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Télécom Paris, Institut Polytechnique de Paris, France

Abstract. The task of semi-supervised classification aims at assigning
labels to all nodes of a graph based on the labels known for a few nodes,
called the seeds. One of the most popular algorithms relies on the princi-
ple of heat diffusion, where the labels of the seeds are spread by thermo-
conductance and the temperature of each node at equilibrium is used as a
score function for each label. In this paper, we prove that this algorithm
is not consistent unless the temperatures of the nodes at equilibrium
are centered before scoring. This crucial step does not only make the
algorithm provably consistent on a block model but brings significant
performance gains on real graphs.

1 Introduction

The principle of heat diffusion has proved instrumental in graph mining [5].
It has been applied for many different tasks, including pattern matching [9],
ranking [7], embedding [4], clustering [10], classification [13, 12, 2, 6] and feature
propagation [8]. In this paper, we focus on the task of semi-supervised node
classification: given labels known for a few nodes of the graph, referred to as
the seeds, how to infer the labels of the other nodes? This can be viewed as
a problem of heat diffusion with boundary constraints, known as the Dirichlet
problem [13]. Specifically, one Dirichlet problem is solved per label, setting at 1
the temperature of the seeds with this label and at 0 the temperature of the other
seeds. Each node is then assigned the label with the highest temperature over
the different Dirichlet problems. In this paper, we prove using a simple block
model that this algorithm is actually not consistent, unless the temperatures
are centered before label assignement. This step of temperature centering does
not only make the algorithm consistent but also brings substantial performance
gains on real datasets. This is a crucial observation given the popularity of the
algorithm1.

The rest of this paper is organized as follows. In section 2, we introduce
the Dirichlet problem on graphs. Section 3 describes our algorithm for node
classification. The analysis showing the consistency of our algorithm on a simple
block model is presented in section 4. Section 5 presents the experiments and
section 6 concludes the paper.

⋆ Contact author: thomas.bonald@telecom-paris.fr
1 The number of citations of the paper [13] exceeds 4 000 according to Google Scholar.
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2 Dirichlet problem on graphs

In this section, we introduce the Dirichlet problem on graphs and characterize
the solution, used later in the analysis.

2.1 Heat equation

Consider an undirected graph G with n nodes indexed from 1 to n. Denote by
A its adjacency matrix. This is a symmetric matrix with non-negative entries.
Let d = A1 be the degree vector, which is assumed positive, and D = diag(d).
The Laplacian matrix is defined by:

L = D −A.

Now let S be some strict subset of {1, . . . , n} and assume that the temper-
ature of each node i ∈ S is set at some fixed value Ti. We are interested in
the evolution of the temperatures of the other nodes, we refer to as the free
nodes. Heat exchanges occur through each edge of the graph proportionally to
the temperature difference between the corresponding nodes so that:

∀i /∈ S,
dTi

dt
=

n∑
j=1

Aij(Tj − Ti),

that is,

∀i /∈ S,
dTi

dt
= −(LT )i,

where T is the vector of temperatures. This is the heat equation in discrete
space. At equilibrium, the vector T satisfies Laplace’s equation:

∀i /∈ S, (LT )i = 0. (1)

With the boundary constraint giving the temperature Ti for each node i ∈ S,
this defines a Dirichlet problem. Observe that Laplace’s equation (1) can be
written equivalently:

∀i /∈ S, Ti = (PT )i, (2)

where P = D−1A is the transition matrix of the random walk in the graph.

2.2 Solution to the Dirichlet problem

We now characterize the solution to the Dirichlet problem (1). Without any loss
of generality, we assume that free nodes (i.e., not in S) are indexed from 1 to
n− s so that the vector of temperatures can be written

T =

[
X
Y

]
,
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where X is the vector of temperatures of free nodes at equilibrium, of dimension
n− s, and Y is the vector of temperatures of the seeds, of dimension s. Writing
the transition matrix in block form as

P =

[
Q R
· ·

]
,

it follows from (2) that:
X = QX +RY, (3)

so that:
X = (I −Q)−1RY. (4)

Note that the inverse of I −Q exists whenever the graph is connected [3]. The
solution to the Dirichlet problem exists and is unique.

3 Node classification algorithm

In this section, we introduce a node classification algorithm based on the Dirich-
let problem. The objective is to infer the labels of all nodes given the labels of a
few nodes called the seeds. Our algorithm is a simple modification of the popular
method proposed by [13]. Specifically, we propose to center temperatures before
label assignment.

3.1 Binary classification

When there are only two different labels, say 0 and 1, the classification follows
from the solution of a single Dirichlet problem. The idea is to set at 0 the
temperature of seeds with label 0 and at 1 the temperature of seeds with label
1. The solution to this Dirichlet problem gives temperatures between 0 and 1 to
the free nodes, as illustrated by Figure 1 for the Karate Club graph [11].

A natural decision rule is to use a threshold of 1/2 for classification: any
free node with temperature above 1/2 is assigned label 1, any other free node is
assigned label 0. The analysis of Section 4 suggests that it is preferable to set
the threshold to the mean temperature at equilibrium,

T̄ =
1

n

n∑
i=1

Ti. (5)

Specifically, any free node with temperature above T̄ is assigned label 1, any
other free node is assigned label 0. Equivalently, temperatures are centered before
classification: after centering, free nodes with positive temperature are assigned
label 1, the others are assigned label 0.

It is worth noting that the threshold (5) is the mean temperature of all
nodes at equilibrium, including seed nodes. Another option, suggested by the
class mass normalization step of [13] for instance, is to set the threshold at the
mean temperature of free nodes at equilibrium. This variant of the algorithm is
not provably consistent, however.
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(a) Ground truth (b) Solution to the Dirichlet problem

Fig. 1: Binary classification of the Karate Club graph with 2 seeds (indicated
with a black circle). Blue nodes have label 0, red nodes have label 1.

3.2 Multi-class classification

In the general case with K labels, we use a one-against-all strategy: the seeds
of each label alternately serve as hot sources (temperature 1) while all the other
seeds serve as cold sources (temperature 0). After centering the temperatures
(so that the mean temperature of each diffusion is equal to 0), each node is
assigned the label that maximizes its temperature. This algorithm, we refer to
as the Dirichlet classifier, is parameter-free.

Algorithm 1 Dirichlet classifier

Require: Seed set S and associated labels y ∈ {1, . . . ,K}
1: for k in {1, . . . ,K} do
2: T = 0
3: for i ∈ S do
4: if yi = k then
5: Ti = 1
6: end if
7: end for
8: T ← Dirichlet(S, T )
9: ∆(k)← T − 1

n

∑n
i=1 Ti

10: end for
11: for i ̸∈ S do
12: ŷi = argmaxk=1,...,K(∆i(k))
13: end for
14: return ŷ, predicted labels of free nodes (outside S)

The solution to the Dirichlet problem (line 8 of the algorithm) can be ob-
tained either from (4) or from iterations of the fixed-point equation (3).
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4 Analysis

In this section, we prove the consistency of Algorithm 1 on a simple block model.
In particular, we highlight the importance of temperature centering (line 9 of
the algorithm) for the consistency of the algorithm.

4.1 Block model

Consider a graph of n nodes consisting of K blocks of respective sizes n1, . . . , nK ,
forming a partition of the set of nodes. There are s1, . . . , sK seeds in these blocks,
which are respectively assigned labels 1, . . . ,K. Intra-block edges have weight p
and inter-block edges have weight q. We expect the algorithm to assign label k
to all nodes of block k whenever p > q, for all k = 1, . . . ,K.

4.2 Dirichlet problem

Consider the Dirichlet problem when the temperature of the s1 seeds of block 1
is set to 1 and the temperature of the other seeds is set to 0. We have an explicit
solution to this Dirichlet problem, given by Lemma 1. All proofs are deferred in
the appendix.

Lemma 1. Let Tk be the temperature of free nodes of block k at equilibrium.
We have:

(s1(p− q) + nq)T1 = s1(p− q) + nT̄ q,

(sk(p− q) + nq)Tk = nT̄ q k = 2, . . . ,K,

where T̄ is the average temperature, given by:

T̄ =
1

n

n∑
i=1

Ti =

(
s1
n

n1(p− q) + nq

s1(p− q) + nq

)
/

(
1−

K∑
k=1

(nk − sk)q

sk(p− q) + nq

)
.

4.3 Classification

We now state the main result of the paper: the Dirichlet classifier is a consistent
algorithm for the block model, in the sense that all nodes are correctly classified
whenever p > q.

Theorem 1. If p > q, then xi = k for each free node i of each block k, for any
parameters n1, . . . , nK (label distribution) and s1, . . . , sK (seed distribution).

Observe that the temperature centering is critical for consistency. In the
absence of centering, free nodes of block 1 are correctly classified if and only if
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their temperature is the highest in the Dirichlet problem associated with label
1. In view of Lemma 1, this means that for all k = 2, . . . ,K,

s1q
n1(p− q) + nq

s1(p− q) + nq
+ s1(p− q)

1−
K∑
j=1

(nj − sj)q

sj(p− q) + nq


> skq

nk(p− q) + nq

sk(p− q) + nq
.

This condition might be violated even if p > q, depending on the parameters
n1, . . . , nK and s1, . . . , sK . In the simple case of K = 2 blocks with p = 0.1
and q = 0.01 for instance, the classification is incorrect in the cases n1 = n2 =
100, s1 = 10, s2 = 5 (seed asymmetry) and n1 = 100, n2 = 10, s1 = s2 = 5 (label
asymmetry). This sensitivity of the algorithm to both forms of asymmetry will
be confirmed by the experiments. The step of temperature centering is crucial
for consistency.

5 Experiments

In this section, we show the impact of temperature centering on the quality of
classification using both synthetic and real data. The Python code is available
as a Jupyter notebook in Python2, making the experiments fully reproducible.

5.1 Synthetic data

We first use the stochastic block model [1] to generate graphs with an underlying
structure in clusters. This is the stochastic version of the block model used in
the analysis. There are K blocks of respective sizes n1, . . . , nK . Nodes of the
same block are connected with probability p while nodes in different blocks are
connected probability q. Nodes in block k have label k. We denote by sk the
number of seeds in block k and by s the total number of seeds.

We first compare the performance of the algorithms on a binary classification
task (K = 2) for a graph of n = 10 000 nodes with p = 10−2 and q = 10−3, in
two different settings:

– Seed asymmetry: Both blocks have the same size n1 = n2 = 5000 but
different numbers of seeds, with ratio s1/s2 ∈ {1, 2, . . . , 10} and s2 = 250
(5% of nodes in block 2 are seeds).

– Label asymmetry: Both blocks have different sizes, with ratio n1/n2 ∈
{1, 2, . . . , 10} and total size n = 10 000, but the same number of seeds,
s1 = s2 = 250 (5% of all nodes are seeds).

For each configuration, the experiment is repeated 100 times. Randomness
comes both from the generation of the graph and from the selection of the seeds.

2 https://perso.telecom-paris.fr/bonald/notebooks/diffusion.ipynb
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Fig. 2: F1 scores on the stochastic block model (2 labels).

We report the F1-scores in Figure 2 (mean ± standard deviation). Observe that
the variability of the results is very low due to the relatively large size of the
graph. As expected, the centered version is much more robust to both forms of
asymmetry. The variant called partial centering, where the mean temperature is
computed over free nodes only, tends to be less robust to label asymmetry.

We show in Figure 3 the same results for K = 5 blocks, still with n = 10 000
nodes, p = 10−2 and q = 10−3. Blocks 2, 3, 4, 5 have the same size and the same
number of seeds. For the experiments on seed asymmetry, each block has 2 000
nodes and 5% of nodes in blocks 2, 3, 4, 5 are seeds; we only vary the number
of seeds in block 1. For the experiments on label asymmetry, there is the same
number of seeds for each label, corresponding to an average proportion of 5%
of all nodes. The performance metric is the F1-score averaged over the 5 labels.
The conclusions are the same as with 2 labels.
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Fig. 3: Macro F1-scores on the stochastic block model (5 labels).
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5.2 Real data

We now focus on real datasets available from the SNAP collection3 and the
NetSet4 collection, restricting to graphs having ground-truth labels. All graphs
are considered undirected.

Table 1: Overview of the datasets.

Dataset #nodes #edges #classes

Cora 2 708 5 278 7
Citeseer 3 264 4 536 6
PubMed 19 717 44 325 3
Email 1 005 16 385 42

PolBlogs 1 490 16 716 2
WikiSchools 4 403 100 329 16
WikiVitals 10 011 654 502 11
WikiVitals+ 45 179 3 079 335 11

For each dataset, we select seeds uniformly at random. The process is re-
peated 100 times. The macro-F1 scores are shown in Table 2 for seeds represent-
ing 5%, 10% or 20% of the nodes. We see that the centered version outperforms
the standard version over all datasets. The performance gains are substantial for
the largest graphs, extracted from Wikipedia. The variance is also lower in all
cases, showing the robustness of the algorithm. Additional results, not reported
here, tend to show that the variant selected for temperature centering (based on
either all nodes or free nodes) has a marginal impact on performance.

6 Conclusion

We have proposed a novel approach to node classification based on heat diffusion.
Specifically, our technique consists in centering the temperatures of each solution
to the Dirichlet problem before classification. We have proved the consistency
of this algorithm on a simple block model and shown that the temperature
centering brings significant performance gains on real datasets. This is a crucial
observation given the popularity of the algorithm.

The question of the consistency of the algorithm when the mean temperature
is computed over free nodes (instead of all nodes) remains open. Another inter-
esting research perspective is to extend our proof of consistency of the algorithm
to stochastic block models, where edges are drawn at random [1] .

3 https://snap.stanford.edu/
4 https://netset.telecom-paris.fr/
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Appendix

A Proof of Lemma 1

Proof. In view of (2), we have:

(n1(p− q) + nq)T1 = s1p+ (n1 − s1)pT1 +
∑
j ̸=1

(nj − sj)qTj ,

(nk(p− q) + nq)Tk = s1q + (nk − sk)pTk +
∑
j ̸=k

(nj − sj)qTj ,

for k = 2, . . . ,K. We deduce:

(s1(p− q) + nq)T1 = s1p+ Uq,

(sk(p− q) + nq)Tk = s1q + Uq ∀k = 2, . . . ,K,

with

U =

K∑
j=1

(nj − sj)Tj .

The proof then follows from the fact that

nT̄ = s1 +

K∑
j=1

(nj − sj)Tj = s1 + U.

B Proof of Theorem 1

Proof. Let ∆
(1)
k = Tk − T̄ be the deviation of temperature of non-seed nodes of

block k for the Dirichlet problem associated with label 1. In view of Lemma 1,
we have:

(s1(p− q) + nq)∆
(1)
1 = s1(p− q)(1− T̄ ),

(sk(p− q) + nq)∆
(1)
k = −sk(p− q)T̄ k = 2, . . . ,K,

For p > q, using the fact that T̄ ∈ (0, 1), we get ∆
(1)
1 > 0 and ∆

(1)
k < 0 for all

k = 2, . . . ,K. By symmetry, for each label l = 1, . . . ,K, ∆
(l)
l > 0 and ∆

(l)
k < 0

for all k ̸= l. We deduce that for each block k, xi = argmaxl ∆
(l)
k = k for each

free node i of block k.
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Table 2: Macro-F1 scores (mean ± standard deviation) without and with tem-
perature centering.

(a) 5% of seeds

Dataset No centering Centering Variation

Cora 0.69 ± 0.02 0.71 ± 0.02 +2%
Citeseer 0.48 ± 0.01 0.48 ± 0.01 0%
PubMed 0.76 ± 0.01 0.78 ± 0.01 +2%
Email 0.12 ± 0.04 0.22 ± 0.03 +85%
PolBlogs 0.82 ± 0.12 0.87 ± 0.01 +7%
WikiSchools 0.08 ± 0.06 0.44 ± 0.03 +472%
WikiVitals 0.29 ± 0.06 0.63 ± 0.02 +116%
WikiVitals+ 0.31 ± 0.03 0.65 ± 0.01 +112%

(b) 10% of seeds

Dataset No centering Centering Variation

Cora 0.74 ± 0.02 0.75 ± 0.01 +1%
Citeseer 0.52 ± 0.01 0.52 ± 0.01 0%
PubMed 0.78 ± 0.01 0.79 ± 0.00 +1%
Email 0.21 ± 0.04 0.31 ± 0.03 +43%
PolBlogs 0.86 ± 0.02 0.87 ± 0.01 +1%
WikiSchools 0.13 ± 0.04 0.50 ± 0.02 +295%
WikiVitals 0.43 ± 0.04 0.67 ± 0.01 +57%
WikiVitals+ 0.61 ± 0.01 0.68 ± 0.01 +12%

(c) 20% of seeds

Dataset No centering Centering Variation

Cora 0.78 ± 0.01 0.78 ± 0.01 0%
Citeseer 0.57 ± 0.01 0.57 ± 0.01 0%
PubMed 0.80 ± 0.00 0.80 ± 0.00 0%
Email 0.32 ± 0.03 0.40 ± 0.02 +24%
PolBlogs 0.87 ± 0.01 0.87 ± 0.01 0%
WikiSchools 0.27 ± 0.03 0.57 ± 0.02 +110%
WikiVitals 0.58 ± 0.02 0.70 ± 0.01 +22%
WikiVitals+ 0.65 ± 0.01 0.71 ± 0.00 +9%
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