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Abstract. This work adresses the question of density of piecewise constant (resp.

rigid) functions in the space of vector valued functions with bounded variation (resp.

deformation) with respect to the strict convergence. Such an approximation property

cannot hold when considering the usual total variation in the space of measures as-

sociated to the standard Frobenius norm in the space of matrices. It turns out that

oscillation and concentration phenomena interact in such a way that the Frobenius

norm has to be homogenized into a (resp. symmetric) Schatten-1 norm which coin-

cides with the Euclidean norm on rank-one (resp. symmetric) matrices. By means of

explicit constructions consisting of the superposition of sequential laminates, the va-

lidity of an optimal approximation property is established at the expense of endowing

the space of measures with a total variation associated with the homogenized norm

in the space of matrices.

1 Introduction

Functions of bounded variation (BV ) and of bounded deformation (BD) have shown to be the
right mathematical setting of many applied problems, including problems from image segmentation,
optimization, fracture and plasticity. This has led in the last decades to a many-sided and fine
analysis of their properties. One of the first questions, motivated both by theoretical usefulness
and by numerical application, is that of the approximation of BV and BD functions by a more
restricted class of functions. The choice of the convergence and the regularity of the approximants
may change with the context [19, 28, 29, 7, 17, 38, 31, 27, 22, 23, 36, 25, 34, 26, 24, 30].

A classical result in the theory of scalar BV -functions states that any function u ∈ BV (Ω) in an
open set Ω ⊂ Rn can be approximated by a sequence of simple BV -functions with respect to the
strict convergence, that is the strong L1-convergence of functions together with the convergence of
the total variation of their derivatives. The proof rests on the Fleming-Rishel coarea formula, and
consequently does not easily apply to the vectorial setting, where the total variation is intended
as the extension to measures of the Frobenius norm of matrices. In fact, it turns out that it is
not possible to strictly approximate vector-valued BV functions by piecewise constant ones, and
not even if the convergence of the total variation of the derivatives is replaced by the convergence
of their area-variation, or of any other strongly convex variation coinciding with the standard
variation on singular rank-one measures (see respectively [8], [9, Remark 22], [38, Proposition 4],
or Example 4.4 below).

The first object of this work is to show that such a density result holds for bounded variation
vector fields, once one replaces the convergence of the total variation of the derivatives by the
convergence of their Schatten variation, which extends to measures the Schatten-1 norm of matrices.
The latter is given by the sum of the singular values of a matrix and therefore coincides with the
Frobenius norm on rank-one matrices, but it is not strictly convex (we refer to Section 2 for the
explicit definition).
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The second object of this work is to establish a similar result in the BD framework. In this case
the approximants are piecewise rigid motions and the variation is a nontrivial adaptation of the
Schatten one, now applying to eigenvalues in place of singular values, and distinguishing between
their sign. In particular it coincides with the standard variation on singular rank-one-symmetric
measures (see again Section 2).

In fact, in the vectorial setting, it turns out that oscillation effects interact with concentrations,
leading to homogenization of the norm with respect to which the total variation is taken. The norm
has therefore to be changed into a homogenized one which coincides with the usual (Frobenius)
norm on “elementary” objects. This homogenization phenomenon was already observed in earlier
homogenization works in several contexts [40, 37, 33, 5, 4, 3, 6, 2, 18, 15, 16], a priori unrelated to
the present study. A density result in the spirit of the present work has been recently established
in [9, 10] in the context of functions with bounded Hessian, involving the corresponding Schatten
variation of the Hessian matrix. Let us also mention that relaxation of the total variation of locally
simple functions has been used in [8, Example 3.5] and [21, Section 3.2] to give an alternative notion
of BV -maps. A relaxation result in the same spirit, but in the BD framework, is obtained in [20,
Theorem 2.1] for a functional defined on piecewise smooth functions with divergence in L2. The
link between the corresponding relaxation formula and the symmetric Schatten-1 norm is made
explicit in [15, Proposition 3.7].

These results lead to the following alternative expression of the Schatten-1 norm as well as of
its symmetric version, respectively by means of convexification formulas (see Lemmas 2.1 and 2.2)

|A|S = (| · |+ IΛcurl
)∗∗(A), for A ∈Mm×n,

|A|sym−S = (| · |+ IΛcurl curl
)∗∗(A), for A ∈Mn×n

sym ,

where | · | is the Frobenius norm and, given a set E, IE stands for the indicator function of E
(taking the value 0 in E and +∞ outside), and the double-star stands for the bi-convex conjugate
(the double Legendre transform). In the previous expression Λcurl (resp. Λcurl curl) denotes the
wave cone (see [32]) associated to the curl (resp. curl curl) operator which is related to BV
(resp. BD) functions through the formula curl(Du) = 0 in D′(Ω;Rm) for all u ∈ BV (Ω;Rm)
(resp. curl curl(Eu) = 0 in D′(Ω;Rn) for all u ∈ BD(Ω)). It translates pieces of information of
the differential operator curl (resp. curl curl) in the Fourier space. The theory of compensated
compactness (see [44]) makes it explicit

Λcurl = {a⊗ b : a ∈ Rm, b ∈ Rn}, Λcurl curl = {a� b : a, b ∈ Rn}.

In view of the previous discussion, the results presented in this paper are somehow natural, but
we were not able to find them in the literature. Our approach is direct, indeed the construction
only relies on explicit superposition of sequential laminates, constructed on the basis of these last
convexification formulas. Using standard approximation results of BV or BD functions by smooth
ones, we can easily reduce to the case where the initial function is continuous, piecewise affine (on
a fixed partition of Rn made of n-simplexes) and compactly supported. Then, working separately
inside each n-simplex, the overall idea consists in considering laminates in suitable directions related
to the singular values (eigenvalues in the BD case, resp.) of the (symmetric) gradient of u, which is
a constant matrix. By construction, such sequential laminates are piecewise rank-one (symmetric),
hence the Frobenius variation and the (symmetric) Schatten variation of the derivatives coincide.
It turns out that the optimal directions strongly depend on the singular vectors (on the sign of the
eigenvalues and then on a combination of the eigenvectors, resp.), which leads to a loss of isotropy
and a change of norm. In the limit the relaxed variations appear, that is, the Schatten variation
in the BV case and its symmetric version in the BD case.
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By lower semicontinuity, |·|S and |·|sym−S are the only variations coinciding with the standard
variation respectively on rank-one and symmetric rank-one objects for which an approximation of
the type above holds, see Propositions 3.6 and 4.5 for more details.

2 Notation

2.1 Matrices

Let Mm×n be the set of all real m×n matrices. We recall that, given two matrices A, B ∈Mm×n,
the Frobenius scalar product is defined by A : B = tr(ATB) and the associated Frobenius norm is
given by |A| :=

√
A : A. If A ∈ Mm×n, the singular values s1, . . . , sn ≥ 0 of A are defined as the

eigenvalues of the (symmetric) matrix
√
ATA ∈Mn×n

sym . For every p ∈ [1,∞], the Schatten p-norm
of A is defined by

|A|S,p := ‖(s1, . . . , sn)‖`p .
Note that for p = 1 (the case of interest in the sequel), we set |A|S := |A|S,1 and we have

|A|S = tr
(√

ATA
)
,

while for p =∞,

|A|S,∞ = %
(√

ATA
)
,

where % denotes the spectral radius.
Given a ∈ Rm and b ∈ Rn, we denote by a ⊗ b := abT ∈ Mm×n the tensor product between a

and b. We observe that
|a⊗ b|S = |a||b| = |a⊗ b|. (2.1)

One has the following convexification formula for the 1-Schatten norm.

Lemma 2.1. For all A ∈Mm×n, we have

|A|S = sup{ψ : Mm×n → R convex such that ψ(a⊗ b) ≤ |a⊗ b| for all a ∈ Rm, b ∈ Rn}.

Proof. Let us denote by h(A) the above supremum. Since |·|S is convex and satisfies (2.1), we have
that h(A) ≥ |A|S. We are thus back to show the reverse inequality. For all A ∈Mm×n, let

H(A) :=

{
|a⊗ b| if A = a⊗ b,
+∞ otherwise.

Let us compute the convex conjugate of H. For all X ∈Mm×n, we have

H∗(X) = sup
t>0

sup
|a|=|b|=1

t{X : (a⊗ b)− |a⊗ b|}

= sup
t>0

sup
|a|=|b|=1

t{(Xa) · b)− 1}

= sup
t>0

sup
|a|=1

t{|Xa| − 1}

= sup
t>0

t

{√
%(XTX)− 1

}
= IB(X),

where B is the closed unit ball in Mm×n with respect to the Schatten ∞-norm. As a consequence,
h = H∗∗ (which is the convex envelope of H) coincides with the support function of B, which is
nothing but the Schatten 1-norm (see e.g. [13, Proposition 1]).
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We denote by Mn×n
sym and Mn×n

skew the subspaces of Mn×n of symmetric and skew-symmetric
matrices, respectively. If A ∈ Mn×n

sym is symmetric and λ1, . . . , λn ∈ R are the eigenvalues of A,
then si = |λi|. We consider the function | · |sym−S : Mn×n

sym → R+ introduced in [15] and defined,

for all ξ ∈Mn×n
sym , by

|A|sym−S :=

√√√√1

2

(
n∑
i=1

|λi|

)2

+
1

2

(
n∑
i=1

λi

)2

=

√
1

2
|A|S

2
+

1

2
(tr(A))2.

This function is a norm over Mn×n
sym , in particular, it is a continuous, Lipschitz and positively

one-homogeneous function. It will be referred to as the symmetric Schatten 1-norm and it can
alternatively be written as

|A|sym−S =

√√√√√( l∑
i=1

λi

)2

+

(
n∑

i=l+1

λi

)2

, (2.2)

where λ1 ≤ · · · ≤ λl ≤ 0 < λl+1 ≤ · · · ≤ λn. In dimension n = 2, it further reduces to

|A|sym−S =
√
|A|2 + 2(detA)+ for all A ∈M2×2

sym.

If a and b ∈ Rn, we denote by a � b = (a ⊗ b + b ⊗ a)/2 ∈ Mn×n
sym the symmetric tensor product

between a and b. Since, by [15, Lemma 2.1], such a matrix has rank at most 2 and both nonzero
eigenvalues have opposite signs, we infer that

|a� b|sym−S = |a� b|. (2.3)

One has a similar convexification formula for this symmetric 1-Schatten norm. The proof directly
follows from [15, Proposition 3.7].

Lemma 2.2. For all A ∈Mn×n
sym , we have

|A|sym−S = sup{ψ : Mn×n
sym → R convex such that ψ(a� b) ≤ |a� b| for all a, b ∈ Rn}.

2.2 Measures

The Lebesgue measure in Rn is denoted by Ln, and the (n− 1)-dimensional Hausdorff measure by
Hn−1. If Ω ⊂ Rn is an open set and X is an Euclidean space, we denote byM(Ω;X) the space of
X-valued bounded Radon measures in Ω. Fixed a norm ‖ · ‖ on X, we can define the variation of
µ ∈M(Ω;X) with respect to ‖ · ‖ as

‖µ‖(A) := sup

k∑
i=1

‖µ(Ai)‖,

for all Borel set A ⊂ Ω, where the supremum is taken over all finite Borel partitions A =
⋃k
i=1Ai

of A. In particular, ‖µ‖(Ω) is a norm on M(Ω;X). Frobenius variation will be denoted by | · |.
In the sequel, we will consider the cases X = Mm×n, X = Mn×n

sym and X = R. When X = R, we
simply write M(Ω) instead of M(Ω;R).

Let µ ∈ M(Ω;X) and f : X → [0,+∞) be a convex, positively one-homogeneous function.
Using the theory of convex functions of measures developed in [35], we introduce the nonnegative
finite Borel measure f(µ), defined by

f(µ) := f

(
dµ

d|µ|

)
|µ| ,

where dµ
d|µ| stands for the Radon-Nikodým derivative of µ with respect to |µ|.
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2.3 Functional spaces

The space of (vector valued) functions of bounded variation is defined by

BV (Ω;Rm) = {u ∈ L1(Ω;Rm) : Du ∈M(Ω;Mm×n)}.

We refer to [12] for notation and general properties of that space. We further consider the space
of functions of bounded deformation introduced in [43] defined by

BD(Ω) = {u ∈ L1(Ω;Rn) : Eu := (Du+DuT )/2 ∈M(Ω;Mn×n
sym )}.

We refer to [11, 45] for a general treatment of that space.

3 Symmetric Schatten mass approximation of functions of
bounded deformation

Definition 3.1. A function u : Rn → Rn is a piecewise rigid body motion if there exist a countable
family {Pi}i∈N of polyhedral sets with pairwise disjoint interiors such that Rn =

⋃
i∈N Pi, skew

symmetric matrices {Ai}i∈N ⊂Mn×n
skew and vectors {bi}i∈N ⊂ Rn such that for all i ∈ N,

u(x) = Aix+ bi for all x ∈ Pi.

We denote by PR(Rn) the space of all such piecewise rigid body motions.

Remark 3.2. Note that if u ∈ PR(Rn), then its symmetric gradient Eu is a pure jump measure
concentrated on

⋃
i,j∈N(∂Pi ∩ ∂Pj). Moreover,

Eu (∂Pi ∩ ∂Pj) =
(
(u|Pj

)+ − (u|Pi
)−
)
� νHn−1 (∂Pi ∩ ∂Pj),

where ν is the unit vector orthogonal to ∂Pi∩∂Pj oriented from Pi to Pj , and (u|Pj
)+ (resp. (u|Pi

)−)
is the trace of u|Pj

(resp. u|Pi
) on ∂Pi ∩ ∂Pj . In particular, (2.3) ensures that |Eu|sym−S = |Eu|

as measures in Rn.

Our first main result is the following approximation of functions of bounded deformation.

Theorem 3.3. Let Ω be a bounded open set of Rn with Lipschitz boundary and u ∈ BD(Ω). Then,
there exists a sequence {uk}k∈N in PR(Rn) such that{

uk → u strongly in L1(Ω;Rn),

|Euk|sym−S(Ω)→ |Eu|sym−S(Ω).

The previous approximation result holds for the symmetric Schatten mass |Eu|sym−S of Eu,
and not for the usual total variation mass |Eu| as the following counterexample shows (see also [9,
Remark 22], [38, Proposition 4], or Example 4.4 below for the Schatten 1-norm).

Example 3.4. Let n = 2, Ω = Q = (0, 1)2 is the unit cube and u(x) = x, so that Eu = Id. Assume
that there exists a sequences of piecewise rigid body motions {uk}k∈N such that uk → u strongly in
L1(Q;R2) and |Euk|(Q)→ |Eu|(Q). Since |·|sym−S is a continuous and positively one-homogeneous
function, Reshetnyak continuity Theorem ([12, Theorem 2.39]) ensures that |Euk|sym−S(Q) →
|Eu|sym−S(Q). But since uk is piecewise rigid, Remark 3.2 shows that

dEuk
d|Euk|

= αk � βk
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for some Borel functions αk, βk : R2 → R2 such that |αk � βk| = 1 and

|Euk|sym−S =

∣∣∣∣ dEukd|Euk|

∣∣∣∣
sym−S

|Euk| = |αk � βk|sym−S|Euk|.

But since by (2.3), |αk � βk|sym−S = |αk�βk| = 1, then |Euk|sym−S = |Euk| and thus |Eu|sym−S(Q) =
|Eu|(Q). This is however not possible since a straightforward computation shows that |Eu|(Q) =
|Id| =

√
2 while |Eu|sym−S(Q) = |Id|sym−S = 2.

Remark 3.5. A similar argument would show that there is no sequence of piecewise rigid functions
uk such that uk → u strongly in L1(Ω;Rn) and Euk converges to Eu in mass with respect to a
strictly convex norm. This follows from the fact that convergence in mass with respect to a strictly
convex norm implies convergence in mass with respect to the Frobenius norm by Reshetnyak
Continuity Theorem (see for instance [42, Theorem 1.1] and [39, 41]. Note that weak* convergence
in M(Ω;Mn×n

sym ) together with the convergence of the total variation associated to any norm in
Mn×n

sym implies weak* convergence in [Cb(Ω;Mn×n
sym )]′).

This restriction of the admissible norms (for which such an approximation result is valid) is
actually much stronger. Indeed, our Theorem 3.3 is optimal in the sense that the symmetric
Schatten-1 norm is the only possible norm coinciding with the Frobenius one on rank-one symmetric
matrices for which such a density result holds.

Proposition 3.6. Let N be a norm over Mn×n
sym be such that N(a� b) = |a� b| for all a, b ∈ Rn.

Assume for all bounded open set Ω ⊂ Rn with Lipschitz boundary and all u ∈ BD(Ω), there exists
a sequence {uk}k∈N in PR(Rn) such that{

uk → u strongly in L1(Ω;Rn),

N(Euk)(Ω)→ N(Eu)(Ω)

Then N = |·|sym−S.

Proof. We first observe that the proof of [15, Proposition 3.7] (with the choice of parameters
α = κ = 1, λw = 0 and µw = 1/2) ensures that N ≤ |·|sym−S, so that we are back to show the
reverse inequality.

Let A ∈ Mn×n
sym and consider the linear map u(x) = Ax. By assumption, there is a sequence

{uk}k∈N in PR(Rn) such that uk → u strongly in L1(Ω;Rn) and N(Euk)(Ω)→ N(Eu)(Ω). This
implies in particular that Euk ⇀ Eu weakly* in M(Ω;Mn×n

sym ). Since by Remark 3.2, dEuk

d|Euk| is a

rank-one symmetric matrix, it results from (2.3) that

N(Eu)(Ω) = lim
k→∞

N(Euk)(Ω) = lim
k→∞

|Euk|(Ω)

= lim
k→∞

|Euk|sym−S(Ω) ≥ |Eu|sym−S(Ω),

where we used Reshetnyak’s lower semicontinuity theorem in the last inequality (see [12, Theorem
2.38]). Recalling that Eu = A, we get that N(A) ≥ |A|sym−S.

An immediate consequence of Theorem 3.3 is the following relaxation result, in the spirit of [20].

Corollary 3.7. Let Ω ⊂ Rn be open, bounded, with Lipschitz boundary. For all u ∈ L1(Ω;Rn),
define

F (u) := inf

{
lim inf
k→∞

|Euk|(Ω) : uk ∈ PR(Rn), uk → u in L1(Ω;Rn)

}
.

Then

F (u) =

{
|Eu|sym−S(Ω) if u ∈ BD(Ω),

+∞ otherwise.
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The proof of the lower bound inequality is an immediate consequence of Reshetnyak lower
semicontinuity Theorem (see [12, Theorem 2.38]) together with the fact that |Eu| = |Eu|sym−S as
measures if u ∈ PR(Rn). The upper bound is a direct consequence of Theorem 3.3.

Proof of Theorem 3.3. Step 1. Let us show that there is no loss of generality to suppose that u
is a continuous, piecewise affine function compactly supported in Rn.

Since Ω has Lipschitz boundary, it follows from [14, Theorem 3.2] that u ∈ BD(Ω) has a trace
on ∂Ω, denoted by γ(u), which belongs to L1(∂Ω;Rn). Gagliardo’s Theorem then ensures the
existence of v ∈ W 1,1(Rn \ Ω;Rn), compactly supported in Rn, such that γ(v) = γ(u) on ∂Ω.
Setting ũ := u1Ω + v1Rn\Ω yields ũ ∈ BD(Rn) with

Eũ = Eu Ω + e(v)Ln (Rn \ Ω).

Let {ηε}ε>0 be a standard family of mollifiers and set

ũε := ũ ∗ ηε ∈ C∞c (Rn;Rn).

Standard properties of mollifiers imply that ũε → ũ strongly in L1(Rn;Rn), hence by lower semi-
continuity of the total variation

|Eũ|(Rn) ≤ lim inf
ε→0

|Eũε|(Rn).

Moreover, by [12, Theorem 2.2], we also have that Eũε = (Eũ) ∗ ηε and |Eũε|(Rn) ≤ |Eũ|(Rn).
As a consequence, |Eũε|(Rn)→ |Eũ|(Rn) and Reshetnyak continuity Theorem (see ([12, Theorem
2.39])) shows that |Eũε|sym−S(Rn) → |Eũ|sym−S(Rn). In particular, since |Eũ|(∂Ω) = 0, we also
get that |Eũε|(Ω) → |Eũ|(Ω), and another application of the Reshetnyak continuity Theorem
yields |Eũε|sym−S(Ω)→ |Eũ|sym−S(Ω).

The previous discussion shows that there is no loss of generality to assume that u ∈ C∞c (Rn;Rn).

We next fix a small parameter δ > 0 and consider a triangulation of Rn into n-simplexes {Ti}i∈N
with pairwise disjoint interiors and such that, for all i ∈ N, diam(Ti) ≤ δ and Ln(Ti) ≥ cδn for
some c > 0. Let ûδ be the continuous piecewise affine function which is the Lagrange interpolation
of the values of u at the nodes of the triangulation. Standard finite element estimates show that
ûδ → u strongly in W 1,1(Rn;Rn), hence in particular we get that |Eûδ|sym−S(Ω)→ |Eu|sym−S(Ω).

Step 2. Assume that T is an n-simplex and u(x) = Ax + b for some A ∈ Mn×n and b ∈ Rn.
We now modify u by adapting and extending the construction exhibited in [15, Section 3.1]. We
denote by

Asym =
A+AT

2
∈Mn×n

sym , Askew =
A−AT

2
∈Mn×n

skew

so that A = Asym + Askew. The matrix Asym being symmetric, we can consider its spectral
decomposition

Asym =

n∑
i=1

λiei ⊗ ei,

here λ1, . . . , λn ∈ R are the eigenvalues and e1, . . . , en are the associated eigenvectors of Asym such
that {e1, . . . , en} forms an orthonormal basis of Rn.

We argue by induction on the dimension n to show the following property: there exists a sequence
{vTk }k∈N of piecewise constant functions vTk : Rn → Rn such that

vTk (x)→ Asymx uniformly with respect to x ∈ Rn,

EvTk � Hn−1 Lk,∣∣EvTk ∣∣sym−S
(T )→ |Eu|sym−S(T ),

(3.1)
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where Lk is a countable union of (n− 1)-dimensional affine subspaces of Rn, finitely many thereof
intersecting T .

Once (3.1) is established, we set uTk (x) = vTk (x) + Askewx + b which defines a piecewise rigid
body motion in T , and satisfies uTk → u uniformly in T and

∣∣EuTk ∣∣sym−S
(T ) =

∣∣EvTk ∣∣sym−S
(T ) →

|Eu|sym−S(T ).

Step 2a. Let us first assume that n = 2.

• If det(Asym) > 0, then the eigenvalues λ1 and λ2 have the same sign. It is immediate to check
that |Asym|sym−S = |λ1 + λ2| = |λ1| + |λ2|. We introduce an auxiliary step function sk : R → R
defined by

sk(t) :=
∑
i∈Z

i

k
1[ i

k ,
i+1
k )(t), (3.2)

which satisfies that sk(t)→ t uniformly in R. In that case, we set

vTk (x) := λ1sk(x · e1)e1 + λ2sk(x · e2)e2

so that vTk (x)→ λ1(x · e1)e1 + λ2(x · e2)e2 = Asymx uniformly with respect to x ∈ R2. Next

EvTk =
∑
`∈Z

λ1e1 ⊗ e1

k
H1

{
x ∈ R2 : e1 · x =

`

k

}
+
∑
`∈Z

λ2e2 ⊗ e2

k
H1

{
x ∈ R2 : e2 · x =

`

k

}
.

Since both measures in the right-hand-side of the previous equality are mutually singular (because
e1 and e2 are orthogonal) and |λiei ⊗ ei|sym−S = |λi|, we infer that∣∣EvTk ∣∣sym−S

=
∑
`∈Z

|λ1|
k
H1

{
x ∈ R2 : e1 · x =

`

k

}
+
∑
`∈Z

|λ2|
k
H1

{
x ∈ R2 : e2 · x =

`

k

}
,

and thus, for every polyhedral set P ⊂ R2,∣∣EvTk ∣∣sym−S
(P ) =

∑
`∈Z

|λ1|
k
H1

({
x ∈ P : e1 · x =

`

k

})
+
∑
`∈Z

|λ2|
k
H1

({
x ∈ P : e2 · x =

`

k

})
→ (|λ1|+ |λ2|)L2(P ) = |Asym|sym−SL

2(P ) = |Eu|sym−S(P ).

• If det(Asym) ≤ 0, by [15, Lemma 2.1], we can write Asym = α� β for some vectors α, β ∈ R2.
Note that, if α and β are linearly dependent, we can assume that α = β. We define

vTk (x) :=
α|β|

2
sk

(
β · x
|β|

)
+
β|α|

2
sk

(
α · x
|α|

)
so that vTk (x) → α

2 (β · x) + β
2 (α · x) = Asymx uniformly with respect to x ∈ R2. Computing the

symmetric gradient yields

EvTk =
∑
`∈Z

α� β
2k
H1

{
x ∈ R2 :

β

|β|
· x =

`

k

}
+
∑
`∈Z

α� β
2k
H1

{
x ∈ R2 :

α

|α|
· x =

`

k

}
.

As a consequence, we get that for every polyhedral set P ⊂ R2,

∣∣EvTk ∣∣sym−S
(P ) =

∑
`∈Z

|α� β|sym−S

2k
H1

({
x ∈ P :

β

|β|
· x =

`

k

})

+
∑
`∈Z

|α� β|sym−S

2k
H1

({
x ∈ P :

α

|α|
· x =

`

k

})
,
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hence
∣∣EvTk ∣∣sym−S

(P )→ |α� β|sym−SL2(P ) = |Eu|sym−S(P ).

Taking P = T , we have thus proved the validity of (3.1) for n = 2.

Step 2b. Let us assume now that there exists n ≥ 3 such that (3.1) holds for all d ∈ {2, . . . , n−1}.

• If λi ≥ 0 (or similarly λi ≤ 0) for all i = 1, . . . , n, then we construct vTk by laminating
componentwise, that is

vTk (x) :=

n∑
i=1

λisk(x · ei)ei.

We immediately check as in Step 2a that vTk converges to x 7→ Asymx uniformly in Rn and that

lim
k→∞

∣∣EvTk ∣∣sym−S
(T )→

n∑
i=1

|λi|Ln(T ) = |Eu|sym−S(T ).

• If all eigenvalues but one have the same sign, that is, λ1 ≤ · · · ≤ λn−1 ≤ 0 < λn and λ1 < 0
(or similarly λ1 ≥ · · · ≥ λn−1 ≥ 0 > λn and λ1 > 0), we decompose the matrix A as the sum of
rank-one symmetric matrices. More precisely, we set

A =

n−1∑
j=1

A(j),

where

A(j) = λjej ⊗ ej + δjλnen ⊗ en, δj := λj

(
n−1∑
l=1

λl

)−1

.

Note that A(j) = α(j) � β(j) where

α(j) = −
√
|λj |ej +

√
δjλnen, β(j) =

√
|λj |ej +

√
δjλnen.

We next define

vTk (x) :=

n−1∑
j=1

[
α(j)|β(j)|

2
sk

(
β(j) · x
|β(j)|

)
+
β(j)|α(j)|

2
sk

(
α(j) · x
|α(j)|

)]
.

Arguing as in Step 2a, we get that vTk converges to x 7→ Asymx uniformly in Rn and

lim
k→∞

∣∣EvTk ∣∣sym−S
(T ) =

n−1∑
j=1

∣∣∣A(j)
∣∣∣
sym−S

Ln(T ).

Since A(j) is a rank-one symmetric matrix, then (2.3) implies that

n−1∑
j=1

∣∣∣A(j)
∣∣∣
sym−S

=

n−1∑
j=1

|A(j)| =
n−1∑
j=1

√
λ2
j + δ2

jλ
2
n

=

√√√√(n−1∑
l=1

λl

)2

+ λ2
n = |Asym|sym−S

by (2.2), hence
∣∣EvTk ∣∣sym−S

(T )→ |Eu|sym−S(T ).
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• It remains to consider the case where λ1 ≤ · · · ≤ λr < 0 < λm+1 ≤ · · · ≤ λn with 2 ≤ r ≤
m ≤ n− 2.

We decompose Asym as sum of lower rank symmetric matrices, in such a way that |·|sym−S stays
additive on such a decomposition. Indeed, let us write

Asym =

n∑
j=m+1

A(j),

where, for all j = m+ 1, . . . , n,

A(j) := λjej ⊗ ej + aj

m∑
i=1

λiei ⊗ ei, aj := λj

(
n∑

l=m+1

λl

)−1

.

Notice that 0 < aj ≤ 1 and
∑n
j=m+1 aj = 1; moreover, ajλ1 ≤ · · · ≤ ajλr < 0 < λj and, since

r + 1 ≤ m+ 1 < n, then A(j) has at least one zero eigenvalue.

Let {ê1, . . . , êr+1} be the canonical basis of Rr+1. For all m+ 1 ≤ j ≤ n, we denote by

Â(j) := aj

r∑
i=1

λiêi ⊗ êi + λj êr+1 ⊗ êr+1 ∈M(r+1)×(r+1)
sym

and

T̂ :=

{
x̂ ∈ Rr+1 :

r∑
i=1

x̂iei + x̂r+1ej ∈ T

}
,

which is a polyhedral subset of Rr+1. Using again that m+ 1 < n, the inductive step ensures the

existence of a sequence {v̂(j)
k }k∈N, v̂

(j)
k : Rr+1 → Rr+1, of piecewise constant functions such that

v̂
(j)
k (x̂)→ Â(j)x̂ uniformly with respect to x̂ ∈ Rr+1,

∣∣∣Ev̂(j)
k

∣∣∣
sym−S

(T̂ )→
∣∣∣Â(j)

∣∣∣
sym−S

(T̂ )

as k →∞ and Ev̂
(j)
k � Hr L̂

(j)
k , where L̂

(j)
k is a countable union of r-dimensional affine subspaces

of Rr+1, finitely many thereof intersecting T̂ .

Hence, setting

v
(j)
k (x) :=

r∑
l=1

[
v̂

(j)
k

(
r∑
i=1

xiêi + xj êr+1

)
· êl

]
el +

[
v̂

(j)
k

(
r∑
i=1

xiêi + xj êr+1

)
· êr+1

]
ej

and

vTk (x) :=

n∑
j=m+1

v
(j)
k (x),
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we get

vTk (x) →
n∑

j=m+1

{
r∑
l=1

[
Â(j)

(
r∑
i=1

xiêi + xj êr+1

)
· êl

]
el

+

[
Â(j)

(
r∑
i=1

xiêi + xj êr+1

)
· êr+1

]
ej

}

=

n∑
j=m+1

{
r∑
l=1

[
r∑
i=1

(
ajλixiêi + λjxj êr+1

)
· êl

]
el

+

[
r∑
i=1

(
ajλixiêi + λjxj êr+1

)
· êr+1

]
ej

}

=
n∑

j=m+1

(
r∑
i=1

ajλixiei + λjxjej

)

=

r∑
i=1

λixiei +

n∑
j=m+1

λjxjej = Asymx

uniformly with respect to x ∈ Rn. Note also that the measure Ev
(j)
k is concentrated on a countable

union of (n− 1)-dimensional affine subspaces of Rn of the form

L
(j)
k = {x ∈ Rn : (x1, . . . , xr, xj) ∈ L̂(j)

k }.

Since we have Hn−1(L
(j)
k ∩ L

(l)
k ) = 0 when l 6= j, we get that the measures Ev

(l)
k and Ev

(j)
k are

concentrated on essentially disjoint sets and therefore,

∣∣EvTk ∣∣sym−S
(T ) =

n∑
j=m+1

∣∣∣Ev(j)
k

∣∣∣
sym−S

(T )→
n∑

j=m+1

∣∣∣A(j)
∣∣∣
sym−S

(T ).

Since,

n∑
j=m+1

∣∣∣A(j)
∣∣∣
sym−S

=

n∑
j=m+1

√√√√( r∑
i=1

ajλi

)2

+ λ2
j

=

√√√√( r∑
i=1

λi

)2

+

(
n∑

l=m+1

λl

)2

= |Asym|sym−S,

we deduce that
∣∣EvTk ∣∣sym−S

(T )→ |Eu|sym−S(T ).

Step 3. Assume that u is a continuous, piecewise affine and compactly supported function on a
partition {Ti}i∈N of Rn made of n-simplexes. Applying the construction of Step 2 in each simplex
Ti, we set

uk :=
∑
i∈N

uTi

k 1Ti ,

which defines a sequence {uk}k∈N in PR(Rn) such that uk → u uniformly in Rn and |Euk|sym−S(Ti)→
|Eu|sym−S(Ti) for all i ∈ N. Note that, since u has compact support in Rn, we get that

#{i ∈ N : Ti ∩ Supp(u) 6= ∅} <∞, sup
k∈N

#{i ∈ N : Ti ∩ Supp(uk) 6= ∅} <∞. (3.3)

11



It remains to estimate the measure |Euk|sym−S on the common interface Sij = ∂Ti ∩ ∂Tj of two
adjacent simplexes Ti and Tj . To this aim, we observe that, by construction, for all i ∈ N,

‖uk − u‖L∞(Ti;Rn) ≤ C
|Asym
i |
k

,

and thus, owing to (3.3),

‖uk − u‖L∞(Ω;Rn) ≤
C

k

for some constant C > 0 independent of k. As a consequence of the continuity of u, we deduce
that for all x ∈ Sij

|u+
k (x)− u−k (x)| ≤ C

k
,

where u−k = uTi

k |Sij
and u+

k = u
Tj

k |Sij
denote the one-sided traces of uk on both sides of Sij . On

the other hand, the jump formula yields

Euk Sij = (u+
k − u

−
k )� νHn−1 Sij ,

where ν is the normal vector to Sij oriented from Ti to Tj . As a consequence,

|Euk|sym−S(Sij) =

∫
Sij

∣∣(u+
k − u

−
k )� ν

∣∣
sym−S

dHn−1

=

∫
Sij

|(u+
k − u

−
k )� ν| dHn−1 ≤ C

k
Hn−1(Sij)→ 0

as k →∞. Using again (3.3), we get that

lim
k→∞

|Euk|sym−S(Rn) = lim
k→∞

∑
i∈N
|Euk|sym−S(Ti) =

∑
i∈N
|Eu|sym−S(Ti) = |Eu|sym−S(Rn).

Finally, since |Eu|sym−S(∂Ω) = |Eu|(∂Ω) = 0, we deduce that |Euk|sym−S(Ω)→ |Eu|sym−S(Ω).

4 Schatten-mass approximation of vector valued functions
of bounded variation

Definition 4.1. A function u : Rn → Rm is piecewise constant if there exists a countable family
{Pi}i∈N of polyhedral sets with pairwise disjoint interiors such that Rn =

⋃
i∈N Pi and vectors

{ci}i∈N in Rm such that for all i ∈ N,

u(x) = ci for all x ∈ Pi.

We denote by PC(Rn;Rm) the space of all such piecewise constant functions.

Remark 4.2. Note that if u : Rn → Rm is piecewise constant, then its gradient, Du is a pure
jump measure concentrated on

⋃
i,j∈N(∂Pi ∩ ∂Pj). Moreover,

Du (∂Pi ∩ ∂Pj) =
(
(u|Pj

)+ − (u|Pi
)−
)
⊗ νHn−1 (∂Pi ∩ ∂Pj),

where ν is the unit vector orthogonal to ∂Pi ∩ ∂Pj oriented from Pi to Pj , and (u|Pj
)+ (resp.

(u|Pi
)−) is the trace of u|Pj

(resp. u|Pi
) on ∂Pi ∩ ∂Pj . In particular, the variation measure of Du

with respect to the Frobenius and Schatten norms coincide, i.e. |Du| = |Du|S as measures in Rn.

12



Our second main result is the following approximation of bounded variation vector fields.

Theorem 4.3. Let Ω be a bounded open set of Rn with Lipschitz boundary and u ∈ BV (Ω;Rm).
Then, there exists a sequence {uk}k∈N in PC(Rn;Rm) such that{

uk → u strongly in L1(Ω;Rm),

|Duk|S(Ω)→ |Du|S(Ω).

The previous approximation result holds for the so-called Schatten-mass |Du|S of Du, and not
for the usual total variation mass |Du| as the following counterexample shows (see [9, Remark 22]
and [38, Proposition 4]).

Example 4.4. Let n = m = 2, Ω = Q = (0, 1)2 is the unit cube and u(x) = x, so that
Du = Id. Assume that there exists a sequence of piecewise constant functions {uk}k∈N such
that uk → u strongly in L1(Q;R2) and |Duk|(Q) → |Du|(Q). Since |·|S is a continuous and
positively one-homogeneous function, Reshetnyak continuity Theorem ([12, Theorem 2.39]) ensures
that |Duk|S(Q)→ |Du|S(Q). But since uk is piecewise constant, Remark 4.2 shows that

dDuk
d|Duk|

= αk ⊗ βk

for some Borel functions αk, βk : R2 → R2, so that

|Duk|S =

∣∣∣∣( dDuk
d|Duk|

)∣∣∣∣
S

|Duk| = |αk ⊗ βk|S|Duk| = |αk ⊗ βk||Duk| = |Duk|.

Consequently, |Du|S(Q) = |Du|(Q) which is not possible since |Du|(Q) = |Id| =
√

2 while
|Du|S(Q) = |Id|S = 2.

Once more, the previous example can be extended to show that it is not possible to approximate
BV vector fields by piecewise constant functions in mass with respect to a strictly convex variation.
Moreover, our Theorem 4.3 is optimal in the sense that the Schatten-1 norm is the only possible
norm coinciding with the Frobenius norm on rank-one matrices for which such a density result
holds.

Proposition 4.5. Let N be a norm over Mm×n such that N(a ⊗ b) = |a ⊗ b| for all a ∈ Rm
and b ∈ Rn. Assume that for all bounded open set Ω ⊂ Rn with Lipschitz boundary and all
u ∈ BV (Ω;Rm), there exists a sequence {uk}k∈N in PC(Rn;Rm) such that{

uk → u strongly in L1(Ω;Rm),

N(Duk)(Ω)→ N(Du)(Ω).

Then N = |·|S.

Proof. Let A ∈Mm×n be a fixed matrix and consider the linear function u(x) = Ax. By Theorem
4.3, there exists a sequence {uk}k∈N in PC(Rn;Rm) such that uk → u strongly in L1(Ω;Rm)
and |Duk|S(Ω) → |Du|S(Ω). Since Duk ⇀ Du weakly* in M(Ω;Mm×n), Reshetnyak’s lower
semicontinuity theorem (see [12, Theorem 2.38]) shows that

N(Du)(Ω) ≤ lim inf
k→∞

N(Duk)(Ω).

But since, by (2.1), N , | · | and |·|S coincide on rank-one matrices and, by Remark 4.2, dDuk

d|Duk| has

rank one, we deduce that

N(Du) ≤ lim inf
k→∞

|Duk|S(Ω) = |Du|S(Ω).
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Recalling that Du = A, we get that N(A) ≤ |A|S. Inverting the role of |·|S and N (for which the
approximation property holds by assumption), we infer that |A|S ≤ N(A).

As an immediate consequence of Theorem 4.3, we get the following relaxation result which is
the counterpart of Corollary 3.7 in the BV setting.

Corollary 4.6. Let Ω ⊂ Rn be open, bounded, with Lipschitz boundary. For all u ∈ L1(Ω;Rm),
define

G(u) := inf

{
lim inf
k→∞

|Duk|(Ω) : uk ∈ PC(Rn;Rm), uk → u in L1(Ω;Rm)

}
.

Then

G(u) =

{
|Du|S(Ω) if u ∈ BV (Ω;Rm),

+∞ otherwise.

Next we turn to the proof of Theorem 4.3.

Proof of Theorem 4.3. Arguing as in Step 1 of the proof of Theorem 3.3, there is no loss of gener-
ality to suppose that u is continuous and compactly supported in Rn, and affine on each n-simplex
Ti of a triangulation of Rn. We now modify u on each of these n-simplexes.

Let T be a n-simplex and u(x) = Ax+ b where A ∈Mm×n and b ∈ Rm. We consider the polar

decomposition A = RU where U =
√
ATA ∈Mn×n

sym and R ∈ O(m,n) is an orthogonal matrix.
Let λ1, . . . , λn ≥ 0 be the eigenvalues of U , i.e. the singular values of A, and let e1, . . . , en be the

associated eigenvectors which form an orthonormal basis of Rn. We define the piecewise constant
function

uTk (x) :=

n∑
i=1

λisk(x · ei)Rei + b,

where sk has been defined in (3.2), so that, using the spectral decomposition U =
∑n
i=1 λiei ⊗ ei,

uTk (x)→
n∑
i=1

λi(x · ei)Rei + b = Ax+ b uniformly with respect to x ∈ Rn.

Next

DuTk T =
∑
`∈Z

n∑
i=1

λiR(ei ⊗ ei)
k

Hn−1

{
x ∈ T : x · ei =

`

k

}
.

Since, for fixed k ∈ N, the measures

Hn−1

{
x ∈ T : x · ei =

`

k

}
, i ∈ N, ` ∈ Z,

are mutually singular (because {e1, . . . , en} forms an orthonormal basis of Rn) and |λiR(ei ⊗ ei)|S =
|λi||R(ei ⊗ ei)|S = |λi||ei ⊗ ei| = λi (because R is an orthogonal matrix and the singular values of
A are nonnegative), we infer that

∣∣DuTk ∣∣S(T ) =
∑
`∈Z

n∑
i=1

λi
k
Hn−1

({
x ∈ T : x · ei =

`

k

})

→

(
n∑
i=1

λi

)
Ln(T ) = |A|SL

n(T ) = |Du|S(T ).
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Applying this construction in each n-simplex Ti, we set

uk :=
∑
i∈N

uTi

k 1Ti ,

which defines a sequence {uk}k∈N of piecewise constant functions in Rn such that uk → u uniformly
in Rn and |Duk|S(Ti) → |Du|S(Ti) for all i ∈ N. Note that since, u has compact support in Rn,
we get that

#{i ∈ N : Ti ∩ Supp(u) 6= ∅} <∞, sup
k∈N

#{i ∈ N : Ti ∩ Supp(uk) 6= ∅} <∞. (4.1)

It remains to estimate the measure |Duk|S on the common interface Sij = ∂Ti ∩ ∂Tj of two
adjacent n-simplexes Ti and Tj . To this aim, we observe that, by construction, for all i ∈ N,

‖uk − u‖L∞(Ti;Rm) ≤
|Ai|
k

and thus, owing to (4.1),

‖uk − u‖L∞(Ti;Rm) ≤
C

k

for some constant C > 0 independent of k. As a consequence of the continuity of u, we deduce
that for all x ∈ Sij

|u+
k (x)− u−k (x)| ≤ 2C

k
,

where u−k = uTi

k |Sij and u+
k = u

Tj

k |Sij denote the one-sided traces of uk on both sides of Sij . On
the other hand, the jump formula yields

Duk Sij = (u+
k − u

−
k )⊗ νHn−1 Sij ,

where ν is the normal vector to Sij oriented from Ti to Tj . As a consequence,

|Duk|S(Sij) =

∫
Sij

∣∣(u+
k − u

−
k )⊗ ν

∣∣
S
dHn−1 =

∫
Sij

|(u+
k − u

−
k )⊗ ν| dHn−1 ≤ 2C

k
Hn−1(Sij)→ 0

as k →∞. Using again (4.1), we get that

lim
k→∞

|Duk|S(Rn) = lim
k→∞

∑
i∈N
|Duk|S(Ti) =

∑
i∈N
|Du|S(Ti) = |Du|S(Rn).

Finally, since |Du|S(∂Ω) = |Du|(∂Ω) = 0, we deduce that |Duk|S(Ω)→ |Du|S(Ω).

5 Concluding remarks and open problems

It is to be expected that some density result with singular objects holds for measures satisfying a
general linear PDE constraint as in [32] (the so-called A-free measures). The results presented in
this work correspond to the particular cases A = curl (in the vectorial BV case) and A = curl curl
(in the BD case).

Another relevant example, e.g. in materials science, is the divergence constraint (see [16]). Given
a bounded open set, we define the space

DM(Ω) = {σ ∈M(Ω;Mn×n
sym ) : divσ = 0 in D′(Ω;Rn)}.
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The wave cone associated to this differential constraint (see e.g. [16, Section 2.2]) is given by

Λdiv = {A ∈Mn×n
sym : det(A) = 0}.

In dimension n = 2, it is known that (provided Ω is smooth enough and simply connected),
for all σ ∈ DM(Ω), there exists a function u ∈ BH(Ω) (which means that u ∈ W 1,1(Ω) and
D2u ∈M(Ω;Mn×n

sym )) such that σ = cof(D2u). In mechanical language, the function u is sometimes
referred to as the Airy function. Applying [9, Theorem 21] (see also [10, Theorem 2.2]), there exists
a sequence {uk}k∈N of continuous and piecewise affine functions such that uk → u in L∞(Ω) and∣∣D2uk

∣∣
S
(Ω) →

∣∣D2u
∣∣
S
(Ω). Since uk is continuous and piecewise affine, it follows that ∇uk ∈

SBV (Ω;R2) and
D2uk = akνJ∇uk

⊗ νJ∇uk
H1 J∇uk

,

where ak : J∇uk
→ R is a Borel function and νJ∇uk

is the approximated normal to the jump J∇uk

of ∇uk. Defining σk = cof(D2uk), we get that σk ∈ DM(Ω),

σk = akτJ∇uk
⊗ τJ∇uk

H1 J∇uk
,

where τJ∇uk
= RνJ∇uk

is an approximate tangent vector to J∇uk
, and R is the rotation matrix

R =

(
0 −1
1 0

)
.

Since a matrix A ∈M2×2
sym share the same eigenvalues with cof(A), we get that |σk|S(Ω)→ |σ|S(Ω)

and dσk

d|σk| = ±τJ∇uk
⊗ τJ∇uk

∈ Λdiv |σk|-a.e. in Ω.

Let us denote by | · |div := (| · |+ IΛdiv
)∗∗. As already evidenced in [18] and [16, Formula (1.10)],

one has
| · |div = | · |S in M2×2

sym.

Following again [16, 18], we expect a similar density result to hold in dimension n = 3 with for all
A ∈M3×3

sym,

|A|div =

{√
(|λ1|+ |λ2|)2 + λ2

3 if |λ1|+ |λ2| ≤ |λ3|,
1√
2
(|λ1|+ |λ2|+ |λ3|) if |λ1|+ |λ2| > |λ3|,

where λ1, λ2 and λ3 are the eigenvalues of A ordered as singular values |λ1| ≤ |λ2| ≤ |λ3|.

In view of the structure of the singular part of A-free Radon measures [1, 32] and of our results
Theorems 3.3 and 4.3, one may expect the following general statement to be true:

Let A : D′(Rn;Rm)→ D′(Rn;Rd) be a linear differential operator and ΛA be its associated wave
cone. For every z ∈ Rm, we define

|z|A := (| · |+ IΛA)∗∗(z),

where | · | is the Euclidean norm over Rm and IΛA is the indicator function of the set ΛA. Then,
| · |A is a norm over Rm. Moreover if Ω ⊂ Rn is a bounded open set with Lipschitz boundary, for
every µ ∈M(Ω;Rm) satisfying Aµ = 0 in D′(Ω;Rd), there exists a sequence {µk}k∈N inM(Ω;Rm)
such that 

Aµk = 0 in D′(Ω;Rd),
|µk|A(Ω)→ |µ|A(Ω),

µk ⊥ Ln,
dµk

d|µk| ∈ ΛA |µk|-a.e. in Ω.

The construction in this case would be of course more delicate since, depending on the order and
on the form of the differential operator, compatibility constraints on the support of the µk’s may be
required. This goes beyond the scopes of the present paper and will be left to future investigations.

16



Acknowledgements

This work was supported by a public grant from the Fondation Mathématique Jacques Hadamard.
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