
HAL Id: hal-04277248
https://hal.science/hal-04277248

Submitted on 9 Nov 2023

HAL is a multi-disciplinary open access
archive for the deposit and dissemination of sci-
entific research documents, whether they are pub-
lished or not. The documents may come from
teaching and research institutions in France or
abroad, or from public or private research centers.

L’archive ouverte pluridisciplinaire HAL, est
destinée au dépôt et à la diffusion de documents
scientifiques de niveau recherche, publiés ou non,
émanant des établissements d’enseignement et de
recherche français ou étrangers, des laboratoires
publics ou privés.

Sparse Graph Neural Networks with Scikit-network
Thomas Bonald, Simon Delarue

To cite this version:
Thomas Bonald, Simon Delarue. Sparse Graph Neural Networks with Scikit-network. Complex Net-
works, 2023, Menton, France. �hal-04277248�

https://hal.science/hal-04277248
https://hal.archives-ouvertes.fr

Sparse Graph Neural Networks with
Scikit-network

Simon Delarue1, Thomas Bonald1

1Institut Polytechnique de Paris, Palaiseau, France
simon.delarue@telecom-paris.fr

Abstract. In recent years, Graph Neural Networks (GNNs) have under-
gone rapid development and have become an essential tool for building
representations of complex relational data. Large real-world graphs, char-
acterised by sparsity in relations and features, necessitate dedicated tools
that existing dense tensor-centred approaches cannot easily provide. To
address this need, we introduce a GNNs module in Scikit-network, a
Python package for graph analysis, leveraging sparse matrices for both
graph structures and features. Our contribution enhances GNNs effi-
ciency without requiring access to significant computational resources,
unifies graph analysis algorithms and GNNs in the same framework, and
prioritises user-friendliness.

Keywords: Graph Neural Networks, Sparse Matrices, Python

1 Introduction

Graph Neural Networks (GNNs) are an extension of traditional deep learning
(DL) methods for relational data structured as graphs [4]. In the past few years,
GNN-based methods have gained increasing attention thanks to their impressive
performance on a wide range of machine learning tasks, such as node classifica-
tion, graph classification, or link prediction [19,16,25,28]. GNNs derive internal
graph element representations using entity relationships and associated features,
making them highly valuable for real-world data, where information frequently
spans across multiple dimensions.

Real-world graphs, exemplified by large social networks or web collections
with millions or billions of elements, each potentially having numerous attributes,
pose substantial challenges for GNNs training [12,13]. Tremendous efforts have
been made to tackle this challenge and scale up GNNs [16,8,30,6,7,29]. However,
several existing approaches rely on parallelisation or approximation techniques
such as sampling or batch training, to reduce memory consumption. A key fea-
ture of real-world graphs is that they are sparse: in a graph with n nodes, the
number of edgesm is very low compared to the number of possible edges n·(n−1).
It therefore makes sense to have a data representation and algorithms that takes
sparsity into account, allowing for a low memory footprint and efficient compu-
tation times.

2 Simon Delarue et al.

Numerous Python packages already provide GNN implementations, includ-
ing PyTorch Geometric [11], Deep Graph Library [27], Spektral [14], Stellar
Graph [10] or Dive Into Graphs library [20]. But to allow natural integration
with existing DL frameworks, such as PyTorch [23] or TensorFlow [1], and bene-
fit from differentiable operators, these libraries rely upon a dense tensor-centred
paradigm which does not align with graph sparsity. This dramatically hinders
the use of such libraries on large real-world graphs, by requiring access to servers
with large quantities of RAM.

To address this gap, we propose a GNNs module implementation relying
on sparse matrices for both graph adjacency and features. Our implementation
aligns seamlessly with Scikit-network1 [3], a Python package inspired by Scikit-
learn [5] for graph analysis. Scikit-network leverages the sparse formats provided
by SciPy [26] for encoding graphs. It already provides diverse state-of-the-art
graph algorithms, including ranking, clustering, and embedding, in a simplified
framework while achieving computational efficiency compared to similar tools,
e.g. graph-tool [24], IGraph [9] or NetworkX [15]. By only relying on NumPy [17]
and SciPy [26], the development of a GNN module in Scikit-network stays true
to the core principles of the package: performance and ease of use.

To summarise, our contributions encompass three key aspects. Firstly, we
introduce an efficient GNN module within Scikit-network, harnessing the power
of sparse matrices for both graph and features to address the characteristics of
real-world graphs. Secondly, our package bridges the gap between traditional
graph analysis methods and GNNs, offering a unified platform that operates
within the same sparse graph representation. Lastly, we prioritise simplicity by
designing our package to rely solely on foundational Python libraries, specifically
NumPy and SciPy, sparing users the complexity associated with larger tensor-
based DL frameworks.

The rest of the paper is organised as follows. We start by reviewing the
existing related work in Section 2. Then, we formulate the computation of the
GNNs message passing scheme using sparse matrices in Section 3 . In Section 4
we briefly describe our GNNs module design and we show the implementation’s
performance compared to other GNNs libraries in Section 5.

2 Related Work

Several Python packages already exist to help with GNNs development and us-
age. Pytorch Geometric (PyG) [11] proposes a general message passing interface
in which all recent GNN-based aggregation schemes can be integrated. In or-
der to reduce the computation time when running on large complex networks,
they propose several dataset processing tools such as sampling or batch train-
ing. Spektral [14] is built upon the same gather-scatter paradigm as PyG, but
implements GNNs on top of the user-friendly API Keras. Stellar Graph [10],
like Spektral is based on Keras, but uses its own custom graph representation.

1 https://github.com/sknetwork-team/scikit-network

https://github.com/sknetwork-team/scikit-network

Sparse GNNs with Scikit-network 3

Deep Graph Library [27] involves a combination of user-configurable message
passing functions and sparse-dense matrix multiplications to provide the user
with a GNNs framework. However, in all these libraries, the implementation de-
sign is driven by the necessity to integrate with existing Deep Learning (DL)
frameworks, namely PyTorch [23] or TensorFlow [1], that provide differentiable
operators. This implies the use of dense tensors for the encoding of graph ele-
ments, which comes at the expense of the sparse nature of real-world graphs. Our
work differs from these approaches in the sense that we leverage sparse format
representation for both the structure and the features of the graph, and only
rely on Python fundamental libraries.

Other libraries, such as Dive Into Graphs library [20] offer a high-level tool-
box for deep learning on graphs. However, its goal is slightly different from
the previous libraries; it goes beyond the implementation of elementary tasks
and includes advanded research-oriented methods such as benchmarks, graph
generation or 3D graphs. In Scikit-network, we mainly focus on efficiency and
ease-of-use rather than extensive features for the users.

3 Message Passing With Sparse Matrices

3.1 Message Passing Overview

Traditional GNNs models rely on an architecture that propagates the signal
(or features) information across the network, through a serie of iterations (or
layers). At each layer l, this architecture involves two steps for computing the
representation of a node u, hlu; (i) the aggregation of this node’s neighbourhood
information into a message and (ii) the update of the node’s representation using
this aggregated information and the previous embedding of node u. These two
steps can be written as:

hlN (u) = ϕ({hl−1
v ,∀v ∈ N (u)}) (1)

hlu = ψ
(
hl−1
u , hlN (u)

)
(2)

where N (u) denotes node u’s neighbourhood, ϕ is an aggregation function and
ψ is an update function.

3.2 Using Sparse Matrices in Scikit-network

In Scikit-network, we represent a node attributed graph G = (V,E,X) by its
adjacency matrix A and its node-feature matrix X, both encoded in SciPy’s
Compressed Sparse Row format (CSR). This format uses three three arrays to
represent a matrix: two arrays of size m, where m is the number of non-zeros
elements in the matrix, and one array of size n + 1, where n is the number of
rows in the initial matrix. Among various SciPy sparse formats (such as COO,
DOD, etc), the CSR format was initially chosen for Scikit-network as it is the

4 Simon Delarue et al.

most memory-efficient for common algebraic operations like listing neighbours
and performing matrix-vector product [21].

The concept of message passing scheme within a graph convolutional layer,
as seen in GCN [19], involves the gathering and scattering of information from a
node’s neighbourhood to compute the node’s updated representation. In scikit-
network, these operations are executed using the following layer-wise propagation
rule:

H l+1 = σ(ÃH lW l + bl) (3)

where Ã is the (normalised) adjacency matrix of the graph (with or without
self-loops), H l denotes the matrix of node representations at layer l, with H0 =
X, W l and bl represent trainable weight matrix and bias vector, and σ is a
non-linear activation function. In our Scikit-network implementation, we employ
sparse matrix multiplication (SpMSpM) to compute the term ÃH l when l =
0. Subsequently, for l ≥ 1 and thus when the dimension of the H l matrix is
significantly reduced to the hidden-layer dimension, we use sparse-dense matrix
multiplications (SpMM). In the same manner, the backward propagation only
requires SpMM multiplications between reduced-sized matrices.

4 Scikit-network GNN Design

As illustrated in Figure 1, initialising a GNN model in Scikit-network is straight-
forward. Like other graph analysis algorithms in the package, GNN training is
built upon the .fit predict() method. This method hides forward and back-
ward propagation’s complexity to the user, providing them directly with the
final predictions. Additional training details, like loss, accuracy and temporary
layer outputs, are easily accessible using the history parameter.

5 Performance

To assess Scikit-network’s GNN implementation, we compare the training time
of a GCN [19] model for a node classification task with the two most widely
used libraries: PyG and DGL2. The computer used to run all the experiments is
a Mac with OS 12.6.8, equipped with a M1 Pro processor and 16 GB of RAM.
For fair comparison, all experiments are run on a CPU device.

2 We rely on the number of forks associated with each package on GitHub as a metric
to gauge library usage. Please note that this metric provides only a partial view of
actual project usage.

Sparse GNNs with Scikit-network 5

Code Listing 1.1. Node classification using
Graph Neural Network in Scikit-network.

Graph Neural Network

hidden_dim = 16

gnn = GNNClassifier(

dims=[hidden_dim , n_labels],

layer_types=’Conv’,

activations=’ReLu’,

verbose=True)

labels_pred = gnn.fit_predict(

adjacency , features , labels ,

n_epochs=100 , history=True)

Code Listing 1.2. Graph analysis
algorithms in Scikit-network.

PageRank

pagerank = PageRank ()

scores = pagerank.

fit_predict(

adjacency)

Louvain clustering

louvain = Louvain ()

labels = louvain.

fit_predict(

adjacency)

Fig. 1. Graph methods using Scikit-network. On the left, node classification using a
GNNmodel. On the right, Louvain clustering [2] and PageRank scoring [22]. Traditional
graph algorithms and Deep Learning based models use the same API.

5.1 Datasets

We use three real-world datasets of varying sizes considering their structure and
attributes. The datasets include Wikipedia-based networks3, Wikivitals and
Wikivitals+. Nodes in these datasets represent Wikipedia articles, and there
is a link between two nodes if the corresponding articles are referencing each
other through hypertext links on Wikipedia. Additionally, each article comes
with a feature vector, corresponding to the number of occurrences of each word
in its text. OGBN-arxiv [18] models a citation network among Computer Science
papers from arXiv. For this dataset, we use node connections as the feature
matrix. We detail the dataset characteristics in Table 1.

Table 1. Dataset statistics. Adjacency matrix A is summarised with its number of
nodes |V |, edges |E| and density δA. For the feature matrix X, we show the number
of unique attributes d, and the number connections m and density δX of the of node-
attribute matrix. For dataset marked with ⋆, we use the adjacency matrix as features.

Dataset |V | |E| δA d m δX

Wikivitals 1.00× 104 8.24× 105 1.64× 10−2 3.78× 104 1.363× 106 3.59× 10−3

Wikivitals+ 4.51× 104 3.94× 106 3.86× 10−3 8.55× 104 4.78× 106 1.24× 10−3

OGBN-arxiv ⋆ 1.69× 105 1.66× 106 8.13× 10−5 1.69× 105 1.66× 106 8.13× 10−5

3 https://netset.telecom-paris.fr/

https://netset.telecom-paris.fr/

6 Simon Delarue et al.

5.2 Running Time

Table 2 displays training process running time for the different GNNs implemen-
tations. For DGL and PyG, the dense feature matrix format hinders training
models on large graphs without additional tricks, e.g. sampling or batch train-
ing (which we did not use for fair comparison). Therefore, these implementations
trigger an out-of-memory (OOM) error when used on the OGBN-arxiv dataset.
In contrast, Scikit-network does not require these extra steps to achieve good
performance on this dataset. Furthermore, we can observe the benefits of using
Scikit-network regarding the characteristics of the graph: the sparser the graph,
the more efficient the sparse representation is.

Table 2. Average computation times and standard deviations (3 runs) for 100 epochs
model training on 3 real-world datasets.

Package Wikivitals Wikivitals+ OGBN-arxiv

DGL 76.6 ± 4.2 2396.1 ± 36.5 OOM
PyG 28.7 ± 0.1 1242.8 ± 28.6 OOM
Sknetwork 139.5 ± 0.6 632.9 ± 7.9 60.1 ± 0.4

5.3 Impact of Graph Characteristics

Graph density We further validate this observation in Figure 2, where we
initialise a random graph (Erdos–Rényi) with a fixed number of nodes |V | =
1×104 and varying density. In this setup, node connections are used as features.
We can notice that for highly sparse graphs, i.e. low density, both DGL and PyG
implementations face challenges due to their reliance on dense matrices. On the
opposite, Scikit-network implementation shows great performance improvements
compared to these methods once below a density threshold (approximately 1×
10−3).

Number of nodes To evaluate the impact of the number of nodes on the
performance of our implementation, we fix the densities of graph matrix δA
and feature matrix δX , such as δA = δX = 5 × 10−4, and vary the number of
nodes in the random graphs generated. In Figure 3 we show Scikit-network’s
benefits in terms of training model computation time, compared to DGL and
PyG implementations.

6 Conclusion

We presented the Scikit-network Graph Neural Network module. Our implemen-
tation achieves great performance on real-world graphs both in terms of accuracy

Sparse GNNs with Scikit-network 7

10−5 10−4 10−3 10−2

Density

100

101

102

C
om

pu
ta
ti
on

ti
m
e
(s
) DGL

PyG
sknetwork

Fig. 2. Computation time for several GCN [19] implementations, according to adja-
cency and feature matrix densities. Notice the log-scale on both axis.

103 104

nodes

10−1

100

101

C
om

pu
ta
ti
on

ti
m
e
(s
) DGL

PyG
Sknetwork

Fig. 3. Computation time for several GCN [19] implementations, according to the
number of nodes in the graph. Notice the log-scale on both axis.

and running time, by making use of sparse encoding and operations in the learn-
ing process. Moreover, our design relies solely on foundational Python libraries,
NumPy and SciPy, and does not require the use of tensor-centred traditional
Deep Learning frameworks. With this module, Scikit-network offers a unified
platform gathering traditional graph analysis algorithms and Deep Learning-
based models. In the future, we plan to extend the current module by adding
additional state-of-the-art GNNs models and layers, as well as optimizers.

Acknowledgements. The authors would like to thank Tiphaine Viard for
the numerous discussions, as well as her insightful comments and suggestions
about the paper.

8 Simon Delarue et al.

References

1. Abadi, M., Barham, P., Chen, J., Chen, Z., Davis, A., Dean, J., Devin, M., Ghe-
mawat, S., Irving, G., Isard, M., et al.: Tensorflow: a system for large-scale machine
learning. In: 12th USENIX symposium on operating systems design and imple-
mentation (OSDI 16), pp. 265–283 (2016)

2. Blondel, V.D., Guillaume, J.L., Lambiotte, R., Lefebvre, E.: Fast unfolding of
communities in large networks. Journal of Statistical Mechanics: Theory and Ex-
periment 2008(10), P10,008 (2008). DOI 10.1088/1742-5468/2008/10/p10008

3. Bonald, T., De Lara, N., Lutz, Q., Charpentier, B.: Scikit-network: Graph analysis
in python. The Journal of Machine Learning Research 21(1), 7543–7548 (2020)

4. Bronstein, M.M., Bruna, J., LeCun, Y., Szlam, A., Vandergheynst, P.: Geometric
deep learning: Going beyond euclidean data. IEEE Signal Processing Magazine
34(4), 18–42 (2017). DOI 10.1109/MSP.2017.2693418

5. Buitinck, L., Louppe, G., Blondel, M., Pedregosa, F., Mueller, A., Grisel, O., Nic-
ulae, V., Prettenhofer, P., Gramfort, A., Grobler, J., Layton, R., VanderPlas, J.,
Joly, A., Holt, B., Varoquaux, G.: API design for machine learning software: expe-
riences from the scikit-learn project. In: ECML PKDD Workshop: Languages for
Data Mining and Machine Learning, pp. 108–122 (2013)

6. Chen, J., Ma, T., Xiao, C.: Fastgcn: fast learning with graph convolutional networks
via importance sampling. arXiv preprint arXiv:1801.10247 (2018)

7. Chen, J., Zhu, J., Song, L.: Stochastic training of graph convolutional networks
with variance reduction. arXiv preprint arXiv:1710.10568 (2017)

8. Chiang, W.L., Liu, X., Si, S., Li, Y., Bengio, S., Hsieh, C.J.: Cluster-gcn: An
efficient algorithm for training deep and large graph convolutional networks. In:
Proceedings of the 25th ACM SIGKDD international conference on knowledge
discovery & data mining, pp. 257–266 (2019)

9. Csardi, G., Nepusz, T., et al.: The igraph software package for complex network
research. InterJournal, complex systems 1695(5), 1–9 (2006)

10. Data61, C.: Stellargraph machine learning library. https://github.com/
stellargraph/stellargraph (2018)

11. Fey, M., Lenssen, J.E.: Fast graph representation learning with PyTorch Geometric.
In: ICLR Workshop on Representation Learning on Graphs and Manifolds (2019)

12. Fey, M., Lenssen, J.E., Weichert, F., Leskovec, J.: Gnnautoscale: Scalable and
expressive graph neural networks via historical embeddings. In: International con-
ference on machine learning, pp. 3294–3304. PMLR (2021)

13. Frasca, F., Rossi, E., Eynard, D., Chamberlain, B., Bronstein, M., Monti, F.: Sign:
Scalable inception graph neural networks. arXiv preprint arXiv:2004.11198 (2020)

14. Grattarola, D., Alippi, C.: Graph neural networks in tensorflow and keras with
spektral [application notes]. IEEE Computational Intelligence Magazine 16(1),
99–106 (2021)

15. Hagberg, A., Swart, P., S Chult, D.: Exploring network structure, dynamics, and
function using networkx. Tech. rep., Los Alamos National Lab.(LANL), Los
Alamos, NM (United States) (2008)

16. Hamilton, W., Ying, Z., Leskovec, J.: Inductive representation learning on large
graphs. Advances in neural information processing systems 30 (2017)

17. Harris, C.R., Millman, K.J., Van Der Walt, S.J., Gommers, R., Virtanen, P., Cour-
napeau, D., Wieser, E., Taylor, J., Berg, S., Smith, N.J., et al.: Array programming
with numpy. Nature 585(7825), 357–362 (2020)

https://github.com/stellargraph/stellargraph
https://github.com/stellargraph/stellargraph

Sparse GNNs with Scikit-network 9

18. Hu, W., Fey, M., Zitnik, M., Dong, Y., Ren, H., Liu, B., Catasta, M., Leskovec, J.:
Open graph benchmark: Datasets for machine learning on graphs. arXiv preprint
arXiv:2005.00687 (2020)

19. Kipf, T.N., Welling, M.: Semi-supervised classification with graph convolutional
networks. arXiv preprint arXiv:1609.02907 (2016)

20. Liu, M., Luo, Y., Wang, L., Xie, Y., Yuan, H., Gui, S., Yu, H., Xu, Z., Zhang, J.,
Liu, Y., et al.: Dig: A turnkey library for diving into graph deep learning research.
The Journal of Machine Learning Research 22(1), 10,873–10,881 (2021)

21. Lutz, Q.: Graph-based contributions to machine-learning. Theses, Institut Poly-
technique de Paris (2022). URL https://theses.hal.science/tel-03634148

22. Page, L., Brin, S., Motwani, R., Winograd, T.: The pagerank citation ranking:
Bring order to the web. Tech. rep., Technical report, stanford University (1998)

23. Paszke, A., Gross, S., Massa, F., Lerer, A., Bradbury, J., Chanan, G., Killeen,
T., Lin, Z., Gimelshein, N., Antiga, L., et al.: Pytorch: An imperative style, high-
performance deep learning library. Advances in neural information processing sys-
tems 32 (2019)

24. Peixoto, T.P.: The graph-tool python library. figshare (2014). DOI 10.6084/m9.
figshare.1164194

25. Veličković, P., Cucurull, G., Casanova, A., Romero, A., Lio, P., Bengio, Y.: Graph
attention networks. arXiv preprint arXiv:1710.10903 (2017)

26. Virtanen, P., Gommers, R., Oliphant, T.E., Haberland, M., Reddy, T., Courna-
peau, D., Burovski, E., Peterson, P., Weckesser, W., Bright, J., et al.: Scipy 1.0:
fundamental algorithms for scientific computing in python. Nature methods 17(3),
261–272 (2020)

27. Wang, M., Zheng, D., Ye, Z., Gan, Q., Li, M., Song, X., Zhou, J., Ma, C., Yu, L.,
Gai, Y., Xiao, T., He, T., Karypis, G., Li, J., Zhang, Z.: Deep graph library: A
graph-centric, highly-performant package for graph neural networks. arXiv preprint
arXiv:1909.01315 (2019)

28. Xu, K., Hu, W., Leskovec, J., Jegelka, S.: How powerful are graph neural networks?
arXiv preprint arXiv:1810.00826 (2018)

29. Ying, R., He, R., Chen, K., Eksombatchai, P., Hamilton, W.L., Leskovec, J.: Graph
convolutional neural networks for web-scale recommender systems. In: Proceedings
of the 24th ACM SIGKDD international conference on knowledge discovery & data
mining, pp. 974–983 (2018)

30. Zeng, H., Zhou, H., Srivastava, A., Kannan, R., Prasanna, V.: Graphsaint: Graph
sampling based inductive learning method. arXiv preprint arXiv:1907.04931 (2019)

https://theses.hal.science/tel-03634148

	Sparse Graph Neural Networks with Scikit-network

