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Abstract. In recent years, Graph Neural Networks (GNNs) have under-
gone rapid development and have become an essential tool for building
representations of complex relational data. Large real-world graphs, char-
acterised by sparsity in relations and features, necessitate dedicated tools
that existing dense tensor-centred approaches cannot easily provide. To
address this need, we introduce a GNNs module in Scikit-network, a
Python package for graph analysis, leveraging sparse matrices for both
graph structures and features. Our contribution enhances GNNs effi-
ciency without requiring access to significant computational resources,
unifies graph analysis algorithms and GNNs in the same framework, and
prioritises user-friendliness.
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1 Introduction

Graph Neural Networks (GNNs) are an extension of traditional deep learning
(DL) methods for relational data structured as graphs [4]. In the past few years,
GNN-based methods have gained increasing attention thanks to their impressive
performance on a wide range of machine learning tasks, such as node classifica-
tion, graph classification, or link prediction [19,16,25,28]. GNNs derive internal
graph element representations using entity relationships and associated features,
making them highly valuable for real-world data, where information frequently
spans across multiple dimensions.

Real-world graphs, exemplified by large social networks or web collections
with millions or billions of elements, each potentially having numerous attributes,
pose substantial challenges for GNNs training [12,13]. Tremendous efforts have
been made to tackle this challenge and scale up GNNs [16,8,30,6,7,29]. However,
several existing approaches rely on parallelisation or approximation techniques
such as sampling or batch training, to reduce memory consumption. A key fea-
ture of real-world graphs is that they are sparse: in a graph with n nodes, the
number of edgesm is very low compared to the number of possible edges n·(n−1).
It therefore makes sense to have a data representation and algorithms that takes
sparsity into account, allowing for a low memory footprint and efficient compu-
tation times.
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Numerous Python packages already provide GNN implementations, includ-
ing PyTorch Geometric [11], Deep Graph Library [27], Spektral [14], Stellar
Graph [10] or Dive Into Graphs library [20]. But to allow natural integration
with existing DL frameworks, such as PyTorch [23] or TensorFlow [1], and bene-
fit from differentiable operators, these libraries rely upon a dense tensor-centred
paradigm which does not align with graph sparsity. This dramatically hinders
the use of such libraries on large real-world graphs, by requiring access to servers
with large quantities of RAM.

To address this gap, we propose a GNNs module implementation relying
on sparse matrices for both graph adjacency and features. Our implementation
aligns seamlessly with Scikit-network1 [3], a Python package inspired by Scikit-
learn [5] for graph analysis. Scikit-network leverages the sparse formats provided
by SciPy [26] for encoding graphs. It already provides diverse state-of-the-art
graph algorithms, including ranking, clustering, and embedding, in a simplified
framework while achieving computational efficiency compared to similar tools,
e.g. graph-tool [24], IGraph [9] or NetworkX [15]. By only relying on NumPy [17]
and SciPy [26], the development of a GNN module in Scikit-network stays true
to the core principles of the package: performance and ease of use.

To summarise, our contributions encompass three key aspects. Firstly, we
introduce an efficient GNN module within Scikit-network, harnessing the power
of sparse matrices for both graph and features to address the characteristics of
real-world graphs. Secondly, our package bridges the gap between traditional
graph analysis methods and GNNs, offering a unified platform that operates
within the same sparse graph representation. Lastly, we prioritise simplicity by
designing our package to rely solely on foundational Python libraries, specifically
NumPy and SciPy, sparing users the complexity associated with larger tensor-
based DL frameworks.

The rest of the paper is organised as follows. We start by reviewing the
existing related work in Section 2. Then, we formulate the computation of the
GNNs message passing scheme using sparse matrices in Section 3 . In Section 4
we briefly describe our GNNs module design and we show the implementation’s
performance compared to other GNNs libraries in Section 5.

2 Related Work

Several Python packages already exist to help with GNNs development and us-
age. Pytorch Geometric (PyG) [11] proposes a general message passing interface
in which all recent GNN-based aggregation schemes can be integrated. In or-
der to reduce the computation time when running on large complex networks,
they propose several dataset processing tools such as sampling or batch train-
ing. Spektral [14] is built upon the same gather-scatter paradigm as PyG, but
implements GNNs on top of the user-friendly API Keras. Stellar Graph [10],
like Spektral is based on Keras, but uses its own custom graph representation.

1 https://github.com/sknetwork-team/scikit-network

https://github.com/sknetwork-team/scikit-network
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Deep Graph Library [27] involves a combination of user-configurable message
passing functions and sparse-dense matrix multiplications to provide the user
with a GNNs framework. However, in all these libraries, the implementation de-
sign is driven by the necessity to integrate with existing Deep Learning (DL)
frameworks, namely PyTorch [23] or TensorFlow [1], that provide differentiable
operators. This implies the use of dense tensors for the encoding of graph ele-
ments, which comes at the expense of the sparse nature of real-world graphs. Our
work differs from these approaches in the sense that we leverage sparse format
representation for both the structure and the features of the graph, and only
rely on Python fundamental libraries.

Other libraries, such as Dive Into Graphs library [20] offer a high-level tool-
box for deep learning on graphs. However, its goal is slightly different from
the previous libraries; it goes beyond the implementation of elementary tasks
and includes advanded research-oriented methods such as benchmarks, graph
generation or 3D graphs. In Scikit-network, we mainly focus on efficiency and
ease-of-use rather than extensive features for the users.

3 Message Passing With Sparse Matrices

3.1 Message Passing Overview

Traditional GNNs models rely on an architecture that propagates the signal
(or features) information across the network, through a serie of iterations (or
layers). At each layer l, this architecture involves two steps for computing the
representation of a node u, hlu; (i) the aggregation of this node’s neighbourhood
information into a message and (ii) the update of the node’s representation using
this aggregated information and the previous embedding of node u. These two
steps can be written as:

hlN (u) = ϕ({hl−1
v ,∀v ∈ N (u)}) (1)

hlu = ψ
(
hl−1
u , hlN (u)

)
(2)

where N (u) denotes node u’s neighbourhood, ϕ is an aggregation function and
ψ is an update function.

3.2 Using Sparse Matrices in Scikit-network

In Scikit-network, we represent a node attributed graph G = (V,E,X) by its
adjacency matrix A and its node-feature matrix X, both encoded in SciPy’s
Compressed Sparse Row format (CSR). This format uses three three arrays to
represent a matrix: two arrays of size m, where m is the number of non-zeros
elements in the matrix, and one array of size n + 1, where n is the number of
rows in the initial matrix. Among various SciPy sparse formats (such as COO,
DOD, etc), the CSR format was initially chosen for Scikit-network as it is the
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most memory-efficient for common algebraic operations like listing neighbours
and performing matrix-vector product [21].

The concept of message passing scheme within a graph convolutional layer,
as seen in GCN [19], involves the gathering and scattering of information from a
node’s neighbourhood to compute the node’s updated representation. In scikit-
network, these operations are executed using the following layer-wise propagation
rule:

H l+1 = σ(ÃH lW l + bl) (3)

where Ã is the (normalised) adjacency matrix of the graph (with or without
self-loops), H l denotes the matrix of node representations at layer l, with H0 =
X, W l and bl represent trainable weight matrix and bias vector, and σ is a
non-linear activation function. In our Scikit-network implementation, we employ
sparse matrix multiplication (SpMSpM) to compute the term ÃH l when l =
0. Subsequently, for l ≥ 1 and thus when the dimension of the H l matrix is
significantly reduced to the hidden-layer dimension, we use sparse-dense matrix
multiplications (SpMM). In the same manner, the backward propagation only
requires SpMM multiplications between reduced-sized matrices.

4 Scikit-network GNN Design

As illustrated in Figure 1, initialising a GNN model in Scikit-network is straight-
forward. Like other graph analysis algorithms in the package, GNN training is
built upon the .fit predict() method. This method hides forward and back-
ward propagation’s complexity to the user, providing them directly with the
final predictions. Additional training details, like loss, accuracy and temporary
layer outputs, are easily accessible using the history parameter.

5 Performance

To assess Scikit-network’s GNN implementation, we compare the training time
of a GCN [19] model for a node classification task with the two most widely
used libraries: PyG and DGL2. The computer used to run all the experiments is
a Mac with OS 12.6.8, equipped with a M1 Pro processor and 16 GB of RAM.
For fair comparison, all experiments are run on a CPU device.

2 We rely on the number of forks associated with each package on GitHub as a metric
to gauge library usage. Please note that this metric provides only a partial view of
actual project usage.
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Code Listing 1.1. Node classification using
Graph Neural Network in Scikit-network.

# Graph Neural Network

hidden_dim = 16

gnn = GNNClassifier(

dims=[hidden_dim , n_labels],

layer_types=’Conv’,

activations=’ReLu’,

verbose=True)

labels_pred = gnn.fit_predict(

adjacency , features , labels ,

n_epochs=100 , history=True)

Code Listing 1.2. Graph analysis
algorithms in Scikit-network.

# PageRank

pagerank = PageRank ()

scores = pagerank.

fit_predict(

adjacency)

# Louvain clustering

louvain = Louvain ()

labels = louvain.

fit_predict(

adjacency)

Fig. 1. Graph methods using Scikit-network. On the left, node classification using a
GNNmodel. On the right, Louvain clustering [2] and PageRank scoring [22]. Traditional
graph algorithms and Deep Learning based models use the same API.

5.1 Datasets

We use three real-world datasets of varying sizes considering their structure and
attributes. The datasets include Wikipedia-based networks3, Wikivitals and
Wikivitals+. Nodes in these datasets represent Wikipedia articles, and there
is a link between two nodes if the corresponding articles are referencing each
other through hypertext links on Wikipedia. Additionally, each article comes
with a feature vector, corresponding to the number of occurrences of each word
in its text. OGBN-arxiv [18] models a citation network among Computer Science
papers from arXiv. For this dataset, we use node connections as the feature
matrix. We detail the dataset characteristics in Table 1.

Table 1. Dataset statistics. Adjacency matrix A is summarised with its number of
nodes |V |, edges |E| and density δA. For the feature matrix X, we show the number
of unique attributes d, and the number connections m and density δX of the of node-
attribute matrix. For dataset marked with ⋆, we use the adjacency matrix as features.

Dataset |V | |E| δA d m δX

Wikivitals 1.00× 104 8.24× 105 1.64× 10−2 3.78× 104 1.363× 106 3.59× 10−3

Wikivitals+ 4.51× 104 3.94× 106 3.86× 10−3 8.55× 104 4.78× 106 1.24× 10−3

OGBN-arxiv ⋆ 1.69× 105 1.66× 106 8.13× 10−5 1.69× 105 1.66× 106 8.13× 10−5

3 https://netset.telecom-paris.fr/

https://netset.telecom-paris.fr/
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5.2 Running Time

Table 2 displays training process running time for the different GNNs implemen-
tations. For DGL and PyG, the dense feature matrix format hinders training
models on large graphs without additional tricks, e.g. sampling or batch train-
ing (which we did not use for fair comparison). Therefore, these implementations
trigger an out-of-memory (OOM) error when used on the OGBN-arxiv dataset.
In contrast, Scikit-network does not require these extra steps to achieve good
performance on this dataset. Furthermore, we can observe the benefits of using
Scikit-network regarding the characteristics of the graph: the sparser the graph,
the more efficient the sparse representation is.

Table 2. Average computation times and standard deviations (3 runs) for 100 epochs
model training on 3 real-world datasets.

Package Wikivitals Wikivitals+ OGBN-arxiv

DGL 76.6 ± 4.2 2396.1 ± 36.5 OOM
PyG 28.7 ± 0.1 1242.8 ± 28.6 OOM
Sknetwork 139.5 ± 0.6 632.9 ± 7.9 60.1 ± 0.4

5.3 Impact of Graph Characteristics

Graph density We further validate this observation in Figure 2, where we
initialise a random graph (Erdos–Rényi) with a fixed number of nodes |V | =
1×104 and varying density. In this setup, node connections are used as features.
We can notice that for highly sparse graphs, i.e. low density, both DGL and PyG
implementations face challenges due to their reliance on dense matrices. On the
opposite, Scikit-network implementation shows great performance improvements
compared to these methods once below a density threshold (approximately 1×
10−3).

Number of nodes To evaluate the impact of the number of nodes on the
performance of our implementation, we fix the densities of graph matrix δA
and feature matrix δX , such as δA = δX = 5 × 10−4, and vary the number of
nodes in the random graphs generated. In Figure 3 we show Scikit-network’s
benefits in terms of training model computation time, compared to DGL and
PyG implementations.

6 Conclusion

We presented the Scikit-network Graph Neural Network module. Our implemen-
tation achieves great performance on real-world graphs both in terms of accuracy
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Fig. 2. Computation time for several GCN [19] implementations, according to adja-
cency and feature matrix densities. Notice the log-scale on both axis.
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Fig. 3. Computation time for several GCN [19] implementations, according to the
number of nodes in the graph. Notice the log-scale on both axis.

and running time, by making use of sparse encoding and operations in the learn-
ing process. Moreover, our design relies solely on foundational Python libraries,
NumPy and SciPy, and does not require the use of tensor-centred traditional
Deep Learning frameworks. With this module, Scikit-network offers a unified
platform gathering traditional graph analysis algorithms and Deep Learning-
based models. In the future, we plan to extend the current module by adding
additional state-of-the-art GNNs models and layers, as well as optimizers.

Acknowledgements. The authors would like to thank Tiphaine Viard for
the numerous discussions, as well as her insightful comments and suggestions
about the paper.
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