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This work adresses the question of density of piecewise constant (resp. rigid) functions in the space of vector valued functions with bounded variation (resp. deformation) with respect to the strict convergence. Such an approximation property cannot hold when considering the usual total variation in the space of measures associated to the standard Frobenius norm in the space of matrices. It turns out that oscillation and concentration phenomena interact in such a way that the Frobenius norm has to be homogenized into a (resp. symmetric) Schatten-1 norm which coincides with the Euclidean norm on rank-one (resp. symmetric) matrices. By means of explicit constructions consisting of the superposition of sequential laminates, the validity of an optimal approximation property is established at the expense of endowing the space of measures with a total variation associated with the homogenized norm in the space of matrices.

Introduction

Functions of bounded variation (BV ) and of bounded deformation (BD) have shown to be the right mathematical setting of many applied problems, including problems from image segmentation, optimization, fracture and plasticity. This has led in the last decades to a many-sided and fine analysis of their properties. One of the first questions, motivated both by theoretical usefulness and by numerical application, is that of the approximation of BV and BD functions by a more restricted class of functions. The choice of the convergence and the regularity of the approximants may change with the context [START_REF] Braides | Integral representation results for functionals defined on SBV(Ω; R m )[END_REF][START_REF] Cortesani | Strong approximation of GSBV functions by piecewise smooth functions[END_REF][START_REF] Cortesani | A density result in SBV with respect to non-isotropic energies[END_REF][START_REF] Amar | A new approximation result for BV-functions[END_REF][START_REF] Bellettini | The Γ-limit for singularly perturbed functionals of Perona-Malik type in arbitrary dimension[END_REF][START_REF] Kristensen | Piecewise affine approximations for functions of bounded variation[END_REF][START_REF] De Philippis | On the approximation of SBV functions[END_REF][START_REF] Conti | Approximation of SBV functions with possibly infinite jump set[END_REF][START_REF] Chambolle | An approximation result for special functions with bounded deformation[END_REF][START_REF]An approximation result for special functions with bounded deformation[END_REF][START_REF] Iurlano | A density result for GSBD and its application to the approximation of brittle fracture energies[END_REF][START_REF] Conti | Integral representation for functionals defined on SBD p in dimension two[END_REF][START_REF] Friedrich | A piecewise Korn inequality in SBD and applications to embedding and density results[END_REF][START_REF] Conti | Approximation of fracture energies with p-growth via piecewise affine finite elements[END_REF][START_REF] Chambolle | A density result in GSBD p with applications to the approximation of brittle fracture energies[END_REF][START_REF] Crismale | On the approximation of SBD functions and some applications[END_REF].

A classical result in the theory of scalar BV -functions states that any function u ∈ BV (Ω) in an open set Ω ⊂ R n can be approximated by a sequence of simple BV -functions with respect to the strict convergence, that is the strong L 1 -convergence of functions together with the convergence of the total variation of their derivatives. The proof rests on the Fleming-Rishel coarea formula, and consequently does not easily apply to the vectorial setting, where the total variation is intended as the extension to measures of the Frobenius norm of matrices. In fact, it turns out that it is not possible to strictly approximate vector-valued BV functions by piecewise constant ones, and not even if the convergence of the total variation of the derivatives is replaced by the convergence of their area-variation, or of any other strongly convex variation coinciding with the standard variation on singular rank-one measures (see respectively [START_REF] Ambrosio | Metric space valued functions of bounded variation[END_REF], [START_REF] Ambrosio | Linear inverse problems with hessian-schatten total variation[END_REF]Remark 22], [START_REF] Kristensen | Piecewise affine approximations for functions of bounded variation[END_REF]Proposition 4], or Example 4.4 below).

The first object of this work is to show that such a density result holds for bounded variation vector fields, once one replaces the convergence of the total variation of the derivatives by the convergence of their Schatten variation, which extends to measures the Schatten-1 norm of matrices. The latter is given by the sum of the singular values of a matrix and therefore coincides with the Frobenius norm on rank-one matrices, but it is not strictly convex (we refer to Section 2 for the explicit definition).

The second object of this work is to establish a similar result in the BD framework. In this case the approximants are piecewise rigid motions and the variation is a nontrivial adaptation of the Schatten one, now applying to eigenvalues in place of singular values, and distinguishing between their sign. In particular it coincides with the standard variation on singular rank-one-symmetric measures (see again Section 2).

In fact, in the vectorial setting, it turns out that oscillation effects interact with concentrations, leading to homogenization of the norm with respect to which the total variation is taken. The norm has therefore to be changed into a homogenized one which coincides with the usual (Frobenius) norm on "elementary" objects. This homogenization phenomenon was already observed in earlier homogenization works in several contexts [START_REF] Murat | Calcul des variations et homogénéisation[END_REF][START_REF] Kohn | Optimal design and relaxation of variational problems[END_REF][START_REF] Francfort | Homogenization and optimal bounds in linear elasticity[END_REF][START_REF]Optimal bounds on the effective behavior of a mixture of two well-ordered elastic materials[END_REF][START_REF] Allaire | Explicit optimal bounds on the elastic energy of a two-phase composite in two space dimensions[END_REF][START_REF] Allaire | Existence of minimizers for non-quasiconvex functionals arising in optimal design[END_REF][START_REF] Allaire | Minimizers for a double-well problem with affine boundary conditions[END_REF][START_REF] Allaire | Shape optimization by the homogenization method[END_REF][START_REF] Bouchitté | Optimization of light structures: the vanishing mass conjecture[END_REF][START_REF] Babadjian | Concentration versus oscillation effects in brittle damage[END_REF][START_REF]Shape optimization of light structures and the vanishing mass conjecture[END_REF], a priori unrelated to the present study. A density result in the spirit of the present work has been recently established in [START_REF] Ambrosio | Linear inverse problems with hessian-schatten total variation[END_REF][START_REF] Ambrosio | Functions with bounded hessian-schatten variation: density, variational and extremality properties[END_REF] in the context of functions with bounded Hessian, involving the corresponding Schatten variation of the Hessian matrix. Let us also mention that relaxation of the total variation of locally simple functions has been used in [START_REF] Ambrosio | Metric space valued functions of bounded variation[END_REF]Example 3.5] and [START_REF] Brena | Maps of bounded variation from PI spaces to metric spaces[END_REF]Section 3.2] to give an alternative notion of BV -maps. A relaxation result in the same spirit, but in the BD framework, is obtained in [START_REF] Braides | A relaxation approach to Hencky's plasticity[END_REF]Theorem 2.1] for a functional defined on piecewise smooth functions with divergence in L 2 . The link between the corresponding relaxation formula and the symmetric Schatten-1 norm is made explicit in [START_REF] Babadjian | Concentration versus oscillation effects in brittle damage[END_REF]Proposition 3.7].

These results lead to the following alternative expression of the Schatten-1 norm as well as of its symmetric version, respectively by means of convexification formulas (see Lemmas 2.1 and 2.2)

|A| S = (| • | + I Λ curl ) * * (A), for A ∈ M m×n , |A| sym-S = (| • | + I Λ curl curl ) * * (A), for A ∈ M n×n
sym , where | • | is the Frobenius norm and, given a set E, I E stands for the indicator function of E (taking the value 0 in E and +∞ outside), and the double-star stands for the bi-convex conjugate (the double Legendre transform). In the previous expression Λ curl (resp. Λ curl curl ) denotes the wave cone (see [START_REF] Philippis | On the structure of A-free measures and applications[END_REF]) associated to the curl (resp. curl curl) operator which is related to BV (resp. BD) functions through the formula curl(Du) = 0 in D (Ω; R m ) for all u ∈ BV (Ω; R m ) (resp. curl curl(Eu) = 0 in D (Ω; R n ) for all u ∈ BD(Ω)). It translates pieces of information of the differential operator curl (resp. curl curl) in the Fourier space. The theory of compensated compactness (see [START_REF] Tartar | Compensated compactness and applications to partial differential equations[END_REF]) makes it explicit

Λ curl = {a ⊗ b : a ∈ R m , b ∈ R n }, Λ curl curl = {a b : a, b ∈ R n }.
In view of the previous discussion, the results presented in this paper are somehow natural, but we were not able to find them in the literature. Our approach is direct, indeed the construction only relies on explicit superposition of sequential laminates, constructed on the basis of these last convexification formulas. Using standard approximation results of BV or BD functions by smooth ones, we can easily reduce to the case where the initial function is continuous, piecewise affine (on a fixed partition of R n made of n-simplexes) and compactly supported. Then, working separately inside each n-simplex, the overall idea consists in considering laminates in suitable directions related to the singular values (eigenvalues in the BD case, resp.) of the (symmetric) gradient of u, which is a constant matrix. By construction, such sequential laminates are piecewise rank-one (symmetric), hence the Frobenius variation and the (symmetric) Schatten variation of the derivatives coincide. It turns out that the optimal directions strongly depend on the singular vectors (on the sign of the eigenvalues and then on a combination of the eigenvectors, resp.), which leads to a loss of isotropy and a change of norm. In the limit the relaxed variations appear, that is, the Schatten variation in the BV case and its symmetric version in the BD case.

By lower semicontinuity, |•| S and |•| sym-S are the only variations coinciding with the standard variation respectively on rank-one and symmetric rank-one objects for which an approximation of the type above holds, see Propositions 3.6 and 4.5 for more details.

Notation

Matrices

Let M m×n be the set of all real m × n matrices. We recall that, given two matrices A, B ∈ M m×n , the Frobenius scalar product is defined by A : B = tr(A T B) and the associated Frobenius norm is given by |A| := √ A : A. If A ∈ M m×n , the singular values s 1 , . . . , s n ≥ 0 of A are defined as the eigenvalues of the (symmetric) matrix

√ A T A ∈ M n×n sym . For every p ∈ [1, ∞], the Schatten p-norm of A is defined by |A| S,p := (s 1 , . . . , s n ) p .
Note that for p = 1 (the case of interest in the sequel), we set |A| S := |A| S,1 and we have

|A| S = tr √ A T A , while for p = ∞, |A| S,∞ = √ A T A ,
where denotes the spectral radius. Given a ∈ R m and b ∈ R n , we denote by a ⊗ b := ab T ∈ M m×n the tensor product between a and b. We observe that |a ⊗ b| S = |a||b| = |a ⊗ b|.

(2.1)

One has the following convexification formula for the 1-Schatten norm.

Lemma 2.1. For all A ∈ M m×n , we have

|A| S = sup{ψ : M m×n → R convex such that ψ(a ⊗ b) ≤ |a ⊗ b| for all a ∈ R m , b ∈ R n }.
Proof. Let us denote by h(A) the above supremum. Since |•| S is convex and satisfies (2.1), we have that h(A) ≥ |A| S . We are thus back to show the reverse inequality. For all A ∈ M m×n , let

H(A) := |a ⊗ b| if A = a ⊗ b, +∞ otherwise.
Let us compute the convex conjugate of H. For all X ∈ M m×n , we have

H * (X) = sup t>0 sup |a|=|b|=1 t{X : (a ⊗ b) -|a ⊗ b|} = sup t>0 sup |a|=|b|=1 t{(Xa) • b) -1} = sup t>0 sup |a|=1 t{|Xa| -1} = sup t>0 t (X T X) -1 = I B (X),
where B is the closed unit ball in M m×n with respect to the Schatten ∞-norm. As a consequence, h = H * * (which is the convex envelope of H) coincides with the support function of B, which is nothing but the Schatten 1-norm (see e.g. [START_REF] Aziznejad | Duality mapping for Schatten matrix norms[END_REF]Proposition 1]).

We denote by M n×n sym and M n×n skew the subspaces of M n×n of symmetric and skew-symmetric matrices, respectively. If A ∈ M n×n sym is symmetric and λ 1 , . . . , λ n ∈ R are the eigenvalues of A, then s i = |λ i |. We consider the function | • | sym-S : M n×n sym → R + introduced in [START_REF] Babadjian | Concentration versus oscillation effects in brittle damage[END_REF] and defined, for all ξ ∈ M n×n sym , by

|A| sym-S := 1 2 n i=1 |λ i | 2 + 1 2 n i=1 λ i 2 = 1 2 |A| S 2 + 1 2 (tr(A)) 2 .
This function is a norm over M n×n sym , in particular, it is a continuous, Lipschitz and positively one-homogeneous function. It will be referred to as the symmetric Schatten 1-norm and it can alternatively be written as

|A| sym-S = l i=1 λ i 2 + n i=l+1 λ i 2 , (2.2) 
where

λ 1 ≤ • • • ≤ λ l ≤ 0 < λ l+1 ≤ • • • ≤ λ n .
In dimension n = 2, it further reduces to

|A| sym-S = |A| 2 + 2(det A) + for all A ∈ M 2×2 sym . If a and b ∈ R n , we denote by a b = (a ⊗ b + b ⊗ a)/2 ∈ M n×n
sym the symmetric tensor product between a and b. Since, by [15, Lemma 2.1], such a matrix has rank at most 2 and both nonzero eigenvalues have opposite signs, we infer that |a b| sym-S = |a b|.

(

One has a similar convexification formula for this symmetric 1-Schatten norm. The proof directly follows from [START_REF] Babadjian | Concentration versus oscillation effects in brittle damage[END_REF]Proposition 3.7].

Lemma 2.2. For all A ∈ M n×n sym , we have

|A| sym-S = sup{ψ : M n×n sym → R convex such that ψ(a b) ≤ |a b| for all a, b ∈ R n }.

Measures

The Lebesgue measure in R n is denoted by L n , and the (n -1)-dimensional Hausdorff measure by

H n-1 . If Ω ⊂ R n
is an open set and X is an Euclidean space, we denote by M(Ω; X) the space of X-valued bounded Radon measures in Ω. Fixed a norm • on X, we can define the variation of µ ∈ M(Ω; X) with respect to • as

µ (A) := sup k i=1 µ(A i ) ,
for all Borel set A ⊂ Ω, where the supremum is taken over all finite Borel partitions A = k i=1 A i of A. In particular, µ (Ω) is a norm on M(Ω; X). Frobenius variation will be denoted by | • |.

In the sequel, we will consider the cases X = M m×n , X = M n×n sym and X = R. When X = R, we simply write M(Ω) instead of M(Ω; R).

Let µ ∈ M(Ω; X) and f : X → [0, +∞) be a convex, positively one-homogeneous function. Using the theory of convex functions of measures developed in [START_REF] Goffman | Sublinear functions of measures and variational integrals[END_REF], we introduce the nonnegative finite Borel measure f (µ), defined by

f (µ) := f dµ d|µ| |µ| ,
where dµ d|µ| stands for the Radon-Nikodým derivative of µ with respect to |µ|.

Functional spaces

The space of (vector valued) functions of bounded variation is defined by

BV (Ω; R m ) = {u ∈ L 1 (Ω; R m ) : Du ∈ M(Ω; M m×n )}.
We refer to [START_REF] Ambrosio | Functions of bounded variation and free discontinuity problems[END_REF] for notation and general properties of that space. We further consider the space of functions of bounded deformation introduced in [START_REF] Suquet | Un espace fonctionnel pour les équations de la plasticité[END_REF] defined by

BD(Ω) = {u ∈ L 1 (Ω; R n ) : Eu := (Du + Du T )/2 ∈ M(Ω; M n×n sym )}.
We refer to [START_REF] Ambrosio | Fine properties of functions with bounded deformation[END_REF][START_REF] Temam | Problèmes mathématiques en plasticité[END_REF] for a general treatment of that space.

3 Symmetric Schatten mass approximation of functions of bounded deformation 

i } i∈N ⊂ R n such that for all i ∈ N, u(x) = A i x + b i for all x ∈ P i .
We denote by P R(R n ) the space of all such piecewise rigid body motions.

Remark 3.2. Note that if u ∈ P R(R n ), then its symmetric gradient Eu is a pure jump measure concentrated on i,j∈N (∂P i ∩ ∂P j ). Moreover,

Eu (∂P i ∩ ∂P j ) = (u| Pj ) + -(u| Pi ) - νH n-1 (∂P i ∩ ∂P j ),
where ν is the unit vector orthogonal to ∂P i ∩∂P j oriented from P i to P j , and (u| Pj ) + (resp. (u| Pi ) -) is the trace of u| Pj (resp. u| Pi ) on ∂P i ∩ ∂P j . In particular, (2.3) ensures that |Eu| sym-S = |Eu| as measures in R n .

Our first main result is the following approximation of functions of bounded deformation.

Theorem 3.3. Let Ω be a bounded open set of R n with Lipschitz boundary and u ∈ BD(Ω). Then, there exists a sequence

{u k } k∈N in P R(R n ) such that u k → u strongly in L 1 (Ω; R n ), |Eu k | sym-S (Ω) → |Eu| sym-S (Ω).
The previous approximation result holds for the symmetric Schatten mass |Eu| sym-S of Eu, and not for the usual total variation mass |Eu| as the following counterexample shows (see also [START_REF] Ambrosio | Linear inverse problems with hessian-schatten total variation[END_REF]Remark 22], [START_REF] Kristensen | Piecewise affine approximations for functions of bounded variation[END_REF]Proposition 4], or Example 4.4 below for the Schatten 1-norm).

Example 3.4. Let n = 2, Ω = Q = (0, 1) 2 is the unit cube and u(x) = x, so that Eu = Id. Assume that there exists a sequences of piecewise rigid body motions 

{u k } k∈N such that u k → u strongly in L 1 (Q; R 2 ) and |Eu k |(Q) → |Eu|(Q). Since |•| sym-S is
| sym-S (Q) → |Eu| sym-S (Q). But since u k is piecewise rigid, Remark 3.2 shows that dEu k d|Eu k | = α k β k for some Borel functions α k , β k : R 2 → R 2 such that |α k β k | = 1 and
|Eu k | sym-S = dEu k d|Eu k | sym-S |Eu k | = |α k β k | sym-S |Eu k |. But since by (2.3), |α k β k | sym-S = |α k β k | = 1, then |Eu k | sym-S = |Eu k | and thus |Eu| sym-S (Q) = |Eu|(Q). This is however not possible since a straightforward computation shows that |Eu|(Q) = |Id| = √ 2 while |Eu| sym-S (Q) = |Id| sym-S = 2.
Remark 3.5. A similar argument would show that there is no sequence of piecewise rigid functions ). This restriction of the admissible norms (for which such an approximation result is valid) is actually much stronger. Indeed, our Theorem 3.3 is optimal in the sense that the symmetric Schatten-1 norm is the only possible norm coinciding with the Frobenius one on rank-one symmetric matrices for which such a density result holds. 

u k such that u k → u strongly in L 1 (Ω; R n ) and
k } k∈N in P R(R n ) such that u k → u strongly in L 1 (Ω; R n ), N (Eu k )(Ω) → N (Eu)(Ω) Then N = |•| sym-S .
Proof. We first observe that the proof of [15, Proposition 3.7] (with the choice of parameters α = κ = 1, λ w = 0 and µ w = 1/2) ensures that N ≤ |•| sym-S , so that we are back to show the reverse inequality.

Let A ∈ M n×n sym and consider the linear map u(x) = Ax. By assumption, there is a sequence 

{u k } k∈N in P R(R n ) such that u k → u strongly in L 1 (Ω; R n ) and N (Eu k )(Ω) → N (Eu)(Ω).
N (Eu)(Ω) = lim k→∞ N (Eu k )(Ω) = lim k→∞ |Eu k |(Ω) = lim k→∞ |Eu k | sym-S (Ω) ≥ |Eu| sym-S (Ω),
where we used Reshetnyak's lower semicontinuity theorem in the last inequality (see [START_REF] Ambrosio | Functions of bounded variation and free discontinuity problems[END_REF]Theorem 2.38]). Recalling that Eu = A, we get that N (A) ≥ |A| sym-S .

An immediate consequence of Theorem 3.3 is the following relaxation result, in the spirit of [START_REF] Braides | A relaxation approach to Hencky's plasticity[END_REF].

Corollary 3.7. Let Ω ⊂ R n be open, bounded, with Lipschitz boundary. For all u ∈ L 1 (Ω; R n ), define F (u) := inf lim inf k→∞ |Eu k |(Ω) : u k ∈ P R(R n ), u k → u in L 1 (Ω; R n ) . Then F (u) = |Eu| sym-S (Ω) if u ∈ BD(Ω), +∞ otherwise.
The proof of the lower bound inequality is an immediate consequence of Reshetnyak lower semicontinuity Theorem (see [START_REF] Ambrosio | Functions of bounded variation and free discontinuity problems[END_REF]Theorem 2.38]) together with the fact that |Eu| = |Eu| sym-S as measures if u ∈ P R(R n ). The upper bound is a direct consequence of Theorem 3.3.

Proof of Theorem 3.3. Step 1. Let us show that there is no loss of generality to suppose that u is a continuous, piecewise affine function compactly supported in R n .

Since Ω has Lipschitz boundary, it follows from [14, Theorem 3.2] that u ∈ BD(Ω) has a trace on ∂Ω, denoted by γ(u), which belongs to L 1 (∂Ω; R n ). Gagliardo's Theorem then ensures the existence of

v ∈ W 1,1 (R n \ Ω; R n ), compactly supported in R n , such that γ(v) = γ(u) on ∂Ω. Setting ũ := u1 Ω + v1 R n \Ω yields ũ ∈ BD(R n ) with E ũ = Eu Ω + e(v)L n (R n \ Ω).
Let {η ε } ε>0 be a standard family of mollifiers and set

ũε := ũ * η ε ∈ C ∞ c (R n ; R n ).
Standard properties of mollifiers imply that ũε → ũ strongly in L 1 (R n ; R n ), hence by lower semicontinuity of the total variation

|E ũ|(R n ) ≤ lim inf ε→0 |E ũε |(R n ).
Moreover, by [12, Theorem 2.2], we also have that The previous discussion shows that there is no loss of generality to assume that u ∈ C ∞ c (R n ; R n ). We next fix a small parameter δ > 0 and consider a triangulation of R n into n-simplexes {T i } i∈N with pairwise disjoint interiors and such that, for all i ∈ N, diam(T i ) ≤ δ and L n (T i ) ≥ cδ n for some c > 0. Let ûδ be the continuous piecewise affine function which is the Lagrange interpolation of the values of u at the nodes of the triangulation. Standard finite element estimates show that ûδ → u strongly in W 1,1 (R n ; R n ), hence in particular we get that |E ûδ | sym-S (Ω) → |Eu| sym-S (Ω).

E ũε = (E ũ) * η ε and |E ũε |(R n ) ≤ |E ũ|(R n ). As a consequence, |E ũε |(R n ) → |E ũ|(R n ) and Reshetnyak continuity Theorem (see ([12, Theorem 2.39])) shows that |E ũε | sym-S (R n ) → |E ũ| sym-S (R n ).
Step 2. Assume that T is an n-simplex and u(x) = Ax + b for some A ∈ M n×n and b ∈ R n . We now modify u by adapting and extending the construction exhibited in [15, Section 3.1]. We denote by

A sym = A + A T 2 ∈ M n×n sym , A skew = A -A T 2 ∈ M n×n skew so that A = A sym + A skew .
The matrix A sym being symmetric, we can consider its spectral decomposition

A sym = n i=1 λ i e i ⊗ e i ,
here λ 1 , . . . , λ n ∈ R are the eigenvalues and e 1 , . . . , e n are the associated eigenvectors of A sym such that {e 1 , . . . , e n } forms an orthonormal basis of R n . We argue by induction on the dimension n to show the following property: there exists a sequence

{v T k } k∈N of piecewise constant functions v T k : R n → R n such that      v T k (x) → A sym x uniformly with respect to x ∈ R n , Ev T k H n-1 L k , Ev T k sym-S (T ) → |Eu| sym-S (T ), (3.1) 
where L k is a countable union of (n -1)-dimensional affine subspaces of R n , finitely many thereof intersecting T . Once (3.1) is established, we set u T k (x) = v T k (x) + A skew x + b which defines a piecewise rigid body motion in T , and satisfies u T k → u uniformly in T and Eu T k sym-S (T ) = Ev T k sym-S (T ) → |Eu| sym-S (T ).

Step 2a. Let us first assume that n = 2.

• If det(A sym ) > 0, then the eigenvalues λ 1 and λ 2 have the same sign. It is immediate to check that

|A sym | sym-S = |λ 1 + λ 2 | = |λ 1 | + |λ 2 |.
We introduce an auxiliary step function s k : R → R defined by

s k (t) := i∈Z i k 1 [ i k , i+1 k ) (t), (3.2) 
which satisfies that s k (t) → t uniformly in R. In that case, we set

v T k (x) := λ 1 s k (x • e 1 )e 1 + λ 2 s k (x • e 2 )e 2 so that v T k (x) → λ 1 (x • e 1 )e 1 + λ 2 (x • e 2 )e 2 = A sym x uniformly with respect to x ∈ R 2 . Next Ev T k = ∈Z λ 1 e 1 ⊗ e 1 k H 1 x ∈ R 2 : e 1 • x = k + ∈Z λ 2 e 2 ⊗ e 2 k H 1 x ∈ R 2 : e 2 • x = k .
Since both measures in the right-hand-side of the previous equality are mutually singular (because e 1 and e 2 are orthogonal) and |λ i e i ⊗ e i | sym-S = |λ i |, we infer that

Ev T k sym-S = ∈Z |λ 1 | k H 1 x ∈ R 2 : e 1 • x = k + ∈Z |λ 2 | k H 1 x ∈ R 2 : e 2 • x = k ,
and thus, for every polyhedral set P ⊂ R 2 ,

Ev T k sym-S (P ) = ∈Z |λ 1 | k H 1 x ∈ P : e 1 • x = k + ∈Z |λ 2 | k H 1 x ∈ P : e 2 • x = k → (|λ 1 | + |λ 2 |)L 2 (P ) = |A sym | sym-S L 2 (P ) = |Eu| sym-S (P ).
• If det(A sym ) ≤ 0, by [15, Lemma 2.1], we can write A sym = α β for some vectors α, β ∈ R 2 . Note that, if α and β are linearly dependent, we can assume that α = β. We define

v T k (x) := α|β| 2 s k β • x |β| + β|α| 2 s k α • x |α| so that v T k (x) → α 2 (β • x) + β 2 (α • x) = A sym x uniformly with respect to x ∈ R 2 .
Computing the symmetric gradient yields

Ev T k = ∈Z α β 2k H 1 x ∈ R 2 : β |β| • x = k + ∈Z α β 2k H 1 x ∈ R 2 : α |α| • x = k .
As a consequence, we get that for every polyhedral set P ⊂ R 2 ,

Ev T k sym-S (P ) = ∈Z |α β| sym-S 2k H 1 x ∈ P : β |β| • x = k + ∈Z |α β| sym-S 2k H 1 x ∈ P : α |α| • x = k ,
hence Ev T k sym-S (P ) → |α β| sym-S L 2 (P ) = |Eu| sym-S (P ). Taking P = T , we have thus proved the validity of (3.1) for n = 2.

Step 2b. Let us assume now that there exists n ≥ 3 such that (3.1) holds for all d ∈ {2, . . . , n-1}.

• If λ i ≥ 0 (or similarly λ i ≤ 0) for all i = 1, . . . , n, then we construct v T k by laminating componentwise, that is

v T k (x) := n i=1 λ i s k (x • e i )e i .
We immediately check as in Step 2a that v T k converges to x → A sym x uniformly in R n and that

lim k→∞ Ev T k sym-S (T ) → n i=1 |λ i |L n (T ) = |Eu| sym-S (T ).
• If all eigenvalues but one have the same sign, that is,

λ 1 ≤ • • • ≤ λ n-1 ≤ 0 < λ n and λ 1 < 0 (or similarly λ 1 ≥ • • • ≥ λ n-1 ≥ 0 > λ n and λ 1 > 0)
, we decompose the matrix A as the sum of rank-one symmetric matrices. More precisely, we set

A = n-1 j=1 A (j) ,
where

A (j) = λ j e j ⊗ e j + δ j λ n e n ⊗ e n , δ j := λ j n-1 l=1 λ l -1
.

Note that A (j) = α (j) β (j) where α (j) = -|λ j |e j + δ j λ n e n , β (j) = |λ j |e j + δ j λ n e n .

We next define

v T k (x) := n-1 j=1 α (j) |β (j) | 2 s k β (j) • x |β (j) | + β (j) |α (j) | 2 s k α (j) • x |α (j) | .
Arguing as in Step 2a, we get that v T k converges to x → A sym x uniformly in R n and

lim k→∞ Ev T k sym-S (T ) = n-1 j=1 A (j) sym-S
L n (T ).

Since A (j) is a rank-one symmetric matrix, then (2.3) implies that

n-1 j=1 A (j) sym-S = n-1 j=1 |A (j) | = n-1 j=1 λ 2 j + δ 2 j λ 2 n = n-1 l=1 λ l 2 + λ 2 n = |A sym | sym-S
by (2.2), hence Ev T k sym-S (T ) → |Eu| sym-S (T ).

• It remains to consider the case where

λ 1 ≤ • • • ≤ λ r < 0 < λ m+1 ≤ • • • ≤ λ n with 2 ≤ r ≤ m ≤ n -2.
We decompose A sym as sum of lower rank symmetric matrices, in such a way that |•| sym-S stays additive on such a decomposition. Indeed, let us write

A sym = n j=m+1 A (j) ,
where, for all j = m + 1, . . . , n,

A (j) := λ j e j ⊗ e j + a j m i=1 λ i e i ⊗ e i , a j := λ j n l=m+1 λ l -1
.

Notice that 0 < a j ≤ 1 and n j=m+1 a j = 1; moreover, a j λ 1 ≤ • • • ≤ a j λ r < 0 < λ j and, since r + 1 ≤ m + 1 < n, then A (j) has at least one zero eigenvalue.

Let {ê 1 , . . . , êr+1 } be the canonical basis of R r+1 . For all m + 1 ≤ j ≤ n, we denote by which is a polyhedral subset of R r+1 . Using again that m + 1 < n, the inductive step ensures the existence of a sequence {v

Â(j) := a j r i=1 λ i êi ⊗ êi + λ j êr+1 ⊗ êr+1 ∈ M (r+1)×(r+1)
(j) k } k∈N , v(j) k : R r+1 → R r+1 , of piecewise constant functions such that v(j) k (x) → Â(j) x uniformly with respect to x ∈ R r+1 , Ev (j) k sym-S ( T ) → Â(j) sym-S ( T ) as k → ∞ and Ev (j) k H r L(j) k , where L(j)
k is a countable union of r-dimensional affine subspaces of R r+1 , finitely many thereof intersecting T .

Hence, setting

v (j) k (x) := r l=1 v(j) k r i=1 x i êi + x j êr+1 • êl e l + v(j) k r i=1 x i êi + x j êr+1 • êr+1 e j and v T k (x) := n j=m+1 v (j) k (x),
we get

v T k (x) → n j=m+1 r l=1 Â(j) r i=1 x i êi + x j êr+1 • êl e l + Â(j) r i=1 x i êi + x j êr+1 • êr+1 e j = n j=m+1 r l=1 r i=1 a j λ i x i êi + λ j x j êr+1 • êl e l + r i=1 a j λ i x i êi + λ j x j êr+1 • êr+1 e j = n j=m+1 r i=1 a j λ i x i e i + λ j x j e j = r i=1 λ i x i e i + n j=m+1 λ j x j e j = A sym x
uniformly with respect to x ∈ R n . Note also that the measure Ev

(j)
k is concentrated on a countable union of (n -1)-dimensional affine subspaces of R n of the form

L (j) k = {x ∈ R n : (x 1 , . . . , x r , x j ) ∈ L(j) k }.
Since we have H n-1 (L

(j) k ∩ L (l)
k ) = 0 when l = j, we get that the measures Ev Since,

n j=m+1 A (j) sym-S = n j=m+1 r i=1 a j λ i 2 + λ 2 j = r i=1 λ i 2 + n l=m+1 λ l 2 = |A sym | sym-S ,
we deduce that Ev T k sym-S (T ) → |Eu| sym-S (T ).

Step 3. Assume that u is a continuous, piecewise affine and compactly supported function on a partition {T i } i∈N of R n made of n-simplexes. Applying the construction of Step 2 in each simplex T i , we set

u k := i∈N u Ti k 1 Ti , which defines a sequence {u k } k∈N in P R(R n ) such that u k → u uniformly in R n and |Eu k | sym-S (T i ) → |Eu| sym-S (T i ) for all i ∈ N. Note that, since u has compact support in R n , we get that #{i ∈ N : T i ∩ Supp(u) = ∅} < ∞, sup k∈N #{i ∈ N : T i ∩ Supp(u k ) = ∅} < ∞. (3.3) 
It remains to estimate the measure |Eu k | sym-S on the common interface S ij = ∂T i ∩ ∂T j of two adjacent simplexes T i and T j . To this aim, we observe that, by construction, for all i ∈ N,

u k -u L ∞ (Ti;R n ) ≤ C |A sym i | k ,
and thus, owing to (3.3),

u k -u L ∞ (Ω;R n ) ≤ C k for some constant C > 0 independent of k.
As a consequence of the continuity of u, we deduce that for all x ∈ S ij

|u + k (x) -u - k (x)| ≤ C k , where u - k = u Ti k | Sij and u + k = u Tj k
| Sij denote the one-sided traces of u k on both sides of S ij . On the other hand, the jump formula yields

Eu k S ij = (u + k -u - k ) νH n-1 S ij ,
where ν is the normal vector to S ij oriented from T i to T j . As a consequence,

|Eu k | sym-S (S ij ) = Sij (u + k -u - k ) ν sym-S dH n-1 = Sij |(u + k -u - k ) ν| dH n-1 ≤ C k H n-1 (S ij ) → 0 as k → ∞. Using again (3.3), we get that lim k→∞ |Eu k | sym-S (R n ) = lim k→∞ i∈N |Eu k | sym-S (T i ) = i∈N |Eu| sym-S (T i ) = |Eu| sym-S (R n ).
Finally, since |Eu| sym-S (∂Ω) = |Eu|(∂Ω) = 0, we deduce that |Eu k | sym-S (Ω) → |Eu| sym-S (Ω).

4 Schatten-mass approximation of vector valued functions of bounded variation Definition 4.1. A function u : R n → R m is piecewise constant if there exists a countable family {P i } i∈N of polyhedral sets with pairwise disjoint interiors such that R n = i∈N P i and vectors

{c i } i∈N in R m such that for all i ∈ N, u(x) = c i for all x ∈ P i .
We denote by P C(R n ; R m ) the space of all such piecewise constant functions.

Remark 4.2. Note that if u : R n → R m is piecewise constant, then its gradient, Du is a pure jump measure concentrated on i,j∈N (∂P i ∩ ∂P j ). Moreover,

Du (∂P i ∩ ∂P j ) = (u| Pj ) + -(u| Pi ) -⊗ νH n-1 (∂P i ∩ ∂P j ),
where ν is the unit vector orthogonal to ∂P i ∩ ∂P j oriented from P i to P j , and (u| Pj ) + (resp. (u| Pi ) -) is the trace of u| Pj (resp. u| Pi ) on ∂P i ∩ ∂P j . In particular, the variation measure of Du with respect to the Frobenius and Schatten norms coincide, i.e. |Du| = |Du| S as measures in R n .

Our second main result is the following approximation of bounded variation vector fields. Then, there exists a sequence {u k } k∈N in P C(R n ; R m ) such that

u k → u strongly in L 1 (Ω; R m ), |Du k | S (Ω) → |Du| S (Ω).
The previous approximation result holds for the so-called Schatten-mass |Du| S of Du, and not for the usual total variation mass |Du| as the following counterexample shows (see [START_REF] Ambrosio | Linear inverse problems with hessian-schatten total variation[END_REF]Remark 22] and [START_REF] Kristensen | Piecewise affine approximations for functions of bounded variation[END_REF]Proposition 4]). 

dDu k d|Du k | = α k ⊗ β k
for some Borel functions α k , β k : R 2 → R 2 , so that

|Du k | S = dDu k d|Du k | S |Du k | = |α k ⊗ β k | S |Du k | = |α k ⊗ β k ||Du k | = |Du k |. Consequently, |Du| S (Q) = |Du|(Q) which is not possible since |Du|(Q) = |Id| = √ 2 while |Du| S (Q) = |Id| S = 2.
Once more, the previous example can be extended to show that it is not possible to approximate BV vector fields by piecewise constant functions in mass with respect to a strictly convex variation. Moreover, our Theorem 4.3 is optimal in the sense that the Schatten-1 norm is the only possible norm coinciding with the Frobenius norm on rank-one matrices for which such a density result holds. 

u k → u strongly in L 1 (Ω; R m ), N (Du k )(Ω) → N (Du)(Ω).
G(u) := inf lim inf k→∞ |Du k |(Ω) : u k ∈ P C(R n ; R m ), u k → u in L 1 (Ω; R m ) . Then G(u) = |Du| S (Ω) if u ∈ BV (Ω; R m ), +∞ otherwise.
Next we turn to the proof of Theorem 4.3.

Proof of Theorem 4.3. Arguing as in Step 1 of the proof of Theorem 3.3, there is no loss of generality to suppose that u is continuous and compactly supported in R n , and affine on each n-simplex T i of a triangulation of R n . We now modify u on each of these n-simplexes.

Let T be a n-simplex and u(x) = Ax + b where A ∈ M m×n and b ∈ R m . We consider the polar decomposition A = RU where U

= √ A T A ∈ M n×n sym and R ∈ O(m, n
) is an orthogonal matrix. Let λ 1 , . . . , λ n ≥ 0 be the eigenvalues of U , i.e. the singular values of A, and let e 1 , . . . , e n be the associated eigenvectors which form an orthonormal basis of R n . We define the piecewise constant function

u T k (x) := n i=1 λ i s k (x • e i )Re i + b,
where s k has been defined in (3.2), so that, using the spectral decomposition U

= n i=1 λ i e i ⊗ e i , u T k (x) → n i=1 λ i (x • e i )Re i + b = Ax + b uniformly with respect to x ∈ R n . Next Du T k T = ∈Z n i=1 λ i R(e i ⊗ e i ) k H n-1 x ∈ T : x • e i = k .
Since, for fixed k ∈ N, the measures 

H n-1 x ∈ T : x • e i = k , i ∈ N, ∈ Z,
Du T k S (T ) = ∈Z n i=1 λ i k H n-1 x ∈ T : x • e i = k → n i=1 λ i L n (T ) = |A| S L n (T ) = |Du| S (T ). 14 
Applying this construction in each n-simplex T i , we set

u k := i∈N u Ti k 1 Ti , which defines a sequence {u k } k∈N of piecewise constant functions in R n such that u k → u uniformly in R n and |Du k | S (T i ) → |Du| S (T i ) for all i ∈ N. Note that since, u has compact support in R n , we get that #{i ∈ N : T i ∩ Supp(u) = ∅} < ∞, sup k∈N #{i ∈ N : T i ∩ Supp(u k ) = ∅} < ∞. (4.1) 
It remains to estimate the measure |Du k | S on the common interface S ij = ∂T i ∩ ∂T j of two adjacent n-simplexes T i and T j . To this aim, we observe that, by construction, for all i ∈ N,

u k -u L ∞ (Ti;R m ) ≤ |A i | k
and thus, owing to (4.1),

u k -u L ∞ (Ti;R m ) ≤ C k for some constant C > 0 independent of k. As a consequence of the continuity of u, we deduce that for all x ∈ S ij |u + k (x) -u - k (x)| ≤ 2C k , where u - k = u Ti k | Sij and u + k = u Tj k
| Sij denote the one-sided traces of u k on both sides of S ij . On the other hand, the jump formula yields

Du k S ij = (u + k -u - k ) ⊗ νH n-1 S ij ,
where ν is the normal vector to S ij oriented from T i to T j . As a consequence,

|Du k | S (S ij ) = Sij (u + k -u - k ) ⊗ ν S dH n-1 = Sij |(u + k -u - k ) ⊗ ν| dH n-1 ≤ 2C k H n-1 (S ij ) → 0 as k → ∞. Using again (4.1), we get that lim k→∞ |Du k | S (R n ) = lim k→∞ i∈N |Du k | S (T i ) = i∈N |Du| S (T i ) = |Du| S (R n ).
Finally, since |Du| S (∂Ω) = |Du|(∂Ω) = 0, we deduce that |Du k | S (Ω) → |Du| S (Ω).

Concluding remarks and open problems

It is to be expected that some density result with singular objects holds for measures satisfying a general linear PDE constraint as in [START_REF] Philippis | On the structure of A-free measures and applications[END_REF] (the so-called A-free measures). The results presented in this work correspond to the particular cases A = curl (in the vectorial BV case) and A = curl curl (in the BD case).

Another relevant example, e.g. in materials science, is the divergence constraint (see [START_REF]Shape optimization of light structures and the vanishing mass conjecture[END_REF]). Given a bounded open set, we define the space DM (Ω) = {σ ∈ M(Ω; M n×n sym ) : divσ = 0 in D (Ω; R n )}.

The wave cone associated to this differential constraint (see e.g. [16, Section 2.2]) is given by Λ div = {A ∈ M n×n sym : det(A) = 0}. In dimension n = 2, it is known that (provided Ω is smooth enough and simply connected), for all σ ∈ DM (Ω), there exists a function u ∈ BH(Ω) (which means that u ∈ W 1,1 (Ω) and D 2 u ∈ M(Ω; M n×n sym )) such that σ = cof(D 2 u). In mechanical language, the function u is sometimes referred to as the Airy function. Applying [9, Theorem 21] (see also [START_REF] Ambrosio | Functions with bounded hessian-schatten variation: density, variational and extremality properties[END_REF]Theorem 2.2]), there exists a sequence {u k } k∈N of continuous and piecewise affine functions such that u k → u in L ∞ (Ω) and D 2 u k S (Ω) → D 2 u S (Ω). Since u k is continuous and piecewise affine, it follows that ∇u k ∈ SBV (Ω; R 2 ) and

D 2 u k = a k ν J ∇u k ⊗ ν J ∇u k H 1 J ∇u k ,
where a k : J ∇u k → R is a Borel function and ν J ∇u k is the approximated normal to the jump J ∇u k of ∇u k . Defining σ k = cof(D 2 u k ), we get that σ k ∈ DM (Ω),

σ k = a k τ J ∇u k ⊗ τ J ∇u k H 1 J ∇u k ,
where τ J ∇u k = Rν J ∇u k is an approximate tangent vector to J ∇u k , and R is the rotation matrix In view of the structure of the singular part of A-free Radon measures [START_REF] Alberti | Rank one property for derivatives of functions with bounded variation[END_REF][START_REF] Philippis | On the structure of A-free measures and applications[END_REF] and of our results Theorems 3.3 and 4.3, one may expect the following general statement to be true:

R = 0 -1 1 
Let A : D (R n ; R m ) → D (R n ; R d ) be a linear differential operator and Λ A be its associated wave cone. For every z ∈ R m , we define The construction in this case would be of course more delicate since, depending on the order and on the form of the differential operator, compatibility constraints on the support of the µ k 's may be required. This goes beyond the scopes of the present paper and will be left to future investigations.
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 36 Let N be a norm over M n×n sym be such that N (a b) = |a b| for all a, b ∈ R n . Assume for all bounded open set Ω ⊂ R n with Lipschitz boundary and all u ∈ BD(Ω), there exists a sequence {u

  In particular, since |E ũ|(∂Ω) = 0, we also get that |E ũε |(Ω) → |E ũ|(Ω), and another application of the Reshetnyak continuity Theorem yields |E ũε | sym-S (Ω) → |E ũ| sym-S (Ω).

  x ∈ R r+1 : r i=1 xi e i + xr+1 e j ∈ T ,
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 43 Let Ω be a bounded open set of R n with Lipschitz boundary and u ∈ BV (Ω; R m ).
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 44 Let n = m = 2, Ω = Q = (0, 1) 2 is the unit cube and u(x) = x, so that Du = Id. Assume that there exists a sequence of piecewise constant functions{u k } k∈N such that u k → u strongly in L 1 (Q; R 2 ) and |Du k |(Q) → |Du|(Q). Since |•| S isa continuous and positively one-homogeneous function, Reshetnyak continuity Theorem ([12, Theorem 2.39]) ensures that |Du k | S (Q) → |Du| S (Q). But since u k is piecewise constant, Remark 4.2 shows that
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 45 Let N be a norm over M m×n such that N (a ⊗ b) = |a ⊗ b| for all a ∈ R m and b ∈ R n . Assume that for all bounded open set Ω ⊂ R n with Lipschitz boundary and all u ∈ BV (Ω; R m ), there exists a sequence {u k } k∈N in P C(R n ; R m ) such that

  Then N = |•| S .Proof. Let A ∈ M m×n be a fixed matrix and consider the linear function u(x) = Ax. By Theorem 4.3, there exists a sequence{u k } k∈N in P C(R n ; R m ) such that u k → u strongly in L 1 (Ω; R m ) and |Du k | S (Ω) → |Du| S (Ω). Since Du kDu weakly* in M(Ω; M m×n ), Reshetnyak's lower semicontinuity theorem (see[START_REF] Ambrosio | Functions of bounded variation and free discontinuity problems[END_REF] Theorem 2.38]) shows thatN (Du)(Ω) ≤ lim inf k→∞ N (Du k )(Ω).But since, by (2.1), N , | • | and |•| S coincide on rank-one matrices and, by Remark 4.2, dDu k d|Du k | has rank one, we deduce that N (Du) ≤ lim inf k→∞ |Du k | S (Ω) = |Du| S (Ω).Recalling that Du = A, we get that N (A) ≤ |A| S . Inverting the role of |•| S and N (for which the approximation property holds by assumption), we infer that |A| S ≤ N (A).As an immediate consequence of Theorem 4.3, we get the following relaxation result which is the counterpart of Corollary 3.7 in the BV setting.
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 46 Let Ω ⊂ R n be open, bounded, with Lipschitz boundary. For all u ∈ L 1 (Ω; R m ), define

  are mutually singular (because {e 1 , . . . , e n } forms an orthonormal basis of R n ) and|λ i R(e i ⊗ e i )| S = |λ i ||R(e i ⊗ e i )| S = |λ i ||e i ⊗ e i | = λ i (becauseR is an orthogonal matrix and the singular values of A are nonnegative), we infer that

0 . 3 if |λ 1 | 1 √ 2 (|λ 1 |

 031121 Since a matrix A ∈ M 2×2 sym share the same eigenvalues with cof(A), we get that|σ k | S (Ω) → |σ| S (Ω) and dσ k d|σ k | = ±τ J ∇u k ⊗ τ J ∇u k ∈ Λ div |σ k |-a.e. in Ω. Let us denote by | • | div := (| • | + I Λ div ) * * .As already evidenced in[START_REF] Bouchitté | Optimization of light structures: the vanishing mass conjecture[END_REF] and [16, Formula (1.10)], one has| • | div = | • | S in M 2×2 sym .Following again[START_REF]Shape optimization of light structures and the vanishing mass conjecture[END_REF][START_REF] Bouchitté | Optimization of light structures: the vanishing mass conjecture[END_REF], we expect a similar density result to hold in dimension n = 3 with for all A ∈ M 3×3 sym ,|A| div = (|λ 1 | + |λ 2 |) 2 + λ 2 + |λ 2 | ≤ |λ 3 |, + |λ 2 | + |λ 3 |) if |λ 1 | + |λ 2 | > |λ 3 |,where λ 1 , λ 2 and λ 3 are the eigenvalues of A ordered as singular values |λ 1 | ≤ |λ 2 | ≤ |λ 3 |.

  |z| A := (| • | + I Λ A ) * * (z), where | • | is the Euclidean norm over R m and I Λ A is the indicator function of the set Λ A . Then, | • | A is a norm over R m . Moreover if Ω ⊂ R n is a bounded open set with Lipschitz boundary, for every µ ∈ M(Ω; R m ) satisfying Aµ = 0 in D (Ω; R d ), there exists a sequence {µ k } k∈N in M(Ω; R m ) Aµ k = 0 in D (Ω; R d ), |µ k | A (Ω) → |µ| A (Ω), µ k ⊥ L n , dµ k d|µ k | ∈ Λ A |µ k |-a.e. in Ω.

  a continuous and positively one-homogeneous function, Reshetnyak continuity Theorem ([12, Theorem 2.39]) ensures that |Eu k

  Eu k converges to Eu in mass with respect to a strictly convex norm. This follows from the fact that convergence in mass with respect to a strictly convex norm implies convergence in mass with respect to the Frobenius norm by Reshetnyak Continuity Theorem (see for instance[START_REF] Spector | Simple proofs of some results of Reshetnyak[END_REF] Theorem 1.1] and[START_REF] Luckhaus | The Gibbs-Thompson relation within the gradient theory of phase transitions[END_REF][START_REF] Rešetnjak | The weak convergence of completely additive vector-valued set functions[END_REF]. Note that weak* convergence in M(Ω; M n×n sym ) together with the convergence of the total variation associated to any norm in M n×n sym implies weak* convergence in [C

b (Ω; M n×n sym )]
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