Sparse Graph Neural Networks with Scikit-network - Archive ouverte HAL
Communication Dans Un Congrès Année : 2023

Sparse Graph Neural Networks with Scikit-network

Résumé

In recent years, Graph Neural Networks (GNNs) have undergone rapid development and have become an essential tool for building representations of complex relational data. Large real-world graphs, characterised by sparsity in relations and features, necessitate dedicated tools that existing dense tensor-centred approaches cannot easily provide. To address this need, we introduce a GNNs module in Scikit-network, a Python package for graph analysis, leveraging sparse matrices for both graph structures and features. Our contribution enhances GNNs efficiency without requiring access to significant computational resources, unifies graph analysis algorithms and GNNs in the same framework, and prioritises user-friendliness.
Fichier principal
Vignette du fichier
Sparse_Graph_Neural_Networks_with_Scikit_network.pdf (325.94 Ko) Télécharger le fichier
Origine Fichiers produits par l'(les) auteur(s)

Dates et versions

hal-04277248 , version 1 (09-11-2023)

Identifiants

  • HAL Id : hal-04277248 , version 1

Citer

Thomas Bonald, Simon Delarue. Sparse Graph Neural Networks with Scikit-network. Complex Networks, 2023, Menton, France. ⟨hal-04277248⟩
200 Consultations
439 Téléchargements

Partager

More