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Université Claude Bernard Lyon 1,
UJM-Saint Etienne, CNRS, Inserm

F-69100, Villeurbanne, France
Alexandre.Corazza@creatis.insa-lyon.fr

Pauline Muleki-Seya
CREATIS UMR 5220, U1206

Univ Lyon, INSA-Lyon,
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Université Claude Bernard Lyon 1,
UJM-Saint Etienne, CNRS, Inserm

F-69100, Villeurbanne, France
Adrian.Basarab@creatis.insa-lyon.fr

Barbara Nicolas
CREATIS UMR 5220, U1206

Univ Lyon, INSA-Lyon,
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Abstract—Ultrasound Localisation Microscopy (ULM) is an
imaging framework which consists in tracking microbubbles
(MBs) on ultrasound (US) images to estimate their trajectory and
thus the map of the vascular network. ULM algorithms takes as
input US images usually beamformed with the delay-and-sum
(DAS) method. In a previous study, we have shown that adaptive
beamforming enhances the results of ULM on simulated data
by detecting more MBs and localizing them more precisely. In
another study, we introduced a new MB detection method based
on decision theory. In this paper, adaptive beamformers such
as Capon, pDAS and iMAP combined to this detection method
are applied on in vivo rat brain data. Results show that this
combination allow to identify more MBs and thus to represent
more vessels in the ULM vascular network map.

Index Terms—Ultrasound Super-Resolution, adaptive beam-
forming, microbubble identification, decision theory

I. INTRODUCTION

ULM is a super-resolution imaging method providing in-
formation on vascular network structures and flow velocity
by detecting, localising and tracking microbubbles (MBs). Its
interest has been validated on rat [1] and human [2] brain
as part of the study of stroke and brain diseases. It has also
been applied to detect tumors [3] [4] and to monitor anticancer
therapy [5] [6]. An example of ULM framework is described
on Fig. 1. First, a liquid solution containing MBs is injected
by vein (Fig. 1a). While the MBs are moving in the vascular
network, carried away by the blood flow, US signals are
acquired over time (Fig. 1b). These signals are beamformed
to obtain US images (Fig. 1c). The tissue is filtered (Fig. 1d),
generally with a singular value decomposition (SVD) [7], in

order to facilitate the MBs identification (Fig. 1e). The centroid
of the identified MBs are localized with a precision beyond
the diffraction limit (Fig. 1f). Finally, the centroid coordinates
at different times are paired to track each MB (Fig. 1g) to
build the vascular network map by accumulating the MBs
trajectories (Fig. 1h).
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Fig. 1: ULM framework example.

A prerequisite for ULM is to acquire ultrasound (US)
images during a sufficient time such that the MBs can move
through a maximum of vessels. Thus, there is a trade-off be-
tween acquisition time and the completion of the vascular net-
work map. To deal with this trade-off, adaptive beamforming
can be a solution. Indeed, the properties of US images could
have a significant influence on ULM outputs. For instance,
the minimum variance beamformer provides a better resolved
point spead function (PSF) [8]. Other beamforming methods
such as pDAS [9] or iMAP [10] highlight the MBs and
attenuate the speckle and noise components on the US images.
We studied the effect of these beamformers in [11] and showed



that adaptive beamformers enhance the localisation precision
and the detection rate on a simulated dataset. However, the
benefits on in vivo studies were less evident. In addition
to this study, we also introduced a new MB identification
method based on decision theory [12]. In this paper, we are
pursuing our work by combining adaptive beamforming with
this MB identification method and evaluate the results on an
experimental rat brain dataset.

II. MATERIAL AND METHOD

A. In vivo dataset

The in vivo dataset is provided by the Performance As-
sessment of Localization Algorithms (PALA) toolbox [13], is
available at https://zenodo.org/record/7883227. The RF data
are acquired with a linear US probe emitting at 15 MHz (L22-
14v, Verasonics, USA) and an US research scanner (Vantage
256, Verasonics, USA) on a rat brain during MB injections
of 50 µL every 30 seconds. The acquisition process lasted 3
minutes and 20 seconds with a frame rate of 1000 Hz, with 3
plane waves tilted at -7◦, 0◦ and 7◦ angles.

B. Beamforming methods

Each scatterer that backscatters an echo from the plane
wave excitation provides information about its echogenicity
through the energy along the echo wave front. The first step
of beamforming is to isolate this wave front by rephasing the
received signals. The principle is based on time-arrival delay of
an echo coming from coordinates (x, z) on each piezoelectric
sensor along the linear probe. The second step is to sum the
rephased signals, eventually weighted by a vector w manually
set, to extract the pixel intensity at the coordinates (x, z). This
method is called Delay-And-Sum (DAS) [14]. The difference
with adaptive beamforming is the weighting vector w that is
adaptive, i.e. computed from the rephased signals in different
ways depending on the beamforming method:

• the minimum variance, also known as Capon, is based on
the rephased signal variance minimization to attenuate
eventual disturbing sources [15] [8]. In practice, this
strategy provides a thinner PSF,

• the pDAS method [9] computes the weighting vec-
tor through an auto-correlation approximation of the
rephased signal. In practice, this calculation rule leads
to an attenuation of uncorrelated signal component such
as noise and speckle. A parameter p defines the autocor-
relation order. The method is referred to as 2pDAS for
p = 2,

• the iMAP beamformer [10] models the rephased signal
as the sum of a constant component corresponding to the
backscattered amplitude and a random Gaussian noise. By
applying a maximum a posteriori strategy, the mean and
standard deviation of a Gaussian distribution that maxi-
mize the similarity with the distribution of the rephased
vector are estimated to isolate the constant component. In
practice, the noise and speckle are attenuated. To estimate
the mean and variance, the algorithm iterates through a
loop. The method is referred to as 2iMAP for 2 iterations.

C. Microbubble identification methods

In the literature, three MB identification methods can be
encountered. The first, based on the intensity, consists in
finding the local maximas higher than a threshold empirically
chosen [16] [17]. An equivalent method is to set a number N
of MBs to detect per image and to select only the N higher
local maximas [1]. However, some MBs intensities are lower
than noise. Thus, the second identification method is intensity-
independant and is based on normalized cross-correlation
(NCC) [18] [19]. The aim of this method is to detect structures
similar in shape to a MB model, often estimated as a Gaussian
shape [19], with simulation [18] or experimentally by imaging
a wire cross-section [20] [21]. A threshold τ is applied on
the NCC results to extract the structures with the highest
similarities compared to the MB model. We proposed a third
method based on decision theory (DT) with the Neyman-
Pearson criterion [12], which is independant on intensity and
PSF shape. Its principle is to study each pixel along the time
dimension. The temporal signal for one pixel is modeled as
the sum of a Gaussian noise induced by tissue movement and
electronical noise and a constant component corresponding to
a MB passage on the pixel. The decision theory tools allow to
compute an adaptive threshold different for each pixel in order
to isolate the constant component with a false alarm rate α0 set
by the user. It provided a more complete and better-resolved
vessel map [12].

D. Ultrasound Localization Microscopy method and beam-
forming

The ULM framework used is available on the GitHub page
of the PALA toolbox https://github.com/AChavignon/PALA
related to the work in [13]. The NCC and decision
theory based identification methods can be added to this
toolbox with the code available on the GitHub page
https://github.com/CorazzaAlexandre/Microbubble detection.
The beamforming methods are also available at
https://github.com/CorazzaAlexandre/PALA Beamforming.
The ULM parameters used are summarized in the Table I.
Note that the SVD filter is applied on the RF data, before
beamforming since pDAS and iMAP can highlight tissue
components and make it difficult to filter after beamforming.
To limit the computation time of this step, we used the
randomized SVD [22]. Note that intensity-based MB
identification is not suitable due to MB slight attenuation
with pDAS or iMAP. Either the NCC identification is not
used due to its inability to link some vessels as highlighted
in [12].

III. RESULTS AND DISCUSSION

The beamformers are applied to the in vivo rat brain RF
signals after SVD filtering. An example for each beamforming
method is given in Fig. 2. It can be seen by taking the DAS
as reference that Capon reduces the PSF size, and that 2pDAS
and 2iMAP attenuate the speckle. The effect on the decision
theory identification is studied through the threshold maps on
Fig. 3. As expected, for DAS, some low threshold areas



TABLE I: ULM parameters.

Parameter Value
Tissue filtering SVD (cutoff: 10)
Beamforming DAS, Capon, pDAS or iMAP

US image pixel size λ = 100µm
Intensity (N=100 MBs per images)

MB identification NCC (Gaussian PSF model, τ = 0.6)
DT (α0 = 0.1%)

ROI size 5λ
Isolation 3 local maximas per ROI maximum

Localisation Radial symmetry based method [23]
Hungarian algorithm

Tracking max linking distance: 2λ,
minimal track length: 10 images

Density map pixel size λ/10

are drawn in the vessels where MBs are moving and high
threshold in the tissue areas. With Capon, the threshold map
is equivalent to DAS. However, with 2pDAS and particularly
with 2iMAP, these low threshold areas are more resolved and
a new one appears in the long vessels at the bottom of the
image. There is a high MB concentration in these long vessels,
and it has been discussed in [12] that this could be a limit
for the decision theory method. Indeed, frequent passage of
bubbles over a pixel biases the estimation of the noise mean
and standard deviation respectively by the median and the
median absolute deviation (MAD). Thus, it is interesting to see
that adaptive beamforming is able to overcome this limit. An
hypothesis is that 2pDAS and 2iMAP enhance the signal-to-
noise ratio (SNR) which helps to distinguish noise from MBs,
and thus to correctly estimate the noise mean and standard
deviation. The vacular network map provided by the ULM al-
gorithm with DT identification for each beamforming methods
are presented on the Fig. 4(c) to (f). For visual comparison,
the results with the intensity and NCC detections, both with
DAS beamforming are shown on Fig. 4(a) and (b). The first
map on Fig. 4(a) has a lack of detection and the second on
Fig. 4(b) fails to connect some vessels between them (see areas
Zi). The maps obtained with the DT detection on Fig. 4(c)
to (f) are quite similar, but some vessels indicated by the
arrows are more filled with to 2pDAS and 2iMAP. To quantify
these enhancement, different quantitative metrics are shown on
Fig. 5. The saturation curves obtain with the different beam-
formers on Fig. 5a can be considered equivalent. The track
length and velocity statistics on Fig. 5b and c indicate that the
identified MBs lead to equivalent tracking qualities with each
beamforming method. However, the resolution estimated by
the Fourier Ring Correlation (FRC) [24] is slighly lower with
the adaptive beamforming passing from 13 µm with DAS to
13.9 µm with Capon and 15.1 µm with 2pDAS and 2iMAP.
Although FRC is robust to noise, this degradation in resolution
can be caused by temporally correlated noise, i.e. undesirable
temporally recurrent trajectories, e.g. the two artefacts at the
top right and left corners. It is discussed in [24] that these
artifacts can bias the FRC. To conclude, although the images
show areas with enhanced visibility (white arrows), there is
currently no overall quantitative criterion for quantifying this
improvement.

(a) DAS (b) Capon (c) 2pDAS (d) 2iMAP

Fig. 2: Rat brain US images with different beamformers (log
scale, dynamic of 60dB).

(a) DAS (b) Capon (c) 2pDAS (d) 2iMAP

Fig. 3: Threshold maps computed on 800 images (linear scale
between 0 and 1).
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(a) DAS (intensity detection)
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(b) DAS (NCC detection)
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(c) DAS (DT detection)
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(d) Capon (DT detection)
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(e) 2pDAS (DT detection)
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(f) 2iMAP (DT detection)

Fig. 4: ULM results with different beamformers.

IV. CONCLUSION

In this study, adaptive beamforming was applied to image a
rat brain in the context of ULM. Different beamformers were
used, such as Capon which reduces the PSF size and 2pDAS or
2iMAP which attenuate the noise and speckle. The quantitative
metrics show that the tracking qualities are equivalent with all
beamforming methods. Visual analysis show that 2pDAS and
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Fig. 5: Quantitative metrics of ULM results for different
beamformers and different identification methods.

2iMAP allow to identify and track more MBs. In perspective,
it would be interesting to apply these adaptive beamformers
on additional in vivo datasets to generalize these conclusions.
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nonlinear beamformer based on p-th root compression—application to
plane wave ultrasound imaging,” Applied Sciences, vol. 8, no. 4, 2018.
[Online]. Available: https://www.mdpi.com/2076-3417/8/4/599

[10] T. Chernyakova, D. Cohen, M. Shoham, and Y. C. Eldar, “IMAP
Beamforming for High-Quality High Frame Rate Imaging,” IEEE Trans-
actions on Ultrasonics, Ferroelectrics, and Frequency Control, vol. 66,
no. 12, pp. 1830–1844, 2019.

[11] A. Corazza, P. Muleki-Seya, A. W. Aissani, O. Couture, A. Basarab,
and B. Nicolas, “Microbubble detection with adaptive beamforming
for ultrasound localization microscopy,” in 2022 IEEE International
Ultrasonics Symposium (IUS), 2022, pp. 1–4.

[12] A. Corazza, P. Muleki-Seya, A. Basarab, and B. Nicolas, “Microbub-
ble identification based on decision theory for ultrasound localization
microscopy,” IEEE Open Journal of Ultrasonics, Ferroelectrics, and
Frequency Control, vol. 3, pp. 41–55, 2023.

[13] B. Heiles, A. Chavignon, V. Hingot, P. Lopez, E. Teston, and
O. Couture, “Performance benchmarking of microbubble-localization
algorithms for ultrasound localization microscopy.” Nat Biomed Eng,
2022. [Online]. Available: https://doi.org/10.1038/s41551-021-00824-8

[14] V. Perrot, M. Polichetti, F. Varray, and D. Garcia, “So you
think you can das? a viewpoint on delay-and-sum beamforming,”
Ultrasonics, Elsevier, vol. 111, p. 106309, 2021. [Online]. Available:
https://www.sciencedirect.com/science/article/pii/S0041624X20302444

[15] P. Stoica and R. Moses, Spectral Analysis of Signals, 2005.
[16] M. A. O’Reilly and K. Hynynen, “A super-resolution ultrasound method

for brain vascular mapping,” Medical Physics, vol. 40, no. 11, pp. 1–7,
2013.

[17] D. Ackermann and G. Schmitz, “Detection and tracking of multiple
microbubbles in ultrasound B-mode images,” IEEE Transactions on
Ultrasonics, Ferroelectrics, and Frequency Control, vol. 63, no. 1, pp.
72–82, 2016.

[18] C. Bourquin, J. Porée, F. Lesage, and J. Provost, “In vivo pulsatility
measurement of cerebral microcirculation in rodents using dynamic
ultrasound localization microscopy,” IEEE Transactions on Medical
Imaging, vol. 41, no. 4, pp. 782–792, 2022.

[19] P. Song, J. D. Trzasko, A. Manduca, R. Huang, R. Kadirvel, D. F.
Kallmes, and S. Chen, “Improved super-resolution ultrasound microves-
sel imaging with spatiotemporal nonlocal means filtering and bipartite
graph-based microbubble tracking,” IEEE Transactions on Ultrasonics,
Ferroelectrics, and Frequency Control, vol. 65, no. 2, pp. 149–167, 2018.

[20] K. Christensen-Jeffries, R. J. Browning, M.-X. Tang, C. Dunsby, and
R. J. Eckersley, “In vivo acoustic super-resolution and super-resolved
velocity mapping using microbubbles,” IEEE Transactions on Medical
Imaging, vol. 34, no. 2, pp. 433–440, 2015.

[21] K. Christensen-Jeffries, S. Harput, J. Brown, P. N. Wells, P. Aljabar,
C. Dunsby, M. X. Tang, and R. J. Eckersley, “Microbubble Axial
Localization Errors in Ultrasound Super-Resolution Imaging,” IEEE
Transactions on Ultrasonics, Ferroelectrics, and Frequency Control,
2017.

[22] P. Song, J. D. Trzasko, A. Manduca, B. Qiang, R. Kadirvel, D. F.
Kallmes, and S. Chen, “Accelerated Singular Value-Based Ultrasound
Blood Flow Clutter Filtering with Randomized Singular Value Decom-
position and Randomized Spatial Downsampling,” IEEE Transactions
on Ultrasonics, Ferroelectrics, and Frequency Control, vol. 64, no. 4,
pp. 706–716, 2017.

[23] R. Parthasarathy, “Rapid, accurate particle tracking by calculation of
radial symmetry centers,” Nature Methods, vol. 9, no. 7, pp. 724–726,
2012.

[24] V. Hingot, A. Chavignon, B. Heiles, and O. Couture, “Measuring image
resolution in Ultrasound Localization Microscopy,” IEEE Transactions
on Medical Imaging, 2021.


