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Hematopoietic stem cell (HSC) aging is a multifactorial event leading to changes in HSC properties and
functions, which are intrinsically coordinated and affect the early hematopoiesis. To better understand
the mechanisms and factors controlling these changes, we developed an original strategy to construct
a Boolean model of HSC differentiation. Based on our previous scRNA-seq data, we exhaustively charac-
terized active transcription modules or regulons along the differentiation trajectory and constructed an
influence graph between 15 selected components involved in the dynamics of the process. Then we
defined dynamical constraints between observed cellular states along the trajectory and using answer
set programming with in silico perturbation analysis, we obtained a Boolean model explaining the early
priming of HSCs. Finally, perturbations of the model based on age-related changes revealed important
deregulations, such as the overactivation of Egr1 and Junb or the loss of Cebpa activation by Gata2.
These new regulatory mechanisms were found to be relevant for the myeloid bias of aged HSC and
explain the decreased transcriptional priming of HSCs to all mature cell types except megakaryocytes.

� 2022 The Authors. Published by Elsevier B.V. on behalf of Research Network of Computational and
Structural Biotechnology. This is an open access article under the CC BY license (http://creativecommons.

org/licenses/by/4.0/).
1. Introduction

Hematopoiesis is the process of cellular differentiation that
allows the hematopoietic stem cell (HSC) to produce all types of
mature and functional blood cells. A critical balance between
HSC self-renewal and differentiation into different hematopoietic
lineages must be maintained throughout an individual’s life in
order to maintain an effective immune system and normal oxygen
transport. As with many biological systems, transcriptional regula-
tions orchestrated by transcription factors (TFs) and their network-
ing are key mechanisms for instructing differentiation occurring in
the hematopoietic stem and progenitor cell (HSPC) compartment
(reviewed in [1,2]). The characterization of their activities has led
to refine our view of the multiple branch points for early hemato-
poiesis [3].

It is also well known that deregulations of transcriptional and
epigenetic programs underlie the decline in HSC function during
aging [4,5]. This leads to an alteration of the HSPC pool phenotype,
resulting in an increase in myeloid and megakaryocytic cells at the
expense of lymphoid and erythroid ones in aged individuals [6,7].
As a consequence, elderly people are subject to various blood dis-
orders such as anemia and acute myeloid leukemia. Given the cur-
rent aging of the population, deciphering the molecular
mechanisms and more particularly the gene regulatory networks
(GRNs) underlying age-induced deregulation of HSPCs is of great
interest and is the subject of extensive research.

With recent technology developments allowing single-cell res-
olution transcriptome analysis and lineage tracing, hematopoiesis
is now considered as a continuous process with a very early and
gradual priming of the HSPC compartment into different lineages
[8,9]. Comparative transcriptome studies from young and aged
HSPCs at the single-cell level (scRNA-seq) have accurately mapped
lineage priming and cell cycle changes in aged mice, allowing the
identification of subgroups of HSPCs distinct in their ability to
maintain early hematopoiesis and whose proportions are altered
during aging [10–12]. With thousands of gene expressions mea-
sured in thousands of cells, scRNA-seq also provided the amount
of data needed to significantly improve GRN inference methods
[13,14]. Some inference methods, based on mutual information
or regression trees, have been successfully used to analyze regula-
tory networks in the HSC microenvironment [15]. They have also
permitted the identification of regulons, modules formed by a TF
and its target genes, in the HSPC compartment during human onto-
geny [16] or mouse aging [10]. However, these studies only pro-
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vide a static view of the GRN governing HSC fate. It would be rel-
evant to have a dynamic view of the molecular mechanisms and
interactions involved in cellular decisions such as commitment to
a particular lineage. To address these issues, one possibility is to
study the dynamics of networks using Boolean network (BN) mod-
eling [17]. BN modelling approach provides a good abstraction of
the long-term behaviors of a biological system, although continu-
ous changes in component activities and timing of regulations
are not captured. It also provides mechanistic explanations on
the functioning of regulatory processes without the need for
kinetic parameters and is therefore particularly suitable for the
analysis of large biological networks [18]. In the context of hema-
topoiesis, several logical models of HSC differentiation have been
proposed, which helped us to understand the connection between
the major TFs specifying hematopoietic lineage differentiation [19–
21].

The recent development of scRNA-seq technology has opened
up new possibilities and challenges in the field of BN modeling.
Indeed, the scRNA-seq data represent observations of a large num-
ber of cell states that can be ordered along a pseudo-trajectory
reflecting the temporal organization of the cells according to vari-
ations in their gene expression from an initial state to one or more
terminal or differentiated states. Binarization of the component
activities of interest (usually gene expressions) provide discrete
observations of the model whose connections are interpreted as
possible trajectories generated by the BN. It is then possible from
the transitions between states observed in the data to find logical
functions for each component by a reverse engineering approach,
in view of the observed dynamics [21,22]. More recently a method,
called BoNesis, has been developed to infer, from a gene regulatory
network, a BN satisfying dynamic constraints between cell states
[23] and it is most likely that scRNA-seq data through the analysis
of the pseudo-trajectory are well suited to extract the dynamical
constraints used as input for BoNesis.

Based on single-cell RNA-seq (scRNA-seq) analysis, we and
others recently observed new priming events in the HSC pool
[8,10] which are deregulated with aging. Here, we wanted to take
advantage of our scRNA-seq data of young and aged mouse HSPCs
[10] to construct a BN to understand the dynamic of early priming
of HSCs and to precisely characterize transcriptional determinants
leading to HSC dysfunctions and aging. We first defined the key
states of early hematopoiesis by selecting and grouping HSPCs
according to their transcriptome in coherence with their TF marker
activity. Next, combining our analyses with the current literature
on HSC biology, we adapted an existing GRN of early myelopoiesis
[24], by inferring with BoNesis a BN whose dynamics corresponds
to our pseudo trajectory of HSC priming. Finally, we performed and
analyzed perturbations of this BN to propose key factors and mech-
anisms supporting the differentiation bias observed in aged HSCs.
Overall, our results provide a mathematical model of early hemato-
poiesis that allows us to assess the regulation of age-related phys-
iological changes in HSCs.

Thus, our novel strategy judiciously combines recent inference
tools and prior knowledge to recapitulate the known biology of
early hematopoiesis while providing new insights into its tran-
scriptional regulation. We applied it here in the context of
hematopoietic aging, but it could be adapted to other biological
processes modeled by Boolean networks.
2. Materials and methods

2.1. scRNA-seq dataset

We used the scRNA-seq dataset presented in our previous study
available in the Gene Expression Omnibus database under acces-
22
sion code GSE147729 [10]. This dataset is composed of two pools
of young (2/3 months) mouse HSPCs and two pools of aged
(18 months) mouse HSPCs. Our previous results (cell-cycle phase
assignment, cell clustering, pseudotime ordering and hscScore
[25]) were considered in this study to define the HSPC states at
the basis of our modeling [10] (Supplementary Table 1).

2.1.1. Regulon analysis
Identification of regulons with pySCENIC.We used the Single-

Cell Regulatory Network Inference and Clustering (SCENIC)
approach to identify regulons [26], which are modules of one TF
and its potential targets, and their activities. We ran SCENIC work-
flow using pySCENIC v1.10.0 with its command line implementa-
tion [27], as in our previous study regarding gene filtering, TF
motifs (motifs-v9-nr.mgi-m0.001-o0.0), cis-target (+/- 10 kb from
TSS mm9-tss-centered-10 kb-7species.mc9nr) databases and com-
mand line options [10]. In this work, we used as input all 1721 TFs
with a motif available in the motif database. We processed with
SCENIC workflow all cells together as well as only young or only
aged cells. For each cell set, regression per target step with grn-
boost2 followed by cis-target motif discovery and target pruning
were run 50 times using a different seed for the pySCENIC grn com-
mand. The regulons and their targets recovered in at least 80 % of
the runs were kept.

For a gene g with n regulators ðr1; � � � ; rnÞ, the normalized inter-
action score (NIS) of the transcriptional regulation of g by r is
defined as follows:

NIS rt ; gð Þ ¼ ISðrt ; gÞPn
j¼1ISðrj; gÞ

where ISðrt; gÞ is the interaction score defined as the product of the
number of SCENIC runs in which the interaction from rt to g was
found, by the average importance score given by grnboost2 for
the interaction across these scenic runs. The results for the interac-
tions found in pySCENIC analysis of all cells are available in Supple-
mentary Table 2.

Regulonmarkers of HSPC states.We scored the activating reg-
ulons (i.e., regulons with a positive correlation between the TF and
its targets) with AUCell (pySCENIC aucell command, default option
with a fixed seed). Averaged AUCell scores by HSPC states were
computed. These scores were standardized in order to hierarchi-
cally cluster the regulons using ward.D2 method of the R function
hclust with Euclidean distance. The DoHeatmap function from the
Seurat v3 package [28], was used to display the results. Averaged
AUCell enrichment scores for young and aged cells by HSPC states
were also computed in the same way.

Activating regulon markers of HSPC states were identified based
on their AUCell scores using FindAllMarkers Seurat function (min.
pct = 0.1, logfc.threshold = 0) with Wilcoxon rank sum tests. Only
regulons with an average AUCell score difference above 0.001
between one state versus all the others were kept. A p-adjusted
value (Bonferroni correction) threshold of 0.001 was applied to fil-
ter out non-significant markers (Supplementary Table 3).

Activating regulon activity differences with aging in each state
were identified using the FindConservedMarkers Seurat function
(sequencing platform as grouping variable, min.pct = 0.1 and
logfc.threshold = 0) with Wilcoxon rank sum tests. For each HSPC
state, only average AUCell score differences of the same sign and
above 0.001 in the two batches presenting a combined p
value < 0.001 were kept (Supplementary Table 4).

TF network. A network based on interactions between TFs
found in at least 90 % of SCENIC runs on all cells was built (discard-
ing self-inhibitions because of their uncertainty [26]). The clus-
ter_louvain function, from igraph R package [29] was used to
find TF communities in the undirected transformation of this net-
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work with edges weighted by the NIS scores. The Cytoscape soft-
ware was used to visualize the results from graph clustering [30].

2.2. Cistrome database analysis

Available mouse TF ChIP-seq experiments annotated for bone
marrow tissue were analyzed using Cistrome database workflow
[31]. More specifically, for each BED file of the selected experi-
ments in the databases, the top 10,000 peaks with more than 5-
fold signal to background ratio were conserved for downstream
analysis. Then, target transcripts were identified with BETA in each
TF experiment [32]. We considered all TF peaks in an experiment j
inside a +/- 10 kb window from a Transcriptional Start Site (TSS).

BETA gave us a regulatory score sj for each TSSgi of potential tar-
get genes g of a TF t. Then we defined a global cistrome regulatory
score (CRS) for a TF t on a potential target gene g as follows:

CRS t; gð Þ ¼ m
N

Xm

j¼1

Xnm

i¼1

sjðt; TSSgi Þ

where, the TSSgi are the nm TSSs of g for which a regulatory score sj
by t is obtained in experiment j among the m experiments where
the regulation is found. This score is weighted by the m, N ratio
where N is the number of experiments for the given TF available
in the considered cistrome datasets. Only CRS for Scenic interac-
tions or referenced regulations were retained (Supplementary
Tables 2 and 5).

2.3. Boolean modeling

A Boolean Network (BN) is an influence graph parameterized
with logical functions. An influence graph is a directed signed
graph that is an abstraction of regulatory and molecular interac-
tions (in binary relations). Nodes stand for biological components
(here TFs and cell-cycle protein complexes) that are connected
through edges representing activations and inhibitions. In this
study, we constructed an influence graph of 15 nodes and their
interactions involved in early hematopoiesis (see results). From
this influence graph we define a discrete dynamical model using
logical formalism. Each node of the influence graph is associated
with a Boolean variable representing its level that can be 0 (com-
ponent inactive) or 1 (active), this level reflecting its ability to reg-
ulate its targets. The effect of regulators on the level of the target
node is expressed through logical functions (using connectors &
for AND, | for OR and! for NOT). Given a configuration of the net-
work, i.e., a vector containing the level of all the components, sev-
eral components may be called to update their level by the logical
functions. The choice of the updating policy defines the trajectories
of the system (succession of consecutive configurations). Here, we
used the Most Permissive (MP) semantics (that is required to use
the BoNesis inference tool). This recently proposed semantic con-
siders additional transient states reflecting increasing (") or
decreasing (;) dynamical states. A component in (") or (;) state
can be read non-deterministically as either 0 or 1 to take into
account the uncertainties of its actual influence thresholds on its
different targets. This generates a non-deterministic dynamic with
a large set of trajectories, which considerably reduces the complex-
ity of the exploratory analysis of the dynamics [33].

The attractors of the model capture the asymptotic behaviors
of the system. They are a set of configurations from which it is
not possible to escape, and can be fixed points, i.e., a configuration
whose all components are stable, or cyclical attractors, containing
more than two configurations among which the system oscillates.
Finally, a biological interpretation of these attractors, based on the
level of some nodes or read-outs of the model, allows them to be
associated with biological phenotypes.
23
BN offer the possibility to easily simulate perturbations of
gene activity, such as a gain-of-function or overexpression
denoted KI (Knocked In), or a loss-of-function or deletion denoted
KO (Knocked Out), by maintaining its variable at 1 or 0
respectively.

We can also simulate an edgetic mutation by perturbing not a
node but an edge of a network. For that, we removed the edge of
the network and updated the logical rules of the target nodes.
2.4. Data discretization

We associated each HSPC state with a vector, called meta-
configuration, representing the discretized activity level of each
of the 15 components of the model. The discretization method
depends slightly on the nature of the components:

� For TFs with more than 10 targets we applied a Kmeans cluster-
ing with K = 2 on all cell regulon activity scores. For each HSCP
state the value of the cluster (active or inactive) with the most
cells was retained.

� For TFs with<10 targets (Tal1, Ikzf1 and Zfpm1), because the
AUCell scores were less reliable, we applied a Kmeans clustering
with K = 3, active (1), inactive (0) or free/unknown (*) on aver-
aged RNA levels per HSPC states. This was the case for Tal1,
Ikzf1 and Zfpm1.

� For the two cell-cycle complexes (CDK4/6CycD and CIP/KIP), we
chose to discretize the RNA levels of their genes as for the TFs
with few targets on three levels: active (1), inactive (-1) or
free/unknown (0). Then, if the sum of gene values for each com-
plex was above 1, we considered the complex as active, below 1
as inactive.

In order to be less constraining, we relaxed some component
activities by replacing their discretized value 0 or 1 to a free (*) sta-
tus (according to data and biological assumptions, see results).
2.5. Boolean network inference with BoNesis

The influence graph, meta-configurations and dynamical con-
straints (expressed for instance in terms of stability or reachability
of meta-configurations of the network) were encoded in Answer
Set Programming (ASP) language with the BoNesis tool which
solves our Boolean satisfiability problem and enumerates all the
possible Boolean models that satisfy the constraints in the MP
semantic [23].

To reduce the number of solutions we chose to limit the number
of clauses per logical rule to 3, as it is the case for most of the log-
ical rules of gene regulatory BN. The solver Clingo was used in the
inference steps [34].

A subset of 1000 BNs representing a variety of possible behav-
iors was selected during the generation of the solution space by
the Clingo solver, as reported in [35]. For each of them, in silico
KO perturbations were performed one by one in the aim of recov-
ering some mutant phenotypes previously described experimen-
tally. In the same way, in silico KI perturbations for nodes with a
TF activity upregulated upon aging were conducted. This provides
new mutant constraints matching literature evidence for the fol-
lowing next inference steps (Supplementary Table 6).

The influence graph was then pruned by adding two optimiza-
tions to reduce the number of possible solutions: in priority a max-
imization of the confident interaction (see Results &
Supplementary Table 5) number and then a minimization in the
other interaction numbers in the inferred models.
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2.6. Dynamical analysis of Boolean networks

Dynamical analysis (e.g. attractors reachability from iHSC state,
(un)reachabilities between states) of the inferred Boolean models
was done in the MP semantics with the mpbn python package [33].
2.7. Statistics

Statistics were computed with R software v4.0.2. The statistical
tests for regulon activity scores were performed with Seurat and
are detailed above. In each HSPC state corresponding to the consid-
ered configurations of the model, the enrichment for young or aged
cells was tested using a hypergeometric test (phyper R function).
3. Results

3.1. Regulon analysis identified distinct HSPC states with specific
transcription factor activities and their interactions

In order to get references for establishing dynamical constraints
for the inference method of BN, we defined HSPC states. We chose
to take into account three layers of information, extracted from our
previous scRNA-seq analyses [10], considering that each of them is
importantly linked to HSPC functionality: cell cluster identity (a
meaningful functional partition of the HSPCs), cell-cycle phases
(distinguishing the dividing HSPCs) and pseudotime trajectory (a
good representation of HSPC priming toward different lineages)
with its pseudotime, in agreement with the HSCscore [25], measur-
ing the stemness of hematopoietic cells profiled with scRNA-seq
(Supplementary Fig. 1). Hence, we defined nine states that were
visualized on the pseudotime trajectory (Fig. 1A). We considered
two HSPC states at the beginning of the pseudotime trajectory
(pseudotime <2); one was composed of non-cycling cells (without
a tgf signature of quiescence, see below) and was called the initiat-
ing HSC state (iHSC) and the other one was composed of cells in the
G2/M phase and was then considered as the self-renewing HSC
state (srHSC). We considered three states based on their cluster
identity; the ifnHSC state gathering cells of the ifn cluster (inter-
feron response signature), a state gathering all cells of the tgf clus-
ter that we named the quiescent HSPC state (qHSC state) as all of
the cells (except one) were in G1/G0 phase and the preDiff state
gathering the cells of the diff cluster representing and spreading
on the core of the trajectory [10]. Finally, we defined four
lineage-primed HSPC states based on their position at the terminal
branches of the trajectory and their belonging to the lineage-
primed clusters: pLymph (primed lymphoid clusters pL1 on branch
2), pNeuMast (primed neutrophils and primed mastocytes clusters
gathered together, on branch 4), pEr (primed erythrocytes, on
branch 5) and pMk (primed megakaryocytes, on branch 5). The
selection of these 9 states, excluding cells from our original data
set (Supplementary Table 1), resumed the initial (iHSC, srHSC),
transient (qHSC, ifnHSC), terminal (pEr, pMk, pNeuMast, pLymph)
and branching (preDiff) states of early hematopoiesis. Thus, we
provide an accurate view of the key states that an HSC can reach
during early hematopoiesis.

To functionally characterize these HSPC states, we studied their
regulons using the SCENIC workflow [27]. We identified 197 acti-
vating and 132 inhibiting regulators (Supplementary Table 2).
Among them, 140 were regulon markers of at least one of the 9
HSPC states (see Methods regulon marker analysis; Supplemen-
tary Table 3). Next, by quantifying the regulon activities with the
AUCell enrichment score [26], and performing a hierarchical clus-
tering, we revealed a specific regulon activity profile for each of
the HSPC states (Fig. 1B). Regulon activities supported the HSPC
state identity. Klf1 was active in pEr, Gata1 in pEr and pMk, Spi1
24
and Cebpa in pNeuMast and Ikzf1 and Zbtb16 in pLymph. We
observed Stat and Irf regulon activity in ifnHSC; Gata2, Junb, Egr1
and Klf1 in qHSC and Bclaf1 and Srf in respectively iHSC and srHSC
states. Fli1 regulon was active in both iHSC and pMk. The preDiff
state was marked with Spi1 and Myc regulons, two factors
involved in HSPC commitment. Except for the srHSC state,
uniquely marked by Zbtb7a, probably due to its low cell number,
each state was characterized by a combination of regulons, consis-
tent with its transcriptional and lineage feature [10].

Next, to connect the regulons to each other, we built a tran-
scriptional network whose nodes are TFs at the head of regulons
significantly marking at least one of the HSPC states, and directed
edges represent the transcriptional regulations between them.
When considering only the reliable transcriptional regulations
(found in 90 % of the SCENIC runs) and after removing auto-
regulations, we obtained a directed graph of 133 nodes (TFs) and
670 edges (regulations) (Fig. 1C, Supplementary Table 2). We fur-
ther confirmed these regulatory interactions by analyzing the pres-
ence of TF peaks in the regulatory regions of their target genes
using ChIP-seq data from the Cistrome database [31]. Approxi-
mately 60 % (302) of the network interactions with an available
TF node in the Cistrome database were confirmed by the presence
of a peak in the regulatory regions of its targets (Supplementary
Table 2). We then performed a clustering analysis by weighting
the network using a normalized interaction score (NIS, cf Materials
and Methods) calculated from the SCENIC results and by applying
Louvain clustering. We underlined 10 regulon communities and
three isolated regulons (Zbtb7b, Brf2, Sp4). By associating each
TF in the network to the most relevant HSPC state, we observed
that half of the communities regroups TFs whose activity charac-
terizes the same HSPC state (Fig. 1C, Supplementary Table 3).
Indeed, most of TFs from the C1 community (Klf factors, Jun and
Fos AP-1 factors, Egr1) are known to be related to quiescence
and their regulons mark the qHSC state, whereas the C2 commu-
nity contained mainly TFs marking ifnHSC state (eg Irf1-7-9,
Stat1-2). In the same way, C3 community was associated with
pEr state, C4 community with pNeuMast and C5 with iHSC
(Kdm5b, Foxp1) and preDiff (Sox4, Hoxa9) states. It was more dif-
ficult to define the smaller communities (C6 to C10) as they pre-
sented a more heterogeneous composition of TFs.

Altogether, our analysis revealed a functional relevance of the 9
HSPC states harboring a specific transcriptional activity. We also
revealed a well-structured interconnection of TFs that supports
the HSC differentiation journey starting with the i-srHSC states,
continuing through the transient HSC states (ifn-qHSC, preDiff)
and ending with one of the four lineage-primed HSC states.

3.2. Inference of a Boolean network to model HSC priming

To decipher the key molecular mechanisms governing HSC fate,
we constructed a Boolean gene network. We developed a strategy
based on BoNesis, a recently developed approach for Boolean net-
work inference [23], which relies on two steps: the synthesis of an
influence graph and the definition of dynamical constraints.

For the influence graph synthesis, we built a gene network
based on a previous published Boolean model of early myeloid dif-
ferentiation [24]. This model provided megakaryocyte and erythro-
cyte stable states and a granulo/monocyte branching state that fits
well with our defined states [24]. We extracted from it a subgraph
of 9 relevant TFs and their mutual interactions. Eight of them were
regulon markers of the HSPC states in our analysis: Gata1 a marker
of pEr and pMk; Fli1 of pMk; Klf1 of pEr; Spi1 and Cebpa of pNeu-
Mast; Tal1, Fli1 and Gata2 of qHSC (Supplementary Table 3). We
also selected Zfpm1, the cofactor of Gata1, which was expressed
in pEr and pMk HSPC states (Supplementary Fig. 2). To adapt the
graph to early HSC commitment and aging, we added Ikzf1, a TF
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involved in early lymphoid specification in HSPC [36] and whose
regulon marked pLymph state according to our analysis (Supple-
mentary Table 3). We also added two components that allow the
HSC to regulate the cell cycle: the CDK4/6-CyclinD (CDK4/6CycD)
complex (Ccnd1-3 and CDK4/6 genes) required for the HSC quies-
cence exit, and its inhibitory complex CIP/KIP (Cdkn1a-b-c genes)
driving the quiescence of the HSCs[37]. To connect CIP/KIP com-
plex to the transcriptional network, we added Junb and Egr1, two
TF involved in HSC quiescence [38–40], and identified in our regu-
lon analysis as markers of qHSC state and activators of CIP/KIP
genes (Fig. 1B; Supplementary Tables 2 and 3). Finally, to connect
CDK4/6CycD to the network, we added Myc and Bclaf1 known to
be involved in HSC cell cycle [41,42]. Both were active regulons
in the preDiff state whereas only Bclaf1 regulon was active in
srHSC state and had CDK4/6CycD complex genes as targets
(Fig. 1B; Supplementary Tables 2 and 3). To connect all these
nodes, we considered interactions from the original model [24]
that we complemented with interactions identified by SCENIC
and in the literature.

Finally, we obtained an influence graph with 15 components
and 60 interactions (Fig. 2Ai), more than 75 % of which were con-
firmed by at least two of the following information sources; SCE-
NIC, literature or Cistrome (Supplementary Fig. 3A;
Supplementary Table 5A–C). The complexity of a modeling study
increases with the number of nodes, so we added the minimum
number of components that allow us to capture the HSPC states
identified in the data. Thus, we did not retain many TFs known
to play a role in hematopoiesis, such as Runx1, Erg, Hhex, Smad6,
Eto2 or Ets1. The results of SCENIC showed that the TFs retained
in our model are not regulated them (Supplementary Table 2) sug-
gesting that they probably have little role in the early priming of
HSCs that we study in this work.

For the discretization of the data, we have assigned to each
HSPC state a meta-configuration, i.e., a vector representing the dis-
cretized activity level of each of the 15 components (see Methods
and Fig. 2Aii). This discretization turned out to be too strict regard-
ing the first set of constraints. Thus, we decided to release empir-
ically some constraints onmeta-configurations by attributing a free
(*) state to some nodes. First, we allowed the cycling configurations
CDK4/6CycD in pMk and CIP/KIP in pLymph to be free since they
were linked to a HSPC state composed of cells in different cell-
cycle phases. Following the same idea, we let free the CDK4/6CycD
activators, Bclaf1 in pLymph and Myc in pNeuMast, pEr and pMk.
We also found that the pNeuMast states presented a bimodal activ-
ity for Gata2, with this gene marking pMast and not pNeu cells (see
Supplementary Table 1 in [10]). Thus, we let Gata2 free in pNeu-
Mast HSCP states. Finally, we also let free Egr1 in srHSC in agree-
ment with a previous study suggesting its role in HSC
maintenance in the hematopoietic niche [38].

In order to infer with BoNesis a BN whose dynamics fits with
our pseudo-trajectory of HSC priming, we enunciated dynamical
constraints between the HSPC states. We required that the model
presented at least four fixed points, one for each of the 4 primed
meta-configurations pLymph, pNeuMast, pER and pMk, reachable
Fig. 1. Regulon analysis identified distinct HSPC states with specific transcription fac
results of cell clustering, cell cycle phase assignment and pseudotime trajectory analysis o
are coloured according to their pseudotime value. The 5 branches of the trajectory are ci
HSPC state: initial HSCs (iHSC, dark violet); self-renewal (scHSC, violet); quiescent (qHS
states: lymphoid (pLymph, yellow); neutrophils and mastocytes (pNeuMast, orange);
average AUCell scores of the regulon activity in each HSPC state. The scores were stan
network of the regulon markers of the HSPC states. Regulons were clustered in 10 comm
color highlights the states where the regulon is the most active (same color code as in Fi
not) supported by peak analysis in the Cistrome database. Edge thickness represents the
references to color in this figure legend, the reader is referred to the web version of thi
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from iHSC. We also added a zeros configuration in which all the
components are inactive, reachable only from iHSC directly. We
allowed a cell to go back and forth from the iHSC state to the srHSC
or qHSC state as suggested by the literature [43,44]. Based on the
trajectory and the differentiation committed state of preDiff, we
considered this state as a ‘‘no return state” and blocked its return
to the iHSC state. From this state, any of the 3 primed fixed points
pNeuMast, pER, and pMk were accessible. We allowed a cell from
iHSC to directly reach the pLymph fixed point based on the shape
of the pseudo-trajectory and the high hscScore of the pLymph cells
[10]. All these constraints are resumed in the HSC differentiation
journey (Fig. 2Aiii).

With this first inference, BoNesis provided a set of over 100,000
solutions. We therefore developed a strategy to refine the solution
search and get a Boolean network solution (Fig. 2B). We added con-
straints by considering mutant behaviors: we retained solutions
whose mutant simulations agree with the biological phenotypes
of these same mutants previously described in the literature (see
Materials and Methods, and Supplementary Table 6 for the refer-
ences): the Ikzf1 KO conducting to an absence of pLymph fixed
point, the Spi1 KO to absences of both pNeuMast and pLymph fixed
points, the Klf1 KO to an absence of pEr fixed points and the Junb
KO to an apparition of an additional proliferative (active
CDK4/6CycD complex) pNeuMast fixed point. We also considered
KI perturbations on Egr1 and Junb nodes, as these components
were previously found upregulated in HSC upon aging [11]. For
these KIs, we observed a loss of reachability of all fixed points
except a quiescent (CIP/KIP active) pMk one consistent with the
HSC priming bias we previously described [10]. These 6 altered
behaviors are resumed in Supplementary Fig. 4 and were added
to the BoNesis constraint set (Fig. 2Bi). Next, we performed a graph
pruning that consists in reducing the number of edges in the influ-
ence graph by favoring the most confident ones, which were cho-
sen based on strong literature supports (Supplementary
Table 5A). There remained 36 interactions (Fig. 2Bii), of which
more than 80 % were supported by at least two sources of informa-
tion among SCENIC, Cistrome and literature (Supplementary
Fig. 3B). We required solutions containing all these 36 interactions
and another run of BoNesis provided 616 solutions (to compare
with the 1022 possible solutions with the initial influence graph
according to the Dedekind number [45]) (Fig. 2Biii). These solu-
tions differed on the logical rules of 4 nodes (Supplementary
Table 7): CDK4/6CycD, Fli1, Gata1 (2 inferred rules for each) and
Gata2 (77 inferred rules) and needed a manual curation
(Fig. 2Biv). For the CDK4/6CycD, we chose the rule making the acti-
vation possible through Myc in the preDiff state or through Bclaf1
in the srHSC state. For Fli1, we chose the logical rule containing the
least number of clauses (2). For Gata1, we chose the rule for which
the auto activation is possible only when the two repressors Ikzf1
and Spi1 are inactive. Finally, for Gata2 among the 77 possibilities,
7 contains only two clauses and we chose the one in which the
inhibition by Gata1 and its co-factor Zfpm1 are present in both
clauses. Thus, we obtained the final Boolean network presented
in (Fig. 2C and D). Regarding the computational cost of the infer-
tor activities and interactions. A Upper panel: HSPC states are defined according to
f scRNA-seq data10. On the right, cells are ordered on the pseudotime trajectory and
rcled. Lower panel: pseudotime trajectory where cells are colored according to their
C, gray); interferon (ifnHSC, pink); differentiation (preDiff, green). And the primed
erythrocytes (pEr, dark blue) and megakaryocytes (pMk, blue). B Heatmap of the
dardized and used to cluster regulons hierarchically. C Transcriptional regulation
unities (from C1 to C10) plus 3 isolated nodes with Louvain graph clustering. Node
g. 1A). Red (resp. grey) edges indicate transcriptional regulations that are (resp. are
normalized interaction score (NIS) obtained from SCENIC. (For interpretation of the
s article.)
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ence process, once the initial influence graph built from SCENIC
results and prior knowledge, the graph pruning optimization fol-
lowed by the final solution inference with all remaining edges
could be performed in <5 min on a desktop computer with 32 GB
of RAM and an i7 core, demonstrating the reasonable computa-
tional resources cost of our inference strategy and its applicability
to other BN construction from analyzed scRNA-seq data combined
with prior knowledge.

Finally, coupling a customized implementation of BoNesis with
multiple sources of biological knowledge allowed to reduce the
large number of possible solutions. We successfully synthetized a
Boolean network of early hematopoiesis based on a regulatory net-
work consisting of 15 components and 36 interactions.
3.3. Analyses of the Boolean model evidence a sequence of
transcriptional events to prime HSCs

Simulations of the model were done within the MP semantic.
The dynamics displayed 5 fixed points whose complete descrip-
tions are given Fig. 3A. According to our requests, all fixed points
were reachable from iHSC, regardless of the initial value of the Zfp-
m1 component. We verified that published mutants related to the
genes of the model could be recovered by the simulations. To do
this, we simulated the corresponding KO perturbations in the
model and compared the results of the simulations to the expected
behaviors described in the relevant publications, particularly
regarding the reachability of HSPC configurations from iHSC. The
large majority of the in-silico KO simulations matched the corre-
sponding in-vivo/in-vitro perturbations reported in the literature
(Supplementary Table 6). For example, in silico Fli1 KO (simula-
tions) led to the loss of pMK fixed point from iHSC in agreement
with the Fli1 KO BM that harbors a megakaryopoiesis defect [46].

We conducted a fine analysis of the trajectory space to highlight
events that are responsible for some salient dynamical properties
along the trajectory. We observed that Gata2 was active in the ini-
tial state iHSC (and also in qHSC and pLymph), inactive when the
cell reaches preDiff and cannot be re-activated. This event may
explain the early branching of the trajectory from the iHSC to the
pLymph state (Fig. 3B), which was characterized by the activity
of Ikzf1 whose only regulator is the activator Gata2 (Fig. 2D). We
highlighted a novel transient state, named pME and described in
Fig. 3A, that can reach pEr and pMk configurations but not pNeu-
Mast configuration. We observed that the pME configuration was
reachable from the preDiff configuration, when Junb was activated
and Spi1 inactivated (Fig. 3B).

Interestingly, the choice between pMk and pEr fixed points
relied on the Fli1-Gata1-Klf1 circuit (Fig. 3C), and on a transient
state of Fli1 caught thanks to the MP semantics. Indeed, starting
from the branching point pME in which the three components of
the module were absent, Fli1 activity could increase (thanks to
the presence of Junb) allowing Gata1 to be also activated and led
to the stable configuration pMk. Moreover, as long as Fli1 had
Fig. 2. Inference of a gene Boolean network to model HSC priming. A Inference steps
into account the possible interactions of the components deduced from the literature and
blue. (ii) Table representing the discretisation of the 15 components in the 9 configuratio
cases mark node activities freed from 1 (resp 0) to * in the final configuration settings com
imposed between the configurations (nodes). Arrows (resp. crossed out arrows) indicate r
configurations are constrained as fixpoints. Dashed line highlights the reachability of the
refine the search of solution and obtain a final solution. (i) Updating of the influence g
updated constraints see supplementary Fig. 3A. (ii) Pruning of the influence graph throug
last inference step, we forced the use of all remaining edges, this provided 616 possible so
of the Boolean model. D Gene regulatory network of the Boolean model. Nodes, rectang
states in which they are highly active according to our regulon analysis: gray for qHSC, y
highly active in several HSPC states. (For interpretation of the references to color in this
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not reached its activity level allowing it to inhibit Klf1, activation
of Klf1 by Gata1 could occur and led to pEr configuration
(Fig. 3B). It is important to note that we were able to capture this
cascade of events thanks to the MP semantics that considers the
intermediate states between 0 and 1. It means that a necessary
condition to reach pEr from pME is that the inhibition threshold
of Klf1 is greater than the activation threshold of Gata1. Finally,
the cross-inhibitory circuit involving Fli1 and Klf1 acted as a switch
to maintain the differentiation between pMk and pEr (Fig. 3C).

Furthermore, our model presented a proliferation configuration,
in which CDK4/6CycD and Myc were active and CIP/KIP inactive
(Supplementary Fig. 5A). This configuration was accessible from
the iHSC state, and all fixed points could be reached from this state
(Supplementary Fig. 5B). This is in agreement with our previous
results showing an increase in the proliferation of HSC during their
priming toward different lineages [10].

To summarize, the dynamical analysis of our MPBN of early
hematopoiesis gives new insights about the succession of early
priming events in HSCs. It highlights a decisive role of Gata2 inac-
tivation to reach preDiff at the expense of pLymph from iHSC. The
Spi1 inactivation together with JunB activation are key events to
reach from preDiff the pME branching point, whose commitment
to the pMK or pER states depends on the fine tuning of Fli1.
3.4. Perturbations of early hematopoiesis model explain some HSC
aging features

Our previous single cell RNA-seq analysis revealed an alteration
of HSC priming with an accumulation of quiescent HSCs in aged
mice at the expense of pLymph, pEr and pNeuMast cells[10]. To
decipher the molecular mechanisms and TFs responsible for this
alteration, we simulated perturbations in the inferred Boolean net-
work according to alterations observed in the transcriptome of
aged HSPCs.

Alterations of regulon activity linked to aging were identified by
comparing, for each HSPC state, the regulon activities between
young and aged cells. Regulon transcriptional activity differences
were found mainly (80 %) in the non-primed iHSC, ifnHSC, qHSC
states with similar amounts of decrease and increase in activity
(Supplementary Fig. 6), and very few in pNeuMast and pEr. Almost
all activity alterations of regulons were found in more than one
state (Supplementary Table 4). Aging features consisted mainly
in a decrease of the activity in regulons related to HSC activation
(Runx3, Sox4, Myc and Spi1) and NF-kappaB pathway (Rel and
Nfkb factors), and an increase in regulons from the AP-1 complex
(Atf, Jun and Fos factors) and involved in quiescence of HSCs
(Egr1, Klf factors, Gata2, Supplementary Fig. 7 & Supplementary
Table 4). To be noted that we observed a specific increase in
Cebpe-b regulon activity in qHSC state marking the myeloid bias
of these quiescent aged cells. Eight of the 13 TF components of
our models were altered upon aging in their regulon activities
(Myc, Spi1, Junb, Egr1, Fli1, Klf1, Gata2 and Gata1, Supplementary
performed with wild-type constraints. (i) A first influence graph is retained taking
the SCENIC results. Interactions with a high (low) confidence level are in dark (pale)
ns. Blue indicated active, red inactive and white free state. Red (resp. blue) hatched
pared to the discretized data. (iii) Graph representation of the dynamical constraint
eachability (resp. unreachability) between source and target configurations. Framed
fixpoint with all node activities at 0 from iHSC. B Workflow of the strategy used to

raph after the consideration of constraints coming from mutant behaviors. For the
h maximization of high-confident interactions and minimization of others. (iii) As a
lutions (iv). A manual curation is necessary to obtain the final model. C Logical rules
ular for cell cycle complexes and ellipse for TFs, are colored according to the HSPC
ellow for pLymph, orange for pNeuMast, blue for pMk and pEr, white for the nodes
figure legend, the reader is referred to the web version of this article.)



Fig. 3. Analyses of the Booleanmodel evidence a sequence of transcriptional events to prime HSCs. A Table describing the configurations of the model matching the HSPC
states (column: HSPC states, lines: components of the model). Colors represent the activation levels of the nodes (blue: inactive; red: active, white: free). The five last columns
are the fixed points of the model. pME configuration (5th column) results from the analysis of the model. B Graph representation of the (non)reachabilities between the
configurations. Framed configurations represent fixed points, arrows (resp. crossed arrows) indicate reachability (resp. unreachability) from their source to their target
configurations. Black arrows are constrained dynamic properties whereas the red ones result from the dynamic study of the model. The annotations in black boxes represent
TF activities read in the dynamics, Zfpm1: * highlights the two possible values of this node in iHSC. Irreversible inactivation of Gata2 by Spi1 in the preDiff non-return
configuration. necessary update of Junb (=1) and Spi1 (=0) to reach the configuration pME from preDiff. In MP semantics, from pME an increasing activity of Fli1(") can first
activate Gata1 and then inhibit Klf1. Thus, depending on whether Gata1 activates Klf1 before it is inhibited by Fli1, pEr is reached rather than pMk. C Regulatory motif
involving Gata1, Fli1 and Klf1 of the BN with a cross-inhibitory circuit between Klf1 and Fli1 maintaining HSC priming to pMk or pEr. (For interpretation of the references to
color in this figure legend, the reader is referred to the web version of this article.)
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Table 5B). More precisely we found Junb, Egr1 and Fli1 (resp. Spi1)
activities significantly increased (resp. decreased) in at least three
of the 8 HSPC states considered for the model inference (Fig. 4A).

To identify possible altered TF regulations, we compared for
each regulation the normalized interaction score (NIS, cf Materials
and Methods) of young and aged cells analyzed separately using
SCENIC workflow (Supplementary Fig. 8) and computed a score dif-
ference between young and aged conditions (Supplementary
Table 4). The distribution of these score differences showed that
most of the regulations were not strongly altered (14 % of the inter-
actions have a score difference above 0.4; Supplementary Fig. 9).
When focusing on the interactions of the model supported by SCE-
NIC, we noticed an alteration of Cebpa activation by Gata2
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(decrease of the NIS of 0.4 upon aging), which was compensated
by Spi1 activation of C/EBPalpha (NIS increase by 0.2) upon aging
(Fig. 4B).

Thus, in order to simulate aging alteration, we performed KI
perturbations on Junb, Egr1 and Fli1, KO perturbation on Spi1, and
an edgetic mutation (loss of Cebpa activation by Gata2) on the net-
work of early hematopoiesis (Fig. 4C). The simulations of each of
these 5 perturbations led to the loss of reachability of the fixed
points pLymph and pNeuMast from the i-sr-qHSC configurations.
Additionally, the simulation of each of the 3 KIs led to the loss of
reachability of pEr, which makes pMK the unique reachable fixed
point (Table 1). Note that, still for these two perturbations, the con-
strained fixed point pMk is quiescent (CIP/KIP active). The



Fig. 4. Perturbations of the early hematopoiesis model explain some HSC aging features. A Combined violin plots of most altered TF (of the model) activities upon aging in
young (orange) and aged (purple) cells from the different HSPC states. Stars show significant differences of activity score between young and aged cells (average
difference > 0.001 and p value <10�3). B Normalized interaction scores of Cebpa activation by Spi1 and Gata2 from SCENIC multiple runs on all cells (grey), young cells
(orange) and aged cells (purple). C Aging perturbations of the Boolean gene network. Rectangular nodes are cell cycle complexes and ellipse nodes TFs. Nodes are colored
according to the HSPC states in which they are highly active according to our single cell analysis: gray for qHSC, yellow for pL, orange for pNeuMast, blue for pMk and pEr,
white for the nodes highly active in several HSPC states. Framed nodes highlight the 4 TF significantly altered with aging and crossed out activation of Cebpa by Spi1 illustrates
its edgetic mutation. D Reachability of HSCP states from any initial configuration from iHSC, srHSC or qHSC for WT and 3 altered dynamics of the model: WT case (top left)
Young (orange) and aged (purple) cell proportion is given below each HSPC state node. A star highlights a significant shift from the global young/aged cell proportions in the
single cell data (hypergeometric test p value < 0.05). Egr1 KI perturbation (top right); Junb KI perturbation(bottom left); Cebpa edgetic mutation (bottom right). In each
graph, black arrows represent the reachabilities between configurations; pale gray represent the WT reachabilities lost with the mutation. (For interpretation of the
references to color in this figure legend, the reader is referred to the web version of this article.)
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behaviors of Egr1 KI, Junb KI and Spi1 KO were expected as they
were constrained for the inference of the model regarding previous
experimental studies (see model inference strategy above). These
results agree with our single cell analysis, as the 3 fixed points
pLymph, pNeuMast, pEr correspond to the primed HSPC states
30
whose cell proportion significantly decreases with aging, while
pMk remains reachable in any of our model perturbations and does
not present any decrease in cell proportion with aging in the single
cell data (Fig. 4D). We also observed that preDiff was no longer
accessible from i-sr-qHSC configurations with Junb KI disruption



Table 1
Aging perturbations of the early hematopoiesis Boolean model. This table summarizes the reachabilities of 5 HSPC states (preDiff and 4 fixed points pLymph, pNeuMast, pER,
pMk) from states iHSC, srHSC or qHSC, in WT and 5 mutant simulations (a cross indicates that the HSPC-state is reachable). The last column reports the observations in our scRNA-
seq data: Up (resp. down) arrows indicate an increase (resp. a decrease) upon aging in component activity or interaction score.

pLymph pNeuMast pEr pMk preDiff scRNAseq observations

WT X X X X X
Junb KI X Junb " in iHSC, qHSC, preDiff, pLymph, pMk
Egr1 KI X X Egr1 " in iHSC, qHSC, preDiff, pMk
Fli1 KI X X Fli1 " in iHSC, preDiff, pMk
Spi1 KO X X X Spi1 ; in iHSC, preDiff, pLymph, pEr
Edgetic Gata2-Cebpa X X Gata2 -> Cebpa ;

Spi1 -> Cebpa "
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and the edgetic Cebpa-Gata2 mutation, suggesting that HSC prim-
ing to pMk in aged mice follows an alternative differentiation path-
way. This pathway could be directly derived from the state of qHSC
cells, the proportion of which increases with aging (Fig. 4D) and
were found at the end of the first branch of the pseudo-
trajectory near the appearance of the first pMk (branch 3 and
beginning of branch 5 of pseudotime trajectory Fig. 1A). The model
emphasizes a clear dependence between the 5 perturbations
related to aging (. Indeed, Egr1 KI implies a definitive activation
of Junbwhich in turn activates Fli1. Besides, the KO of Cebpa activa-
tion by Gata2 prevents Spi1 from becoming active from any of the
i-sr-qHSC configurations. Thus, analysis of the model highlighted
the major roles of Egr1 overexpression and loss of Cebpa activation
by Gata2 as two major molecular mechanisms that led to HSC
aging resulting in the decrease in all lineage priming except the
megakaryocyte one.
4. Discussion

Aging alters the mechanisms governing the balance between
self-renewal and differentiation of HSCs, which are the guarantee
of functional hematopoiesis. Aging effects are difficult to define
as they probably depend on multiple factors and regulations. To
address HSC age-related alteration, we used Boolean networks,
which provide modelling tools suitable for explanatory analysis
of dynamical processes such as HSC differentiation process and
its response to alterations in the interaction network. Several BNs
have been proposed to understand the key regulatory elements
of HSC differentiation to lymphoid or myeloid progenitors [19–
21] but very few have addressed the impact of aging on HSC prop-
erties [47]. Moreover, none of them specifically addressed the early
priming of the HSCs, which has been recently emphasized by the
development of scRNA-seq analyses [8,10]. While models of BN
are classically built from literature, more recent approaches to
infer BN from scRNA-seq data have been applied to hematopoiesis
[21,22] albeit presenting some bias due to the imprecision of the
pseudotime values because of hidden variables (cell location, epi-
genetic modification, etc [48]) of scRNA-seq.

In this work, we provide a complete workflow for building a
Boolean model from scRNA-seq data. While the methods proposed
so far infer the influence graph and the logical rules together
[21,22], we decoupled the problem into two parts, with first the
construction of an influence graph, and then an inference of logical
rules for each component.

GRN inference benchmark has shown that methods that require
a quantitative ordering as input tend to perform worse than those
that do not [14]. Decoupling the problem into two steps, we were
able to construct a trustworthy influence graph by combining one
of the best GRN inference methods SCENIC [26], and prior knowl-
edge of our biological process. The use of BoNesis in the second
step permitted us to avoid the need of a precise quantitative order-
ing of the cells that remain actually very challenging and open to
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criticism as pseudotime ordering results can be highly variable
depending on the tools and the parameters used [49]. Although
the BoNesis approach clearly seems well suited for scRNA-seq
analysis, the original publication [23] is mostly theoretical and
we are the first to our knowledge to provide a complete workflow
for using it from scRNA-seq data combined with prior knowledge.
In particular, our entirely new graph pruning optimization process
allowed us to handle the large number of possible solutions pro-
vided by this method.

We obtained a BN explaining the transcriptional mechanisms
controlling the priming of HSC toward the different hematopoietic
lineages and the impact of its alterations during aging. We con-
ducted an original qualitative analysis of the model’s trajectories
which consists of tracing succession of events leading to the prim-
ing of HSCs in the different lineages. We could propose a main path
starting from the initial state iHSC and passing through the inter-
mediate state preDiff that was not captured before. From the iHSC,
activation of Ikzf1 by Gata2 stabilizes early lymphoid priming of
HSCs, whereas activation of Spi1 and Myc together with an inacti-
vation of Gata2 leads to preDiff state. From preDiff, the positive cir-
cuit Gata1/Fli1/Klf1 controls the priming to the
neutrophil/mastocytic lineage or the erythroid or megakaryocytic
lineages. Our model reproduces the main differentiation trajectory
of HSCs under normal conditions, but also shows that alternative
trajectories are possible, not passing through preDiff, but allowing
direct priming of HSCs towards the different lineages. For example,
with early activation of Gata1 by Gata2 the system bypasses pre-
Diff and leads directly to the primed megakaryocyte or erythrocyte
state, which is in agreement with previous lineage tracing studies
highlighting the coexistence of multiple hematopoietic hierarchies
[8,50]. It should be noted that all our analyses were conducted
within the MP semantics. This recently defined semantics allows
many more transitions between states than the classically used
asynchronous or generalized semantics [33]. In particular, our
analysis shows that the switch between pEr and pMk from the pre-
Diff state depends on the existence of two thresholds of influence
of Fli1 on these targets Klf1 and Gata1, and such a situation cannot
be represented with the asynchronous Boolean dynamics. These
situations provide perfect case studies to address the question of
how the choice of semantics impacts the properties of the dynam-
ics, and more specifically to identify the specific parts of the BN
that would need to be refined in order for the MP trajectories to
be reproducible in asynchronous semantic.

Our model correctly reproduces behaviors of mutants observed
in vivo/in vitro for most of the TFs in the network, except for Myc
and Egr1 KO. Simulations of Myc KO showed no difference in silico
in the accessibility of primed states. However, an increase in HSC
self-renewal and a decrease in differentiation due to intercellular
interactions not taken into account in our model have been
reported experimentally with this mutation [41]. We also did not
observe any changes in dynamics for the Egr1 KO mutant although,
again, a previous study showed a decrease in HSC priming along
with an increase in HSC self-renewal [38]. These observations
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could correspond to a transient accumulation of cells prior to
delayed priming, not captured by the model.

The loss of lymphoid potential and the myeloid bias, mainly dri-
ven by a platelet bias [10,51] are the main features of aged HSCs
[52–54]. Our model successfully reproduces this aging feature with
new molecular mechanisms based on the overactivation of Egr1
and Junb, or loss of Cebpa activation by Gata2. Our results highlight
the overactivation of Egr1 and Junb factors in quiescent myeloid
HSCs that accumulate with aging [11], two factors that have been
previously involved in HSC quiescence [38,39]. Our model shows
that these alterations impact the positive circuit between Egr1
and Junb required for the multiple HSC priming. Interestingly,
the global transcriptional network inferred with SCENIC shows
that these two factors are activated by Klf2-4-6 factors known to
be downstream of TGF-beta signaling in other biological contexts
[55–57]. We saw that aged cells forming the qHSC state have a
strong TGF-beta signature combined with a myeloid bias (over-
activation of Cebpe-b in particular). Moreover, megakaryocytes
are known to promote HSC quiescence by producing TGF-beta
[58,59]. Our results therefore sustain the hypothesis of a self-
activating loop of HSC aging which would be triggered by TGF-
beta increase in aged HSC microenvironment favoring a myeloid-
biased quiescent state from which a single priming towards the
megakaryocytic lineage would occasionally be possible [60]. Our
model proposed a path sustaining this single priming (without
passing through preDiff), in agreement with a direct HSC differen-
tiation into megakaryocytes that would therefore be the one that is
preserved by aged quiescent HSCs [8]. Besides, our model shows
that the loss of Cebpa activation by Gata2 may drive the loss of
lymphoid and neutrophil/mastocyte priming. Knowing the impact
of aging on epigenetic [61], this edgetic alteration could have an
epigenetic origin, due to changes either in histone marks on the
regulatory elements of Cebpa [62], or in hypermethylation of the
Cebpa promoter as found in leukemia cases [63].

Thus, we propose a novel model of the intracellular transcrip-
tional network explaining the HSC early differentiation and its
megakaryocytes bias related to aging. Analysis of this model could
be quantitatively refined to reproduce the probabilities of the dif-
ferent HSC priming observed in the single cell data [64]. More glob-
ally, this model could be the basis of a modelling at the cell
population level taking into account the HSC and its microenviron-
ment, which is known to be important for HSC aging.
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