
entre direction defining the EFE. Results for different inclinations
re marginalized assuming a prior of sin i , which is appropriate for
n isotropic distribution of orbital poles. Orbits are truncated if the
tars get to within 50 AU or become more distant than 100 kAU as
e consider such WBs to have crashed together or to have likely
ecome unbound at some point by perturbations from passing stars,
espectively (section 2.3.2 of BZ18 ). At each time step, we consider
 dense 2D grid of viewing directions and compute the 

(˜ r sky , ̃  v 
)

nferred by a distant observer along the chosen LOS, with results
tatistically weighted by the solid angle co v ered by each LOS. We
lso weight the results at different time steps by the duration of the
ime step, which varies because we use an adaptive time step to
educe the computational cost. In this way, we build up a simulated˜ r sky , ̃  v 

)
distribution for different ( M , a , e ). 

In the Newtonian case, it is not necessary to consider different M
r i , but we use a 5 × higher resolution in e because the ̃  v distribution
t fixed e has sharp peaks corresponding to pericentre and apocentre
nd e does not change in a Newtonian orbit integration (unlike in
OND; see Pau ̌co & Kla ̌cka 2016 ). To get a smooth distribution
hen marginalizing o v er different e , BZ18 found that a rather high

esolution is required in e for the Newtonian case. This is not needed
n MOND because the peaks are blurred out by changes in the shape
f the orbit o v er time: typically about 8 orbits are needed to go from
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early circular to very eccentric back to nearly circular (see their 
g. 20). 

.1.2 Orbital parameter distribution 

he mass distribution of WBs is obtained directly from that of our
B sample (Fig. 5 ). We count up how many WBs are in the mass

ange co v ered by each value of M at which we perform an orbit
ntegration. This directly determines the relative statistical weights 
f different M values in our WB orbit library. 
Follo wing Andre ws, Chanam ́e & Ag ̈ueros ( 2017 ), we assume that

he semi-major axes of the WBs follow a broken power law in a . The
ogarithmic slope at low a is fixed to −1.6, which is known to be
 alid do wn to at least 0.5 kAU (El-Badry & Rix 2018 ). While this can
n principle extend up to arbitrarily large a , we assume that it breaks
own at a = a break , beyond which the logarithmic slope becomes β
 −1 to ensure a convergent integral. Our assumed distribution of a

s therefore given by 

 ( a ) ∝ 

{
a −1 . 6 , if a < a break , 

a β , if a > a break , 
(16) 

here a break and β are free parameters that our analysis infers from
he data. Note that since we are modelling the distribution of our
ample of WBs rather than the full WB population, the inferred 
alues of these parameters may be somewhat biased. In particular, 
he requirement to have accurate ̃  v measurements is quite difficult to 
atisfy at large separations because the Newtonian v c is low. This is
ikely to reduce β. 

Following Hwang, Ting & Zakamska ( 2022 ), we parametrize the 
istribution of orbital eccentricities using a power law with index γ . 

 ( e ) = ( γ + 1 ) e γ . (17) 

is left as a free parameter that is allowed to vary o v er the range
 − 4 in all our analyses. We expect a nearly thermal distribution
f eccentricities ( γ = 1; Jeans 1919 ; Ambartsumian 1937 ) − this is
iscussed in more detail in Section 4.2 of Kroupa ( 2008 ). We use
 flat prior on γ for our nominal analysis. Ho we ver, Hwang, Ting
 Zakamska ( 2022 ) found that a slightly superthermal distribution

 γ > 1) better fits the observed distribution of the angle ψ between
r sky and v sky (this is related to the WB orthogonality test outlined in 
ection 8.2.1 of BZ18 ). We therefore run a variation of our nominal
nalysis in which we assume a Gaussian prior of γ = 1.32 ± 0.09,
hich should shrink the uncertainties somewhat. We note that since 
B contamination would tend to flatten out the distribution of ψ and

hereby drive the inferred eccentricity distribution towards thermal, 
t is quite likely that γ is slightly higher than inferred by Hwang,
ing & Zakamska ( 2022 ) given that those authors do not consider
ndetected CBs. On the other hand, their fig. 10 shows that γ can be
 v erestimated slightly at large separations for an underlying slightly
uperthermal distribution. 

.1.3 Interpolating the gravity law 

n important aspect of our analysis is that we consider an arbitrary
ravity law on a sliding scale between Newtonian and Milgromian. 
or this purpose, we introduce the gravity law parameter αgrav , which 

s the most important parameter for the WBT. We define this such
hat αgrav = 0 represents Newtonian gravity and αgrav = 1 represents 
UMOND with the simple interpolating function. We allow αgrav 

 alues some what outside this range to capture the possibility of
ehaviour different to either theory. The most plausible outcomes 
o the WBT are a strong preference for αgrav values very close to 0
r 1, with the large sample size hopefully tightening the error budget
nough that both possibilities are not simultaneously consistent with 
he observations (a few thousand WBs should be sufficient; see 
Z18 ). Since the WBT will have some uncertainties, we allow αgrav 

o lie in the range ( −2, 3.6). Ne gativ e values imply that the gravity
n the asymptotic regime has a lower than Newtonian normalization, 
hile αgrav > 1 implies a normalization higher than expected in 
OND. 
To set up a parametrized gravity law, we obtain the simulated˜ r sky , ̃  v 

)
distribution in both gravity theories for each ( M , a , γ ), with

ifferent orbital eccentricities marginalized o v er for the adopted γ
sing the eccentricity distribution it defines [equation ( 17 )]. The
ain idea of our parametrization is to transform the Newtonian ˜ r sky , ̃  v 

)
distribution into the Milgromian one and then interpolate the 

oefficients involved in the transformation so that arbitrary gravity 
aws can be considered. 7 To simplify our analysis, we consider a
imple 2D stretch in which the probability distribution is stretched 
long the ˜ r sky axis by a factor S r and then along the ˜ v axis by a
actor S v , with S r �= S v in general. These are found by running a
D gradient descent in ( S r , S v ) to minimize the sum of squared
esiduals between the stretched Newtonian array and the MOND 

rray (Fletcher & Powell 1963 ). While a simple 2D stretch applied
o the former does provide a good approximation to the latter, there
re still some residuals, which we calculate for each pixel. This
rray of residuals is itself scaled by a factor of αgrav and stretched
n 2D by some factors depending on αgrav and ( S r , S v ). The idea
ehind applying this ‘corrections array’ is to reco v er the Newtonian
Milgromian) 

(˜ r sky , ̃  v 
)

distribution exactly if αgrav = 0 (1). If we 
onsider an intermediate case where αgrav = 0.5, we would expect the
  distribution to stop at a value about halfway between the maximum
hich arises in the Newtonian and MOND distributions. To prevent 

he corrections array from creating non-zero contributions all the 
ay out to the maximum ˜ v which arises in MOND, the residuals

rray itself needs to be stretched somewhat, though in this case we
xpect S v < 1. Since no corrections are required if αgrav = 0, we need
o a v oid applying any corrections in this case, which is achieved by
ur scaling factor of αgrav . We use linear interpolation in all the
tretch and scaling factors discussed abo v e with respect to αgrav . To
 v oid ne gativ e probabilities due to ne gativ e values in the corrections
rray, an y ne gativ e entries in the resulting 

(˜ r sky , ̃  v 
)

distribution are
onverted to zero and the array renormalized. 

.2 Undetected companions 

s discussed in Section 1.1 , undetected companions are the main
ource of contamination to the WBT given the low measurement 
ncertainties (Fig. 4 ) and the low LOS contamination fraction evident 
rom the low number counts in the rather wide pixels at high r sky and
  (Fig. 6 ). In particular, the declining ˜ v distribution it reveals is a
lear sign of some process that broadens the WB distribution, which
e otherwise expect to be concentrated at ˜ v � 2 for any plausible
ravity theory ( PS19 ). 
We therefore need to include the possibility that a star in a WB

s actually itself part of a CB, even though the CB companion is
ndetected. Including CBs pro v ed to be by far the most challenging
spect of the WBT, so we had to make some simplifying assumptions
o keep the complexity and computational cost manageable. Due to 
heir much smaller separation, we assume that the CB is completely
MNRAS 527, 4573–4615 (2024) 
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Figure 8. How the fraction of a CB’s total mass in its undetected component 
affects the offset between its photocentre and barycentre (black lines) and 
the fraction by which the total mass exceeds the mass estimated by observers 
based on the luminosity (red lines). The scale for the left y -axis is arbitrary: 
the important aspect is the functional form. The dot–dashed lines neglect the 
increase to the estimated mass caused by the luminosity of the undetected 
component. The solid lines include this effect, which helps to somewhat 
mitigate the impact of CB contamination. The solid black line is proportional 
to the CB’s impact on the WB ̃  v under the assumption that an undetected CB 

increases the estimated mass of both WB components by a similar fraction. 
Only the solid lines shown here enter into our model as  ̃

 M [red; equation 
( 18 )] and f pb [black; equation ( 20 )]. 

B  

t

v

S  

o  

∝  

M  

w  

o  

t  

(  

l  

a
 

t

f

T  

D
ow

nloaded from
 https://academ

ic.oup.com
/m

nras/article/527/3/4573/7342478 by guest on 30 D
ecem

ber 2023
e wtonian internally, e ven if MOND af fects the motion of its
arycentre around the other star in the WB. 8 It will become clear
ater that the undetected CBs rele v ant to the WBT indeed have only a
mall separation compared to the WB, justifying this approximation.

.2.1 Impact on WB observables 

ndetected companions have two main effects on a WB: increased
ass and induced recoil velocity. Since the CB companion is

xpected to tightly orbit the star it contaminates, we neglect the
mpact of the CB on the WB’s r sky . For this reason, we also assume
hat the light emitted by the ‘undetected’ star is blended with that
f the contaminated star, i.e. they are unresolved by Gaia . This is
easonable given that resolved third star companions would cause the

B to be remo v ed from our sample at an early stage (Section 2.1 ).
ndeed, we will see later that our analysis prefers to a v oid CBs whose
eparation is significant compared to that of the WB. 

The actual mass of the CB exceeds its estimated mass by a factor 

 ̃

 M ≡ Total CB mass 

Estimated CB mass 
− 1 . (18) 

his is positive because the mass–luminosity relation is very steep
Fig. 1 ), so blended light from the ‘undetected’ companion raises
he estimated CB mass by less than the companion’s mass. As a
esult, tw o unresolved Sun-lik e stars w ould appear to have a total
ass of only 1 . 19 M 	 even though their total mass is actually 2 M 	,

ielding  ̃

 M = 0 . 68. Since the mass–luminosity relation is not an
xact power law,  ̃

 M depends on the masses of the stars involved.
e handle this complication by considering as a prior the mass

istribution of all the stars in our WB sample (blue bars in Fig. 5 ).
 or a fix ed fraction ̃  q ≤ 1 / 2 of the CB total mass in the undetected
ompanion, we consider a dense grid of primary star masses co v ering
he range shown there. 9 In each case, we use the mass-luminosity
elation from Pecaut & Mamajek ( 2013 ) to obtain the fraction ˜ L of
he CB’s total luminosity contributed by the undetected companion

this will be important later. 10 We then numerically invert equation
 6 ) using the Newton–Raphson algorithm to find the estimated mass
f the CB given the total Gaia -band luminosity of the two stars in
t, thus following the same approach as observers would use without
nowing about the CB. In this way, we obtain the relation between
 ̃

 M and ̃  q , which we show as the solid red line in Fig. 8 . We also use
 dotted red line to show the results if we neglect the blended light
ontributed by the undetected companion. The results are similar
ither way unless the CB consists of two stars with an almost equal
ass: in this limit, blended light reduces  ̃

 M from 1 to 0.72. 
The impact of blended light is more significant when it comes to the

ecoil velocity induced by an undetected companion. In the limit that
he CB has two equal mass stars such that ̃  q = 1 / 2, the photocentre
nd barycentre would coincide and mo v e only due to the WB orbit.
his is true regardless of the relative velocity v of the CB orbit. In
eneral, the velocity of the primary star relative to the CB barycentre
ould be ̃  q v , while the undetected star would mo v e at − (

1 − ˜ q 
)
v ,

hich is in the opposite direction. Once these velocities are averaged
eighted by the mass fractions, the CB barycentre is of course static.
NRAS 527, 4573–4615 (2024) 

 Bekenstein & Milgrom ( 1984 ) showed that a body with high internal 
ccelerations can still exhibit MONDian behaviour for its barycentre. 
 ‘Primary’ here refers to the more massive star in the CB, which may itself 
e a sub-dominant component of the total WB mass. 
0 For simplicity, we do not implement the FLAME calibration discussed in 
ection 2.3.3 when converting masses to luminosities or vice versa in this 
ection. 
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ut if we instead weight the stars using their luminosities, we get
hat the photocentre velocity is 

 phot = 

[ ˜ q 
(

1 − ˜ L 

)
− ˜ L 

(
1 − ˜ q 

)] 
v = 

(˜ q − ˜ L 

)
v . (19) 

ince we are only interested in the magnitude of v phot , the impact
n the observed WB relative velocity (based on photocentres) is

 

∣∣∣˜ q − ˜ L 

∣∣∣ (as also found by Penoyre, Belokurov & Evans 2022 ).

oreo v er, v is itself proportional to the Keplerian velocity of the CB,
hich depends on its total mass and separation. Finally, the impact
n ˜ v also needs to take into account that blended light increases
he apparent mass of the WB and thus its Newtonian v c [equation
 3 )], but the extra mass is underestimated thanks to the steep mass-
uminosity relation. We assume for simplicity that both stars in a WB
re affected by CBs with a similar mass ratio to their primary star. 

Putting all this together, we get that the impact on ̃  v scales with
he parameter 

 pb = 

∣∣∣˜ q − ˜ L 

∣∣∣
f M ︷ ︸︸ ︷ √ 

1 +  ̃

 M . (20) 

his is shown as the solid black line in Fig. 8 . The dotted black line
hows the result if  ̃

 M is calculated neglecting blended light. It is
lear that f pb is not sensitive to details of how  ̃

 M is calculated for the
urposes of the abo v e equation. This is because if ̃  q � 1 / 2 and the
B has an extreme mass ratio, then the undetected star contributes
lmost no blended light, making  ̃

 M insensitive to whether we
onsider this light. In the opposite limit that ̃  q ≈ 1 / 2, the stars in the
B are very similar such that ̃  q ≈ ˜ L , making f pb very small and thus

endering irrele v ant small dif ferences in f M 

. 



Wide binary orbital velocities challenge MOND 4587 

Figure 9. The mass ratio distribution of the WBs in our Gaia DR3 sample 
(thick solid blue line). We consider three different forms for the undetected CB 

population. The nominal assumption of a q 0.4 dependency (solid black line) is 
based on Korntreff, Kaczmarek & Pfalzner ( 2012 ), with q ≤ 1 being the mass 
ratio between the stars in each binary. This model fits the WB distribution 
fairly well, especially given that selection effects w ould mak e it hard to find 
binaries with q � 1. We also consider the case of a flat distribution in q 
(dot–dashed red line) and a linear distribution (dotted magenta line). These 
should bracket the range of possible q distributions. 
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.2.2 Mass ratio distribution 

he impact of an undetected CB on the WB observables depends 
n the fraction of the CB mass in the undetected star (Fig. 8 ). This
equires us to assume some distribution for ̃  q ≤ 1 / 2, or equi v alently
or the mass ratio q ≡ ˜ q / 

(
1 − ˜ q 

) ≤ 1. Following Korntreff, Kacz- 
arek & Pfalzner ( 2012 ), we assume that 

 ( q ) ∝ q 0 . 4 , q ≤ 1 . (21) 

e expect this to broadly match the distribution of WB mass ratios.
e therefore use Fig. 9 to show the mass fraction in the less massive

tar, which is the quantity more rele v ant for our analysis [equation
 24 )]. The q 0.4 assumption is shown as a solid black line, while the
istribution for our WB sample is shown as a solid blue line. It is
pparent that our adopted q 0.4 distribution provides a good match to 
he WB distribution. The WB sample contains a deficit of systems
ith a very extreme mass ratio, but this is almost certainly due to

election ef fects: lo w mass stars are very faint (Fig. 1 ). Ev en if the y
re not present in our WB sample, we still need to consider extreme
ass ratio CBs in our analysis because they can affect the WB

bservables if the CB has a small separation. 
To bracket the possible uncertainties in the CB mass ratio distribu-

ion, we also consider a flat distribution of q and a linear distribution,
hich we show on Fig. 9 as the dot–dashed red and dotted magenta

ine, respectively. A flat distribution is a rough approximation to the 
hree-part power law recommended in fig. 7 of El-Badry et al. ( 2019 ).

e will see later that using instead a flat or linear prior on q gives
imilar results to our our nominal q 0.4 assumption, so our conclusions 
re similar for any power-law distribution of q with exponent in the
ange 0–1 (Section 5.1.2 ). 

.2.3 Semi-major axis distribution 

he Keplerian orbital velocity of the CB is affected by its semi-major
xis a int . Following PS23 , we impose an upper limit of ak CB , where
 is the semi-major axis of the WB. Thus, we require that 

 

 int ≡ a int 

a 
< k CB . (22) 
e work with ̃  a int rather than a int because the ratio between the CB
nd WB orbital velocities depends on the ratio of their semi-major
xes. The maximum allowed value of this ratio is k CB , which is a free
arameter in our analysis. 
Since we remo v e systems with an obvious third star, k CB refers

o the maximum ̃

 a int for CB companions to the WBs in our sample,
earing in mind that we do not consider stars which have a discernible
ompanion within 0.5 arcsec with a reasonably consistent parallax 
nd proper motion (Section 2.1 ). To convert this to a separation in
U, we note that as our sample goes out to 250 pc, we can expect a

easonable number of systems out to 200 pc. Thus, we expect WBs
n our sample to typically not have CB companions with projected
eparation beyond 100 AU. The upper limit to the actual separation
ould be larger thanks to projection effects, but their impact on
 int would be counteracted by the high likelihood of the orbit being
uite eccentric (Hwang, Ting & Zakamska 2022 ) and the fact that
rbital phases near apocentre are more frequent. It is possible for a
ufficiently faint star to go undetected at an even larger separation,
ut it would have to e v ade our faint star catalogue used to reduce CB
ontamination (Section 2.1 ). This catalogue goes down to an apparent 
agnitude of m G = 20, which at a distance of 200 pc corresponds

o M G = 20 − 5log 10 20 = 13.5 and thus a mass of about 0 . 1 M 	
Fig. 1 ). As a result, CB companions beyond 0.5 arcsec from the
ontaminated star can remain undetected only in a narrow range of
ass at the very bottom of the main sequence. Such a low mass would

lso reduce the perturbation to the velocity of the contaminated star
low f pb in equation ( 20 )]. Combined with the large separation, this
ak es it unlik ely that a distant low-mass companion which e v ades

ur faint star catalogue would actually be rele v ant to our analysis. We
hus assume that the maximum rele v ant a int ≈ 100 AU. To convert
his to k CB , we note that a reasonable a for the WBs might be 40
AU because our WB sample goes up to r sky = 30 kAU and we need
o consider all viewing angles and orbital phases. For this reason,
ur WB orbit library goes up to a = 57 kAU, though we expect our
nalysis to assign only very small statistical weights at such high a
ue to its declining distribution [equation ( 16 )] and the fact that we
runcate orbits when they go beyond 100 kAU to mimic disruption
aused by Galactic tides and encounters with other stars. Taking the
atio of the abo v e estimates for a int and a suggests that k CB ≈ 2.5 ‰.

e do not impose this in our analysis, but we do set a prior that it
hould be at least 1 ‰ to a v oid numerical difficulties. This is very
onserv ati ve because it implies a maximum a int of about 40 AU,
hich corresponds to just 0.2 arcsec for a WB 200 pc away. One

an easily envisage that a CB with a larger separation would not be
etected at this distance. 

At the opposite end, the lowest a int that we need to consider is set
y the fact that CBs on very small orbits have a short orbital period,
eading to rapid but low amplitude astrometric oscillations that have 
ittle impact on the inferred space velocity of the contaminated star.
his phenomenon is not directly included in our analysis, which for
implicity assumes that the stars in a CB mo v e at constant velocity
 v er the whole Gaia observing baseline. In Appendix B , we estimate
hat this approximation breaks down when a int � 3 . 2 AU, below
hich the impact of the CB rapidly becomes much smaller than our

stimate based on uniform linear motion. 
Based on the abo v e considerations, we allow CBs to have a 1.5

ex range of ̃  a int with a maximum at k CB > 1 ‰. We assume that ̃  a int 

as a flat distribution in log-space, as in the classical Öpik law ( ̈Opik
924 ). The logarithmic distribution of a int does indeed seem to be
ather flat between 10 and 100 AU (fig. 2 of Offner et al. 2023 ), so
his ought to be a reasonable assumption. We will see later that our
MNRAS 527, 4573–4615 (2024) 
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Table 1. The r sky and ˜ v range used for the WBT and the binning 
scheme, which we fixed in advance to limit the possibility of bias 
(Banik, Pittordis & Sutherland 2021 ). 
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esults are not much affected by using a somewhat different shape or
idth to the a int distribution (Section 5.1.3 ). 
In addition to properties of the CB, how it affects ̃  v of the WB also

epends on the latter’s projected separation. At fixed a , the impact on
 

 is reduced at low r sky because this raises the predicted Newtonian
 c of the WB [equation ( 3 )]. Considering also that the CB orbital
elocity ∝ 1 / 

√ ˜ a int , the perturbation to the WB ̃

 v scales as 

 ̃

 v ∝ 

√ ˜ r sky ˜ a int 
. (23) 

he lack of any explicit dependence on a greatly reduces the
omputational cost of the WBT, but this is only possible because
he WB libraries are stored with respect to ̃  r sky rather than r sky . The
nly slight downside is that we need the latter for a comparison with
bservations, so we subsequently need to find r sky ≡ a ̃  r sky . 

.2.4 Convolving the CB and WB libraries 

he fractional increase to the total mass of a WB is found by
ombining  ̃

 M for each of the stars in it, which we denote using A
nd B subscripts. 

 ̃

 M = 

˜ q A  ̃

 M A + 

˜ q B  ̃

 M B , (24) 

here ̃  q A ≡ 1 − ˜ q B is the fraction of the WB total mass in star A and
 ̃

 M A is the fraction by which its actual mass exceeds its apparent
ass [equation ( 18 )]. If one of the WB stars is not in a CB, then
 ̃

 M = 0 for that star. We assume that ˜ q A and ˜ q B have an identical
istribution, which we obtain from our WB sample (solid blue line
n Fig. 9 ). This is not exactly correct because undetected CBs can
lter the mass ratio. Ho we v er, we e xpect this to be only a v ery minor
ssue because even in the extreme case of having two equal Solar
ass stars in a WB where one of the stars has an undetected equal
ass companion, observers would infer a mass fraction in the less

uminous component of 0.46 rather than the correct value of 1/3. The
rror would be smaller in more typical cases, especially as both stars
n the WB could actually be CBs. We therefore expect the WB mass
atio inferred from luminosities to be quite accurate. 

To obtain the relative velocity between the photocentres and
arycentres of the CBs making up a WB, we again need to combine
he contributions from both CBs. In this case, the scaling factors are

 ˜ q A and 
√ ˜ q B because the Keplerian orbital velocity of a CB scales

ith the square root of its mass. Allowing also for the increased WB
rbital velocity due to its mass being higher than estimated, we get
hat the WB ̃

 v should be revised as follows: 

 

 → 

˜ v f M 

+  ̃

 v A 
√ ˜ q A +  ̃

 v B 
√ ˜ q B , (25) 

here f M 

was defined in equation ( 20 ) and  ̃

 v A is the change to
 

 of the WB if all its mass was in star A such that ˜ q A = 1 (  ̃

 v B 
s defined analogously). Since  ̃

 v induced by each CB is a 2D
ector, we also need to allow for partial cancellation between the
hotocentre-barycentre offsets arising from each CB. This leads to 4
ossible outcomes for whether the contributions along each direction
re parallel or opposite. 

Following El-Badry et al. ( 2019 ), we implement a δ-function in the
robability distribution of the CB mass ratio. Such an equal mass ratio
opulation is also evident in our colour–magnitude diagram (dashed
rey lines in Fig. 2 ), with our analysis suggesting that the equal
ass likelihood P eqm 

= 0.04 (see Appendix A ). The origin of such
 twin population is unclear, but it could be related to gas accretion
nto a forming binary star tending to equalize the masses (Tokovinin
017 ; Tokovinin & Moe 2020 ; Tokovinin 2023 ). To include this,
NRAS 527, 4573–4615 (2024) 
e combine the CB perturbations calculated assuming a smooth
istribution of the CB mass ratio with similar calculations assuming
n exactly equal mass ratio for the CB, weighting the former at (1

P eqm 

) and the latter at P eqm 

(further details are provided in Banik,
ittordis & Sutherland 2021 ). We demonstrate later that changing

he assumed CB mass ratio distribution has very little impact on our
esults (Section 5.1.2 ). 

The o v erall impact of CBs on the WB population is modulated by
he likelihood f CB that a star in our WB sample has an undetected CB
ompanion. We assume that CB contamination of the two stars in
ach WB occurs independently, so the likelihood of both stars being
ontaminated is f 2 CB , which is not negligible. We found that one of the
ost computationally e xpensiv e parts of the WBT is calculating the
B perturbations to the WB parameters in this double contaminated
ase. This is due to the need to consider a range of CB semi-major
x es, v elocity perturbations, and mass contributions from both CBs,
hich almost doubles the already large number of nested loops. 
Combining the CB perturbations with the WB library is non-trivial

ecause CBs cannot be considered as adding an extra population to
he statistics − they physically affect the WB. As summarized in
quation ( 25 ), we need to scale up the WB 

˜ v to account for the
ractional mass increase  ̃

 M induced by the CB(s) and then add
he velocity perturbations from each CB in the directions parallel
nd orthogonal to ˜ v of the WB, which is a 2D vector in the sky
lane. We then use the Pythagoras Rule to calculate the resultant
  , or more precisely the appropriate ˜ v pixel (Table 1 ). Since there

s a reasonable chance that the resultant ̃  v > 5, CBs can reduce the
 v erall normalization of the 

(
r sky , ̃  v 

)
distribution in our WB library.

his may well have happened in reality, but since our Gaia DR3
ample only contains WBs with ̃  v < 5, we renormalize the 

(
r sky , ̃  v 

)
istribution that we obtain after the CB-WB convolution step. The
omputational cost of convolving the CB and WB libraries is kept
ow using the techniques detailed in Banik, Pittordis & Sutherland
 2021 ). 

.3 Chance alignments 

o far we have only considered bound systems. It is inevitable that
ome of the WBs in our sample will be unbound. Observations are
nlikely to catch a WB in the process of disruption due to a passing
hird star or a molecular cloud (see section 8.1 of BZ18 ). Even so,
hance alignments of stars can still arise, especially when we get to
arge r sky and ̃  v (see fig. 7 of PS19 ). The likelihood is enhanced due
o the possibility of the stars being born in the same star cluster which
ater dissolved [Oh et al. 2017 ; Dinnbier, Kroupa & Anderson 2022 ),
iving them a much lower relative velocity than the Galactic velocity
ispersion. This raises the chance of observing the stars close to each
ther on the sky, which could cause them to be misidentified as a WB
iven the Gaia parallax uncertainty. LOS contamination should be
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educed somewhat by e xcluding re gions of the sky with an enhanced
ensity of stars, e.g. known star clusters (table 1 of PS23 ). 
To limit the complexity of our analysis, we set up a very

imple model for LOS contamination under the assumption that the 
eparation and relative velocity of stars born in the same cluster can
reatly exceed that of the WBs in our sample. Since r sky and v sky are
oth 2D vectors within the sky plane, we assume that the number
ensity of chance-aligned WBs scales as 

dN LOS 

d r sky d v sky 
∝ r sky v sky . (26) 

earing in mind that v sky ∝ ̃  v / 
√ 

r sky [equation ( 3 )], the population
istribution of LOS contamination is 

dN LOS 

d r sky d ̃  v 
∝ ˜ v . (27) 

he dependence on r sky cancels out because raising r sky reduces the 
ange of v sky for the same range in ̃  v . 

We integrate this distribution across each of the r sky and ̃  v pixels 
hown in Table 1 to obtain the relative number of chance-aligned 
ystems that we expect to find in each pixel. We then normalize the
esults to a sum of f LOS and combine with the result of our CB-WB
onvolution (Section 3.2.4 ) weighted by (1 − f LOS ), where f LOS is
he LOS contamination fraction. We leave f LOS as a free parameter 
n our analysis. Since there are only a few WBs in our catalogue at
igh r sky and ̃  v where LOS contamination would be most significant 
Fig. 6 ), we expect f LOS to be at most a few percent. 

.4 The simulated distribution of WBs 

o simulate the distribution of WBs, we tie together a model for
he WB population (Section 3.1 ) with a model for an undetected
opulation of CB companions (Section 3.2 ) and then allow for
hance alignments (Section 3.3 ). We use Fig. 10 to illustrate the
eparate stages for the particular example of our best-fitting MOND 

odel (Section 4.1 ). The simulated ˜ v distribution is shown in four
ifferent r sky ranges considering only WBs (blue curves), including 
Bs (red curves), and finally including also the LOS contamination 

black curves). Since only a small proportion of the WB sample is
xpected to lie in any single r sky interval used here, we normalize
he ̃  v distributions using the final simulated distribution, so only the 
lack curve in each panel is guaranteed to have an integral of 1. WBs
lone almost never yield ̃  v � 1 . 5, even in MOND − the theoretical
imit of 1.7 only refers to systems on highly eccentric orbits seen
lose to pericentre from a direction nearly orthogonal to the relative 
elocity (this is also apparent in fig. 3 of BZ18 ). CB companions
reate an extended declining tail that is easily able to reach much
igher ˜ v . We capture much of this extended tail by going up to
  = 5, a choice we discussed in Section 2.1 and fixed in advance of

he WBT to mitigate possible biases (Banik, Pittordis & Sutherland 
021 ). This extra leverage allows our analysis to constrain the CB
opulation, which dominates the behaviour once ̃  v � 2. A flat log- 
pace distribution of a int ( ̈Opik 1924 ) yields a ˜ v distribution that is
lso flat in log-space in the CB-dominated region, helping to explain 
hy the distribution here is 

∝ ∼1 / ̃  v . We expect this to flatten out and
ltimately start rising at very high ˜ v due to LOS contamination. 
his is most evident in the highest r sky interval, where there is less
ontribution from only the gravitationally bound systems because 

Bs have a declining distribution of r sky [equation ( 16 )]. Our WB
ample reaches high enough ̃  v for its distribution to become flat, but 
 clearly rising trend is not apparent because we have limited the
onsidered ̃  v range to a v oid being swamped by chance alignments. 
ther studies which consider a wider parameter range do show a
ising trend (e.g. see fig. 12 of El-Badry, Rix & Heintz 2021 ). 

.5 Comparison with obser v ations 

e compare the observed number of WBs in each 
(
r sky , ̃  v 

)
pixel 

ith the expectation of our model for that pixel. We use binomial
tatistics because we are dealing with integer statistics and the total
ample size N is finite. Thus, the binomial likelihood of observing k
ystems in a pixel is 

 pixel = 

N ! 

( N − k ) ! k! 
p 

k ( 1 − p ) N−k , (28) 

here p is the fraction of the total number of WBs in the comparison
egion ( r sky = 2–30 kAU, ˜ v < 5) which should be located within
he pixel under consideration. For computational reasons, we use the 
ogarithmic version of this equation. The log-likelihood ln P of the
odel is then given by considering all 540 pixels summarized in
able 1 . 

ln P = 

∑ 

Pixels 

ln P pixel . (29) 

his is used to infer the optimal values and confidence intervals for
ur model parameters associated with the CBs ( f CB , k CB , and γ ), LOS
ontamination ( f LOS ), and the WBs ( a break , β, and αgrav ). Note that γ
ffects both the CB and WB populations because they are assumed
o follow the same eccentricity distribution for simplicity. The CBs
re assumed to follow an Öpik law distribution of semi-major axes
 ̈Opik 1924 ) o v er a 1.5 dex range (Section 3.2.3 ), while the WBs
ollow a broken power law that reduces to a −1.6 at small separations
equation ( 16 )]. 

Notice that regardless of how many WBs a pixel contains, ln P pixel 

 0 in ev ery pix el as its predicted p is al w ays non-zero once we
nclude CB and LOS contamination. Since we have quite a large
umber of WBs spread across a large number of pixels, we expect
n P � 0 (a similar situation is evident in table 2 of Asencio et al.
022 ). As a crude estimate, we can suppose that our model predicts
611/540 = 16 WBs in each of our 540 pixels, so the actual number of
Bs in an y pix el is expected to nearly follow a Poisson distribution
ith a standard deviation of 

√ 

16 = 4. If the model works well,
hen the actual number of WBs would be approximately uniformly 
istributed o v er the range 12–20, with all of these outcomes having
 likelihood of P pixel = 1/9. The combined likelihood would then be
n P = −540 ln 9 = −1200. We therefore expect to get a combined
og-likelihood of about this much, but this is of course only a very
rude estimate. In reality, not all pixels would be e xpected to hav e
he same number of WBs, and even if they were, outcomes in the
ail of the Poisson distribution are less likely than the inverse of
he Poisson noise. Moreo v er, it is inevitable that our model does
ot capture all the subtleties of the actual WB population because
f the simplifying assumptions made to keep the complexity and 
omputational cost manageable. None the less, we will see later that
he abo v e estimate is fairly accurate. 

 RESULTS  

efore presenting the results of our detailed statistical analysis 
iscussed in the previous section, we first look for trends in the
edian ̃  v of our WB population with r sky /r M , which is a proxy for

he internal acceleration of each WB. For this purpose, we sort our
Bs in order of r sky /r M and use this to create ten equally sized

ubsamples with no o v erlap. The thin magenta line in Fig. 11 shows
MNRAS 527, 4573–4615 (2024) 
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M

Figure 10. How we build up the simulated ̃  v distribution in our best MOND model (Section 4.1 ), with results shown in four different r sky ranges (different 
panels). In each case, the distribution due to WBs alone (blue) is significantly altered by including CBs (red). Further adding LOS contamination yields our final 
simulated distribution (black), which is used to normalize the results shown here. This helps to highlight that including LOS contamination slightly raises the 
predicted number of WBs at high r sky . 
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he median ̃  v as a function of the median r sky /r M of each subsample.
 clear rising trend is evident, with the increase being close to the
0 per cent expected in MOND. Ho we ver, LOS contamination would
e more important at high r sky and high ˜ v , potentially inflating the
edian ˜ v in a manner which appears acceleration-dependent. To
itig ate ag ainst this possibility, we note that MOND would cause

n acceleration-dependent broadening to the main peak of the ṽ 
istribution at ̃  v � 2 (Fig. 6 ; see also fig. 7 of PS19 ). In MOND, we
xpect almost no WBs with ̃  v > 1 . 5 in the absence of contaminating
ffects (see fig. 3 of BZ18 ). We therefore consider the median ̃  v of
nly those WBs in each r sky /r M bin with ˜ v < 1 . 5, 2, or 2.5, which
e show in Fig. 11 using the red, black, and blue line, respectively.

n all three cases, the rising trend disappears: the median ̃  v becomes
at with respect to our proxy for the internal acceleration. There is of
ourse some scatter, but we would expect a random scatter of about
 . 6 / 

√ 

861 = 0 . 02 due to the finite number of WBs, which is roughly
n line with the actual scatter. 

Since the upper limit to ˜ v should substantially alleviate the
mpact of CB and LOS contamination without much affecting a
enuine MOND signal, it is clear that the apparent MOND signal
iscussed abo v e is almost certainly a consequence of contaminating
f fects, highlighting ho w easily one can reach erroneous conclusions
rom the WBT using simple population statistics without a good
nderstanding of the astrophysical systematics (Hernandez et al.
019 ; McCulloch & Lucio 2019 ; Hernandez, Cookson & Cort ́es
022 ). Focusing on WBs with ̃  v � 2, the very weak dependence of
NRAS 527, 4573–4615 (2024) 
he median ˜ v on r sky /r M despite the significant range co v ered by
ur sample strongly suggests that the WBT will return a Newtonian
esult. We highlight this using the dashed grey lines in Fig. 11 , which
pproximately show the MOND prediction that the median ̃  v should
ise by a factor of 

√ 

η = 1 . 2 o v er the range r sky /r M = 0 . 2 − 1. This
s moti v ated by Fig. 7 , which shows that the enhancement factor to
he radial Newtonian gravity rises from 1 up to its asymptotic value
oughly linearly o v er this range of r/r 

M 
and is almost flat afterwards.

hile this is a rather crude way of considering the situation because it
eglects projection and orbital phase effects, it should approximately
apture the expected broadening of the ˜ v distribution in the main
eak region as one considers WB subsamples with a lower internal
cceleration. The expected Newtonian behaviour is not shown as
here is already a gridline at 0.57. This provides a much better fit to
he median ̃  v for the ̃  v < 2 subsample than the approximate MOND
xpectation mentioned above. 

This strong hint that the WBT will disfa v our MOND is in line
ith the detailed analysis of PS23 , who prepared a model for the
B population similar to ours and found a strong preference for
ewtonian gravity o v er MOND. Their Newtonian model fits the
bservations surprisingly well given their limited exploration of the
arameter space (see their fig. 12). Moreo v er, the right-hand panel of
heir fig. 17 shows that WBs have a median v sky ∝ 1 / 

√ 

r sky , especially
hen restricting to only those WBs with ̃  v � 2. This is the expected
ehaviour if Kepler’s Third Law works even in the low-acceleration
egime, as illustrated by the dashed lines on this figure. 
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Figure 11. The median ̃  v of our WB sample as a function of the median 
r sky /r M , shown for ten bins in the latter which each contain 861 WBs except 
the last bin which has 862. The solid lines show results with four different 
upper limits to ˜ v of 1.5 (red), 2 (black), 2.5 (blue), and 5 (thin magenta). 
Qualitativ ely, the MOND e xpectation is that the median ˜ v rises for larger 
r sky /r M and then becomes flat once the Galactic gravity dominates. We 
indicate this by two dashed grey lines with different normalizations. Their 
shape is based on Fig. 7 , which implies that the main peak in the ̃  v distribution 
for ̃  v � 2 should broaden at low accelerations. Neglecting projection effects 
and assuming the current separation is representative of the whole orbit, this 
would lead to a rise in the median ˜ v by a factor of 

√ 

η = 1 . 2 that occurs 
roughly linearly o v er the range r sky /r M = 0 . 2 − 1 before rapidly flattening 
out. The Newtonian prediction is a flat relation, which is consistent with 
the data up to ̃  v < 2 . 5, within which lies 89.8 per cent of the sample. The 
full sample of WBs (with ˜ v < 5) does show a rising median that looks 
qualitatively similar to the MOND expectation, but since this rise is not seen 
for the subsamples restricted to the main peak region of the ̃  v distribution 
where ˜ v is low enough to be physically plausible for an uncontaminated 
system, we attribute this behaviour to LOS contamination becoming more 
important at larger separations (Section 3.3 ). 
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Table 2. The best-fitting model parameters with a fixed gravity law, 
found using gradient ascent. Notice the very substantial difference in 
ln P (Section 3.5 ), indicating that MOND provides a much poorer fit 
to the data. 

Gravity law 

Parameter Newton MOND 

a break (kAU) 5.10 5.30 
β −2.66 −2.70 
γ 1.86 1.96 
f CB (%) 69.9 65.7 
k CB ( ‰) 1.07 2.10 
f LOS (%) 1.45 1.49 
αgrav (fixed) 0 1 
ln P −1457.4 −1632.6 
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11 Fig. 3 of BZ18 shows how the eccentricity distribution and the gravity law 

affect the ̃  v distrib ution, b ut here we focus on optimized fits for each gravity 
theory to enable a fairer comparison. 
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The lack of a trend in the median ˜ v is unlikely to be caused by
bservational uncertainties, which would generally lead to a larger ̃v 
ncertainty at high r sky due to the lower Newtonian v c [equation ( 3 )].
his would if anything create the appearance of a MOND-like signal 

n actually Newtonian data rather than precisely cancel out a genuine 
OND signal (cf. Section 5.2 ). Moreo v er, the ̃  v uncertainties in our
B sample are very small (Fig. 4 ). 
Although our results fa v our the Newtonian model, the distribution

f ˜ v contains much more information than just its median value. 
efore drawing strong conclusions about the gravity law, we try to 
xploit this information using a forward model that considers the 
ost rele v ant factors (Section 3 ). We no w turn to the results of a

omparison between this model and the WB data set. 

.1 Gradient ascent with a fixed gravity law 

o check if Newtonian gravity indeed provides a better fit to the data
han MOND, we fix the gravity law to Newtonian ( αgrav = 0) and
un a gradient ascent in the remaining model parameters to try and
aximise ln P (Fletcher & Powell 1963 ). The gradient ascent usually

akes about 100 iterations to converge. To further improve the fit, we
upplement this by running a ‘line ascent’ where ln P is maximized
ith respect to each parameter while holding all the other parameters 
xed. We then repeat this extended version of gradient ascent for
OND ( αgrav = 1). The parameters of the best-fitting models are 

hown in Table 2 , whose last line shows the corresponding ln P . This
s much lower in the MOND case, with  ln P = 175. This can be
hought of as equi v alent to a statistical significance of 
√ 

2  ln P 

tandard deviations for a single Gaussian variable, implying that the 
BT prefers Newtonian gravity o v er MOND at 19 σ confidence. The

igh significance is in line with earlier forecasts that a few thousand
ystems should be more than sufficient for the WBT (see the blue
urves in fig. 5 of BZ18 ). 

Our result broadly agrees with that of PS23 if we consider
heir Newtonian and MOND models with a thermal eccentricity 
istribution ( γ = 1), which is the closest distribution they consider
o the slightly superthermal distribution preferred by our fits. Their 
nalysis gives a difference in χ2 between the best Newtonian and 
OND models of 525, implying that Newtonian gravity is preferred 

 v er MOND at a significance of 
√ 

525 σ or about 23 σ . We expect
hat the actual significance would be somewhat lower because further 
xploration of the parameter space should impro v e the fit, with
OND benefitting far more due to its 2.6 × higher χ2 . Even so,

t is clear that the WBT fa v ours Newtonian gravity o v er MOND at
5 σ confidence. We will see later that this conclusion holds up in our
ore thorough exploration of the parameter space. Other attempts at 

he WBT are discussed in Section 5.2 . 
To better understand why the Newtonian fit to the WB data set

s much better than the MOND fit, we use Fig. 12 to plot the
  distribution in four different r sky ranges, normalized using the 
bserved number of systems in each r sky range. The error bars show
inomial uncertainties in the model predictions. The top left panel 
as little direct sensitivity to the gravity law because of the low
 sky , but there is an indirect dependence because the best model
arameters differ depending on the gravity law. The lower f CB in the
est MOND fit (solid blue line) causes the ˜ v distribution to peak
arlier at a much higher amplitude and then drop off more rapidly
fter the peak compared to the best Newtonian fit (solid black line).
his causes MOND to severely disagree with the data, which may
eem surprising as MOND is not directly expected to be very rele v ant
t such low r sky . The disagreement must arise because of a tradeoff
hen simultaneously fitting the data o v er a wide r sky range, so we

urn to the situation at wider separations. As the gravity law gradually
ecomes more important, the predicted mode to the Milgromian ṽ 
istribution ev entually ‘o v ertakes’ the Newtonian prediction. 11 The 
ewtonian and MOND distributions become almost identical at r sky 

 3–5 kAU (top right panel). The Newtonian model performs slightly
etter around the peak of the distribution because it predicts an earlier
MNRAS 527, 4573–4615 (2024) 
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Figure 12. Comparison between the observed ̃  v distribution in four dif ferent r sky ranges (dif ferent panels) with the prediction of our best Newtonian and 
Milgromian model (black and blue lines with error bars, respectively). Results with Newtonian (Milgromian) gravity are offset very slightly to the right (left) 
from the centre of each ̃  v bin for clarity in case the predictions are similar. Uncertainties are calculated using binomial statistics. The results shown here are 
normalized based on the observed WB distribution, so the simulated curves in each panel need not have an integral of 1. 
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nd higher peak despite the higher f CB , highlighting that the gravity
aw is now one of the dominant factors. This remains true at larger
eparations, where MOND al w ays predicts a later peak to the ṽ 
istribution. For r sky = 5 − 12 kAU (bottom left panel), MOND
erforms somewhat better in a handful of pixels around the peak
e gion, though giv en the uncertainties, the Newtonian model is not
hat far off. The rapid decline after the peak and the very low number
ounts at ˜ v = 1 − 1 . 5 work better in the Newtonian model. The
ituation is similar for r sky = 12 − 30 kAU (bottom right panel),
here MOND again fits slightly better before the peak in the ṽ 
istribution. The uncertainties are now discernibly larger due to the
maller proportion of the total WB sample expected (and observed) to
e in this range compared to the other r sky ranges mentioned abo v e. 12 

ven so, the peak position is better reproduced in Newtonian gravity,
hich also provides a somewhat better match to the sharp observed
ecline afterwards o v er the range 0.5 − 1.5 and the consequent rather
ow number counts o v er the range 1 − 1.5. This range was expected
o be critical for the WBT (section 5 of BZ18 ) and is also a region
here the model predictions depend almost entirely on the gravity

aw, which is obviously not the case near the peak of the distribution
here other factors are also rele v ant (see their fig. 3). Both models
rovide a very good fit to the almost flat ̃  v distribution over the range
.5–5, nicely demonstrating a balance between a declining trend
NRAS 527, 4573–4615 (2024) 

2 Binomial uncertainties in the model prediction for each pixel do not depend 
n how many WBs are observed in it. 

w  

s  

t  

t  
rom the extended CB tail and a rising trend from LOS contamination
equation ( 27 )]. The rapid observed decline just beyond the peak of
he ̃  v distribution when r sky � 3 kAU presumably forces the MOND
t to use a lower f CB , but this also causes the MOND model to provide
 worse fit to precisely this range of ̃  v at very low r sky , as shown in the
op left panel. Indeed, the combination of a too-rapid decline after
he main peak at very low r sky with a too-gradual decline at high r sky 

s just what we would expect of an optimized Milgromian fit if the
redicted change to the shape of the ̃  v distribution does not occur in
he real data, as strongly suggested by Fig. 11 . 

It is of course inevitable that Newtonian gravity would fit better
n some pixels and MOND in others, so it is important to consider
he o v erall goodness of fit [equation ( 29 )]. To better pinpoint which
egions of parameter space contribute to the much lower likelihood
n MOND, we find the difference in ln P between the best-fitting
ewtonian and MOND models for each pixel and sum the results

cross one of the dimensions. Fig. 13 shows the sum of the so-
btained  ln P pixel values for all ˜ v pixels at fixed r sky (left-hand
anel) and vice versa (right-hand panel). The left-hand panel shows
hat all r sky pixels below 12 kAU show a preference for Newtonian
ravity, which is sometimes very strongly preferred. In particular,
he range r sky = 5–12 kAU provides the bulk of the evidence in
a v our of Newtonian gravity, even though we saw earlier that MOND
orks slightly better around the peak of the ˜ v distribution at these

eparations. Beyond 12 kAU, 4/6 of the r sky pixels prefer MOND, but
he preference is very weak in all cases. The right-hand panel shows
hat nearly all ˜ v pixels prefer Newtonian gravity. The handful of ṽ 
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Figure 13. The difference in log-likelihood between our best Newtonian and Milgromian models, shown here after summing across all pixels in ̃  v at each r sky 

(left-hand panel) and vice versa (right-hand panel). Blue bars indicate that MOND works better. Most bars are red, indicating a better fit in Newtonian gravity. 
Overall, ln P is higher in the Newtonian model by  ln P = 175.2, which suggests a preference for Newtonian gravity o v er MOND by 

√ 

2  ln P standard 
deviations, i.e. at 18.7 σ confidence. We use Fig. C1 to show a pix el-by-pix el comparison between the log-likelihoods returned by each model. 
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ixels which prefer MOND appear to be randomly distributed. The 
ild preference for MOND at very high ̃  v could be driven by a deficit

f WBs here at very low r sky due to our sample selection imposing
hat v sky < 3 km s −1 (Section 2.1 ). At our lowest considered r sky of
 kAU and assuming M = M 	, this limit corresponds to ˜ v < 4 . 5,
hich would cause only a very mild edge effect considering the very

ow number of WBs that we might reasonably expect in the affected
ixels. This issue is further mitigated in a revised analysis where we
se a narrower range of M (Section 5.1.1 ). We use Fig. C1 to present
he 2D version of the results shown here, with a colour scheme used
o show all the  ln P pixel values and small white circles to highlight
ixels which work better in MOND, as sometimes occurs to a very
imited extent. 

.2 Markov Chain Monte Carlo (MCMC) analysis 

ur main results are based on running an MCMC analysis starting
rom the optimal parameters identified by gradient ascent, which 
e start at αgrav = 1/2 to a v oid biasing the results in fa v our
f either gravity theory we are testing. 13 MCMC is a standard 
tatistical method that generates a sequence of parameter values 
hose frequency distribution matches the posterior inference on the 
odel parameters. Starting from some initial guess for the parameters 
ith likelihood P , the protocol calls for generating a proposal by

dding Gaussian random perturbations to the parameters. The revised 
arameters lead to a model with likelihood P next . We follow the
etropolis-Hastings approach to MCMC in which the proposal is 

ccepted if P next > P , but if not, then it is accepted with a likelihood
f only P next / P by using a random number generator. Every time the
roposal is accepted, the parameter perturbations are applied and P 

s updated. When the proposal is rejected, the previous parameters 
ust be recorded again. For best results, the acceptance fraction 

hould be close to 23.4 per cent (Gelman, Gilks & Roberts 1997 ).
e ensure it is al w ays in the range 21 per cent − 26 per cent , which

hould ensure a well-mixed chain. This is achieved by setting the 
3 Using gradient ascent to initialize an MCMC analysis w ork ed well in 
sencio et al. ( 2022 ), though here we supplement the gradient ascent with 
 line ascent stage where only one parameter is varied at a time, with the 
ravity law being the last parameter to be optimized prior to the MCMC due 
o its importance. 

t  

m
i

1

t

erturbation on each parameter to have a Gaussian dispersion similar 
o the estimated uncertainty, which we guess using our gradient 
scent algorithm based on the curvature of ln P with respect to that
arameter in the supplementary stage when all the other parameters 
re fixed (Section 4.1 ). We then ran a reduced length MCMC chain
o estimate the parameter uncertainties more precisely and set the 
aussian dispersion of each parameter to its estimated uncertainty 

caled by a common factor close to 2/3. This factor cannot be varied
nside an MCMC chain, so we ran a few reduced length chains to find
ut that this is the appropriate factor to use in our nominal analysis
slightly different factors were needed in the variations discussed in 
ection 5.1 ). 14 All the MCMC analyses presented in this contribution
se 10 5 trials. 
Fig. 14 shows the result of our MCMC analysis as a ‘triangle plot’

Bocquet & Carter 2016 ), with the result for our nominal assumptions
hown in red in all such plots. This assumes a uniform prior on
he eccentricity index γ [equation ( 17 )] o v er the range 0 − 4. The
lue lines show the results assuming instead a Gaussian prior of γ
 1.32 ± 0.09 (Hwang, Ting & Zakamska 2022 ). The top panel

n each column shows the inference on just one model parameter
arginalized o v er all others. The other panels show the inference

n every pair of parameters, which clarifies whether there are any
orrelations in the uncertainties. There are only two noticeable 
ases of correlated errors, both of which are anti-correlations. The 
rst of these is between the parameters go v erning the semi-major
xis distribution of the WBs [equation ( 16 )]. This is similar to the
orrelation that can arise between the slope and intercept of a linear
egression if the data are clustered about a point offset from the
rigin (a similar correlation is evident between the parameters r core 

nd Slope P r in fig. 10 of Asencio et al. 2022 ). The other correlation
vident from Fig. 14 is between f CB and k CB , which are the only
wo parameters that relate solely to the CB population. Reducing 
 CB causes the CBs to orbit faster and have a larger impact on ˜ v ,
preading out the CB tail o v er a larger range in ̃  v and thus reducing
ts amplitude. To match the observed amplitude of the extended tail
o the ̃  v distribution in the regime where neither genuine WB orbital
otion nor LOS contamination should be significant, the algorithm 

s forced to increase the pre v alence of CB companions. 
MNRAS 527, 4573–4615 (2024) 

4 An alternative approach is to let the factor vary dynamically and then use 
he optimal value in a full length chain. 



4594 I. Banik et al. 

M

Figure 14. Triangle plot showing the posterior inference on each model parameter (top panels in each column) and the 68 per cent confidence region for every 
parameter pair (other panels). The red lines show our nominal analysis with a wide uninformative prior on γ [equation ( 17 )], while the blue lines impose a 
prior of γ = 1.32 ± 0.09 based on the angle between the sky-projected separation and relative velocity of each WB (Hwang, Ting & Zakamska 2022 ). Notice 
how this constraint has little effect on the other model parameters, including especially the gravity law, which is clearly Newtonian (bottom right panel). All the 
triangle plots in this contribution were prepared using PYGTC (Bocquet & Carter 2016 ) and show the nominal analysis with solid red lines. 
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Applying a restrictive prior on γ has barely any effect on the
ther parameter inferences, though of course the inference on γ is
onsiderably tighter in this case. We see that in our nominal analysis
here γ is allowed to vary freely, it prefers a somewhat higher
alue than 1.32. This could indicate that the WB orbital eccentricity
istribution is more super-thermal than reported by Hwang, Ting &
akamska ( 2022 ). We argued previously that this is quite possible
iven that CB and LOS contamination were not considered in their
nalysis but would tend to drive the distribution of the angle ψ 

owards uniform, which is the expected angular distribution if γ =
. 
NRAS 527, 4573–4615 (2024) 
The preferred values of the parameters related to the WB semi-
ajor axis distribution ( a break and β) are roughly in line with the

esults of Andrews, Chanam ́e & Ag ̈ueros ( 2017 ), with the steeper
ecline at high a likely due to our quality cuts selecting against large
eparation WBs where it can be harder to get tight constraints on ̃  v .
he occurrence rate of CBs (related to the parameter f CB ) is slightly
igher than the 50 per cent estimated by Clarke ( 2020 ). Ho we ver,
tars do appear to have binary companions quite frequently, with
bservations indicating a fraction exceeding 40 per cent (Hartman,
 ́epine & Medan 2022 ) and usually only placing a lower limit
ecause the observations are only sensitive to some range of orbital
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Table 3. The posterior inference on each of our model parameters, showing its mode and 1 σ confidence interval. We provide a reference to the equation or 
section where the model parameter is defined. The first row with values shows the uniform prior on each parameter for our nominal analysis. Each subsequent 
ro w sho ws the result of an MCMC analysis, beginning with the nominal assumptions. Revised analyses are discussed further in Section 5.1 . The last column 
shows the model with the highest likelihood for each set of assumptions, considering both the MCMC chain and the final result of the gradient ascent used to 
initialize it. 

Altered Model parameter Best 
assumption a break (kAU) β γ f CB (%) k CB ( ‰) f LOS (%) αgrav ln P 

Definition equation ( 16 ) equation ( 16 ) equation ( 17 ) Section 3.2.4 Section 3.2.3 Section 3.3 Section 3.1.3 Section 3.5 
Prior (1, 15) ( − 15, −1) (0, 4) (0, 99) (1, 750) (0, 60) ( − 2, 3.6) −
Nominal 5 . 61 + 0 . 33 

−0 . 42 −2 . 84 + 0 . 09 
−0 . 12 2 . 04 + 0 . 27 

−0 . 19 62 . 81 + 1 . 05 
−1 . 20 2 . 52 + 0 . 32 

−0 . 27 1 . 94 + 0 . 29 
−0 . 27 −0 . 021 + 0 . 065 

−0 . 045 −1438.98 

γ = 1.32 ± 0.09 5 . 64 + 0 . 42 
−0 . 32 −2 . 84 + 0 . 09 

−0 . 13 1 . 47 + 0 . 08 
−0 . 07 62 . 54 + 1 . 06 

−1 . 12 2 . 37 + 0 . 37 
−0 . 20 1 . 99 + 0 . 26 

−0 . 31 0 . 024 + 0 . 042 
−0 . 054 −1445.58 

M = (1 − 2) M 	 5 . 78 + 0 . 47 
−0 . 32 −3 . 07 + 0 . 13 

−0 . 14 1 . 86 + 0 . 30 
−0 . 18 63 . 52 + 1 . 01 

−1 . 45 2 . 43 + 0 . 26 
−0 . 32 1 . 75 + 0 . 35 

−0 . 31 −0 . 038 + 0 . 076 
−0 . 052 −1329.82 

M � > 0 . 5 M 	 7 . 13 + 0 . 92 
−0 . 79 −2 . 63 + 0 . 14 

−0 . 24 1 . 49 + 0 . 36 
−0 . 09 61 . 82 + 1 . 25 

−1 . 27 3 . 93 + 0 . 62 
−0 . 55 1 . 82 + 0 . 49 

−0 . 33 −0 . 177 + 0 . 064 
−0 . 081 −1263.68 

Flat q for CBs 5 . 53 + 0 . 37 
−0 . 39 −2 . 84 + 0 . 11 

−0 . 12 2 . 15 + 0 . 25 
−0 . 25 62 . 94 + 0 . 98 

−0 . 99 2 . 43 + 0 . 28 
−0 . 29 2 . 00 + 0 . 29 

−0 . 30 −0 . 033 + 0 . 074 
−0 . 056 −1441.28 

Linear q for CBs 5 . 66 + 0 . 28 
−0 . 47 −2 . 88 + 0 . 13 

−0 . 07 2 . 06 + 0 . 24 
−0 . 21 62 . 78 + 1 . 07 

−1 . 10 2 . 47 + 0 . 27 
−0 . 32 1 . 99 + 0 . 22 

−0 . 37 −0 . 006 + 0 . 057 
−0 . 056 −1441.18 

k CB = 0.2 3 . 84 + 0 . 22 
−0 . 30 −2 . 73 + 0 . 07 

−0 . 09 4 . 00 + 0 . 00 
−0 . 14 67 . 08 + 1 . 52 

−1 . 62 200 9 . 38 + 0 . 48 
−0 . 36 −0 . 271 + 0 . 071 

−0 . 090 −1994.27 

Tri 1.5 dex 5 . 51 + 0 . 37 
−0 . 37 −2 . 83 + 0 . 07 

−0 . 12 2 . 12 + 0 . 24 
−0 . 20 59 . 51 + 1 . 34 

−1 . 21 3 . 40 + 0 . 45 
−0 . 52 1 . 94 + 0 . 32 

−0 . 28 −0 . 016 + 0 . 049 
−0 . 061 −1434.16 

Flat 1 dex 5 . 60 + 0 . 37 
−0 . 35 −2 . 87 + 0 . 11 

−0 . 10 1 . 99 + 0 . 19 
−0 . 24 56 . 51 + 1 . 17 

−1 . 01 2 . 05 + 0 . 26 
−0 . 18 1 . 95 + 0 . 30 

−0 . 28 0 . 017 + 0 . 041 
−0 . 066 −1443.14 

f CB = 0.3 5 . 65 + 0 . 27 
−0 . 38 −2 . 97 + 0 . 09 

−0 . 13 1 . 05 + 0 . 09 
−0 . 14 30 18 . 7 + 1 . 8 −0 . 9 7 . 33 + 0 . 47 

−0 . 31 0 . 149 + 0 . 035 
−0 . 048 −1852.05 
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arameters (Riddle et al. 2015 ). After correcting for incompleteness, 
g. 1 of Offner et al. ( 2023 ) suggests that a reasonable f CB for our
ample might be 50 per cent if most CB companions are not identified
n our faint star catalogue (Section 2.1 ) or through our cut on the
arameter ip d f rac multi p eak (Section 2.4.3 ). We will see later 
hat we can reduce our inferred f CB from our nominal 63 ± 1 per cent
o about this much with some slight changes to the CB model
hat have little impact on the other parameters (Section 5.1.3 ). The
nferred k CB of 2.5 ± 0.3 ‰ is very much in line with our estimate
ased on the various selection effects at play (Section 3.2.3 ), even
hough our prior merely imposed that k CB = 1 − 750 ‰. Only a few
ercent of the WBs in our sample appear to be LOS contamination,
hich was to be expected from the WB distribution shown in Fig.
 − though it is also clear that we cannot adequately fit the data
ithout this ingredient. 
Since the non-gravitational parameters seem broadly in line with 

hat one might expect, we now turn to the inferred gravity law. This is
ery consistent with Newtonian ( αgrav = 0) and completely rules out 
OND ( αgrav = 1). A clear Newtonian result is not surprising in light

f the model-independent Fig. 11 , our discussion in Section 4.1 , and
he results of PS23 using a somewhat different data set and model for
he WB population (comparisons with their study and other attempts 
t the WBT are discussed in Section 5.2 ). 

Our prior for each model parameter is shown in Table 3 along
ith the mode and 1 σ confidence region of its posterior inference 

n all of our MCMC analyses (different rows). The alterations to 
he modelling assumptions are discussed in Section 5.1 . The last
olumn shows the log-likelihood of the model where this is maximal, 
onsidering both the final result of the gradient ascent and the whole
CMC chain. Only the analysis with f CB fixed at a rather low

alue prefers αgrav > 0 at any reasonable significance. However, 
his model has an extremely low log-likelihood compared to our 
ominal assumptions, suggesting a 29 σ preference for the latter 
the v ery sev ere problems with this model are discussed further in
ppendix D ). Thus, it is not realistically possible for the WBT to give
 Milgromian result. We explain later why constraints from galaxy 
otation curves preclude altering the MOND interpolating function 
o as to e v ade our constraint from the WBT (Section 5.3 ). 
i  
 DI SCUSSI ON  

ince the main goal of this contribution is to distinguish Newtonian
ravity from MOND, our a priori expectation was that αgrav should 
e 0 or 1. Our results strongly prefer 0. If local WBs are actually
ilgromian, there would have to be a confluence of observational 

rrors and modelling deficiencies that shift αgrav from a true value 
f ≈1 down to almost exactly 0. Measurement errors on ̃  v are very
mall in our WB sample (Fig. 4 ) compared to the intrinsic dispersion
f ≈0.5 (Fig. 12 ). Moreo v er, uncertainties would tend to broaden the
istribution, with the broadening occurring preferentially at high r sky 

ecause the same velocity uncertainty in m s −1 translates into a larger
ncertainty in ˜ v [equation ( 3 )]. Thus, measurement errors would 
f anything cause a Newtonian WB population to look somewhat 

ilgromian. This is the opposite of what it would take to reconcile
ur results with MOND. 
The impact of modelling deficiencies is harder to assess, but PS23

mplemented the WBT with a somewhat different sample selection 
nd model for the WB population. Those authors considered WBs 
ith r sky = 5–20 kAU rather than our adopted range of 2–30 kAU,

eading to a smaller proportion of systems deep into the Newtonian
egime. To get a better handle on the CB properties, they considered
ystems with ̃  v < 7 rather than ̃  v < 5. In addition, they used a linear
ass-luminosity relation rather than our cubic fit o v er the range most

ele v ant to the WBT (Fig. 1 ). Despite these and other differences,
hey also found a very strong preference for Newtonian gravity over

OND, with the Newtonian model fitting the observed number 
ounts rather well (fig. 12 of PS23 ). Their analysis with a thermal
ccentricity distribution ( γ = 1) provides the best fit in both gravity
heories and is also closest to the somewhat superthermal distribution 
referred by our fits. It also better matches the distribution of the
ngle between the sky-projected separation and relative velocity of 
ach WB (Hwang, Ting & Zakamska 2022 ). For the case γ = 1, the
nalysis of PS23 prefers Newtonian gravity o v er MOND at about
3 σ confidence. This is similar to our result in Section 4.1 that the
est Newtonian model is preferred o v er the best MOND model at
9 σ confidence. 
An important reason for the similar results is that the gravity law

s mostly sensitive to the main peak region of the ̃  v distribution, so
MNRAS 527, 4573–4615 (2024) 
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Figure 15. The median ̃  v for an ensemble of Keplerian orbits with a range 
of eccentricities viewed from a random viewing angle at a random orbital 
phase (red line). The eccentricity distribution is go v erned by γ [equation 
( 17 )]. The horizontal solid blue line shows the result when γ = 1. To mask a 
MOND signal, the median ̃  v would need to be reduced by a factor of 

√ 

η to 
the level shown by the horizontal dashed blue line. The vertical grey shaded 
band shows γ = 1.32 ± 0.09 based on observations of WBs with separations 
similar to those we use for the WBT (Section 3.1.2 ; see also Hwang, Ting & 

Zakamska 2022 ). The horizontal grey shaded band shows the median ̃  v of the 
WB population, with the range giving the uncertainty arising from whether 
we truncate the ̃  v distribution at 1.5, 2, or 2.5 when finding the median. The 
WBs are not further binned in r sky /r M as this has little impact on the median 
˜ v (Fig. 11 ). 
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t is not necessary to have a very accurate model for the extended
ail at ̃  v � 2. This does not of course mean that we can completely
eglect CB and LOS contamination, but it does mean that the manner
n which these effects are included should have little effect on the
nferred gravity la w. Ev en differences in the eccentricity distribution
ave a less significant effect on the o v erall ̃  v distribution than whether
ravity is Newtonian or Milgromian (see fig. 3 of BZ18 ). This is also
vident in Fig. 14 , which shows that forcing γ to a lower value than
referred in our nominal analysis only marginally affects the inferred
grav and its uncertainty. There is almost no correlation between these
arameters in their joint inference. 
We have assumed that γ is independent of other parameters like

he WB semi-major axis. A correlation here can masquerade as a
orrelation with the WB orbital acceleration because g 

N 
depends

ore sensitively on the separation than it does on M and the dynamic
ange in r sky is larger than in the mass. It is possible that WBs
ith smaller separations mostly formed together, while more widely

eparated WBs formed via capture of field stars. This could lead to
Bs with larger a being on typically more eccentric orbits [higher
in equation ( 17 )], which would reduce the median ̃  v because the
B would spend more time near apocentre (see fig. 3 of BZ18 ). In

rinciple, this could counteract the MOND prediction that WBs in the
symptotic regime have enhanced ̃  v due to the predicted enhancement
o the gravity binding the WB. Ho we ver, it seems unlikely that the
ancellation would be sufficiently precise to yield the observed very
at trend of the median ̃  v with respect to r sky /r M (Fig. 11 ). 
To further explore this quite contrived possibility, we compute

he ˜ v distribution for a grid of Keplerian orbits with different
ccentricities. For each orbit, we consider all possible orbital phases
nd viewing angles. 15 We then assume some eccentricity distribution
o v erned by the parameter γ [equation ( 17 )]. The median of the
esulting ̃  v distribution depends on the assumed γ , as shown by the
ed line on Fig. 15 . We add a horizontal solid blue line showing
he median ˜ v of 0.64 when γ = 1. Bearing in mind that γ affects
he distribution of the angle ψ between r rel and v rel , this is the
owest plausible γ for Newtonian WBs with separations of only a
ew kAU (see fig. 7 of Hwang, Ting & Zakamska 2022 ). Since lower

corresponds to a higher median ̃  v , 0.64 is a conserv ati ve upper limit
o the median ̃  v of our Newtonian WBs. This is also evident from the
orizontal grey band showing the median ˜ v of the WB population,
hich is not that high (see also Fig. 11 ). To mask a MOND signal,
Bs in the asymptotic regime would need to have a median ṽ 
hich is smaller by a factor of 

√ 

η due solely to changes in the
ccentricity distribution. We illustrate this with a dashed blue line at
 . 64 / 

√ 

η = 0 . 53. It is not possible to reach such a low median ̃  v even
f γ = 4, which would significantly affect the observed distribution
f ψ (see fig. 2 of Hwang, Ting & Zakamska 2022 ). Using this
onstraint, their fig. 7 shows that there is no tendency for WBs at
arger separations to prefer systematically higher γ (the last three
ins are most rele v ant for the WBT). Their fig. 10 also shows that
or a slightly superthermal eccentricity distribution ( γ slightly abo v e
), their method of determining γ would preferentially o v erestimate
t at large separations, making it even less likely that γ � 1 in
his re gime. Moreo v er, the actual distribution of ψ in their fig. 6
ppears fairly symmetric with respect to ψ → π − ψ for WBs with
 sky > 1 kAU, providing an important sanity check. The observed
pproximate symmetry between systems heading towards and away
rom each other makes it unlikely that our results are contaminated
NRAS 527, 4573–4615 (2024) 

5 The computational costs are reduced by only considering the period 
etween pericentre and apocentre. 
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t  
uch by recently ionized WBs that are currently dispersing. This
s not too surprising given that unbound systems are expected to
isperse quickly and that disruptive encounters with perturbers like
assing stars would be rather infrequent (see section 8.1 of BZ18 ). It
s therefore extremely unlikely that a rapidly rising trend in γ with a
an explain the very clear Newtonian result obtained by our analysis
nd that of PS23 . 

Another possible systematic effect is that WBs with larger separa-
ions could preferentially be younger because they are more fragile
o disruption, which could systematically affect the mass-luminosity
elation. Ho we ver, it has been estimated that the half-life t 1/2 of a

B in the Solar neighbourhood is comparable to the 10 Gyr age
f the Galactic disc (Knox, Hawkins & Hambly 1999 ) only when a
 31 kAU (equation 1 of Jiang & Tremaine 2010 ). Survi v al rates

f WBs would be reduced modestly in MOND because although
heir binding energy is enhanced by the gravity boost factor η, the
mpulse from a passing star is also enhanced by the same factor, so
he energy gained per interaction would be enhanced by a factor of
2 if we treat impulses from different sources as contributing to a
if fusi ve random walk (heating rates from impulsive encounters in
OND are discussed e xtensiv ely in section 3.3.2 of Asencio et al.

022 ). This would reduce t 1/2 by a factor of η, but since t 1/2 ∝ a −2 

equation 4 of Bahcall, Hut & Tremaine 1985 ), we can maintain the
alue of t 1/2 by reducing a . This would entail reducing the abo v e
stimate of 31 kAU by a factor of 

√ 

η, which would reduce it to
6 kAU. Even taking this into account, there should only be a mild
endency for WBs to preferentially be younger at larger separations
hen r sky < 10 kAU, which is the range that mostly contributes

o the WBT preferring Newtonian gravity o v er MOND (left-hand
anel of Fig. 13 ). WBs in the Solar neighbourhood must be fairly
obust given the large number identified within 250 pc ( PS23 ) and
he larger number within 1 kpc (El-Badry, Rix & Heintz 2021 ). In
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act, the nearest star to the Sun is in a WB (Kerv ella, Th ́ev enin &
ovis 2017 ), with Monte Carlo simulations of this system indicating 
 74 per cent survi v al probability o v er 5 Gyr (Feng & Jones 2018 ). 

Even if there is some correlation between the separation of a 
B and the ages of its stars, it is unclear how that would influence

he estimated mass. Main sequence stars increase their brightness 
 v er time as their cores become denser and hotter due to the
usion of hydrogen into helium, so younger stars would tend to 
e less luminous (Hejlesen 1980 ). This would cause their mass to
e underestimated and their ̃  v to be o v erestimated [equation ( 3 )]. If
his occurs more commonly at large separations, it would enhance 
ather than hide a MOND signal in the data. Ho we ver, stars that are
ot yet on the main sequence become fainter as they settle onto it, so
ounger stars would be brighter at this evolutionary stage (Hayashi 
961 ; Hayashi & Hoshi 1961 ). Depending on the time required to
ettle onto the main sequence, it could be that the effect is important
t the low mass end, though we note that most of the stars in our WB
ample have M � > 0 . 3 M 	 (blue bars in Fig. 5 ). We further mitigate
his issue by explicitly considering the impact of removing all WBs
here either star has M � < 0 . 5 M 	 (Section 5.1.1 ). 
We estimate the mass of each star from its apparent G -band magni-

ude and trigonometric parallax. While these should both be reliable, 
e also need to assume a relation between the absolute G -band
agnitude and mass. For this, we fit a polynomial which is easily

nv erted, thereby smoothing o v er small-scale features (Section 2.2 ).
ne such feature is the Jao gap (Jao et al. 2018 ), which arises because

tars with M � � 0 . 35 M 	 have fully convective cores (Chabrier &
araffe 2000 ). This leads to an unstable range of luminosities marked
y the conv ectiv e kissing instability (Mansfield & Kroupa 2021 ).
o we ver, the gap has a width of only 0.05 magnitudes (section 2
f Jao et al. 2018 ). This has a discernible impact on the luminosity
unction of stars (fig. 17 of Gaia Collaboration 2021a ), but the impact
n the mass–luminosity relation is very small because 0.05 mag 
orresponds to only a 1 per cent difference in mass [equation ( 7 )] and
hus a 0.5 per cent difference in ̃  v [equation ( 3 )]. A more significant
ssue might be the broad hump evident in the mass–luminosity 
elation at M � ≈ 0 . 5 M 	 (Kroupa, Tout & Gilmore 1993 ; Reid, Gizis
 Ha wle y 2002 ), which is probably the same feature evident at M G 

10 in fig. 16 of Gaia Collaboration ( 2021a ). While the mass-
uminosity relation here is important to our analysis (blue bars in Fig.
 ), a smooth polynomial fit to the V -band mass-luminosity relation
nly deviates from the data points by a few tenths of a magnitude
fig. 11 of Reid, Gizis & Ha wle y 2002 ). With accurate data, gaps
n the mass–luminosity relation or sharp changes in its gradient can 
ead to sharp features in the distribution of absolute magnitudes (as
ith the Jao gap), but the steep mass–luminosity relation mitigates 

he impact on the estimated M � . Moreo v er, a polynomial fit to the
ass–luminosity relation should not deviate systematically from the 

ctual relation: if the fit o v erestimates the mass at some M G , then it
hould underestimate the mass at a slightly different M G . In any case,
uch modest deviations from our multipart polynomial fit should be 
uch less substantial than the difference between the cubic fit we 

se o v er most of the rele v ant range and the linear fit adopted by
S23 in their equation 3. Since there is a very strong preference
or Newtonian gravity o v er MOND in both studies and these even
ive a similar statistical significance (Section 4.1 ), it is unlikely 
hat this preference is caused by issues with the assumed mass-
uminosity relation, which moreo v er is calibrated with spectroscopic 

ass estimates from FLAME (Section 2.3.3 ). 
Another important aspect of the WBT is the presence of undetected 

B companions, which broaden the tail of the ̃  v distribution (Fig. 10 ).
e have assumed that every star in our WB sample is equally likely
o have such a companion. Ho we ver, it is possible that f CB depends
n properties of the star and even its WB companion. For this to
ffect the WBT, f CB would need to depend on the WB acceleration,
hich mostly depends on its separation. Counteracting the effect 
f MOND would require more widely separated WBs to have a
maller f CB , which could hold down the median ̃  v in the main peak
egion and hide the MOND signal. This seems unlikely because the
Bs rele v ant to our analysis have a much smaller separation than

he WB (Section 3.2.3 ), something that is also clear from the fact
hat our inferred k CB � 1. We would therefore expect f CB to not
epend very much on the separation of the WB (as also suggested
y spectroscopic searches for binaries; Tokovinin & Smekhov 2002 ; 
okovinin, Hartung & Hayward 2010 ). 
To test this expectation, we need a proxy for f CB . We develop one

ased on the fact that CBs affect the tail of the ̃  v distribution. Even
n MOND gravity, we expect WBs to very rarely have ̃  v > 1 . 5 in the
bsence of contaminating effects (Fig. 10 ). This motivates us to use
he proportion of WBs with higher ̃  v as a measure of contamination.

hile this arises from both CBs and chance alignments, Fig. 6 shows
hat the latter is not very important if we restrict to ˜ v � 2 . 5. This
s because LOS contamination becomes more important at high ṽ 
equation ( 27 )], opposite the situation for CB contamination ( PS19 ).

e therefore argue that the incidence of CBs can be gauged by
nding the likelihood P tail that a WB with ̃  v < 2 . 5 also has ̃  v > 1 . 5. 

 tail ≡ P 

(˜ v > 1 . 5 
∣∣ ˜ v < 2 . 5 

)
. (30) 

hile P tail cannot be equated with f CB , a higher incidence of CBs
ould increase P tail , making it a useful proxy for the pre v alence of CB

ontamination. We therefore quantify P tail and its uncertainty using 
inomial statistics. Assuming a uniform prior on P tail , its posterior
istribution is characterized by (equation 32 of Asencio et al. 2022 ): 

mean = 

N > 1 . 5 + 1 

N < 2 . 5 + 2 
, (31) 

standard 
deviation 

= 

1 

N < 2 . 5 + 2 

√ 

( N > 1 . 5 + 1 ) ( N < 2 . 5 − N > 1 . 5 + 1 ) 

N < 2 . 5 + 3 
, 

here N < 2.5 is the number of WBs with ̃  v < 2 . 5, of which N > 1.5 WBs
lso have ˜ v > 1 . 5. If N > 1.5 = N < 2.5 = 0, the posterior distribution
f P tail is uniform o v er the range 0 − 1 and we obtain the expected
esult for its mean and standard deviation. 

To check if P tail depends on the WB separation, we determine P tail 

or the WBs in four r sky intervals (the same as those used in Fig. 12 ).
he result is shown in Fig. 16 . There is no discernible trend in P tail :
 value of 8 per cent can adequately fit all four data points despite
he rather small binomial uncertainties. This makes it very unlikely 
hat our analysis mistakenly prefers Newtonian gravity due to trends 
n the likelihood of a star having a CB companion. 

We test the robustness of our falsification of MOND by varying
ome of our modelling assumptions (Section 5.1 ) and considering 

BT results from other authors (Section 5.2 ). We then consider if
ncertainties in the MOND interpolating function can plausibly allow 

Bs in the asymptotic regime to have orbital velocities that deviate
nly a few percent from the Newtonian prediction, as indicated by
he WBT (Section 5.3 ). We will see that it is not possible to reconcile

OND with the WBT through plausible variations to the modelling 
ssumptions or the interpolating function. We go on to discuss the
roader implications of this result, focusing on whether the WB data
nd the tight observed RAR (Li et al. 2018 ; Desmond 2023 ) can
e explained by further adjustments to MOND or by a completely
ew theory, bearing in mind other astrophysical constraints like Solar 
ystem ephemerides and the RAR in galaxy clusters (Section 5.4 ).
MNRAS 527, 4573–4615 (2024) 
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M

Figure 16. The impact of r sky on P tail [equation ( 30 )], which we argue in the 
text should correlate with the CB fraction and thus serves as a useful proxy 
for the latter. P tail is shown for WBs in the same four r sky bins as those used in 
Fig. 12 . Error bars in P tail show binomial uncertainties [equation ( 31 )], while 
error bars in r sky show the width of each bin. 
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 Newtonian result from the WBT causes severe difficulties for any
heory which approximately reduces to the MOND field equation on
AU scales in the Solar neighbourhood, forcing us to consider if
ome other approach might be necessary. 

.1 Variations to the nominal analysis 

n this section, we vary some of the modelling assumptions in our
ominal analysis. The posterior inferences on the model parameters
re summarized in Table 3 . 

.1.1 Restricted mass range for the WB stars 

ur model assumes that several quantities like the CB contamination
raction f CB are independent of the WB mass M . It could be that some
f these quantities do in fact depend on M . Moreo v er, higher mass
tars are more luminous, allowing us to detect them out to a greater
istance given the requirement that the apparent magnitude m G <

7 (Section 2.1 ). Since the total mass of a WB affects its MOND
adius and thus the predicted enhancement to its Newtonian gravity,
t is possible that our predicted ̃  v distribution in different r sky bins is
omewhat inaccurate due to using the o v erall distribution of M as a
rior in all r sky bins. 
While it is not feasible to use different M distributions in different

 sky bins due to the increased complexity and computational cost, we
an use a narrower mass range to mitigate modelling deficiencies
f this kind. Since this reduces the sample size, we roughly centre
ur restricted mass range on the mode of our WB sample’s mass
istribution (red bars in Fig. 5 ). This leads us to consider only WBs
ith a mass of 1 . 0 − 2 . 0 M 	. Since the impact of CBs depends
n the distribution of M � for the stars in our sample, we need to
ecalculate the CB velocity perturbations with revised  ̃

 M and f pb 

equations 18 and 20 , respectively). We also adjust the distribution
f M used to marginalise our WB orbit library and rerun our analysis
n Appendix A , which now gives P eqm 

= 0.03. The results are shown
n brown in the top left panel of Fig. 17 . The preferred gravity law
NRAS 527, 4573–4615 (2024) 
s no w e ven further from MOND, though it remains very consistent
ith the Newtonian prediction and differs only modestly from our
ominal analysis. Shifts to the other parameter inferences are also
mall. Since the restricted mass range substantially reduces the scope
or changes to the mass distribution across the parameter range used
or the WBT, our results appear to be robust in this respect. 

The WBT relies on having an accurate estimate of M � for every
tar in our WB sample. Our M � estimates are based on the mass-
uminosity relation from Pecaut & Mamajek ( 2013 ), but their accu-
acy has been improved slightly by calibrating against spectroscopic
stimates from the Gaia FLAME package (Section 2.3.3 ). This
alibration is only possible when M � > 0 . 5 M 	 as there is essentially
o data below this. We therefore consider restricting our WB sample
o only those systems where both stars have M � > 0 . 5 M 	, which
educes P eqm 

to 0.01. The results are shown in blue in the top left panel
f Fig. 17 . Apart from a 1.6 × increased k CB which we discuss below,
he most noteworthy change is a reduction in αgrav to slightly ne gativ e
alues, causing almost 3 σ tension with the Newtonian prediction
 αgrav = 0). This shift in the inferred gravity law could indicate that
he higher typical M � of the sample increases the lowest a int that we
eed to consider for the CBs. Our estimate for this in Appendix B
ssumes that the M � distribution easily extends down to 0 . 4 M 	,
hich is correct for our nominal sample (blue bars in Fig. 5 ) but

s no longer true if we require M � > 0 . 5 M 	. A higher mass would
ncrease the separation corresponding to the same orbital period.
ince this does not affect our argument in Section 3.2.3 about the
pper limit to the rele v ant range of a int , the dynamic range of a int 

ight be less than our nominal assumption of 1.5 dex. Keeping
t fixed at 1.5 dex to minimize the changes could then force the
nalysis to raise the upper limit to a int by increasing k CB , which does
ndeed happen (see T able 3 ). W e note that in a different extension
nalysis, reducing the allowed range of a int to 1 dex increases the
nferred αgrav by 0.04 (Section 5.1.3 ). A similar change to the result
f our M � > 0 . 5 M 	 analysis would reduce the discrepancy with
ewtonian gravity to about 2 σ . 

.1.2 The CB mass ratio distribution 

e assume that the CB mass ratio distribution ∝ q 0.4 ( q ≤ 1) based
n Korntreff, Kaczmarek & Pfalzner ( 2012 ). We showed in Fig.
 that this provides a good match to our WB sample, especially
hen bearing in mind that selection effects can make very low q

ystems hard to detect. Since the CBs are undetected, it would also
e reasonable to consider a flat prior on q or a linear prior, both of
hich seem marginally plausible. Considering these revised priors on
 should thus bracket the uncertainty in its distribution. In particular,
 flat distribution roughly approximates the three-part power law
ecommended in fig. 7 of El-Badry et al. ( 2019 ). 

The results of these two revised analyses are shown in the top right
anel of Fig. 17 , with the linear prior shown in blue and the flat prior
ho wn in bro wn. While the actual distribution of q is inevitably more
omplicated than the power-law forms considered in this study, the
osterior inferences of all seven model parameters and the o v erall
oodness of fit barely change in both analysis variants (Table 3 ). Our
esults thus seem robust to what exactly we assume here. 

.1.3 The CB semi-major axis distribution 

he impact of CBs on the WB ˜ v depends on the distribution of
 int , so we consider variations to our assumptions regarding it. We
ould generally expect any CB to become unstable if k CB � 0 . 3

 PS23 ), but our analysis prefers a value of only 2.5 ‰. We argued
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Figure 17. Triangle plot similar to Fig. 14 , but now comparing the nominal analysis (solid red lines in all panels) to revised analyses where the total mass of 
each WB is restricted to the range 1 . 0 − 2 . 0 M 	 or the individual stars in each WB are required to have M � > 0 . 5 M 	 ( top left ; Section 5.1.1 ), the CB mass 
ratio distribution is altered to bracket the uncertainties as illustrated in Fig. 9 ( top right ; Section 5.1.2 ), the maximum semi-major axis of the CBs is fixed at 
20 per cent of the WB semi-major axis ( bottom left ; Section 5.1.3 ), and the logarithm of the CB semi-major axis is assumed to have a triangular distribution of 
width 1.5 dex or a flat distribution of width 1 dex ( bottom right ; Section 5.1.3 ). The posterior inferences on the model parameters in these revised analyses are 
compared with the nominal analysis in Table 3 . 
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hat this is to be expected given the various selection effects at
lay as part of our strategy to minimize CB contamination and 
odel the remaining CBs (Section 3.2.3 ). In particular, the faint star

atalogue (Section 2.1 ) and the use of the Gaia catalogue parameter
p d f rac multi p eak (Section 2.4.3 ) should remo v e CBs based on 
heir outright or marginal detection, respectively. 

Even so, it is worth considering what happens if we fix k CB = 0.2
n equation ( 22 ). The results are shown in the bottom left panel of
ig. 17 , but with the rows and columns for k CB omitted as this is
ow fixed. Compared to our nominal analysis where k CB is a free
arameter, the fits are pushed towards unrealistically high values of 
, contradicting the results of Hwang, Ting & Zakamska ( 2022 ).
his could be due to the much higher k CB reducing the velocity
erturbations from CBs and making it harder to fit the extended
ail to the ̃  v distribution. This problem can be slightly alleviated by
ostulating higher orbital eccentricities, a higher fraction of CBs, and 
 higher fraction of chance-aligned WBs − all of which are evident
rom the posteriors. The inferred f LOS of 9.4 per cent is particularly
igh compared to the 1.9 per cent in our nominal analysis. It is hard
o imagine that the small number of WBs towards the upper right
MNRAS 527, 4573–4615 (2024) 
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f Fig. 6 is consistent with 9 per cent of the full sample of WBs
eing chance alignments, which would be less common at lower ṽ 
equation ( 27 )]. These issues are reflected in the much poorer o v erall
t by a factor of exp (555; last column in Table 3 ). Even if we leave
side these very serious issues, the inferred gravity law is further
rom Milgromian than in our nominal analysis to such an extent that
t is now barely consistent with Newtonian, indicating that a higher
 CB cannot reconcile MOND with the WBT. 

We also expect our results to depend somewhat on the width of the
 int distribution [equation ( 22 )]. We have assumed a flat logarithmic
istribution for simplicity. We might expect the distribution to decline
o zero more gradually at the edges. We therefore also consider a
riangular logarithmic distribution in which the mode occurs at the
entre of the considered range, i.e. 0.75 dex from either end. This
xtension analysis is labelled ‘Tri 1.5 dex’ in Table 3 , where we see
hat the fit impro v es slightly compared to our nominal analysis. The
nly noticeable shift to the parameter inferences is a slight decrease
o f CB and corresponding increase to k CB , roughly parallel to the
irection along which their errors are anti-correlated (bottom right
anel of Fig. 17 ). Importantly, the change to the inferred gravity law
s about 10 × smaller than its uncertainty. 

Our nominal analysis assumes a 1.5 dex width in a int for reasons
iscussed in Section 3.2.3 . To check how much this assumption
ffects our results, we now reduce this to 1 dex while continuing
o assume a flat logarithmic distribution. This extension analysis is
abelled ‘Flat 1 dex’ in Table 3 , where we see that the fit becomes
lightly worse than in our nominal analysis. The only parameter
hift that is much larger than the random uncertainty is a significant
eduction in f CB , which is reduced from 63 per cent to 57 per cent.
espite significantly narrowing the allowed range of a int , there is
nly a modest reduction to the inferred k CB , bolstering our argument
n Section 3.2.3 that it should be about 2.5 ‰. The inferred gravity
aw also barely changes. On the other hand, the reduced incidence
f CBs suggests that it is difficult for our model to reliably estimate
ust how common they actually are. 

This difficulty probably involves CBs with low separations that
ause large ̃  v perturbations, leading to a much broader low amplitude
ail to the ̃  v distribution. Since we only consider WBs with ̃  v < 5, it
s possible that such tight CBs actually matter less for our analysis. In
hat scenario, there would be a de generac y between the frequency of
hese very tight CBs and the overall CB fraction. Roughly speaking,
uppose that we have a CB model where 50 per cent of the CBs
reate such large velocity perturbations that any WB containing such
 subsystem would very likely have ̃  v > 5 and thus be rejected from
ur sample, while the remaining CBs create more palatable velocity
erturbations. If our analysis then needs 30 per cent of the WBs in
ur sample to contain a CB in order to adequately fit the extended
ail at ̃  v � 1 . 5, then we would have to assume that the likelihood of a

B containing a CB is about 46 per cent. This is because half of the
ontaminated systems would exit our sample altogether rather than
ontribute to the extended ̃  v tail, so the proportion of the remaining

Bs which contain a CB would be about 23/(100 − 23) = 0.3.
o we ver, we can envisage a different model in which none of the
Bs are very tight, so any instance of CB contamination is very
nlikely to cause the WB to have ˜ v > 5. In this case, it would be
ossible to make do with a lower o v erall incidence of CBs while
till adequately explaining the extended ˜ v tail. While this would
ne vitably af fect the detailed shape of the distribution, this could
e hard to tell given that our model has other degrees of freedom
elated to the WB population and the extent of LOS contamination.

oreo v er, our moti v ation for truncating the a int distribution at the
ow end is related to the short orbital period (Appendix B ) rather than
NRAS 527, 4573–4615 (2024) 
he velocity perturbations becoming so large that the contaminated
B is likely to exit our sample, an effect that is already included in

ur analysis. It is beyond the scope of our model to directly consider
he astrometric oscillations that must arise with very tight CBs and
ow they would impact ̃  v . These issues might be mitigated in future
aia data releases with a longer baseline, which would increase the
inimum a int that we need to consider and thus reduce the maximum

ossible perturbation to ̃  v . Once this maximum is sufficiently small, it
ill be clear that WBs should remain in our sample despite receiving
elocity perturbations from undetected CBs. This would correspond
o a narrower range of a int and most likely reduce f CB . 

These difficulties could explain why changing from a flat to a
riangular logarithmic distribution of a int reduces f CB by 0.033 and
arrowing the width from 1.5 dex to 1 dex reduces the inferred f CB 

y 0.063. One can envisage that combining these changes would
educe f CB by 0.1 from its nominal value of 0.63. Further fine-
uning of the a int distribution could perhaps reduce f CB to about
.5. It seems unlikely that f CB could be much smaller than this (see
ppendix D ). Even so, it is clear that unlike the inferred gravity law,

he inferred incidence of CB companions is not as robust within its
ormal uncertainty. We therefore suggest that one should not read too
uch into the somewhat high f CB inferred by our analysis. 

.1.4 The frequency of CB companions 

iven that LOS contamination would cause a rising ˜ v distribution
equation ( 27 )] and that ̃  v uncertainties are very small (Fig. 4 ), our
odel must explain the extended declining tail towards high ̃  v (Fig.

2 ) using mostly undetected CBs. This was also suggested by several
ther w ork ers (Section 3.2 ) and expected a priori ( BZ18 ). We argued
reviously that trends in the CB fraction with the WB separation are
nlikely to mask the MOND signal (Fig. 16 ). Ho we ver, this still
eaves open the possibility that f CB could have a dif ferent v alue to the
3 ± 1 per cent inferred by our analysis. Since the properties of the
xtended tail are to some extent degenerate with the inferred gravity
aw, we consider whether we can push this towards MOND by fixing
 CB = 0.3, which is close to half the somewhat high value inferred
y our nominal analysis. The idea is that the model cannot easily fit
he extended tail using CBs, so it might try to do so by changing the
ravity law. 
The results of this e x ercise are shown in Fig. 18 . The inferred

ravity law shifts moderately towards MOND, but it still remains
uch more consistent with the Newtonian prediction, which now

aces just o v er 3 σ tension. Since this reanalysis is the only one to
ubstantially raise the inferred αgrav , we consider this model in more
etail in Appendix D . We argue that since the likelihood of the
est o v erall fit is lower than in our nominal analysis by a factor of
xp (413), there is a 29 σ preference for the latter. We trace this to a
isible failure to match nearly all aspects of the WB data set when
 CB = 0.3 (Fig. D1 ). 

.2 Comparison with prior WBT results 

ur approach to the WBT is very similar to PS23 , who also
onsidered the distribution of 

(
r sky , ̃  v 

)
. Our stellar mass estimates

hould be more reliable because we use a cubic rather than linear
ass-luminosity relation and calibrate the resulting mass estimates
ith spectroscopic FLAME masses [equation ( 9 )]. We calculate the

elativ e v elocity of each WB much more carefully, including an
llowance for perspective effects due to the systemic RV. Our sample
election is also much stricter in several ways (Section 2.4 ), including
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Figure 18. Triangle plot comparing the nominal analysis (red) to a revised 
analysis in which the likelihood of a star in our sample having an undetected 
CB companion is fixed at 30 per cent (Section 5.1.4 ). 

t
t  

i
a
v
C  

a  

t
t  

W
c
r  

t  

t
a
c
t
t  

D  

r  

(

a
H  

b
b
r  

8  

T  

H
 

R  

r  

m
p  

h  

d
u
m  

Z  

c  

s  

c  

i
 

i

v

w
d  

r
d
a
v  

T  

d  

q
w  

s  

u
s
t  

a
 

(  

o  

c  

r  

e  

q
a
a  

u  

m
I  

w
o
d  

t  

o  

m  

c  

t
f  

t  

s  

M  

w  

M  

a  

b  

t  

o  

o  

w  

e

D
ow

nloaded from
 https://academ

ic.oup.com
/m

nras/article/527/3/4573/7342478 by guest on 30 D
ecem

ber 2023
hrough a quality cut on the carefully calculated ̃  v uncertainty. On the 
heoretical side, we impro v e upon their WB model by using orbits
ntegrated in a rigorously calculated gravitational field ( BZ18 ) and 
llow the eccentricity distribution to be superthermal, which seems 
ery likely observationally (Hwang, Ting & Zakamska 2022 ). Our 
B model is also an impro v ement because we allow both stars in
 WB to have an undetected CB companion and model the CBs
hemselves in a somewhat different way, paying particular attention 
o the rele v ant range of CB orbit sizes and the inflation of the

B system mass due to undetected companion(s). Our treatment of 
hance alignments with unbound stars is simpler for computational 
easons (Section 3.3 ), though it should still be adequate given that
he inferred f LOS is only about 2 per cent (Table 3 ). Our exploration of
he parameter space is vastly more thorough thanks to an optimized 
lgorithm (Banik, Pittordis & Sutherland 2021 ). In addition, we 
onduct a much broader range of extension analyses where we vary 
he sample selection and model assumptions, thus demonstrating 
he robustness of our results to a much greater extent (Section 5.1 ).
espite these changes, our o v erall conclusions are very similar with

egards to how strongly Newtonian gravity is preferred o v er MOND
Section 4.1 ). 

While this study was under re vie w, two additional publications 
ppeared which argue that the WBT prefers MOND (Chae 2023 ; 
ernandez 2023 ). The study of Hernandez ( 2023 ) focused on
uilding a very clean sample of WBs where CB contamination should 
e very small. While this could simplify the interpretation of the 
esults, the sample size is unfortunately also rather small (see its fig.
). In the following, we therefore focus on the work of Chae ( 2023 ).
he particular issue that we identify could also affect the analysis of
ernandez ( 2023 ), though we have not checked this in detail. 
The WB analysis of Chae ( 2023 ) uses the WB sample of El-Badry,

ix & Heintz ( 2021 ), but it attempts to infer the 3D separation and
elativ e v elocity from the available projected information instead of
odelling into the space of the observables. Various complicated 

rocedures are used to deal with the fact that WBs are expected to
ave a wide range of eccentricities and to be viewed from a random
irection at a random orbital phase. The eccentricity is constrained 
sing the angle between the projected separation and relative velocity, 
aking heavy use of the approach pioneered by Hwang, Ting &
akamska ( 2022 ). The o v erall result is that MOND is preferred at a
onfidence of 10 σ using the nominal sample of 26 615 WBs. This
ample is not very well suited to the WBT due to a mass-dependent
utoff to the allowed ˜ v , but as this seems to have only a modest
mpact, we defer discussion of this issue to Appendix E . 

Chae ( 2023 ) follow equation 4 of El-Badry, Rix & Heintz ( 2021 )
n neglecting the systemic RV and setting 

 sky = d μrel , μrel ≡
[
μrel 

α, ∗
μrel 

δ

]
, (32) 

here d is the inverse variance weighted mean of the parallax 
istances to the stars A and B that make up the WB, μrel ≡ | μrel | is the
elative proper motion, μα, ∗ is the proper motion along the East-West 
irection, μδ is the proper motion along the North-South direction, 
nd ‘rel’ superscripts denote relative values found by subtracting the 
alue for star B from the value for star A (e.g. μrel 

δ ≡ μA 
δ − μB 

δ ).
he proper motion μδ ≡ δ̇, where δ is the declination and an o v erdot
enotes a time deri v ati ve. To account for the spherical geometry of
uantities on the sky, the proper motion component μα, ∗ ≡ α̇ cos δ, 
here α is the right ascension. Both stars are assumed to be at the

ame distance, which should be correct on average if we assume that
ncertainties in trigonometric distances are much larger than actual 
eparations along the LOS. Neglecting the perspective effect due to 
he systemic RV should also be reasonable given the typically small
ngular separations of WBs (Section 2.3.1 ). 

We now try to reproduce the claimed detection of MOND by Chae
 2023 ). Without going into the details of the deprojection algorithm
r the model for the CB and WB populations, a simple way to
onsider the WBT is to find the median ˜ v in different ranges of
 sky /r M . Bearing in mind the abo v e small caveat about perspective
ffects and the need to accurately estimate the stellar masses, these
uantities can all be unambiguously calculated with no assumptions 
bout how exactly WBs behave, how eccentric their orbits typically 
re, etc. The only assumption we need to make is that in the theories
nder consideration, WBs would very rarely have ̃  v > 1 . 5, so values
uch beyond this are indicative of some sort of contamination. 

t is therefore important to focus on only those WBs with ˜ v � 2
hen calculating the median, since otherwise trends in the level 
f contamination could create the appearance of an acceleration- 
ependent trend in the WB dynamics (magenta line in Fig. 11 ). For
he nominal sample of 26 615 WBs used by Chae ( 2023 ), the result
f this e x ercise is shown in the left-hand panel of Fig. 19 based on
asses and v sky values from that study. Due to the larger sample size

ompared to our study, we are able to use 50 bins while keeping
he scatter low. A rising trend is immediately apparent, especially 
or the subsamples with ̃  v < 2 or 2.5. This could arguably indicate
hat a limit of 1.5 is too restrictive and loses some of the MOND
ignal, which is possible given that the upper limit to ̃  v for a bound
ilgromian WB is about 1.7 ( BZ18 ). The results agree very well
ith the dashed grey line, which shows the shape that we expect in
OND (the normalization has been adjusted to fit the results at high

ccelerations or low r sky /r M ). The median ̃  v undergoes some scatter
ut with little trend when r sky /r M < 0 . 2. It then rises rapidly at about
he expected rate before flattening out. While we do not expect the
bserved rising trend at r sky /r M � 1 . 5 (see Fig. 7 ), the median ̃  v is
nly rising quite slowly by this point and is broadly in agreement
ith the expected flat trend. All this seems to provide compelling

vidence in fa v our of local WBs following Milgromian gravity. 
MNRAS 527, 4573–4615 (2024) 
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Figure 19. The median ̃  v as a function of the median r sky /r M for the nominal sample of Chae ( 2023 ), which requires both proper motion components of both 
stars in each WB to be more precise than 1 per cent (left-hand panel). This is tightened to 0.3 per cent in the right-hand panel, as done in their appendix B and 
Chae ( 2024 ). The sample size and number of bins are shown at the top. Similarly to Fig. 11 , each point corresponds to the same number of WBs apart from the 
last point, which has a slightly different number due to rounding. 
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A critical consideration for the WBT is the accuracy of v sky , which
s the main source of uncertainty in ˜ v . We quantify its uncertainty
ery carefully in order to limit the ̃  v uncertainty of the WBs in our
ample (Section 2.4.6 ). As argued there, since the main peak to the
  distribution lies at ˜ v ≈ 0 . 5 (Fig. 12 ) and ˜ v uncertainties would
dd in quadrature to the intrinsic width of the ˜ v distribution, we
eed the uncertainty in ̃  v to be � 0 . 1 in the regime most rele v ant to
he WBT. An uncertainty of 0.1 would inflate the dispersion from
.5 to 

√ 

0 . 5 2 + 0 . 1 2 = 0 . 51, implying only a 2 per cent broadening
too little to affect the inferred gravity law. While this approach

ight seem somewhat conservative, we have seen that it still leaves
 reasonable sample size, partly because we impose a less strict limit
o the ̃  v uncertainty outside the main peak region [equation ( 10 )]. 

Unfortunately, Chae ( 2023 ) do not estimate the uncertainty in ̃  v or
n v sky . Their approach is to require a maximum 1 per cent uncertainty
n the heliocentric proper motions μA 

α, ∗, μB 
α, ∗, μA 

δ , and μB 
δ of the stars

n each WB. To see why this approach is not sufficient, suppose that
oth stars have a heliocentric velocity of 30 km s −1 in the East-West
nd North-South directions (the small difference due to WB orbital
otion is not rele v ant here). The sky-projected heliocentric velocity

f each star could then have an uncertainty of 300 m s −1 along each
irection. Since we need to combine four proper motion components
o calculate v sky [equation ( 32 )], this has an uncertainty of ≈ 300 

√ 

4
r 600 m s −1 . Ho we ver, the Ne wtonian v c of two Sun-like stars with
 10 kAU separation is only 420 m s −1 , implying a very poorly
onstrained ˜ v . This completely undermines the WBT because its
ain idea is that some typical measure of ˜ v ∝ 

√ 

g/g 
N 

, making it
bsolutely essential to have precise constraints on ̃  v . 

To try and address this issue, Chae ( 2023 ) conduct an extension
nalysis in their appendix B where the 1 per cent requirement
entioned abo v e is tightened to 0.3 per cent. This is unlikely to be

nough because in the previous argument, we would have a maximum
llowed σ ( v sky ) of 180 m s −1 rather than 600 m s −1 , where σ ( Q ) is
he uncertainty on any quantity Q . Ho we ver, if the Ne wtonian v c is
20 m s −1 and the mode of the ̃  v distribution is at 0.5, the intrinsic
elocity dispersion is 210 m s −1 , which is not much larger than the
pper limit to σ ( v sky ). Alternatively, the plausible scenario described
bo v e would lead to σ

(˜ v 
) = 180 / 420 = 0 . 43, which is still too

arge for the WBT. Even so, we repeat the median ˜ v analysis with
ll four rele v ant heliocentric proper motions required to have an
ccuracy of at least 0.3 per cent. The sample size is almost halved
NRAS 527, 4573–4615 (2024) 
y this much stricter cut, so we use only half as many bins to reduce
he scatter. Despite this, we still achieve a good range in r sky /r M 
nd probe well into the asymptotic regime (right-hand panel of Fig.
9 ). A rising trend is evident here, though the agreement with the
OND expectation is somewhat less good. Importantly, it is not

eally possible to fit the results with a flat line, as would be expected
n Newtonian gravity. 

A more rigorous but still very simple way to estimate the
ncertainty in v sky is provided by equation 5 of El-Badry, Rix &
eintz ( 2021 ). If we neglect other sources of error like perspective

ffects and the small error in d , we can approximate that the only
ncertain term is μrel . Its uncertainty is 

( μrel ) = 

√ 

σ 2 
(
μrel 

α, ∗
) + σ 2 

(
μrel 

δ

)
μrel 

, (33) (
μrel 

α, ∗
) = 

√ 

σ 2 
(
μA 

α, ∗
) + σ 2 

(
μB 

α, ∗
)
, (34) (

μrel 
δ

) = 

√ 

σ 2 
(
μA 

δ

) + σ 2 
(
μB 

δ

)
. (35) 

his result is based on the fact that at first order in σ ( μrel )/ μrel , the un-
ertainty in μrel arises only from the proper motion uncertainty along
he direction 

(
μrel 

α, ∗, μ
rel 
δ

)
because uncertainty in μrel in the orthogonal

irection mainly affects its direction rather than its magnitude. This
pproximation becomes inaccurate if σ ( μrel ) � μrel , so a Monte
arlo approach might be preferable even if we could assume that

he uncertainty arises entirely from uncorrelated astrometric errors
n the proper motions. 

With the abo v e approximations, the uncertainty in v sky is simply (
v sky 

) = d σ ( μrel ) . (36) 

ividing this by the Newtonian v c then yields an estimated ṽ 

ncertainty. We suggest that such an approach would capture the
ajor uncertainties affecting ˜ v because the mass and systemic

istance should both have small uncertainties, while perspective
ffects should likewise have little effect (Section 2.3.1 ). 

We can now check whether the result of Chae ( 2023 ) is robust
gainst a quality cut based on the estimated ̃  v uncertainty of each WB.
e begin by quantifying the proportion of WBs in each r sky /r M bin
ith σ

(˜ v 
)

> 0 . 1 max 
(
1 , ̃  v / 2 

)
, the cut imposed in our own analysis

equation ( 10 )]. The result is shown in Fig. 20 . It is clear that most
Bs in the asymptotic regime fail to pass our quality cut on σ

(˜ v 
)
.
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Figure 20. The fraction of WBs in each r sky /r M bin of the nominal Chae 
( 2023 ) sample with σ

(˜ v 
)

> 0 . 1 max 
(
1 , ̃  v / 2 

)
. This applies to most of the 

WBs in the asymptotic regime critical to testing MOND. 

Figure 21. Similar to the left-hand panel of Fig. 19 , but with the Chae 
( 2023 ) nominal sample restricted to WBs with an estimated σ

(˜ v 
)

< 

0 . 1 max 
(
1 , ̃  v / 2 

)
according to equations ( 33 ) and 36 . The median ̃  v is now 

flat with respect to our proxy for the WB acceleration thanks to this cut on 
the estimated ̃  v uncertainty, which is critical to reliably conducting the WBT. 
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16 This would allow to relax the requirement for the heliocentric proper 
motion components to have a 1 per cent precision, increasing the sample 
size somewhat. 
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his raises the possibility that the MOND-like trend in Fig. 19 is
aused by measurement errors broadening the ̃  v distribution at low 

ccelerations. 
To analyse the data set of Chae ( 2023 ) more robustly, we restrict

heir nominal sample to the same limiting σ
(˜ v 
)

as we used in our
wn analysis [equation ( 10 )]. The result is shown in Fig. 21 . The
ample size only decreases by about 1/5, allowing us to continue 
sing 50 bins in r sky /r M , albeit with a somewhat reduced range
iven that the sample is reduced by half at the MOND radius and
lightly more beyond that. Even so, we still have many WBs well
nto the asymptotic regime. These show that the median ˜ v is now 

lmost completely flat with respect to r sky /r M . There is clearly a
ajor disagreement with the dashed grey line showing the MOND 

xpectation calibrated to the high-acceleration end. This dramatic 
ifference is caused by removing only 1/5 of the WBs, indicating 
hat the issue we identified is indeed extremely serious. 

The MOND-like rising median ̃  v trend in the nominal sample of 
hae ( 2023 ) persists despite an apparently tight 0.3 per cent cut on

he proper motion errors, which leads to an even smaller sample size
han in Fig. 21 . This highlights that the important quantity for the
BT is the relativ e v elocity of the stars in each WB rather than
he heliocentric velocity of each star. While one can envisage that
 sufficiently restrictive cut on the latter would be sufficient, this is
imply not targeting the rele v ant quantity, so the sample size is likely
o become insufficient before the cut has been adequately tightened 
or the purpose of the WBT. As an e x ercise in this direction, we
ound that requiring a 0.1 per cent precision reduces the sample to
nly 4977 WBs and makes the median ̃  v nearly flat with respect to
 sky /r M , so perhaps this cut is tight enough. Ho we ver, the sample size
an be much larger while still maintaining sufficient accuracy on ̃v 
rovided that the quality cut is targeted at ̃  v , or at least at μrel . 
The importance of this issue stems from the fact that for the

ame σ ( v sky ) in m s −1 , σ
(˜ v 
) ∝ 

√ 

r sky because the Newtonian v c ∝
 / 
√ 

r sky , making it increasingly difficult to pass a strict quality cut on(˜ v 
)

(Fig. 20 ). Without such a cut, as we get to large r sky and thus
lso r sky /r M , the ̃  v distribution might be broadened by measurement
rrors to a greater extent, pushing up the median ˜ v and creating
 f ak e Milgromian signal. This raises the more general issue that
ny systematic trend with r sky can appear to be an acceleration- 
ependent trend. In principle, one could disentangle the two because 
ur proxy for the WB internal acceleration depends on both r sky and
 . Ho we ver, the former is by f ar the main f actor because of its large

ange and the fact that r 
M 

scales only as 
√ 

M , making the WB mass
elatively less important. There is also an issue with the data set
f Chae ( 2023 ) pertaining to the masses that makes it difficult to
se a broad range (Appendix E ). One therefore has to be cautious
efore concluding that any trend discovered in the WB data is best
nderstood as causally related to their internal acceleration. 
Given our results in this section, it seems extremely unlikely that

ocal WBs prefer Milgromian o v er Newtonian gravity once the WB
ample is selected carefully to ensure that ˜ v is accurately known. 
t should be straightforward to alter the quality cut related to the
strometric accuracy by focusing on how precisely we know the 
elativ e v elocity within each WB, since this is what enters into the
alculation of the physically rele v ant ˜ v parameter. 16 We stress that
ven if ̃  v is not calculated explicitly, the WBT is ultimately about the
atio between the relative velocity and the Newtonian circular orbit 
rediction because the WB orbits are too long to directly measure
he acceleration (Banik & Kroupa 2019a ). The uncertainty on this
elocity ratio is therefore of critical importance to the WBT and must
e quantified, with systems rejected if the uncertainty is too large. 
This concern likely also applies to the analysis of Hernandez 

 2023 ): its section 4 states that v sky should exceed 1.5 × its uncer-
ainty. This translates to a fractional ̃  v accuracy of 2/3, so a system
ith ˜ v = 1 might have σ

(˜ v 
) = 0 . 6 (this concern also applies to

ernandez et al. 2024 ). Addressing this issue similarly to our study
ould reduce the already small sample size. Ho we ver, our work

uggests that the loss might be modest, especially given the high
 v erall quality of the WB sample used in their study. 

.3 The MOND interpolating function 

ur results for the WBT depend on the assumed MOND interpolating
unction because local WBs are subject to the Galactic external field
f magnitude 1 . 8 a 0 (Section 3.1 ; see also section 7.1 of BZ18 ).
hus, our falsification of MOND could in principle be a v oided with a
ufficiently rapid transition to Newtonian behaviour when g > a .
MNRAS 527, 4573–4615 (2024) 
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Table 4. The enhancement factor η to the radial gravity [equation ( 15 )] 
and our corresponding estimate for αgrav [equation ( 39 )] with different 
MOND formulations and interpolating functions. Results differ little between 
AQUAL and QUMOND and between the MLS and simple functions. 

Interpolating AQUAL QUMOND 

function η αgrav η αgrav 

Simple 1.4056 0.96 1.4228 1 
MLS 1.3508 0.84 1.3692 0.88 
Standard 1.0661 0.17 1.0726 0.18 
Sharp 1 0 1 0 
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17 The simple interpolating function provides a good match to the velocity 
dispersion profiles of elliptical galaxies up to almost 100 a 0 (Chae & Gong 
2015 ; Chae et al. 2019 , 2020a ), beyond which the MOND enhancement to 
g 

N 
must be very small. 
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o we ver, this is in strong tension with rotation curve constraints.
his is because the enhancement to g 

N 
needed to fit the host galaxy

otation curve is very similar to the predicted enhancement to the
ravity binding a WB in the asymptotic regime. This remains true in
oth AQ UAL and Q UMOND, which give almost the same boost
or the same interpolating function (Fig. 7 ). We clarify this by
riefly giving the main analytic results rele v ant to EFE-dominated
Bs and thereby estimate the predicted αgrav with different MOND

ormulations and interpolating functions (for further details, see
ections 2.2 and 7.1 of BZ18 ). 

The WBT is mostly sensitive to η [equation ( 15 )] in the asymptotic
egime. In QUMOND, equation 16 of BZ18 tells us that 

= νe 

(
1 + 

K e 

3 

)
, K e ≡ ∂ ln νe 

∂ ln g 
N,e 

, (37) 

here νe is the QUMOND interpolating function if we set its
rgument to the Ne wtonian-equi v alent Galactic gravity g 

N,e 
[equation

 14 )]. This result matches equation 57 of Milgrom ( 2010 ). 
AQUAL does not directly use ν but instead uses the interpolating

unction μ, which is defined so that μg = g 
N 

in spherical symmetry.
e can talk of AQUAL and QUMOND theories as having the ‘same’

nterpolating function if they give the same relation between g and
g 

N 
in spherical symmetry, which requires that μ ( g ) ν

(
g 

N 

) = 1.
ccording to equation 35 of BZ18 , the AQUAL version of equation

 37 ) is 

= 

tan −1 
√ 

L e 

μe 

√ 

L e 

, L e ≡ ∂ ln μe 

∂ ln g e 
, (38) 

here L e is the AQUAL interpolating function considering only the
alactic gravity g e . We can find L e from the QUMOND K e using the

elation (1 + L e )(1 + K e ) = 1 (equation 38 of BZ18 ). The angle-
veraged enhancement to g 

N 
shown above matches that stated in

quation 65 of Milgrom ( 2010 ) once we use the relation sin 2 θ =
an 2 θ /(tan 2 θ + 1). 

The observable in the WBT is the relative velocity and this is
elated to the circular velocity, which scales as 

√ 

η. Moreo v er, the
arameter αgrav only captures deviations from the Newtonian result
ecause it is defined to be 0 in the Newtonian case, when η ≡ 1.
hus, we can approximate that the predicted αgrav ∝ 

√ 

η − 1. Since
he normalization must be chosen such that αgrav = 1 if we use
UMOND with the simple interpolating function, 

grav = 

√ 

η − 1 

0 . 193 
. (39) 

Table 4 shows η and the estimated αgrav for different MOND for-
ulations and interpolating functions. Differences between AQUAL

nd QUMOND are very small, as stated in section 5.1 of Milgrom
 2010 ) and explained further in section 7.2 of BZ18 , which is
evoted to a comparison of the two MOND formulations. The simple
nd MLS ( ν−1 = 1 − exp 

(−√ 

g 
N 
/a 0 

)
; McGaugh 2008 ; F amae y &
NRAS 527, 4573–4615 (2024) 
cGaugh 2012 ; McGaugh, Lelli & Schombert 2016 ) interpolating
unctions give similar predictions for the WBT because they are
umerically very similar. The main difference is that the MLS
unction converges to Newtonian gravity much faster when g � 10 a 0 
ue to the exponential term, but this is not important for the WBT
ecause WB observations are sensitive to the gravity binding it
ather than merely how much that deviates from g 

N 
. 17 Compared

o the simple and MLS cases, the standard interpolating function
ignificantly reduces the predicted signal for the WBT, though even
hen the predicted αgrav = 0.18 is still much higher than inferred by
ur nominal MCMC analysis (bottom right panel of Fig. 14 ). But
ince some variations to the modelling assumptions do increase the
nferred αgrav somewhat (Table 3 ), it can be argued that the WBT is
arginally consistent with the standard interpolating function 

2 = 

1 

2 
+ 

√ 

1 

4 
+ 

(
a 0 

g 
N 

)2 

. (40) 

o we ver, this is in tension with rotation curve constraints (section 7.1
f BZ18 ). We revisit their arguments in more detail below. 
Equations ( 37 ) and ( 38 ) show that η ≈ νe = 1/ μe up to a
odest correction for azimuthal averaging. This is because νe can

e arbitrarily large, but K e is al w ays between −1/2 and 0 while L e 

s between 1 and 2, with low K e and high L e corresponding to the
eep-MOND limit ( K e = −0.26 in the Solar neighbourhood). As
 result, the enhancement to the orbital velocities of WBs in the
symptotic regime should be only slightly less than the enhancement
o the Newtonian baryonic rotation curve of the parent galaxy in the
icinity of the WBs. This means a very stringent null detection of
OND effects in the WBT can only be reconciled with MOND if

he Galactic rotation curve at the Solar circle has almost the same
mplitude as it would do in Newtonian gravity with baryons alone. 

We test this in Fig. 22 , where the cyan squares with error bars
ho w binned observ ational results and the dotted blue vertical line
hows the Solar circle radius of 8.2 kpc (the uncertainty on this is
ery small; Gravity Collaboration 2019 ). The largest uncertainty in
he kinematics comes from the peculiar (non-circular) velocity of
he Sun and hence on the actual value of v c , 	, which normalizes
he entire curve. Ho we ver, the resulting uncertainty has been sub-
tantially mitigated by the direct measurement of the Solar System’s
cceleration relative to distant quasars (Gaia Collaboration 2021b ),
hich is a direct probe of g e . Besides the kinematics, there is also

ome systematic uncertainty in the Newtonian rotation curve of the
alactic disc because we do not perfectly know its actual mass-

o-light ratio and gas content. With these small caveats in mind,
he Newtonian rotation curve of the baryons alone (orange line) is
learly below the actual rotation curve at the Solar circle, which is
lso much flatter. Since scaling the Newtonian rotation curve (e.g. to
aise the mass-to-light ratio) would make the predicted decline even
teeper, it is clear that MOND can only work with an interpolating
unction that significantly enhances Newtonian gravity at the Solar
ircle. Indeed, the solid green line shows that QUMOND with the
imple interpolating function fits rather well − even the bumps
nd wiggles apparent in the observations are reproduced nicely if
e consider similar features in the Galactic surface density profile

McGaugh 2018 ). Ho we ver, the required significant Milgromian
nhancement to the local amplitude of the rotation curve contradicts
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Figure 22. The MW rotation curve as measured by averaging different 
observational determinations (cyan squares with error bars; Eilers et al. 2019 ; 
Mr ́oz et al. 2019 ; Chrob ́akov ́a et al. 2020 ) and as predicted in different gravity 
theories using the baryonic mass distribution from Wang, Hammer & Yang 
( 2022 ). Notice that the Newtonian model with only baryons (orange line) falls 
well short of the observed rotation curve at the Solar circle radius of 8.2 kpc 
(dotted blue vertical line). This deficiency can be rectified by adding dark 
matter (blue line), but the halo parameters must be inferred from the data and 
are not predicted a priori . An alternative solution with very little flexibility is 
QUMOND with the simple interpolating function [green line; equation ( 13 )], 
but this only works because this function predicts a significant enhancement 
to Newtonian gravity at the relevant acceleration (compare the simple and 
sharp interpolating functions in Table 4 ). This enhancement should also be 
detectable in local WBs. Reproduced from fig. 1 of Zhu et al. ( 2023 ), modified 
by Haixia Ma. 
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Figure 23. The ratio between the observed g at fixed baryonic g 
N 

(McGaugh, 
Lelli & Schombert 2016 ) and the prediction g ν according to different MOND 

interpolating functions for the canonical a 0 = 1 . 2 × 10 −10 m s −2 (Begeman, 
Broeils & Sanders 1991 ; Gentile, F amae y & de Blok 2011 ; Lelli et al. 2017b ). 
Observational uncertainties are found by dividing the dispersion in log 10 g 
at each g 

N 
by 

√ 

N , where N is the number of data points in the bin. Due to 
the numerical similarity of the simple and MLS functions (black and blue 
lines, respectively); error bars are omitted for the latter, but they are shown 
on the standard interpolating function [red; equation ( 40 )] and for the case 
of an infinitely sharp transition between the Newtonian and MOND regimes 
[green; equation ( 41 )]. The dashed vertical line shows the Solar circle g 

N 

assuming the simple interpolating function adopted for this study [equation 
( 13 )]. 
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18 A unique relation is not expected in modified gravity theories because disc 
galaxies are not spherically symmetric, but deviations from the spherically 
symmetric relation should be very small (Jones-Smith et al. 2018 ; Chae 2022 ). 
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ur stringent null detection of MOND effects in the WBT, which 
mplies an enhancement by at most a few percent. This contradiction 
s underpinned by the directly measured acceleration of the Solar 
ystem relative to distant quasars (Gaia Collaboration 2021b ), which 
recludes substantial deviations from the kinematically deduced 

g e (Section 3.1 ). If we very conserv ati vely assume that v c , 	 is at
ost 10 km s −1 higher than our adopted 232.8 km s −1 , then the

tronger EFE would only reduce the QUMOND αgrav for the simple 
nterpolating function from 1 to 0.92, while an even higher v c , 	
 250 km s −1 would give αgrav = 0.87. Such a large deviation of
 c , 	 from our adopted value is almost inconceivable given the many 
ecades of research on this issue. Turning instead to the possibility
f a much sharper interpolating function, the required enhancement 
o the baryonic surface density would need to be truly substantial, 
hich seems rather unlikely. 
Another interesting aspect of Fig. 22 is the failure of Moffat gravity

MOG; Moffat 2006 ), whose prediction is shown as the red line.
OG modifies gravity only beyond a certain distance, so it passes

he WBT (see section 2.3 of Roshan et al. 2021a ). Ho we ver, MOG
nderpredicts the Galactic rotation curve (as shown previously by 
e grelli et al. 2018 ). Moreo v er, a joint fit to the velocity dispersion
rofile and star formation history of Dragonfly 44 rules out MOG 

t 5.5 σ confidence (Haghi et al. 2019 ). This shows how difficult it
s for a modified gravity theory to remain consistent with the WBT
nd simultaneously explain galaxy dynamics, even if we neglect 
xtragalactic data. 

Of course, one should also consider the rather precise constraints 
n MOND av ailable no wadays from e xtragalactic rotation curv es. In
articular, the Spitzer Photometry and Accurate Rotation Curves 
SPARC; Lelli, McGaugh & Schombert 2016 ) catalogue reveals 
 tight RAR, which we show in Fig. 23 as the ratio between the
bserved g at fixed g 

N 
and the prediction g ν with different interpo-
ating functions. 18 The error bars show the logarithmic dispersion 
n g 

N 
about a smooth relation scaled down by 

√ 

N , where N is the
umber of data points in the g 

N 
bin. It is clear that the MLS and

imple functions are numerically rather similar and both match the 
bserv ations fairly well. Ho we ver, the standard interpolating function 
equation ( 40 )] deviates very substantially from observations (this is
lso apparent in fig. 1 of Tian & Ko 2019 ). As with other analyses,
he crucial assumption is the stellar mass-to-light ratio from stellar 
opulation synthesis models (Schombert, McGaugh & Lelli 2022 ), 
hich would need substantial modifications to allow the standard 

nterpolating function to match the data. 
This discrepancy is worsened by using an infinitely sharp transition 

etween the Newtonian and deep-MOND regimes, i.e. 

= max 

(
1 , 

√ 

a 0 

g 
N 

)
. (41) 

his yields no enhancement to gravity at the Solar circle ( αgrav =
), so the results of the WBT work best with this function given that
ur posterior inference on αgrav = −0 . 021 + 0 . 065 

−0 . 045 . Even the modest
nhancement predicted by the standard interpolating function causes 
 σ tension with our WB results. At the same time, this enhancement
s too little to e xplain e xtragalactic rotation curves across almost
he full range of g 

N 
that they probe (Fig. 23 ). Similar conclusions

an be drawn from the Galactic rotation curve, which barring major
ystematics shows that g > g 

N 
by about 50 per cent at the Solar circle

ven though both slightly exceed a 0 (Fig. 22 ). Therefore, it seems
mpossible for MOND to simultaneously match galaxy dynamics 
MNRAS 527, 4573–4615 (2024) 
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nd Gaia data on local WBs. This falsifies classical modified gravity
ersions of MOND at high significance. 

.4 Broader implications 

o far, we have assumed that MOND should be understood as a
odification to Newtonian gravity in the weak-field regime [equation

 1 )]. Given the failure of this approach in local WBs, it is helpful
o consider MOND as a modification to inertia at low accelerations
hile preserving Newtonian gravity (Milgrom 1994 , 2011 , 2022 ).
his may a v oid significant MOND effects in local WBs because

heir internal orbital motion has a much higher frequency than their
alactocentric orbit (e.g. see fig. 14 of BZ18 ). We can consider this

n terms of an ef fecti ve Ne wtonian external field g eff 
N,e 

, defined such
hat the boost to the gravity binding a WB is still given by equation
 37 ), but with argument g eff 

N,e 
instead of the Newtonian gravity g 

N,e 

ourced by the rest of the Galaxy. Since the MOND model considered
n the main part of our study predicts a 42 per cent enhancement
o the average radial gravity (Table 4 ) and our results show that
grav < 0.2 at quite high confidence (Table 3 ), we can interpret the
BT as constraining the average gravity binding a WB to within

 per cent of the Newtonian prediction in the asymptotic regime
here the Galactic gravity dominates o v er the internal gravity. The

orresponding lower limit on g eff 
N,e 

is 7 . 8 a 0 (4 . 6 a 0 ) for the simple
MLS) interpolating function. In both cases, this is several times
arger than the expected value of ≈ 1 . 2 a 0 (Section 3.1.1 ). The high
 

eff 
N,e 

could indicate that the Galactic EFE suppresses the gravity of
 local WB by much more than we have assumed, making it very
early Newtonian. 
Modified inertia theories of MOND are still at an early stage of

evelopment, so it is not yet possible to conduct detailed simulations
f situations like interacting galaxies with a low degree of symmetry.
ven so, focusing on systems where the predictions are clear led to

he first attempt to distinguish whether MOND is better understood
s a modification to gravity or inertia (Petersen & Lelli 2020 ). The
esults mildly prefer modified gravity at ≈1.5 σ confidence. Modified
nertia theories make the very strong prediction that test particles on
ircular orbits will have a unique relation between their kinematic
cceleration and the gravity g 

N 
that they experience. As a result,

he inner and outer parts of galaxy rotation curves should fall on the
ame RAR. A difference is expected in modified gravity, essentially
ecause the vertical gravity just outside the disc plane is higher
earer the galactic centre, reducing the MOND enhancement (Banik,
ilgrom & Zhao 2018 ). Recently, a stacked analysis of SPARC

otation curves identified a 6.9 σ difference between the RAR traced
y data points from the inner and outer parts of galaxy rotation curves
f the observational uncertainties are taken at face value (Chae 2022 ).
he difference in the RAR evident in their fig. 6 is similar to that
xpected in modified gravity formulations of MOND. This could be
 coincidence caused by unknown systematic errors, but this seems
nlikely because almost the same signal is detected when excluding
alaxies with a significant bulge or with a high luminosity, which
ould be signs of a greater degree of pressure support and thus
ossibly mean a larger uncertainty on the data points at low radii.
his suggests that we should take seriously the observed difference

n the RAR traced by the inner and outer parts of rotation curves.
he high formal significance of the difference evident in their fig. 7

s a priori not expected in the modified inertia interpretation of
OND. One caveat is that gas motions are not perfectly circular, so

ntil we have a fully fledged formulation of modified inertia theories
apable of handling somewhat eccentric orbits, it is impossible to
ully conclude on whether the results of Chae ( 2022 ) indeed rule out
NRAS 527, 4573–4615 (2024) 
uch theories. But taking their results at face value and given also that
he WBT rules out MOND as modified gravity (though see Milgrom
023a , b ), we most likely need to fundamentally change MOND if it
s to survive the latest constraints, which questions its validity on all
cales. 

WBs are not the only bound systems that challenge MOND.
ts predicted gravity in galaxy clusters generally falls short of the
bserved value, though one can assume a non-baryonic dark mass
omponent that makes up about half of the gravitating mass (e.g.
anders 2003 ; Angus, F amae y & Diaferio 2010 ). This discrepanc y
as recently illustrated in terms of the cluster RAR, as shown in
g. 8 of Eckert et al. ( 2022a ) and fig. 5 of Li et al. ( 2023 ). The
AR traced by galaxy clusters lies about 0.3 dex (2 ×) abo v e the
AR traced by galaxies when g 

N 
� 0 . 1 a 0 (McGaugh 2020 , and

eferences therein). This gap narrows further and almost vanishes
t the low acceleration end. The discrepancy with the Newtonian
xpectation without DM is of course larger at about 0.8 dex or 6 ×,
hich matches the ratio between total and baryonic mass in � CDM
ts to the power spectrum of anisotropies in the cosmic microwave
ackground radiation (Planck Collaboration VI 2020 ). 
The WBT tests MOND on a much smaller scale than the traditional

alaxy-scale tests with rotation curv es, v elocity dispersions, and
eak lensing (section 3 of Banik & Zhao 2022 , and references

herein). This raises the possibility of suppressing MOND effects
t short range, for instance with a length-dependent cutoff to any
OND enhancement to gravity below a scale of 0.1 pc. Babichev,
effayet & Esposito-Far ̀ese ( 2011 ) proposed an extended version of

he Vainshtein screening mechanism in massive gravity (Vainshtein
972 ; Babiche v, Def fayet & Ziour 2010 ) in which MOND effects
re suppressed below a length r 

B 
∝ M 

1 / 4 around a point mass M .
ince r 

B 
rises slower than the MOND radius ( r 

M 
∝ M 

1 / 2 ), we get
hat in a sufficiently massive system, the suppression of MOND
ffects arises only in the Newtonian regime and thus has no effect.
ut in a very low mass system, a new regime appears where the
istance r lies in the range r 

M 
< r < r 

B 
. In this regime, MOND as

lassically formulated predicts a departure from Newtonian gravity,
ut the behaviour becomes Newtonian with the extended screening
echanism (Babichev, Deffayet & Esposito-Far ̀ese 2011 ). 
Another way to think of this is in terms of the phantom dark matter

PDM) density ρpdm 

generated by MOND, which is defined such that 

 · g ≡ − 4 πG 

(
ρ + ρpdm 

)
, (42) 

here g must be found by solving equation ( 12 ) and ρ is the
hysical mass density. Since g ∝ 

√ 

M /r in the deep-MOND limit
equation ( 1 )], ρpdm 

∝ 

√ 

M /r 2 . If we focus on the PDM density
t r = r 

B 
∝ M 

1 / 4 , we get that ρpdm 

is a constant. Thus, we can
hink of the model as providing a maximum limit to | ρpdm 

| (the
odulus is needed because the PDM density can be ne gativ e in
ore complicated geometries; see Milgrom 1986b ; Oria et al. 2021 ).
uch an upper limit arises in some attempts to unify the acceleration
iscrepancies in galaxies with the late-time accelerated expansion
f the Universe (Zhao 2007 ). We can use the WBT to estimate an
pper bound on ρ0 , the maximum possible | ρpdm 

| . Since our analysis
ndicates that αgrav < 0.2 at rather high confidence (Table 3 ), we can
ssume that there is at most a 4 per cent enhancement to the orbital
elocities of WBs in the asymptotic regime. This corresponds to an
nclosed phantom mass equal to 8 per cent of the actual mass in the
tars. Assuming our results are sensitive down to M = 1 M 	 and up
o separations of r = 20 kAU or 0.1 pc, we can estimate that 

0 < 0 . 08 M 	 ÷ 4 πr 3 

3 
= 20 M 	/ pc 3 . (43) 
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his is three orders of magnitude abo v e the local DM density inferred
rom a Newtonian dynamical analysis of Galactic data (Read 2014 ; 
agen & Helmi 2018 ; Salomon et al. 2020 ; de Salas & Widmark
021 ). While we expect ρpdm 

to be somewhat higher in a dwarf
alaxy due to its lower mass, it is clear that the application of
OND to galaxies would be unaffected by a maximum limit to 

 ρpdm 

| of order 20 M 	/pc 3 . The impact on larger scales would
e even less significant, leaving open the issue of how MOND 

ight be reconciled with observations of galaxy clusters and larger 
tructures. 

A maximum limit to | ρpdm 

| capable of reconciling MOND with the
BT would substantially reduce MOND effects in the Solar System, 

nvalidating attempts to explain some peculiarities of the Kuiper 
elt using MOND (Brown & Mathur 2023 ; Migaszewski 2023 ) 
ut improving the agreement with the rather tight bound on non- 
tandard effects provided by Cassini radio tracking measurements of 
he Earth-Saturn range (Hees et al. 2014 , 2016 ). This bound is already
o tight that it formally rules out even the exponentially truncated 
LS interpolating function at 8 σ confidence (see equation C15 of 
rown & Mathur 2023 ), so it could be difficult to reconcile Solar
ystem ephemerides with galaxy dynamics in classical modified 
ravity theories of MOND (Desmond et al., in preparation). Since 
he PDM density at the MOND radius of an isolated point mass M
cales as ρpdm 

∝ 1 / 
√ 

M and we are roughly at the MOND radius of
he MW with M = 7 × 10 10 M 	 (Banik & Zhao 2018b ), adding ρ0 

s a new constant of nature would suppress MOND effects only in
ystems up to six orders of magnitude less massive than the MW,
.e. up to about M = 10 5 M 	. This is in the regime of massive star
lusters and globular clusters, which might help to explain why the 
nternal kinematics of the outer halo globular cluster NGC 2419 are 
onsistent with Newtonian expectations despite feeling little gravity 
rom the Galaxy by virtue of its distance (Ibata et al. 2011a , b ). While
t has been argued that the observations are consistent with MOND 

s classically understood (Sanders 2012a , b ), this requires one to
nvoke observational systematics like a radially varying polytropic 
quation of state. Since the mass of NGC 2419 is 9 × 10 5 M 	, a
lear detection or exclusion of MOND effects here would help to 
onstrain ho w MOND ef fects must be suppressed on small scales
o ensure consistency with the WBT. Interestingly, MOND correctly 
redicts the velocity dispersions of isolated LG dwarf galaxies down 
o 10 6 M 	 (fig. 3 of McGaugh et al. 2021 ), while tidal stability
onsiderations of Fornax Cluster dwarfs reach down to about the 
ame mass (fig. 7 of Asencio et al. 2022 ). It is therefore possible that
OND as classically formulated breaks down at lower masses and 

hat hints of this are already apparent in NGC 2419. A problem with
his scenario is the asymmetric tidal tails of star clusters in the Solar
eighbourhood, which have been argued to fa v our MOND (Kroupa 
t al. 2022 ; Pflamm-Altenburg et al. 2023 ). Further investigation is
eeded to see if the results can be explained in Newtonian gravity
ith a more complicated Galactic model that includes bars and spiral

rms, though recent work indicates that the bar is not sufficient by
tself for any pattern speed (Thomas et al. 2023 ). If MOND effects
ersist down to order 10 3 M 	 but are not apparent in the WBT, then
his would give a tight constraint on where classical MOND breaks 
own. 
A limit to the PDM density might also limit the predicted 
ilgromian enhancement to the vertical gravity of the Galactic disc, 
hich for now is neither confirmed nor rejected (Zhu et al. 2023 ).

f it becomes clear that the enhancement is smaller than predicted, 
his would be interesting because the Galactic rotation curve works 
ery well in MOND (McGaugh 2018 ; Zhu et al. 2023 ) and probes
cales which are not much larger than the disc thickness, thereby 
inning down the boundary between where MOND works and where 
dditional physics must be invoked to suppress MOND effects. While 
uch tests would be useful, for MOND to be valid on kpc scales and
ltimately provide the correct explanation for the RAR, we have 
o invoke at least two new fundamental constants ( a 0 and ρ0 or a
undamental length). This seems rather contrived and not in line 
ith Occam’s Razor, especially as ρ0 is not obviously related to any

osmological density scale (unlike a 0 ) and cannot be substantially 
educed below our estimate in equation ( 43 ) if we are to preserve
he successes of MOND in dwarf galaxies (McGaugh et al. 2021 ;
sencio et al. 2022 ). We therefore discuss other theories that may be

ble to explain galaxy dynamics while passing the WBT. 
Since we do not have a fully fledged quantum gravity theory,

he idea of emergent gravity (EG; Verlinde 2017 ) is that gravity is
n entropic force arising from underlying microscopic degrees of 
reedom that are currently not understood − and do not al w ays need
o be, much like how a very detailed understanding of molecules
s not needed to understand the ideal gas law. EG faces major
ssues on galaxy cluster scales (Tamosiunas et al. 2019 ) and fails
n galaxies because it predicts hook-shaped deviations from a single 
niversal RAR that cannot be hidden within the uncertainties (Lelli, 
cGaugh & Schombert 2017a ). While its prediction for the WBT

s unclear, EG as presently formulated is strongly inconsistent with 
olar System ephemerides (Hees, F amae y & Bertone 2017 ; Chan
 Lee 2023 ). These precise constraints also rule out gravitational

ipoles (Hajdukovic 2020 ; Banik & Kroupa 2020a ) and scale-
nvariant dynamics (Maeder & Gueorguiev 2020 ; Banik & Kroupa 
020b ). The WBT greatly exacerbates the already severe difficulties 
aced by modified gravity theories in explaining the RAR without 
M while leaving no discernible trace in highly precise Solar System

phemerides, which our work ef fecti v ely e xtends to 20 kAU at
ower precision. We thus explore whether some form of DM on
alaxy scales might provide a tight RAR (F amae y & McGaugh
012 ) while lessening the very se vere dif ficulties encountered by
he standard CDM approach in other respects (Kroupa et al. 2010 ;
roupa 2012 , 2015 ; Di Valentino 2021 ; Banik & Zhao 2022 , and

eferences therein). We stress that the failures of � CDM identified in
hose works are unrelated to the validity of an y alternativ es proposed
s solutions. 

A hybrid MOND-DM model is provided by superfluid dark 
atter (SFDM; Berezhiani & Khoury 2015 ). Its basic idea is that

alaxies are embedded in DM haloes, but their total mass within
he region traced by rotation curves is not significant compared to
he baryonic mass. Instead, the flat rotation curve problem is solved
y postulating additional non-gravitational interactions between the 
aryons. These are mediated by phonons propagating in the DM halo,
hich is possible in its central superfluid core. On larger scales,
FDM reduces to � CDM as the superfluid phase only arises at

ow temperature and high density, so it arises in galaxies but not in
alaxy clusters. SFDM should alleviate the problem faced by � CDM
ith the fast observed rotation speeds of galaxy bars (Roshan et al.
021b ) thanks to reduced dynamical friction on subsonic flows like
 rotating galaxy bar (Berezhiani, Elder & Khoury 2019 ). Ho we ver,
he LG satellite planes are still very difficult to understand in SFDM
ecause their anisotropy strongly suggests a tidal origin but their 
nternal velocity dispersions imply some enhancement to the forces 
inding the satellites, which is hard to understand as the more distant
atellites in these structures would be outside the superfluid portion 
f the halo (see section 5.6 of Roshan et al. 2021a ). Another major
ssue is that the phonon-mediated forces at the heart of how SFDM
eproduces the MOND phenomenology only enhance the forces 
n baryons, so it is difficult to understand why the RAR inferred
MNRAS 527, 4573–4615 (2024) 
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rom rotation curves is also evident in strong lensing (Mistele,
cGaugh & Hossenfelder 2022 ) and weak lensing data down to
 

N 
≈ 10 −5 a 0 (Brouwer et al. 2021 ) − the latter are particularly

roblematic for SFDM (Mistele, McGaugh & Hossenfelder 2023 ).
hese observational difficulties need to be considered alongside

heoretical difficulties in making a stable covariant theory of DM
uperfluidity that reduces to MOND in galaxies (Hertzberg, Litterer
 Shah 2021 ) and a v oids significant orbital decay of stars due to
herenk ov-lik e radiation caused by their orbital velocity exceeding

he local sound speed in the superfluid (Mistele 2022 ). If these
ifficulties are ultimately o v ercome, a positiv e aspect of SFDM is
hat the superfluid phase reduces to a normal phase near a star due
o the steep potential gradient, a v oiding any anomalous effects in
he Solar System. Ho we ver, this screening mechanism only works
ithin a few hundred AU of a Sun-like star, beyond which MOND-

ik e behaviour w ould be reco v ered (equation 86 of Berezhiani &
houry 2015 ). Therefore, the WBT falsifies SFDM as presently
nderstood. To pass the WBT, the force binding each WB should
iffer from the Newtonian expectation by � 8 per cent out to the
eparation limit of our WB sample. In the context of SFDM, this
ould require the normal phase bubble around every local Sun-like

tar to extend out to � 20 kAU. This might be difficult to achieve
y tuning the model parameters given constraints from galaxies and
alaxy clusters (Hodson et al. 2017 ). 

Thus, the extra forces needed to explain flat galaxy rotation
urves might come from the mass of the DM rather than through
t mediating a MOND-like interaction between the baryons. While
he severe difficulties encountered by � CDM make this approach
ery unlikely (e.g. Banik & Zhao 2022 , and references therein),
he hypothetical DM particles might interact with each other −
he standard assumption that they only interact gravitationally for
ll practical purposes is only made for simplicity. Self-interacting
ark matter (SIDM; Spergel & Steinhardt 2000 ) offers a promising
xplanation for galaxies following a tight RAR (Ren et al. 2019 ).
he required self-interaction cross-section is much larger than the
pper limit imposed by the Newtonian dynamical mass profiles of
alaxy clusters (Eckert et al. 2022b ), but this could indicate that the
ross-section depends strongly on the velocity. SIDM would limit
he central DM density in galaxies, reducing dynamical friction on
alaxy bars and thus possibly alleviating the 13 σ fast bar tension
aced by � CDM (Roshan et al. 2021b ). SIDM would reduce to
 CDM on large scales and thus still suffer the same issues with

egards to the KBC void and Hubble tension (Haslbauer, Banik &
roupa 2020 ) and the early formation of galaxies (Haslbauer et al.
022 ) and galaxy clusters (Asencio, Banik & Kroupa 2021 , 2023 ).
n addition, SIDM does not provide an obvious explanation for the
G satellite planes because DM self-interactions do not have any
bvious effect on the positions and velocities of satellite galaxies
round their host − though the frequency of satellite planes in SIDM
hould be checked. Moreo v er, it is unclear how SIDM can explain the
bserved signs of tidal disturbance in Fornax Cluster dwarf galaxies
nd the lack of low surface brightness dwarfs towards the cluster
entre (Asencio et al. 2022 ). Reducing the central DM density would
ake the situation less problematic, but the DM fraction within the

aryonic extent of the Fornax dw arfs w ould need to be less than
or isolated LG dwarfs with accurately measured internal velocity
ispersions − these require a considerable amount of DM in a
ewtonian context. Thus, SIDM models face some challenges but

lso appear to hold some promise, especially as they may explain
ome of the MOND phenomenology while being consistent with the

BT and Solar System ephemerides due to the lack of any change in
he gravity sector. The same is true if we postulate a long-range non-
NRAS 527, 4573–4615 (2024) 
ravitational interaction between baryons and dark matter beyond
heir self-interactions (F amae y et al. 2020 ). 

.5 Futur e pr ospects 

he significant challenge to MOND presented by the WBT is an
mportant result which should be confirmed with additional data.
here are good prospects for future impro v ement: the ne xt Gaia data

elease (DR4) is anticipated at the end of 2025. DR4 will double
he time baseline analysed in DR3, giving an ≈2.8 × impro v ement
n proper motion precision and reducing the impact of CBs at AU
eparations (Appendix B ). We estimate that using DR4 with a similar
election to our main analysis but extended to m G < 17.6 and d <
00 pc would approximately double the search volume and almost
riple the final sample size, bearing in mind that more precise proper
otions will lead to more systems passing our cut on the ̃  v precision

equation [ 10 )]. 
Systems rejected here due to a lack of either star’s RV can also

e reco v ered from ground-based RV observations at a moderate
recision of ≈1 km s −1 . This would increase the sample size by about
0 per cent, but the more useful gain could be that the contamination
ate can be reduced if the RV is known for both stars. 

There are also interesting prospects for directly constraining the
riple population to reduce the degrees of freedom inherent in
ur modelling (Manchanda, Sutherland & Pittordis 2023 ). Their
imulations have shown that we should be able to detect nearly
ll triples with a single main sequence star orbited by a CB whose
nner period � 3 years, which is long enough to give a substantial
ime-averaged perturbation to the photocentre velocity (Appendix B ).
uch hierarchical systems can be found either by Gaia astrometric
ccelerations in the 10-yr final data set (for separations � 25 AU);
r by direct, speckle, or coronagraphic imaging (for separations
 20 AU). The required imaging observations are much less time-

onsuming than high-precision RV measurements, so they may be
easible for a substantial fraction of the WB sample, especially for the
igh ̃  v tail. This would provide an important check on our estimated
B contamination fraction. 
In principle, it is possible to refine the WBT via the addition of

inary RV differences. This would allow the use of 3D velocities and
D projected separations, which would reduce the scatter in the ṽ 
istribution inherent from projected velocities. Ho we ver, this would
equire high precision (order 0.05 km s −1 ) RVs for all stars, which
ould be very costly in observing time and require corrections for
ravitational redshift (Loeb 2022 ) and conv ectiv e blueshift (Liebing
t al. 2021 ). A fully 3D version of the WBT would also require
uch more precise astrometry to obtain kAU-level constraints on

he relative heliocentric distances to the stars in each WB. This is not
nvisaged in the foreseeable future for a statistically large sample of

Bs. More precise information is available for some very nearby
ystems (Kervella et al. 2016 ; Kerv ella, Th ́ev enin & Lo vis 2017 ),
ut an individual WB cannot test MOND using velocities alone even
f ̃  v > 

√ 

2 because a single snapshot would not pro v e that the WB is
ound (though a chance flyby is unlikely; see section 8.1 of BZ18 ).
 test is possible if the acceleration can be directly measured, which
ay become feasible with future observatories (Banik & Kroupa

019a ). 
Our work has assumed that the potential of a star at kAU distances
ust be traced by another star. It is possible for a spacecraft to serve as

he tracer instead (Banik & Kroupa 2019b ). The predicted aspherical
hell of PDM concentrated around the Solar MOND radius would
lso affect Solar System ephemerides (Hees et al. 2014 , 2016 ; Brown
 Mathur 2023 ). 
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19 This is similar to the rotation curve predictions in MOND, which often do 
not match the data within formal uncertainties but visually provide a good 
fit, which is typically considered sufficient given the inevitable modelling 
deficiencies (Kroupa et al. 2018 ; Cameron, Angus & Burgess 2020 ). 
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 SU M M A RY  A N D  C O N C L U S I O N S  

OND has enjoyed unparalleled predictive success with regards to 
alaxy dynamics (F amae y & McGaugh 2012 ; Banik & Zhao 2022 ,
nd references therein). Its central postulate is that the dynamics of
 system deviates from Newtonian expectations when the gravity 
 � a 0 . This could in principle occur at any distance from a system
rovided it has a sufficiently low mass [equation ( 2 )]. Since the
OND radius of a star is 7 

√ 

M/M 	 kAU, MOND ought to have
etectable effects on local WBs with kAU separations. Indeed, 
imple analytic estimates backed up by detailed calculations show a 
0 per cent enhancement to the orbital v elocity o v er the Newtonian
xpectation ( BZ18 ), as also evident in N -body simulations of local
tar clusters for much the same reason (Kroupa et al. 2022 ). 

We test this prediction using an observational sample of 8611 WBs
rom Gaia DR3 (Gaia Collaboration 2023 ) where the uncertainty on 
  [equation ( 3 )] is very small and other quality cuts have been applied
Sections 2.1 and 2.4 ). Dividing our sample into ten equally sized
ubsamples shows no trend in the median ̃  v with respect to r sky /r M 
nce we restrict our attention to ˜ v � 2, which should significantly 
educe contaminating effects while preserving a genuine MOND 

ignal (Fig. 11 ). Observational uncertainties would be expected 
o broaden the ˜ v distribution preferentially at large separations 
ecause the same uncertainty on the relativ e v elocity implies a
arger uncertainty in ˜ v . This would if anything lead to a broader ṽ 
istribution at low accelerations. As a result, the flat behaviour of the
edian ̃  v with respect to our proxy for the internal WB acceleration 

trongly suggests that local WBs are Newtonian. 
We then present the most detailed statistical hypothesis test of 
OND to date using local WBs. Our model includes a rigorous

alculation of the MOND gravitational field under an EFE of 
trength g e = 1 . 8 a 0 (Section 3.1 ), an allowance for an undetected
B companion to one or both of the stars in each WB (Section 3.2 ),
nd LOS contamination (Section 3.3 ). The procedure was fixed in 
dvance as much as possible to minimise biases that could arise
hen conducting the WBT (Banik, Pittordis & Sutherland 2021 ). 
he model parameters relate to those of: 

(i) The WBs, for which we need the αgrav parameter interpolating 
etween different gravity laws [see equation ( 39 ) for its relation to
he gravity law] and the distribution of semi-major axes [ a break and β;
ee equation ( 16 )] and orbital eccentricities [ γ ; see equation ( 17 )]; 

(ii) The CBs, for which we assume the same γ parameter but also 
eed the fraction f CB of stars in our WB sample with an undetected
B companion (Section 3.2.4 ) and the upper limit to the CB semi-
ajor axis, which is defined by k CB [see equation ( 22 )]; and 
(iii) The LOS contamination fraction f LOS due to chance align- 
ents (see Section 3.3 ). 

These seven parameters are allowed to vary freely so as to best
atch the observed distribution of 

(
r sky , ̃  v 

)
in 540 pixels (Table 1 ). 

Our best-fitting Newtonian model significantly outperforms our 
est-fitting MOND model: the likelihood ratio of exp (175) implies 
 preference for Newtonian gravity at 19 σ confidence according 
o our analyses with fixed αgrav . This is in line with the result of
S23 , who conducted a less detailed version of the WBT using a
ome what dif ferent r sky range of 5–20 kAU and considered WBs
ith ˜ v < 7. Their analysis also differs from ours in several other

espects, including their use of a linear rather than cubic mass-
uminosity relation (Fig. 1 ), their CB model, and their much more
imited exploration of the parameter space. Those authors found 
hat the χ2 of their best Newtonian model is smaller than that of
heir best MOND model by 525, suggesting a 23 σ preference for
ewtonian gravity. While our best-fitting Newtonian model is not 
 perfect representation of the WB data set, it is clear that the data
o not show the predicted broadening to the ̃  v distribution at larger
eparations (Fig. 12 ). 

In our main analysis, we allow the gravity law to interpolate
etween Newtonian and Milgromian. For this, we use the gravity law
arameter αgrav , which is 0 in Newtonian gravity and 1 in MOND.
sing 10 5 MCMC trials to explore the parameter space, we find

hat the inferred αgrav = −0 . 021 + 0 . 065 
−0 . 045 . This is very consistent with

ewtonian dynamics but rules out MOND at 16 σ confidence, which 
s in line with the results of PS23 and our results for fixed αgrav . Our
esult is robust to various changes in the modelling assumptions and
he sample selection (Table 3 ), including when we use a narrower

ass range to minimize possible trends in the mass distribution 
cross the parameter range used for the WBT (Section 5.1.1 ). We
lso explain in some detail why, without a drastic change to our
nderstanding of baryonic surface densities, the MOND interpolating 
unction cannot be chosen to simultaneously pass the WBT and 
onstraints from the rotation curves of galaxies, including our own 
Section 5.3 ). 

Our conclusion disagrees with two studies that were published 
hile this work was under re vie w (Chae 2023 ; Hernandez 2023 ).

n Section 5.2 , we focus on the study of Chae ( 2023 ) due to its
uch larger sample size and its claim to have detected the predicted
OND enhancement to Newtonian gravity at 10 σ confidence. We 

nd that the nominal sample of 26 615 WBs used in that study
oes indeed show a clear signal that closely resembles the MOND
xpectation and appears to rule out Newtonian dynamics (Fig. 19 ).
o we ver, we then identify a major deficiency with the handling
f astrometric uncertainties. Despite the importance of the relative 
elocity between the stars in each WB, the uncertainty on this
uantity is not estimated in Chae ( 2023 ). Instead, the focus is on
nsuring that the heliocentric velocity of each star is very precise.
his is insufficient to ensure a precisely known relative velocity and

hus a reliable ̃  v , which ho we ver is essential to conducting the WBT.
e therefore use equation 5 of El-Badry, Rix & Heintz ( 2021 ) to

stimate the uncertainty in v sky and thus in ˜ v . We then impose an
dditional condition on the ̃  v uncertainty matching that used in our 
wn analysis [equation ( 10 )]. This completely remo v es the apparent
OND signal despite only reducing the sample size by about 1/5

see Fig. 21 ). We argue that a similar issue may well have affected
he analysis of Hernandez ( 2023 ) based on some statements in that
aper, though we do not study its WB sample in detail. We also
nd that the WB sample used by Chae ( 2023 ) artificially imposes

hat ˜ v < 

√ 

5 M 	/M , making it not very well suited to the WBT
Appendix E ). 

We conclude that the gravity law inferred from our analysis of
ocal WBs is consistent with Newtonian expectations but rules out 

OND as modified gravity at �5 σ confidence in both our nominal
nalysis and a considerable range of variations to it. This conclusion
s of course reliant on our modelling approach, which is not a perfect
atch to the data (Fig. D1 ). 19 Even so, neither our main analysis

or any of the variations considered can significantly impro v e the fit
y using a gravity law different to Newtonian. This is also evident
rom the model-independent Fig. 11 , which considers the median ̃v 
n subsamples with different r sky /r as a proxy for the WB internal
MNRAS 527, 4573–4615 (2024) 
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cceleration. It has been argued that modified inertia interpretations
f MOND could reduce the predicted enhancement to the Newtonian
cceleration and thus remain consistent with the WBT (Milgrom
994 , 2011 , 2022 ). This would lead to the inner and outer parts of
alaxy rotation curves following the same RAR, but a difference is
etected at 6.9 σ confidence (Chae 2022 ). Although the predictions
f modified inertia for slightly non-circular orbits are not known,
he magnitude of the abo v e-mentioned difference is consistent with
xpectations of MOND as modified gravity − but this is ruled out
y the WBT. Further modifications to MOND could preserve its
uccesses on galaxy scales, especially with regards to issues like the
G satellite planes, which are difficult to understand any other way

P a wlowski 2021a , b ; Banik et al. 2022 ). This entails at least one new
undamental scale beyond a 0 , marking the end of MOND as a purely
cceleration-dependent modification to standard physics. Limiting
he MOND phantom density to 

∣∣ρpdm 

∣∣ � 20 M 	/pc 3 would yield
onsistency with the WBT and also alleviate tensions related to the
ull detection of MOND effects in Cassini radio tracking data from
aturn (Hees et al. 2014 , 2016 ; Brown & Mathur 2023 ). It might also

mpro v e the agreement with observations of globular clusters and the
ertical gravity from the Galactic disc. Limiting | ρpdm 

| would have
ittle effect on larger scales, similarly to the Vainshtein mechanism
sed to screen modified gravity effects in the Solar System (Babichev,
effayet & Esposito-Far ̀ese 2011 ). This would preserve MOND’s

uccesses in galaxies b ut lea ve open the issue of galaxy clusters and
arge-scale structure, for which the hybrid νHDM paradigm may
e a promising approach (section 9.2 of Banik & Zhao 2022 , and
eferences therein). While our results falsify MOND as currently
nderstood, giv en the man y problems for � CDM discussed in that
ork, our results cannot be used to argue that it is the correct model

ither − both models are clearly incomplete. Hybrid models like
FDM struggle to explain galactic-scale observations like lensing
Mistele, McGaugh & Hossenfelder 2022 , 2023 ) and the WBT, while
on-MOND modifications to gravity like EG and MOG usually fail
n galaxies (Section 5.4 ). SIDM may be a promising approach but
t is very similar to � CDM on large scales, thus encountering the
ame difficulties with the KBC void (Keenan, Barger & Cowie 2013 ;
aslbauer, Banik & Kroupa 2020 ; Wong et al. 2022 ) and Hubble

ension (Di Valentino 2021 ). This significant anomaly for standard
osmology appears to persist in the JWST era (Yuan et al. 2022 )
nd must be solved consistently with the ages of the oldest stars
Cimatti & Moresco 2023 , and references therein). We hope that our
esults from local WBs moti v ate the de velopment of a more complete
heory, which is likely to borrow some elements from both � CDM
nd MOND given their successes in different domains. 
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PPENDI X  A :  EXAC TLY  EQUA L  MASS  

I NA RI ES  

lthough we might expect the mass ratio distribution of binaries to
e smooth, observations indicate a population of exactly equal mass
Bs (El-Badry et al. 2019 ). We therefore include an allowance for a

-function in the ̃  q distribution at 1/2, where ̃  q is the fraction of the CB
ass in the less massive star. To find the likelihood P eqm 

of a binary
aving exactly equal mass stars, we plot the cumulative distribution
f 0 . 5 − ˜ q for the WBs in our sample, which we restrict to ˜ v < 1
o try and mitigate CB contamination. The idea is to extrapolate the
istribution down to zero and look for a positive intercept. Since a δ-
unction would be smeared somewhat by observational uncertainties,
e need to start our fit at some slightly positive value of 0 . 5 − ˜ q . We

lso need to a v oid extending our fit to very high 0 . 5 − ˜ q because our
olynomial fitting function might become inaccurate. 
The results in the top panel of Fig. A1 show real data and a cubic

t o v er the range 0.05 − 0.2. The data are shown in black, while the
ubic fit is shown in red − a cubic is the lowest degree polynomial
hich provides an accurate match to the data. The bottom panel
f Fig. A1 shows the intercept as a function of the upper limit to
 . 5 − ˜ q , with each coloured line used to show results for a different
ower limit. All analysis variants show a positive intercept, whose
alue converges at close to 0.04 for a wide range of lower and upper
imits to 0 . 5 − ˜ q . We therefore adopt P eqm 

= 0.04 for the CB model
n our main analysis. This assumption is not rele v ant to modelling
ncontaminated WBs, whose actual mass ratio distribution is used
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Figure A1. Top : The cumulative distribution of 0 . 5 − ˜ q for WBs with ̃  v < 1 
(black line). We only show results o v er the range 0.05 − 0.2 because a δ- 
function in the probability distribution at zero would be smeared somewhat 
by observational uncertainties. The red line shows a cubic fit o v er this range, 
but also extrapolates it down to zero. Notice that the intercept is slightly 
positive, indicating the presence of a population of WBs with an exactly equal 
mass (consistent with El-Badry et al. 2019 ). Bottom : The abo v e-mentioned 
intercept is plotted as a function of the upper limit to the fitting range. Different 
lines show results with different lower limits, as indicated in the legend. 
Notice that for a wide range of fitting ranges, the results converge around 
0.04, which we assume is the likelihood P eqm 

of a binary having exactly 
equal mass components. 
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hen needed (Section 3.2.4 ). An equal mass fraction of a few percent
s in line with the double main sequence apparent in the colour–
agnitude diagram of our WB sample (Fig. 2 ). 

PPEN D IX  B:  W H E N  O R B I TA L  MOTION  

ECOM ES  N O N - L I N E A R  

e assume uniform rectilinear motion for the WB and any undetected 
B companions, implicitly assuming that the orbital periods are very 

ong. This should be a very good approximation for the WB given the
AU separations of even the tightest WBs we consider. Ho we ver, CB
rbital periods can be much shorter. This can substantially reduce 
he mean motion of the CB o v er the Gaia DR3 observing baseline
f t G = 34 months. In this section, we estimate the CB orbital period
elow which we can no longer safely assume a very long orbital
eriod P . This is used to estimate a minimum CB semi-major axis
 int when setting up its distribution in Section 3.2.3 . 
For simplicity, we assume that the CB is on a circular orbit and

hat the line connecting its components rotates by some angle θ o v er
he Gaia observing baseline. We consider the impact of increasing θ
y reducing the CB separation while not altering the other CB orbital
arameters. The induced recoil velocity on the star detected as part
f the WB depends on the CB orbital velocity v ∝ 1 / 

√ 

a int . Bearing
n mind Kepler’s Third Law that P ∝ a 

3 / 2 
int , we get that v ∝ P 

−1/3 .
ince the CB rotation angle θ o v er a fixed duration of time varies as
∝ 1/ P , we get that 

 ∝ θ1 / 3 . (B1) 

he positive exponent captures the fact that larger θ is associated 
ith a tighter CB on a faster orbit. 
Ho we ver, the mean velocity v will in general involve some

dditional shape factor s ( θ ) that accounts for the extent to which the
rbital arc o v er the Gaia observing baseline deviates from a straight
ine. Basic trigonometry tells us that the linear distance between two
oints on a circle is smaller than the distance between them along
he circumference by a factor of sinc ( θ/ 2 ) . Putting this extra factor
nto equation ( B1 ) tells us that 

 ∝ θ−2 / 3 

∣∣∣∣sin 

(
θ

2 

)∣∣∣∣ . (B2) 

reating this as a function of u ≡ θ /2, we find that the maximum
ccurs when tan u = 3 u /2. The first non-trivial solution is u = 0.97
r θ = 111 ◦. Rotation by this angle o v er t G implies P = 3 . 25 t G 

, so
e expect our linear motion approximation to break down when P <
10 months or 9.2 yr. 
The corresponding orbital separation depends on the mass of the 

B. For a low-mass undetected companion, the CB total mass would
nly slightly exceed the mass of the contaminated star, which is just
ne of the two stars detected as a WB. The blue bars in Fig. 5 show
hat the stars in our WB sample easily reach down to 0 . 4 M 	. At
his mass, an orbital period of 9.2 years corresponds to a int = 3.2
U. While CBs with even smaller separations would still affect the

nferred WB orbital velocity, the impact rapidly becomes smaller 
han implied by equation ( B1 ). 

We note that 3.2 AU is much larger than the minimum a int of 0.1
U considered in the orbit integrations of PS23 (see their section
.2). CBs with a separation of 0.1 AU would complete many orbits
 v er t G , so the effect of such tight CBs may have been overestimated
n their analysis. 

PPENDI X  C :  C O M PA R I N G  T H E  BEST  

E W TO N I A N  A N D  M O N D  M O D E L S  

n Fig. 13 , we presented the difference in log-likelihood between our
est-fitting Newtonian and Milgromian models. The panels in this 
gure showed the results for each r sky but with all ̃  v pixels summed
 v er, and vice v ersa. To giv e a better understanding of which pixels
ork better in which theory, we show the full 2D distribution of
 ln P between these models in Fig. C1 . Since  ln P is close to zero

n sev eral pix els, we clarify which model does better by adding an
pen white circle at the centre of a pixel if MOND fits it better. Out
f the 540 pixels used in our analysis (Table 1 ), only 221 pixels
41 per cent) prefer MOND while the remaining 59 per cent prefer
e wtonian gravity. Ho we ver, we also need to consider that the pixels
hich prefer MOND only do so to a rather small extent, while

ometimes pixels which prefer Newtonian gravity do so to a very
arge extent. 
MNRAS 527, 4573–4615 (2024) 
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igure C1. The relative performance of our best-fitting Newtonian and
OND models, shown here for ev ery pix el. The binomial log-likelihood

f each model is found by comparison with the observed number of WBs
n each pixel (Fig. 6 ). Open white circles indicate pixels for which MOND
utperforms Newtonian gravity. The combined difference in log-likelihood
t each r sky summed across all ̃  v (and vice versa) is shown in Fig. 13 . 

PPENDIX  D :  T H E  BEST  FIT  M O D E L  WITH  

E D U C E D  C B  C O N TA M I NAT I O N  

he only alteration to our nominal analysis which gives an appre-
iable preference for αgrav > 0 is the one in which we fix f CB = 0.3
T able 3 ). W e explore this model in more detail to understand if it
lausibly fits the WB data with a gravity law closer to Milgromian. 
In Fig. D1 , we compare the observed ˜ v distribution to the

rediction of the best model with our nominal assumptions and with
 CB = 0.3, considering both the final result of the gradient ascent and
he whole MCMC chain in each case. It is clear that fixing f CB to
uch a low value causes a catastrophic disagreement with nearly all
spects of the observations. The lack of sufficient CB contamination
auses the peak of the ˜ v distribution to be more pronounced than
n the Gaia number counts at very low r sky , though we see that both
odels struggle somewhat in the peak region at intermediate r sky . The
ost important differences concern the tail of the distribution, which

annot be adequately fit with so few CBs. The analysis has to try
nd fit the extended tail with substantially more LOS contamination,
uadrupling the inferred f LOS . This may help somewhat at low r sky ,
ut it leads to a rapidly rising ˜ v distribution at high r sky , in strong
isagreement with the observations (bottom right panel). 
These very serious issues cause the o v erall fit to be poorer than

n our best-fitting nominal analysis by  ln P = 413, which implies
hat the latter is preferred at a confidence equi v alent to 

√ 

2  ln P =
9 σ for a 1D Gaussian. Clearly, assuming a substantially lower
ikelihood of CB contamination is not a viable proposition. In any
ase, this only shifts the inferred gravity law towards MOND by a
mall amount, with Newtonian gravity still strongly preferred despite
acing just o v er 3 σ tension (Fig. 18 ). It is therefore e xtremely difficult
o reconcile our WB results with MOND as usually understood given
ther constraints. 
NRAS 527, 4573–4615 (2024) 
PPENDI X  E:  T H E  ARTI FI CI AL  V E L O C I T Y  

I MI T  IN  T H E  C H A E  (  2 0 2 3  )  ANALYSI S  

n Section 5.2 , we discussed several problems with the WB analysis
f Chae ( 2023 ). One additional problem which may be noteworthy
s that the sample is based on the WB catalogue of El-Badry,
ix & Heintz ( 2021 ). Each WB is assigned a likelihood of being
enuine based on several factors, one of the most important being
he magnitude of v sky (see their equation 7). 20 Unlike our limit that
  < 5, their limit to v sky does not easily translate into a limit on ṽ 
ecause there is no allowance for more massive WBs having a faster
ewtonian v c . Those authors require that 

 sky < 2 . 1 

√ 

kAU 

r sky 
km s −1 , (E1) 

hich in terms of ̃  v corresponds to 

  < 

√ 

5 M 	
M 

. (E2) 

We illustrate this cutoff in Fig. E1 , where we plot ̃  v as a function
f M for the 26615 WBs in the nominal sample of Chae ( 2023 ).
early all of these WBs lie below the blue line showing the limit
iven by equation ( E2 ). This is not a completely strict limit because
ach WB is required to be consistent with this bound within the 2 σ
bservational uncertainty on v sky (see section 2 of El-Badry, Rix &
eintz 2021 ). Even so, it should be clear that a WB sample selected

n this way is not ideal for the WBT. 21 

To check if our results in Section 5.2 remain reliable despite this
omplication, we need to impose an upper limit on the mass so that
esults remain reliable up to some maximal ˜ v . This is equi v alent
o drawing a rectangular cut towards the bottom left of Fig. E1 . To
etain most of the WB sample while having reliable results beyond the
ain peak of the ̃  v distribution, we impose a limit of M < 1 . 25 M 	.
ith this mass limit, regardless of the mass of a WB, there is no

runcation to the ˜ v distribution for ˜ v < 2. We then use Fig. E2 to
how the median ˜ v as a function of r sky /r M for the case where the
ample is further limited to only those WBs where the estimated(˜ v 

)
< 0 . 1 max 

(
1 , ̃  v / 2 

)
, as done in Fig. 21 . Both figures show

ery similar results, indicating that the ̃  v limit imposed by equation
 E2 ) has little impact on the flat trend of the median ̃  v with respect
o our proxy for the internal WB acceleration. This is presumably
ecause the main peak of the ˜ v distribution lies at ˜ v < 1, which is
ot much affected by this cut (Fig. E1 ). Even so, having a mass-
ependent limit to ̃  v could in principle bias the WBT because a WB
ith a lower mass also has a lower acceleration at the same r sky .
ince the main idea of the WBT is that some typical measure of
  ∝ 

√ 

g/g 
N 

, one should be cautious about a sample selection that
llo ws lo wer mass systems to reach a higher ˜ v than higher mass
ystems. 

0 This is estimated using the difference in proper motions without allowing
or the systemic RV, which should be a reasonable approximation given the
mall angular sizes of WBs. 
1 K. El-Badry, pri v ate communication. 
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Figure D1. Comparison between the observed ̃  v distribution in four different r sky ranges (solid red bars in different panels) with the prediction of our best 
model from our nominal analysis (black lines with error bars) and from our revised analysis with fixed f CB = 0.3 (blue lines with error bars). This revised 
analysis is the only one to appreciably shift the inferred gravity law towards MOND (Fig. 18 ). The fit is much poorer in this case. The results shown here are 
normalized based on the observed WB distribution, helping to highlight that the f CB = 0.3 model predicts too many WBs at high r sky . 

Figure E1. The red dots show the distribution of WB mass and ̃  v for the 
nominal sample of Chae ( 2023 ). Notice how the vast majority of WBs lie 
below the solid blue line [equation ( E2 )] due to selection effects (equation 7 
of El-Badry, Rix & Heintz 2021 ). 

Figure E2. Similar to Fig. 21 , but restricted further to only WBs with M < 

1 . 25 M 	. This ensures that the artificial limit to the ̃  v distribution in the Chae 
( 2023 ) sample (blue line in Fig. E1 ) does not influence the results for ̃  v < 2. 
The mass limit has little impact on the results, which continue to show a flat 
trend once we impose that σ

(˜ v 
)

< 0 . 1 max 
(
1 , ̃  v / 2 

)
, as done here. 
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