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For many applications, numerical modeling of composite reinforcements may require a detailed knowledge of the structure at the scale of the yarn, here called the mesoscopic scale. A numerical description of the yarn can be obtained using beam finite elements, shells, and most often three-dimensional (3D) solid elements. For a reliable description of the geometry, it is necessary to mesh with a large number of elements. With Non Uniform Rational B-Splines (NURBS) interpolation functions, on the other hand, not only is it possible to approximate the yarn geometry with a reduced number of degrees of freedom, but the high-order continuity allows a description of higher deformation gradient mechanics. These two points are exploited here, for a detailed presentation of the hyperelastic formalism considering fiber bending, and its implementation in an iso-geometric framework. Practical examples of weaving and braiding demonstrate the relevance of the formulation.

Introduction

Even though fibrous materials have always been part of human history, their modern usages, including composite reinforcement and technical textiles in general, require a deep understanding of their behavior. This understanding is key in order to optimize a textile structure in terms of, for example, weavability [START_REF] Vilfayeau | Kinematic modelling of the weaving process applied to 2D fabric[END_REF], deformability [START_REF] Badel | Simulation and tomography analysis of textile composite reinforcement deformation at the mesoscopic scale[END_REF], permeability [START_REF] Ali | In-plane virtual permeability characterization of 3D woven fabrics using a hybrid experimental and numerical approach[END_REF], reinforcing capability or impact [START_REF] Nilakantan | On the finite element analysis of woven fabric impact using multiscale modeling techniques[END_REF]. To this end, extensive experimental work has in the past decades been performed at all scales of the structures, ranging from the microscale, i.e., the scale of the fibers, through the mesoscale, i.e., the scale of the yarns, to the macroscale, i.e., the scale of the full mechanical part in which the fabric is typically considered to be a continuum. To complement these experimental approaches and to cut down on development costs for new fabrics and composite parts, numerical methods for fibrous media in general and fabrics in particular became popular in the 2000s [START_REF] Wielhorski | Numerical modeling of 3d woven composite reinforcements: A review[END_REF].

The mastery of composite materials at different scales is a major point in the modeling of structures and taking into account the specificity of different materials. Indeed, calculations on structural parts seldom take into account the history of weaving or forming. The modeling of the deformed state of the composite material resulting from the weaving, braiding, or shaping of a continuous fiber composite reinforcement, makes it possible to appreciate the deformations of the rovings as well as the state of stress which results from it.

Numerical modeling at the yarn scale provides crucial information that is difficult to obtain when modeling is performed at the macroscopic scale. The proximity of these two scales makes if hard to capture certain phenomena occurring in the mesoscopic domain without a fine scale description [START_REF] Boisse | Modelling the development of defects during composite reinforcements and prepreg forming[END_REF]. Among these phenomena can be mentioned deweaving [START_REF] Allaoui | Effect of inter-ply sliding on the quality of multilayer interlock dry fabric preforms[END_REF]; [START_REF] Salem | Experimental investigation of vegetal and synthetic fabrics cohesion in order to prevent the tow sliding defect via frictional and pull-out test[END_REF] or curl growth [START_REF] Tephany | Development of an experimental bench to reproduce the tow buckling defect appearing during the complex shape forming of structural flax based woven composite reinforcements[END_REF]; [START_REF] Salem | Experimental, analytical and numerical investigation to prevent the tow buckling defect during fabric forming[END_REF], and as a result numerous strategies have been proposed to perform simulations in the mesoscopic domain. Another reason for mesoscopic scale simulation is the need to harvest macroscopic models through virtual testing. Often, this is done to recover the mechanical behavior at the macroscopic scale by homogenization, and also to compute macroscale permeability [START_REF] Ali | In-plane virtual permeability characterization of 3D woven fabrics using a hybrid experimental and numerical approach[END_REF]. Simulations at the mesoscopic scale have been conducted using beam finite elements, either a single beam to represent the yarn, or a group of beams interacting by contact to get a more accurate response of the yarn [START_REF] Durville | Simulation of the mechanical behaviour of woven fabrics at the scale of fibers[END_REF]; [START_REF] Vu | Finite element simulation of the mechanical behavior of synthetic braided ropes and validation on a tensile test[END_REF]; [START_REF] Kyosev | Generalized geometric modeling of tubular and flat braided structures with arbitrary floating length and multiple filaments[END_REF]; [START_REF] Ghaedsharaf | Fiber-level numerical simulation of biaxial braids for mesoscopic morphology prediction validated by x-ray computed tomography scan[END_REF]. In all these cases the real number of beam elements is much lower than in reality.

An approach using shell finite elements has sometimes been suggested [START_REF] Nilakantan | On the finite element analysis of woven fabric impact using multiscale modeling techniques[END_REF]; [START_REF] Gatouillat | Meso modelling for composite preform shaping-simulation of the loss of cohesion of the woven fibre network[END_REF]. This technique gives the possibility of representing the compaction in the plane due to shear, something that beams cannot do [START_REF] Pham | Numerical modeling of the mechanical behavior of textile structures on the meso-scale for forming process simulations of composite 3d preforms[END_REF]. But most of the time, the modeling of yarns is performed with 3D elements, often employing hexahedral or prismatic finite elements, and sometimes tetrahedra. This requires putting multiple elements in the cross section of the yarn in order to accurately represent its geometry.

Among constitutive mechanical behaviors, an elastic behavior strategy is the one most often adopted. Finite deformations can be formulated with either a hyperelastic approach or a hypoelastic approach. It is only recently that the fiber bending behavior was introduced in the 3D models. This can be all the more relevant as the bending energy, shear energy or change in shape of the yarn's cross section can be of the same order of magnitude. Consequently, neglecting bending sometimes gives results that are far from reality [START_REF] Boisse | The Need to Use Generalized Continuum Mechanics to Model 3D Textile Composite Forming[END_REF]. With regard to the constitutive models mentioned above, it is not possible to capture a bending stiffness using the first deformation gradient if a three-dimensional strategy is adopted. Indeed, the kinematics of the curvature is a matter of the second deformation gradient. [START_REF] Spencer | Finite deformations of fibre-reinforced elastic solids with fibre bending stiffness[END_REF] proposed a reference work on the introduction of the bending behavior of a fibrous medium. Based on the provided formalism, we formulate a new invariant describing the curvature. This invariant will allow us to write hyperelastic behavior laws integrating the bending energy for fibrous media at the mesoscopic scale.

Nevertheless, the introduction of fiber bending energy in the 3D continuum requires a specific management of these finite elements. [START_REF] Sakhaei | A finite deformation cosserat continuum model for uncured carbon fibre composites[END_REF] was one of the first to have detailed a numerical strategy for transversely isotropic 3D fiber bending under finite strain. This was done using rotation degrees of freedom (DOF) by prescribing a penalty constraint ensuring the equality of these rotational DOFs with the spin (velocity curl). An alternative to using rotation DOFs would be to express the whole kinematics with only displacement DOFs [START_REF] Benson | A large deformation, rotation-free, isogeometric shell[END_REF]. The management of the second gradient would then require higher-order interpolation to make it possible to calculate the gradient of the deformation gradient (second gradient) which will provide information on the curvature of the fibrous medium.

In this work, given the very small diameters, the twisting of the fibers at the microscopic scale was considered negligible on the behavior of the tow at the mesoscopic scale.

The choice was thus made to employ an isogeometric formulation [START_REF] Hughes | Isogeometric analysis: CAD, finite elements, NURBS, exact geometry and mesh refinement[END_REF] for which the use of a Non Uniform Rational B-Splines (NURBS) interpolation would allow the control of the order of derivability. Isogeometric approaches have been successfully utilized to simulate textile behavior, such as knitted [START_REF] Do | Nonlinear isogeometric multiscale simulation for design and fabrication of functionally graded knitted textiles[END_REF] or woven [START_REF] Schulte | Isogeometric analysis of fiber reinforced composites using Kirchhoff-Love shell elements[END_REF] fabric at macroscopic scale as well as the mesoscale [START_REF] Nishi | Isogeometric analysis for numerical plate testing of dry woven fabrics involving frictional contact at meso-scale[END_REF]. A second argument in favor of the use of isogeometric methods comes from the fact that a reduced number of DOFs and a lower number of elements suffice to accurately represent an elliptical yarn transverse section (see Fig. 1b). The present paper is structured as follows. First, it details transverse isotropic hyperelastic formulation using second-gradient invariants to take into account fiber bending. The bending invariant is developed as well as the calculation of the stresses under large-deformation behavior laws. Particular attention has been paid to minimizing the theoretical notions to the bare essentials in order to facilitate the reading. Second, the studied model has been implemented using an isogeometric formulation. This formulation is detailed in the second-gradient framework, raising hard points such as the computation of spatial second derivatives using isoparametric coordinates. Finally, practical examples have been used to demonstrate the relevance of the proposed methodology on practical cases of buckling, weaving and braiding.

The buckling example points out the numerical consistency of the scheme regarding the mesh refinement, which is difficult to achieve in a first-gradient formalism.

Theory

This section develops a theoretical framework in order to take into account transverse isotropic material behavior including bending suitable for the continuous modeling of a fibrous tow such as those used in technical preforms.

Second gradient, hyperelastic orthotropic behavior

In the three-dimensional framework, we will consider only one fiber network. The internal strain energy W is a function of F , the deformation gradient, ∇ F , its Lagrangian gradient, and A the direction of the fiber in the initial configuration. In the global reference frame, the second gradient is given by:

∇ F = ∂ 2 x i ∂X j ∂X k e i ⊗ e j ⊗ e k (1) 
Here, X and x represent respectively the initial and current coordinates of a material point, and e i , i = 1, 2, 3 are the vectors of the Cartesian basis. The right Cauchy Green tensor C = F T • F is well known. We define the tensors G and Λ as

G = ∇ F • A ; Λ = F t • G (2)
Considering the influence of the deformation gradient only on the curvature of the fiber, and by invariance under a rigid body motion, the free energy is considered only as a function of C, Λ and A.

W = W C, Λ, A = W (I 1 , ..., I 11 ) (3) 
The expression of the strain energy given by the equation (3), can also be formulated exclusively using the invariants described below.

2.2 Calculation of stress and double forces tensors from the invariants 2.2.1 Expression of invariants and their derivatives with respect to C and Λ

We keep only the tensors that will be used later. We note

A = A ⊗ A (4) B = Λ • A ⊗ Λ • A (5)
which gives us Table 1:

Table 1: Definition of the invariants

I 1 = trC I 2 = 1 2 I 2 1 -C : C I 3 = detC I 4 = C : A I 5 = C 2 : A I 6 = trB I 7 = C : B I 8 = C 2 : B
We only use invariants with a geometrical meaning. For the first-gradient phenomena the invariants as described in [START_REF] Charmetant | Hyperelastic modelling for mesoscopic analyses of composite reinforcements[END_REF] and recalled equations ( 6) to (9) are used. I elong quantify a stretch in the fibers direction, I comp quantify a transverse compression including a variation of the section area as illustrated Fig. 2b, I shear quantify a shear in directions including the fibers direction as illustrated Fig. 2c and I dist quantify a distortion of the section without variation of the section area as illustrated Fig. 2d. The square of the curvature described in Spencer and Soldatos (2007) helps expressing the new bending invariant I bend as follows:

I elong = 1 2 log (I 4 ) (6) 
I comp = 1 4 log I 3 I 4 (7) 
I shear = I 5 I 2 4 -1 (8) 
I dist = 1 2 log   I 1 I 4 -I 5 2 √ I 3 I 4 + I 1 I 4 -I 5 2 √ I 3 I 4 2 -1   (9) a) b) c) d)
I 2 bend = A • Λ t • C -1 • Λ • A (10)
The Cayley-Hamilton theorem expresses C -1 in terms of invariants (I d being the identity tensor):

C -1 = 1 I 3 I 2 I d -I 1 C + C 2 (11)
The curvature invariant I bend is obtained by incorporating equation ( 11) into equation ( 10).

I bend = 1 I 3 (I 2 I 6 -I 1 I 7 + I 8 ) (12) 
A reminder of the derivatives of the invariants are recalled in appendix. The derivatives of I bend result from the chain derivatives:

∂I bend ∂C = α ∂I bend ∂I α ∂I α ∂C ∂I bend ∂Λ = α ∂I bend ∂I α ∂I α ∂Λ (13) 
We then obtain:

∂I bend ∂C = I bend 2 C -1 + 1 2I bend I 3 -I 6 C + (I 1 I 6 -I 7 ) I d -I 1 B + ∂I 8 ∂C ( 14 
)
∂I bend ∂Λ = 1 2I bend I 3 I 2 ∂I 6 ∂Λ -I 1 ∂I 7 ∂Λ + ∂I 8 ∂Λ (15) 
Those concerning I elong , I comp , I dist and I shear can be found in [START_REF] Charmetant | Hyperelastic modelling for mesoscopic analyses of composite reinforcements[END_REF].

Stress expression

Let us define the following Lagrangian tensors i.e. the second Piola-Kirchhoff stress tensor S and the Lagrangian double stress tensor physically representing the moment tensor M :

S = 2 ∂W ∂C (16) M = ∂W ∂Λ (17) 
As mentioned above, the writing of the behavior law will express the free energy exclusively with the help of geometrical invariants. This allows us to calculate S :

S = 2 ∂W ∂I elong ∂I elong ∂C + ∂W ∂I comp ∂I comp ∂C + ∂W ∂I dist ∂I dist ∂C + ∂W ∂I shear ∂I shear ∂C + ∂W ∂I bend ∂I bend ∂C (18)
Since the derivatives of the first five invariants with respect to Λ are nil, M is reduced to the smaller equation :

M = ∂W ∂I bend ∂I bend ∂Λ (19)
By choice, the total bending energy W can be decomposed as the sum of a first-gradient energy W 1 and a second gradient one denoted W b . Firstgradient energy W 1 equation ( 20) is chosen similarly to [START_REF] Charmetant | Hyperelastic modelling for mesoscopic analyses of composite reinforcements[END_REF].

W 1 = W elong (I elong ) + W comp (I comp ) + 1 2 K dist I 2 dist + 1 2 K sh I 2 sh ( 20 
)
W elong contributes only in traction (because buckling of fibers occurs in compression at very low loads) with a linear behavior after a nonlinear one and depends on K elong and K 0 elong , rigidities of the tow, S 0 its initial section and I 0 elong the invariant at the beginning of the linear behavior; W comp = K comp |I comp | p contribute only in compression. In this work, we only considered a linear bending behavior with the K bend parameter, leading to a quadratic expression of the energy as :

W b = 1 2 K bend I 2 bend (21)
The push forward is performed according to equation (5.38) in [START_REF] Spencer | Finite deformations of fibre-reinforced elastic solids with fibre bending stiffness[END_REF], providing the expression for the symmetric part of the Cauchy stress tensor and the Eulerian moment tensor :

σ = 1 J F • S • F t + F • M • G t + G • M t • F t (22) m = 2 3J η : b ⊗ F • M • F t t -b ⊗ η : F • M • F t (23)
where J = det F , b = F • A and η here represents the orientation tensor

given by η = ϵ ijk e i ⊗ e j ⊗ e k , ϵ ijk being the Levi-Civita symbol.

3 Numerical implementation

Non Uniform Rational B-Splines (NURBS)

Non uniform rational B-spline (NURBS) functions are widely used in computeraided design (CAD) for their capability to efficiently render complex and smooth shapes such as spheres, cylinders etc. Considering the knot vector

Ξ = [ξ 1 , ξ 2 , ..., ξ n+p+1 ],
where p is the degree of the B-spline and n is the number of control points (equal to the number of shape functions), functions are defined recursively using the Cox-de Boor recursion Eq. ( 25) from degree-zero functions as defined in Eq. ( 24).

ϕ 0 i (ξ) = 1 if, ξ i ≤ ξ < ξ i+1 0 otherwise (24) ϕ p i (ξ) = ξ -ξ i ξ i+p -ξ i ϕ p-1 i (ξ) + ϕ p i (ξ) = ξ i+p+1 -ξ ξ i+p+1 -ξ i+1 ϕ p-1 i+1 (ξ) (25) 
In a same manner, degree q, B-spline functions ψ q j (η) with j = 1, 2, ..., m are defined on the knot vector H = [η 1 , η 2 , ..., η m+q+1 ] and degree r, Bspline functions φ r k (ζ) with k = 1, 2, ..., l are defined on the knot vector

Z = [ζ 1 , ζ 2 , ..., ζ l+r+1 ].
Tensor product B-spline solids are defined Eq. ( 26)

introducing the n × m × l control points B i,j,k . S(ξ, η, ζ) = n i=1 m j=1 l k=1 ϕ p i (ξ)ψ q j (η)φ r k (ζ)B i,j,k (26) 
The elliptical shape of the tows cross sections constituting the fabric at mesoscopic scale impose the choice of NURBS basis functions. Those functions are defined from the trivariate B-splines introducing a positive weight w i,j,k associated to each control point [START_REF] Cottrell | Isogeometric analysis: toward integration of CAD and FEA[END_REF]. In the later, the isoparametric coordinates (ξ, η, ζ) are replaced by (ξ 1 , ξ 2 , ξ 3 ) for generality purpose. Finally, non uniform rational B-spline shape functions are defined in Eq. ( 29); the rational aspect of these functions allows the generation of exact circles and ellipses. This is particularly useful in the context of the mechanics of fibrous materials for textile applications. Here, the tows possessed elliptical cross-section shapes which can be exactly described as in Fig. 3 using a single (bi-quadratic) NURBS element and 3 × 3 = 9 control points.

A p,q,r i,j,k (ξ 1 , ξ 2 , ξ 3 ) = ϕ p i (ξ 1 )ψ q j (ξ 2 )φ r k (ξ 3 )w i,j,k (27) 
W p,q,r (ξ 1 , ξ 2 , ξ 3 ) = n î=1 m ĵ=1 l k=1 ϕ p î (ξ 1 )ψ q ĵ (ξ 2 )φ r k(ξ 3 )w î, ĵ, k (28) 
N p,q,r i,j,k (ξ 1 , ξ 2 , ξ 3 ) = A p,q,r i,j,k (ξ 1 , ξ 2 , ξ 3 ) W p,q,r (ξ 1 , ξ 2 , ξ 3 ) (29)
For clarity and conciseness purpose, degrees in superscripts and indexes are omitted in the following for both R and A which denote functions associated to each control points. The expression of their first and second derivatives with respect to the isoparametric coordinates, which are needed for the second gradient formulation, are given:

∂N ∂ξ i = 1 W ∂A ∂ξ i -N ∂W ∂ξ i (30) ∂ 2 N ∂ξ i ∂ξ j = 1 W ∂A ∂ξ i ∂ξ j - ∂W ∂ξ i N ∂ξ j - W ∂ξ j N ∂ξ i - ∂ 2 W ∂ξ i ∂ξ j R (31)

Expression of virtual powers and discretization

The expression of the internal forces is based on the powers as described in [START_REF] Spencer | Finite deformations of fibre-reinforced elastic solids with fibre bending stiffness[END_REF]. Without volume forces, the equilibrium equations are given by:

∇ • ς = 0 (32) ∇ • m + η : ς = 0 ( 33 
)
where ς stands here for the non-symmetric Cauchy stress tensor. Two methods lead to equations 32 and 33. A variational formalism on the energy and its dependence on the deformation gradient and the second gradient provides these two equations. Another approach, consists in calculating the load balance and angular momentum balance on an arbitrary volume of the continuous medium. The load balance will provide equation 32 and the momentum balance equation 33. It should be noted that the momentum balance in the absence of surface moment tensor m demonstrates the symmetry of the Cauchy tensor. And it is precisely the presence of m that makes the Cauchy stress tensor ς remain non-symmetric. The weakening of this strong formulation will lead to the expression of internal virtual powers:

P * int = V σ : d * + m : κ * dV (34) 
It should be kept in mind that σ is the symmetric part of ς and d * is the symmetric part of the Eulerian gradient of the virtual velocities v * . v * is an arbitrary vector field from H 1 0 , meaning both v * and its gradient are squareintegrable, and v * is nill where Dirichlet boundary conditions are prescribed.

The double contraction of ς with d * make the skew-symmetric part of ς vanish. Both σ and m are computed from Eq. ( 22) and ( 23). Also, the Eulerian gradient of the virtual spin ω * is denoted κ * ; where the spin is half the curl of the virtual velocity v * :

ω * = 1 2 ∇ × v * (35) κ * = ∇ ω * (36) 
Discretisation of Eq. ( 34) using the Voigt notation is performed by interpolating d * and κ * :

d * = B d v * and κ * = B κ v * (37) 
This gives:

P * int = v * t F int = v * t V B t d σ + B t κ m dV (38) 
which leads to the expression of internal forces:

F int = V B t d σ + B t κ m dV (39) 
The development of B d and B κ is presented in the next section.

Calculation of B d and B κ

The Cartesian velocity components v i are interpolated with the help of the shape functions N I . The row matrices containing the interpolation functions N I , their first and second derivatives are respectively denoted N , ∂N ∂x j and

∂ 2 N ∂x j ∂x k .
The v i column matrix contains the velocity DOFs in the e i direction. Therefore:

v i = N v i (40) ∂v i ∂x j = ∂N ∂x j v i (41) ∂ 2 v i ∂x j ∂x k = ∂ 2 N ∂x j ∂x k v i (42) 
In order to simplify the writing of the matrices, the coordinates in the Cartesian reference frame (x 1 , x 2 , x 3 ) are denoted (x, y, z). The B d matrix is classically introduced to obtain the Voigt notation of the d tensor d = (d xx , d yy , d zz , 2d yz , 2d xz , 2d xy ) t from a nodal speed coordinates vector v = ((v x ) t (v y ) t (v z ) t ) t obtained by assembling the DOFs by orientation.

B d =                   ∂N ∂x 0 0 0 ∂N ∂y 0 0 0 ∂N ∂z 0 ∂N ∂z ∂N ∂y ∂N ∂z 0 ∂N ∂x ∂N ∂y ∂N ∂x 0                   (43) 
Since diagonal components of κ have no contribution in (34), and since the definition of κ is known from Eq. ( 36), only mixed index terms are kept in the adopted writing convention κ = (κ yz , κ xz , κ xy , κ zy , κ zx , κ yx ) t thus making it possible to introduce the B κ definition and calculate κ according to Eq. (37).

B κ = 1 2                   + ∂ 2 N ∂z 2 0 -∂ 2 N ∂x∂z 0 -∂ 2 N ∂z 2 + ∂ 2 N ∂y∂z 0 -∂ 2 N ∂y∂z + ∂ 2 N ∂y 2 -∂ 2 N ∂y 2 + ∂ 2 N ∂x∂y 0 -∂ 2 N ∂x∂y + ∂ 2 N ∂x 2 0 + ∂ 2 N ∂x∂z 0 -∂ 2 N ∂x 2                   (44)
3.4 Computation of the spatial derivatives of shape functions

∂ 2 N ∂x j ∂x k
Although the computation of the first derivative of the shape functions with respect to the global coordinates is classical, the calculation of the second derivatives has, to the best of our knowledge, yet to be detailed. This requires the computation of the natural derivative of the inverse of the Jacobian. The final result is given below, followed by its proof.

∂ 2 N ∂x i ∂x j = l,p ∂ξ l ∂x i ∂ξ p ∂x j ∂ 2 N ∂ξ l ∂ξ p - m ∂N ∂ξ m Γ m lp (45) 
Denoting:

Γ k ij = 1 2 l g kl (g li,j + g lj,i -g ij,l ) (46) 
And:

g ij,k = ∂ g i • g j ∂ξ k = l,p ∂ 2 x p ∂ξ i ∂ξ k ∂x p ∂ξ j + ∂x p ∂ξ i ∂ 2 x p ∂ξ j ∂ξ k (47) g ij = g i • g j = p ∂ξ i ∂x p ∂ξ j ∂x p (48)
Proof. First derivatives of shape functions are computed as follows (adopting the Einstein summation convention):

∂N ∂x i = ∂N ∂ξ l ∂ξ l ∂x i (49) 
Second derivatives are calculated in a similar way:

∂ 2 N ∂x i ∂x j = ∂ξ l ∂x i ∂ ∂ξ l ∂ξ m ∂x j ∂N ∂ξ m + ∂ξ m ∂x j ∂ 2 N ∂ξ l ∂ξ m (50)
The calculation of ∂ ∂ξ l ∂ξ m ∂x j

is not straightforward and is done with the help of the Christoffel symbol of the second kind Γ i jk which gives the derivative of the contravariant basis with respect to the isoparametric coordinates ξ i . The covariant basis and the contravariant basis are given by:

g i • g j = δ j i ( 51 
)
where δ j i represents the Kronecker symbol. These two vectors are computed by derivations of the spatial coordinates with respect to the contravariant coordinates ξ i (corresponding to isoparametric coordinates). Then :

g i = ∂x l ∂ξ i e l g i = ∂ξ i ∂x l e l ( 52 
)
Using Eq. ( 52) leads to :

∂g k ∂ξ j = -Γ k ij g i = ∂ ∂ξ j ∂ξ k ∂x p e p ( 53 
)
Multiplying all terms by e p brings:

∂ ∂ξ j ∂ξ k ∂x p = -Γ k ij g i • e p (54) 
This gives Eq. ( 50) in the following form:

∂ 2 N ∂x i ∂x j = g l • e i g p • e j ∂ 2 N ∂ξ l ∂ξ p - ∂N ∂ξ m Γ m lp (55) ■ 4 Numerical examples

Three points bending

Convergence was verified on a three-point bending test. Two sets of material parameters were considered for this section; the ones specified as "with no bending" corresponded to the hyperelastic first gradient model from [START_REF] Charmetant | Hyperelastic modelling for mesoscopic analyses of composite reinforcements[END_REF] identified for glass fiber tows which are listed in Table 2; "with bending", the single additional K bend parameter associated with the secondgradient model is added to the previous one. This parameter was set to 100 after identification on a three points bending test performed in [START_REF] Salem | Experimental, analytical and numerical investigation to prevent the tow buckling defect during fabric forming[END_REF] on a comparable tow. The Euler-Bernoulli beam theory applied to each individual fiber within the tow would allow the direct calculation of

K bend = N f πD 4 E 64
where N f denotes the number of fibers per yarn cross-section unit surface, E the Young modulus of the fiber and D the diameter of each single fiber with the hypothesis of no friction and untangled fibers. A calculation in the case of a real tow would give a bending stiffness of the order of 1e -4 N , far from the identified experimental result. It can be assumed that the entanglement together with sizing plays a major role on the bending stiffness of a dry tow. One way to numerically evaluate this bending parameter could be through microscale simulation using entangled fibres with friction and cohesion due to sizing for a homogenization purpose.

Table 2: First-gradient materials properties of a glass tow. Displacements are prescribed in order to avoid any spurious effect from the contact in this convergence study. Half the geometry was considered and meshed with elliptical cross sections in order to match the tow geometry; bi-quadratic functions were used to describe the section and varying degrees of interpolation were considered along the tow length (axial direction). If tows with no twist are considered in the examples, a twist can be introduced to represent the behavior of twisted yarns. Concerning the boundary conditions, the symmetry plane was built by enforcing the C 1 boundary condition associated with the higher-order continuity of the NURBS functions. In order to enforce this continuity, both the first and the second row of control points were constrained which restricted the position and the tangent vector in the symmetry plane. Control points from the first row were totally constrained (black cones in Fig. 4) while the ones from the second row were simply supported (the axial displacements were let free -cf. the red cylinders). On the other end of the tow, the bottom control points (green spheres) were moved upward according to the deflection. Fig. 5a shows the results with no bending and Fig. 5b with bending for 2-, 3-and 4-degree shape functions in the axial direction and a refinement parameter from 1 to 6 (in the axial direction).

T ension Compression

Plotting the relative error, defined as

|E-E ref | E ref
where E ref is the elastic energy evaluated on the most refined solution, a convergence could be observed without bending, but at a very low rate and no effect of the degree was seen in Fig. 6a. On the other hand, a clear convergence was obtained with bending as presented in Fig. 6b Figure 5: Elastic energy during the three points bending test; di j corresponds to degree-i shape functions in the fiber direction (ranging from degree 2 to degree 4) and the j th level of refinement (ranging from 1 to 6.) shape functions of degree 2 while increasing rates were observed as the degree increased. Minimum multiplicity was introduced during the refinement in order to maximize the degree of continuity that was C 1 for degree 2 functions which introduce a constant by part curvature (i.e., a curvature that remained constant on a given element), C 2 for degree-3 functions, which made it possible to consider a continuously varying curvature within the structure (for degree 3 and above).

Buckling

The axial buckling of an elliptical tow, shown in Fig. 7, was then considered. An axial compressing displacement was generated on the first and last row of the control points. The second and penultimate points were let free making it possible to consider free rotations at both ends. A perturbation of a magnitude of a thousandth of the thickness is introduced on the initial geometry is order to influence the buckling direction. Convergence was checked qualitatively on the load displacement curves. As can be seen in Fig. 8b, it was indeed obtained with a bending stiffness as the mesh became thinner and with higher order elements. Without a bending stiffness, cf. Fig. 8a no convergence was observed in terms of both mesh refinement and degree elevation.

Weaving

The developed numerical framework made it possible to simulate the manufacturing of woven preforms at the mesoscopic scale. For this, the contact from tow/tool ant tow/tow interactions had to be taken into account. The non-interpolatory nature or the control points imposed for the use of interpolating nodes and elements is introduced in Benson et the forward increment Lagrange multiplier method developed by Carpenter in [START_REF] Carpenter | Lagrange constraints for transient finite element surface contact[END_REF]. After computation of the contact loads at the interpolating nodes, the loads were lifted up to the control points in order to solve the explicit dynamic scheme and determine the new geometry. Some steps of the weaving of a 2×2 twill unit cell are displayed in Fig. 9. It started with eight untangled elliptical tows, like in a classical loom, after which :

1. the warp tows were alternatively separated in order to create the shed according to the desired twill weave pattern (for instance plain, twill, satin weave for example), 2. a weft tow was inserted and beaten by the reed (not visible in the figure), 3. the warp tows were moved to their next position to create the shed for the next weft tow insertion and so on.

Each tow was meshed with a single element in the cross-section and five elements along the fibers direction. The elliptical section was described using 3 × 3 quadratic shape functions and represented with 3 × 3 interpolating elements. The integration was made using 3 × 3 integration points in the cross-section. In the longitudinal direction, cubic shape functions were employed and 4 interpolating elements as well as integration points are used in this direction. The deformed sections are represented Fig. 9f which illustrates the global rotations of the tows encountered within a 2 × 2 twill weave fabric. Besides flattening, small strains are encountered due to the loose weave selected. A denser weave or interlock could generate greater variations in the sections geometries. Such a simulation is valuable for predicting the weavability of a tow according to the tensions needed during the process. This material property is particularly sensitive for natural fiber tows where an optimum may be reached as a compromise between increasing the twist in order to increase the tension strength of a tow [START_REF] Shah | Why do we observe significant differences between measured and back-calculated properties of natural fibres?[END_REF] while a reduced twist is preferred in order to maximize the reinforcing capabilities of a fabric within a composite part [START_REF] Salem | Experimental investigation of vegetal and synthetic fabrics cohesion in order to prevent the tow sliding defect via frictional and pull-out test[END_REF]. This result will also be used as real geometry input for forming simulations at the mesoscopic scale in order to quantify the biaxial tensile property of a fabric, its shear behavior 

Braiding

Similar to weaving, the braiding process is another option where several tows are combined in order to obtain a preform suitable for composite reinforcement or other applications. Recent work has focused on the simulation of the braiding process at the microscale [START_REF] Vu | Finite element simulation of the mechanical behavior of synthetic braided ropes and validation on a tensile test[END_REF]; [START_REF] Kyosev | Generalized geometric modeling of tubular and flat braided structures with arbitrary floating length and multiple filaments[END_REF]; [START_REF] Ghaedsharaf | Fiber-level numerical simulation of biaxial braids for mesoscopic morphology prediction validated by x-ray computed tomography scan[END_REF], including comingled tows for pultrusion applications. In the case of homogeneous tows, the proposed approach makes it possible to simulate this braiding process at the mesoscale using only one element per cross-section. Deformed sections Fig. 10c may differ form the ones in the previous references and in Kyosev (2019) due to the continuous model adopted here and a closer comparison will be performed with experiment in order to evaluate the need for a refined description of the section. Fig. 10 presents the braid resulting from the simulation of a 12 tows braiding process. The initial geometry involved 12 straight tows; on one end, an axial tension was imposed while on the other end, even tows (in red Fig. 10a) were turned clockwise and odd tows (in black on the figure) counterclockwise together with a sinusoidal evolution of the radius.

Conclusion

This paper describes an investigation of the mesoscale simulation of fibrous material during forming using isogeometric analysis (IGA) and a secondgradient approach. IGA was properly implemented in a 3D code to simulate the forming process of fibrous materials. There are two main advantages of IGA for mesoscale simulation :

1. Its capability of rendering efficiently curved geometries with few elements. Here, ellipses are exactly described with a single biquadratic element in the cross-section for the tow where finite element approaches require a mesh refinement in order to approximate the geometry more precisely.

2. The fact that second gradients are easily computed in higher-order continua.

A hyperelastic approach based on the second-gradient theory was introduced in order to take into account the bending stiffness of each elementary fiber according to the bending invariant derived from the second-gradient deformation tensor. This bending invariant I bend was presented in the context of hyperelastic formulation. A detailed expression of the double force was thus given.

The convergence of the method was proven on a three-point bending test simulation for 2-, 3-and 4-degree shape functions when bending was introduced via the second gradient formulation. However, without bending, the convergence rate remained low.

The methods capabilities were further illustrated with regard to the axial buckling of a single tow as well as weaving and braiding of a fibrous reinforcement.

A particular effort was made to facilitate the understanding of the progression in the equations and to provide opportunities to implement the proposed model.

A Control points positions and weights for the elliptical section

Table 3: Control points coordinates and weights for an elliptical section of half axes r 1 and r 2 corresponding to Fig. 3c.

Point number (i, j) x y w

1 (1,1) - √ 2 r 1 - √ 2 r 2 1 2 (2,1) 0 -2 √ 2 r 2 √ 2/2 3 (3,1) √ 2 r 1 - √ 2 r 2 1 4 (1,2) -2 √ 2 r 1 0 √ 2/2 5 (2,2) 0 0 1 6 (1,2) 2 √ 2 r 1 0 √ 2/2 7 (1,3) - √ 2 r 1 √ 2 r 2 1 8 (2,3) 0 2 √ 2 r 2 √ 2/2 9 (3,3) √ 2 r 1 √ 2 r 2 1

B Double contraction convention

The double contraction convention adopted here was such that 

  (a) Glass fibers tows within a plain weave fabric; tows are modeled as continums. (b) Control points (yellow spheres), control polygon (green lines) and NURBS elements (red curves).

Figure 1 :

 1 Figure 1: Continuous model of the tow at the mesoscopic scale and with isogeometric discretization.

Figure 2 :

 2 Figure 2: Deformation modes: a) initial configuration, b) compression, c) shear and d) distortion.

Figure 3 :

 3 Figure 3: Cross section mapping using NURBS quadratic shape functions.

  shear = 3.0 M P a K dist = 0.060,8 M P a

Figure 4 :

 4 Figure 4: Dirichlet boundary conditions on the control polygon during a 3 point bending test; symmetry guarantee for half geometry insuring C 1 continuity, black cones were clamped, red cylinders were simply supported and green spheres had prescribed vertical displacements.

Figure 6 :

 6 Figure 6: Relative elastic energy error according to the number of degrees of freedom for degree 2-, 3-and 4-degree functions in the axial direction during three points bending.

Figure 7 :

 7 Figure 7: Axial buckling of an elliptical tow.

Figure 8 :

 8 Figure8: Axial load during buckling of an elliptical tow for 2-and 3-degree shape functions and a refined geometry.

Figure 9 :

 9 Figure 9: Weaving of a 2x2 twill unit cell (the reed is not displayed)

  Lomov et al. (2008) together with a coupled behavior that is difficult to identify experimentally Nosrat-Nezami et al. (2014); Kashani et al. (2016). Additionally, the pull-out test proposed in Salem et al. (2020) could be used to characterize the bending behavior of a tow within a fabric.

Figure 10 :

 10 Figure 10: A 12 tows braid; geometry obtained from the simulation of the braiding process starting from straight tows.

  (a ⊗ b) : (c ⊗ d) = (a • c) (b • d) (56) (a ⊗ b ⊗ c) : (d ⊗ e) = (b • d) (c • e) a (57) (a ⊗ b ⊗ c) : d ⊗ e ⊗ f = (b • d) (c • e) a ⊗ f = C • B + B • C ∂I 6 ∂Λ = A • Λ + Λ • A ∂I 7 ∂Λ = C • Λ • A ⊗ A ∂I 8 ∂Λ = C 2 • Λ • A ⊗ A +A ⊗ C • Λ • A +A ⊗ C 2 • Λ • Aand for geotextiles, in: Ryszard Kozlowski Maria Mackiewicz-Talarczyk (Ed.), Handbook of Natural Fibres, volume 2, Elsevier, 2020, pp. 169-204. S. V. Lomov, P. Boisse, E. Deluycker, F. Morestin, K. Vanclooster, D. Vandepitte, I. Verpoest, A. Willems, Full-field strain measurements in textile deformability studies, Composites Part A: Applied Science and Manufacturing 39 (2008) 1232-1244. F. Nosrat-Nezami, T. Gereke, C. Eberdt, C. Cherif, Characterisation of the shear-tension coupling of carbon-fibre fabric under controlled membrane tensions for precise simulative predictions of industrial preforming processes, Composites Part A: Applied Science and Manufacturing 67 (2014) 131-139. M. H. Kashani, A. Rashidi, B. J. Crawford, A. S. Milani, Analysis of a twoway tension-shear coupling in woven fabrics under combined loading tests: Global to local transformation of non-orthogonal normalized forces and displacements, Composites Part A: Applied Science and Manufacturing 88 (2016). Y. Kyosev, Topology-based modeling of textile structures and their joint assemblies, Springer Nature Switzerland AG, 2019.

  . Similar error levels were reached with
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