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Quantifying the rationality of rhythmic signals

A. Guillet, A. Arneodo, P. Argoul, and F. Argoul

Abstract Rhythms and vibrations represent the quintessence of life, they are ubiq-
uitous (systemic) in all living systems. Recognising, unfolding these rhythms is
paramount in medicine, for example in the physiology of the heart, lung, hearing,
speech, brain, the cellular and molecular processes involved in biological clocks.
The importance of the commensurability of the frequencies in different rhythms has
been thoroughly studied in music. We define a log-frequency correlation measure on
spectral densities that gives the temporal evolution of the distribution of frequency
ratios (rational or irrational) in between two signals, using analytic wavelets. We
illustrate these concepts on numerical signals (sums of sine functions) and voice
recordings from the Voice-Icar-Federico II database. Finally, with a second correla-
tion operation from two of these distributions of ratios (a reference one, and the other
one from the voices) we introduce another quantity that we call sonance, measuring
the “harmony” (rationality) of two voices sung together as a function of a pitch
transposition.

1 Introduction

Scientific approaches of natural systems have been revolutionized in the last part of
the XXth century with the advent of miniaturized electronic and computer systems.
Beyond their impressive beauty, it was offered to human beings to demonstrate that
nature is constructed from multi-scale intertwined networks, (in time and in space)
and that these networks are the field of highly complex nonlinear dynamics (non
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linear and/or non stationary rhythms) [1, 2, 3]. Even though apparently distinct
biological rhythms (endogenous and exogenous) have been recognised as universal
features of all organisms (neural signals, heart, hormone secretion, metabolism,
tidal, circadian, lunar, seasonal, annual clocks, life cycle, ....) [4], the variability of
these rhythms and their spatio-temporal interplay is still considered as incidental or
ignored. Despite the fact that we can concretely demonstrate that the frequencies of
these rhythms pave more than 10 decades, still, time (and frequency) is considered as
varying linearly in living systems. In particular the presence of strong nonlinearities
can give us greater sensing resolution to less intense stimuli. These mechanisms are
ubiquitous across animal species and across all sensory modalities. Interestingly, the
mappings between an external stimuli and the internal perception (psychophysical)
of scales and laws are rather logarithmic than linear. A simple and more commonly
encountered example for the non-specialist is the perception and emission of acoustic
vibrations (sounds) by living species, these processes occur in logarithmic scales in
time and frequency domains [5]. It has also been demonstrated experimentally that
the cochlear filters of the inner ear are not spaced at linear frequency intervals but
that their spacing is approximately logarithmic [6].

The emission of sound (speech, songs) by human cord tract (larynx, pharynx,
mouth) is a complex nonlinear process that combines both muscles and tissues with
different temporal and spatial scales, and the entire autonomic and central nervous
systems. In this study, we analyse human voice signals (a single note maintained
for a few seconds) that characterise the physiology of the vocal organ (larynx-
pharynx-mouth) in healthy and pathological situations. To compare different signals
and their spectral composition, we define a log-frequency correlation measure on
spectral densities that gives the distribution of frequency ratios (rational or irrational
numbers) between two signals. Using the wavelet transform formalism we extend
this measure to a time-frequency correlation measure, that offers the possibility to
estimate the temporal variability of this log-frequency correlation. We introduce
reference spectral expansions as sums of Dirac terms that resume the characteristic
property of these voice signals (harmonics as integer multiples of a fundamental
frequency). Finally, we define a new integral cross-correlation of the previously
defined measure which quantifies the rationality of the rhythms of two compared
signals. We call it sonance, by analogy with the term consonance (resp. dissonance)
that counts the perceived affinity or agreement (resp. disagreement) between different
sounds. We validate this method on numerical model and voice signals collected
from different sources. The first section is this introduction. The second section
describes themathematicalmethodology for log-frequency correlations (or spectrum
of frequency ratios) and its generalization to time-frequency expansions in terms of
analytic wavelet transforms. The third section illustrates these concepts on numerical
signals (sums of sine functions) and voice recordings from the Voice-Icar-Federico
II database, introduces the sonance measure and illustrates it on the previously
computed log-frequency correlation measures of voice signals. Finally, we leave
the medical application of voice dysphonia diagnosis with the comparison of an
untrained voice with a singer voice that have similar spectral envelopes.
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2 Spectrum of frequency ratios. Formalism and time-frequency
generalization

2.1 Correlation functions for signal comparison

Let us consider two signals x and y of finite total energy L2(R) : 〈x, x〉 < +∞ and
〈y, y〉 < +∞ where 〈·, ·〉 is the ordinary inner product of L2(R) and x is the complex
conjugate of x:

〈x, y〉 =
∫ +∞

−∞

x(u)y(u)du. (1)

The comparison of these two signals x and y is usually performed through a de-
terministic correlation function R[x, y](ξ) constructed from a time shift (translation)
operator Tξ :

R[x, y](ξ) = 〈x,Tξ y〉 =
∫ +∞

−∞

x(u)y(u + ξ)du. (2)

This definition, given for energy signals or square-integrable functions, can be ex-
tended to power signals. Thus, for signals which can be described by sums of periodic
functions (stochastic signals with finite power), the cross-correlation function reads:

C[x, y](ξ) = lim
T→∞

1
2T

∫ T

−T

x(u)y(u + ξ)du, (3)

When x = y, we get the auto-correlation functionC[x, x](ξ), that characterises the
similarity between observations of a same signal as a function of the lag ξ between
them. The auto-correlation function is Hermitian: C[x, x](−ξ) = C[x, x](ξ). The
absolute value of C[x, x](ξ) is maximum at the origin, where the auto-correlation
function is real, positive and equal to the power of the signal x. When the signal x is
real, this implies that the auto-correlation function is real and even.

Note that when u = t, t being the time variable, the function C[x, y](ξ) is the
cross-correlation function commonly used for time signals but u could be replaced
by any other type of variable, and in particular the frequency (or log-frequency)
when comparing spectral signals, as will be discussed below.

Translation-based correlation functions are very important for physics. They turn
functions of a relative quantity (such as time or space position whose value depends
on a translation from an arbitrary origin) into a function of an absolute quantity
(such as time or space interval). However, the value of absolute quantities that have
a physical dimension still depends on its comparison with an arbitrary standard:
the physical unit. Since a scaling is involved, the unit plays the role of an arbitrary
origin for the logarithm of these quantities. That is the reason why dilation-based
correlation functions can be of interest for physics, as long as they compare functions
of an absolute quantity: a new variable made of the ratio of two absolute quantities
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with the same physical unit neither depends on an origin nor on the unit; it is a pure
proportion.

To extend the concept of correlation functions to absolute physical quantities, we
need first to revisit the definition of the inner product. We make use of the logarithm
to change from the translation-invariant group (R,+) to the dilation-invariant one
(R+,×). The change of variable u = log v applied on Eq. (1) yields:

〈X,Y 〉 =
∫ ∞

−∞

X (u) Y (u)du =
∫ ∞

0
X (log v)Y (log v)d log v. (4)

The change from the function X (u) and the measure du to the function X ◦ log(v)
and the measure d log v = dv/v means, for numerical computations, that we replace
linearly sampled functions by geometrically sampled ones (of positive variable).
In the following, we choose to make explicit the composition with the logarithm
in each function. The previous translation operator Tξ is naturally replaced by a
dilation operator Dq :

Tlog q[X](log v) = Dq[X ◦ log](v) = X (log(qv)). (5)

Combining Eqs (4) and (5), we obtain from Eq. (2) a similar correlation function
adapted to geometrically sampled signals:

R[X,Y ](log q) =
∫ ∞

0
X (log v)Y (log(qv))d log v, (6)

where q is positive. For functions X andY , the finite energy condition for the validity
of this integral takes the form 〈X, X〉 < +∞. It can also be reformulated for finite
power signals in a similar way as in Eq. (3).

The dilation correlation function in Eq. (6) inherits the following symmetry and
linearity properties from Eq. (2):

R[Y, X](log q) = R[X,Y ](− log q), (7)
R[X,Y + Z](log q) = R[X,Y ](log q) + R[X, Z](log q). (8)

Note that the logarithm does not allow to study functions of a negative absolute
quantity (for instance negative delays or frequencies), nor negative ratios q < 0.

2.2 Spectrum of frequency ratios: a frequency ratio distribution

For the application of interest here, the unfolding of rhythms from real signals (their
spectral “timbre”), we concentrate on “geometric” spectral densities that we define
as real and positive functions S(log f ) ≥ 0 of the logarithm of the frequency. The
log-frequency correlation function between two such densities
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R[S1,S2](log q) =
∫ ∞

0
S1(log f )S2(log(q f ))d log f , (9)

captures all the spectral relations between frequency modes of S1(log f ) and
S2(log f ). R[S1,S2](log q) is positive and gives the distribution of frequency ratios
q of S1(log f ) and S2(log f ), hence the notation R for ratio distribution. Similarly
to standard correlation function of linearly sampled variables, the existence of this
integral R[S1,S2](log q) requires that both distributions S1(log f ) and S2(log f )
be square integrable with the geometric measure of f (linear measure for log f ).
Both the log-frequency distribution S(log f ) and the frequency ratio distribution
R[S1,S2](log q) can be normalised as probability density functions:∫ ∞

0
R[S1,S2](log q)d log q =

∫ ∞

0
S1(log f )d log f

∫ ∞

0
S2(log f )d log f = 1 .

(10)

Frequency ratio distributions can be written in analytic form from spectral den-
sities defined as isolated or sum of Dirac δ functions. For example, the two spec-
tral densities Sj (log f ) = δ(log f

f j
), j = 1, 2 have a single frequency ratio f2

f1
,

and give a frequency ratio distribution R[S1,S2](log q) = δ(log q f1
f2

). If we de-
fine S(log f ) as a doublet of Dirac deltas S(log f ) = S1(log f ) + S2(log f ), from
the linearity property Eq. (8), we can write the ratio distribution R[S,S](log q) =
δ(log q f1

f2
) + 2δ(log q) + δ(log q f2

f1
). This simple analytic case is illustrated in Fig. 1,

where we distinguish from R[S,S](log q) three peaks, corresponding to the fre-
quency pairs: (4:4) and (8:8) for log q = 0, (4:8) for log q = log 2, and (8:4) for
log q = − log 2.

2 2.5 3
0

1(a)

-1 -0.5 0 0.5 1
0

1

2(b)

Fig. 1 (a) Ideal distribution S(log f ) in log-frequencies of a doublet of Dirac deltas such that
the highest frequency is twice the lowest. (b) Representation of the spectrum of self-relations
R[S, S](log q) in logarithmic scale (base 2). The peak of ratio log2 q = 0 represents the self-
relation of each frequency peak, whereas the ratios log2 q = −1, 1 represent their cross-relations.

The log-frequency spectral distributions S(log f ) cannot be assimilated to lin-
frequency spectral densities defined the from Fourier transform of s: ŝ( f ) =∫ +∞
−∞

s(t)e−2πi f tdt, because their computation from linear measures in time and fre-
quency faces some difficulties. Themain one is practical, power spectral densities es-
timated with Fast Fourier Transform (FFT) algorithms are sampled linearly, whereas
the integral of Eq. (9) requires a geometric frequency sampling. Re-sampling strate-
gies of the Fourier spectra have been proposed in the literature [7], and could be used



6 A. Guillet, A. Arneodo, P. Argoul, and F. Argoul

for stationary signals, however they require greater memory size and are computer
time-consuming. Importantly, in the context of physiological signals which are often
non-stationary, the extension of time-averaged spectral quantities to time-frequency
distributions is mandatory. The wavelet transform answers to both issues, it provides
not only a time-frequency representation of the spectral quantities, but also allows
a geometric sampling in frequency. Using time-frequency decompositions we can
straightforwardly extend our definition of log-frequency ratio distributions Eq. (9)
to time-log-frequency ratio distributions for the analysis of non-stationary signals.

2.3 Wavelet transform formalism

Time-frequency analysing tools based on the wavelet transform have been introduced
in the second half of the twentieth century and applied to many scientific domains
for characterising and modelling non-stationary processes [8, 9, 10, 11, 12, 13, 14].
The wavelet transform of a finite energy signal s(t) ∈ L2(R) is defined as its inner
product with the shifted copies of an analysing absolute integrable and finite energy
wavelet ψ(t) ∈ L1(R) ∩ L2(R) [9, 14, 15, 16]:

W
(p)
ψ [s](a, b) =

〈
ψa,b, s

〉
= a−

1
p

∫ +∞

−∞

s(t)ψ
(

t − b
a

)
dt, (11)

b ∈ R and a ∈ R+ are the shift and scaling parameters. ψ is the complex conjugate
of the analysing wavelet ψ, p is a parameter which defines the normalisation of the
wavelet.
Two values of p are usually found in the literature: p = 1, corresponding to the L1(R)
norm and p = 2, corresponding to the L2(R) norm, respectively.
p = 1, often used for time-localized signals with different amplitudes, is appropriate
when the magnitude of the modulus wavelet transform is wished to reflect the
amplitude of the analysed signal s(t). p = 2 is appropriate when the modulus-
squared wavelet transform is wished to reflect the energy of the analysed signal
s(t).

In the frequency domain, the expression of the wavelet transform reads:

W
(p)
ψ [s](a, b) = a1− 1

p

∫ +∞

−∞

ŝ( f ) ψ̂(af )e2iπ f bd f , (12)

where ŝ, ψ̂ denote the Fourier transforms of the signal and the wavelet.
This time-scale representation is quite suited for non-stationary signals since it
localizes the analysis around time b and operates a band-pass filtering scaled by the
parameter a. Importantly, a can be sampled arbitrarily, in our case we will sample
it geometrically. It is common practice to consider the scale a as proportional to an
inverse frequency 1

fa
:
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a =
fψ
fa
, (13)

where fψ is a characteristic frequency of the mother wavelet ψ. Three meaningful
frequencies are classically used for fψ [17]: the peak frequency f 0ψ where the fre-
quency domain mother wavelet magnitude ���ψ̂( f )��� is maximum, the energy (norm 2)

frequency f ∗ψ which is the mean of ���ψ̂( f )���
2
and the norm 1 frequency f̌ψ , that can be

interpreted as an instantaneous frequency for progressive wavelets. An asymmetry in
the frequency domain of the mother wavelet leads to distinct values for the previous
frequencies fψ .
For the computation of the log-frequency correlation functions, the expression
Wψ[s]( fψ/ fa, b) for the wavelet transform given in Eq. (12) can be turned to a
time-frequency analysis by using Eq. (13) for a given characteristic frequency fψ :

W
(p)
ψ [s]

(
fψ
fa
, b

)
= a1− 1

p

∫ +∞

−∞

ŝ( f ) ψ̂
(

fψ
fa

f
)
e2iπ f bd f . (14)

For our applications to physiological signals, the Banach space L1(R, dt) norm
corresponding to p = 1 will be preferred for the wavelet transform definition. The
main reason is due to the fact that when rescaling time in the input signal as s

(
t
ρ

)
,

with ρ > 0, both the time and the scale of the wavelet transform are rescaled, but
without changing its magnitude. Thus as the Fourier transform of s

(
t
ρ

)
is: ρ ŝ(ρ f ),

Eq. (12) when p = 1 leads toW (1)
ψ [s] ( aρ ,

b
ρ ). The (1) is dropped in the following.

The peak frequency f 0ψ will be then adopted for the characteristic frequency fψ in
Eqs (13), (14).
The admissibility condition for an analysing wavelet ψ ∈ L1(R) ∩ L2(R) establishes
that the number

cψ =
∫ +∞

0
|ψ̂(u) |2

du
u

(15)

must be finite, nonzero and independent of f ∈ R+. If this admissibility condition is
fulfilled, then every s ∈ L2(R) can be reconstructed from the convergent integral:

s(t) =
1
cψ

∫ +∞

−∞

∫ ∞

−∞

Wψ[s] (a, b) ψ
(

t − b
a

)
da
|a |

db . (16)

2.3.1 Time and frequency window for the analysing wavelet

The time-frequency window can be computed from the expression of the analysing
wavelet ψ, assuming that ψ and ψ̂ verify tψ(t) ∈ L2 and f ψ̂( f ) ∈ L2(R) [18]. If the
center and the radius (with the norm 2) of the window function ψ are respectively t∗ψ
and ∆ψ , ψ((t − b)/a) is a window function with center b + at∗ψ and radius equal to
a∆ψ :
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[b + at∗ψ − a∆ψ, b + at∗ψ + a∆ψ] . (17)

This windows narrows (respectively widens) for small (resp. large) values of a. In
the frequency domain, the window of ψ̂ is defined similarly, assuming that the center
and width of ψ̂ are f ∗ψ and ∆ψ̂ , ψ(a f ) is centered around f ∗ψ/a and has a radius
∆ψ̂/a:



f ∗ψ
a
−

1
a
∆ψ̂,

f ∗ψ
a
+

1
a
∆ψ̂


. (18)

In the following discussion, the center f ∗ψ of ψ̂ is assumed to be positive. There
are different ways of defining the wavelet resolution, called the quality factor of
the wavelet. A first definition, given in [19], uses the bandwidth and the norm 2
frequency as follows:

Q∗ =
f ∗ψ/a

2∆ψ̂/a
=

f ∗ψ
2∆ψ̂

, (19)

which is independent of the scale parameter a. Alternatively, we could also use the
full width at half maximum height of |ψ̂( f ) |2 instead of ∆ψ̂ . We thus define another
quality factor, Q̃, such as

Q̃ =
f 0ψ

| f2 − f1 |
(20)

where |ψ̂( f1) |2 = |ψ̂( f2) |2 = |ψ̂( f 0ψ ) |2/2 and f1 < f 0ψ < f2. This factor is usu-
ally computed to characterise the qualitative damping behavior of simple damped
oscillators [20].

The choice of the quality factor is essential to obtain an adapted time-frequency
resolution and consequently a “good” analysis of the processed signals. The authors
in [21] propose three bounds to obtain a range of acceptable values. When the signal
is composed of several frequency components, the proximity of their characteristic
frequencies provides a lower bound. The exponential decay rate of the amplitude
imposes another upper bound. Eventually, the length of the signal determines yet
another upper bound.

2.3.2 Choice of the analysing wavelet: the Grossmann wavelet

In the absence of a suitable unifying theory for wavelet behaviors, the choice of a
particular wavelet for a particular problem may often appear arbitrary. For rhythmic
signals, complex analytic analysing wavelets are preferred, leading to: ψ̂( f ) = 0,
∀ f ≤ 0. In that case, the measure appears naturally in these integrals (Eq. (16)), as
in Eqs (4) and (6), because the analysing wavelet is scale invariant (under dilations).

In the following, we choose a single-parameter progressive wavelet, introduced
for the decomposition of Hardy functions by Grossmann and Morlet [8]:
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ψ̂Q ( f ) =


ψ0e

− 1
2

(
Q log f

f0

)2
∀ f > 0 ;

0 ∀ f ≤ 0 ,
(21)

of peak frequency f 0ψ = f0, for which the maximum value is ψ0. This wavelet is
symmetric in log-frequencies about log f0. The other characteristic frequencies are

f ∗ψ = f0e
3

4Q2 and f̌ψ = f0e
3

2Q2 . The Grossmann wavelet is also centered in time
(t∗ψ = 0), with a width (radius in norm 2):

∆ψ =

√
1 + 2Q2

4π f0
. (22)

Both previously defined quality factors depend on Q only:

Q∗ = 1
2

(
e

1
2Q2 − 1

)− 1
2
, (23)

Q̃ = *
,
2 sinh

√
log 2
Q

+
-

−1

. (24)

When Q is large enough, the leading term in the expansions gives Q∗ ' Q/
√
2 and

Q̃ ' Q/
√
log 2 respectively, followed by a term of order 1

Q . Consequently, we will
refer to the parameter Q as the quality factor for this wavelet.

When choosing the value ψ2
0 =

Q
√
π
, the admissibility constant is one and |ψ̂( f ) |2

can be considered as a probability density function in log-frequencies:

cψ =
∫ ∞

0
|ψ̂Q ( f ) |2d log f = 1 . (25)

In Fig. 2, we plot the Grossmann wavelet for two values of Q, respectively
Q = 8 (top plots) and Q = 64 (bottom plots). For larger Q values, the number of
oscillations of<

{
ψQ (t)

}
and its width increases whereas ψ̂Q ( f ) narrows. We can

observe in Fig. 2(c,f) that the wavelet in the log-frequency domain is symmetric
around log f0 = 0 whereas it is asymmetric around f0 = 1 in linear frequencies
(Fig. 2(b,e)). An important aspect of the oscillating progressive wavelets is how
many oscillations are fitting inside their time-window [19, 17]. This number of
oscillations determines the acuteness of the local frequency detection of a given
rhythm and is of order Q. If this number is too large, the wavelet averages over too
much oscillations and cannot provide a correct estimation. Conversely, if the number
of oscillations is insufficient (less that ∼ 3) the detection of a local rhythmwill not be
possible. The choice of this parameter is particularly important if the signal presents
sharp transitions or close frequencies, as will be illustrated in the following figures.

The authors in [17] showed that the Grossmann wavelet can be seen as a scaling
limit of a general family of progressive wavelets with two parameters, the Morse
wavelet [22, 23, 24, 25, 26, 27, 28]. The Cauchy-Paul wavelet, intensively used in
quantum mechanics and in the context of analytic functions [29], as well as the
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Fig. 2 Grossmann analysing wavelet (log-normal in frequency). ψ (t ) is computed by inverse
Fourier transform of ψ̂Q ( f ) (Eq. (21)). (a)ψQ (t ). (b) ψ̂Q ( f ) in linear-frequency scale. (c) ψ̂Q ( f )
in a (base 10) logarithmic frequency scale. (a,b,c) are computed for Q = 8. (d,e,f) Same as (a,b,c)
forQ = 64. In (a) and (d) |ψQ (t ) | (respectively<

{
ψQ (t )

}
) are plotted in thick (resp. light) black

lines.

analytic version of the derivative of Gaussian wavelet or the Airy wavelet all belong
to the Morse family.

2.4 Extension of frequency ratio distributions to time-frequency ratio
distributions

From the Grossmann progressive wavelet transform defined in the previous section,
we define a time-frequency distribution for non-stationary signals:

S (Q) (log( fa ), b) =
�����
WψQ [s]

(
f0
fa
, b

) �����

2

. (26)

Note that the integral of the wavelet transform definition in Eq. (12) is sampled
linearly in f , but that the values of the frequencies fa (or scale a) can be chosen
arbitrarily, for our purpose we will select them geometrically distributed. In the
following, b = t and fa = f are considered as time and frequency parameters,
which simplifies the notation of S(Q) (log f , t). This distribution is computed for
strictly positive values of f and we can extend the definition of the cross-correlation
function to time-frequency distributions:
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R[S (Q)
1 ,S (Q)

2 ](log q, t) =
∫ ∞

0
S

(Q)
1 (log f , t)S (Q)

2 (log(q f ), t)d log f (27)

=

∫ ∞

0

�����
WψQ [s1]

(
f0
f
, t

) �����

2 �����
WψQ [s2]

(
q f0

f
, t

) �����

2

d log f .

(28)

The log-frequency autocorrelation function is defined as R[S (Q),S (Q)](log q, t). The
temporal mean of S (Q) (log f , t): 〈S (Q)〉t(log f ) that can be seen as a power spectral
density based on the wavelet transformWψQ [s].

2.4.1 Computation of the log-frequency correlation function

Using the convolution theorem, R[S (Q)
1 ,S (Q)

2 ] can be computed quite efficiently
using the fast Fourier transform (FFT) several times (that discretizes the Fourier
transform here denoted F ): on a first step with respect to the time variable the signal
(noted F ), and on a second step with respect to the log-frequency variable (noted
Flog f ) and the computation step is an inverse FFT in log-frequency space (noted
F −1log f ).

R[S (Q)
1 ,S (Q)

2 ](log q, t) = F −1log f

[
Flog f

[
|WψQ [s1](., t) |2

]
Flog f

[
|WψQ [s2](., t) |

2
] ]

(log q)

(29)

where WψQ [s]( f , t) = F −1
[
ψ̂Q

(
f ′

f

)
F [s]( f ′)

]
(t) . (30)

This supposes that the frequency f (or scale a) parameter of the CWT is sampled
geometrically. The slowest operations consist in matrix multiplications. The fact that
the second step requires Fourier transforms of the distributions S on log-frequency
scale implies that the computed range of log-frequency values is enlarged, and
padded with zeros to avoid extra-ratios arising from the FFT computation by an
artificial periodisation of the S distribution.

3 Computation of log-frequency distributions from numerical
and real signals

3.1 Model signals constructed from sine functions

In Fig. 3, we construct an artificial non-stationary signal from the sum of two sine
functions: s(t) = sin(φ1(t)) + sin(φ2(t)), with φ2(t) = 4πt linear in time, and
φ1(t) = 2πtH (−t) + 3πtH (t) with the Heaviside step function H , and we compare
the wavelet transform analysis for the two quality factors Q = 8 and Q = 64.
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Fig. 3 Analysis of a model signal defined as the sum of two sine functions s(t ) = sin(2π f1(t )t ) +
sin(2π f2t ), with f2 = 2 constant, and f1(t ) = H (−t )+ 3

2H (t ) with the Heaviside step function. (a)
Plot of the frequencies f1(t ) and f2(t ) in (base 2) logarithmic scale. (b) S (8) (log f , t ), computed
for Q = 8. (c) S (64) (log f , t ), computed for Q = 64. (d) Temporal signal s(t ) in the time window
[-40s, 40s]. (e) R[S (8), S (8)](log q, t ). (f) R[S (64), S (64)](log q, t ). R[S (Q), S (Q)](log q, t ) is
defined in Eq. (27).

With this signal we estimate a lower bound of Q that is suitable for a frequency
discrimination according to [21]: for t < 0, Q & 10 and for t > 0, Q & 14. Moreover,
the signal length gives the constraint Q . 285. For t < 0, the signal possesses
two frequencies, highlighted on the colour-coded image of S (Q) (log f , t) by two
horizontal bands ( f1 = 1 and f2 = 2), the width of which depends on the quality
factor Q, (Q = 8 near the lower acceptable Q bound in Fig. 3(b) and Q = 64 in
Fig. 3(c)). For t > 0, we can again recognise the two bands f1 and f2, and, as
for t < 0, their narrowing for the larger Q values. The transition zone of this two
bands, below and above t = 0, needs to be discussed. Fig. 4 highlights this transition
with sections of S (Q) (log f , t) performed for remarkable values of f ; 1, 3/2 and
2. From the sections of Fig. 4(a), we estimate the width of this transition ∼ 4.8s
for Q = 8, and ∼ 39s for Q = 64. Another interesting phenomenon emerges in
the t > 0 regime, where the two frequency bands become closer. A low-frequency
modulation of the wavelet transform squared modulus in the intermediate frequency
range [ f1, f2] with period 2s appears, corresponding to frequency fm = f2 − f1
(0.5Hz in this example). The matrix of the wavelet transform modulus is not simply
the superimposition of the wavelet transform squared moduli of the sine alone,
|WψQ [s1+ s2](a, b) |2 , |WψQ [s1](a, b) |2+ |WψQ [s2](a, b) |2 , but extra terms such
as 2ψ̂(a f1)ψ̂(a f2) cos(2π( f2 − f1)b) are also involved and are not negligible when
f1 and f2 become too close (which is the case in Fig. 3(b)). This effect disappears
quite completely for larger Q values because the product ψ̂(a f1)ψ̂(a f2) vanishes.
We conclude that the choice of Q is a compromise between two objectives, (i)
discriminating close frequencies (in which case larger Q values will be preferred),
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(ii) affording a correct temporal resolution for the detection of steep frequency
changes (in which case smaller Q values will be more efficient).

Fig. 4 (a, c, e) Sections of the log-frequency spectral distributions S (8,64) (log fi, t ) selected from
Fig. 3(b,c) for the three frequencies f1 = 1, f2 = 3/2 and f3 = 2 Hz, and the same values of the
quality factorQ (8 and 64). (b, d, f) Sections of R[S (Q), S (Q)](log qi, t ) selected from Fig. 3(e,f)
for three values of q: q1 = 1, q2 = 4/3, q3 = 2, corresponding to local maxima of R[S (Q), S (Q)].
For each selected q value, R[S (Q), S (Q)] was scaled by its maximum in the time interval.

Fig. 3(e,f) shows the corresponding colour-coded maps R[S (Q),S (Q)](log q, t)
for the same signal and the same values of Q (8 and 64). We recognise for t < 0
three horizontal bands of constant q, corresponding respectively to frequency ratios
q = 1/2, 1, 2. The intensity of the middle band (q = 1) is more contrasted (×2)
because it corresponds to the sum of self-relations ( f1: f1) and ( f2: f2). The two
symmetric weaker bands correspond to cross-frequency ratios ( f1: f2) and ( f2: f1).
For t > 0, the three bands become closer, and similarly to the maps of S (Q) in
Fig. 3(b), a slow temporal modulation of R[S (Q),S (Q)](log q, t) superimposes to
the bands, due to coupling terms in the wavelet transformmodulus. As expected, and
similarly to what was observed on S (Q) (log f , t) maps, increasing Q from 8 to 64
produces a strong narrowing of the bands and a strong reduction of the low-frequency
modulation. The sections at fixed q of these R[S (Q),S (Q)](log q, t) maps are shown
in Fig. 4 to highlight similarly the transition zone around t = 0, its widening for
larger Q values, and the slow temporal modulations observed for Q = 8. Due to
the use of the Grossmann wavelet, sections at fixed t of both S (Q) (log f , t) and
R[S (Q),S (Q)](log q, t) are Gaussian of widths (

√
2Q)−1 and Q−1 respectively when

the bands are not interfering (independent of t).
Another family of model signals (Fig. 5(e)), particularly interesting with re-

spect to the applications to voice signals, is defined as the sum of sine functions
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i=1 sin(2π f i t) with f i = i f1, i positive integer. We use here a simple model with

discrete and constant frequency components, that does not pretend to account nei-
ther for the intrinsic randomness nor the nonstationarity of physiologic signals. To
improve the matching of model equations with real signals, we suggest two recent
works based on the implementation of stationarity-breaking operators on Gaussian
stationary random signals [30, 31]. In Fig. 5, we take n = 6 and perform the same
time-frequency analysis with a Grossmann analysing wavelet with two values of Q,
respectively Q = 8 (b,c) and Q = 128 (f,g). We note again that the larger Q, the finer
and distinguishable the peaks of bothS (Q) (log f , t) and R[S (Q),S (Q)](log q, t). The
already noticed low-frequency modulations in the previous example again appear in
this example (Fig. 5(b,f)) for Q = 8. Amazingly the frequency of this slow mode
is precisely the fundamental frequency of this signal, and this modulation is the
most intense for the highest harmonic ( f6 = 6 f1), this effect is due to the ordering
of these 6 frequencies as integer multiples of f1, giving a constant frequency step
between successive harmonics f i+1 − f i = f1. This f1 = 1 Hz slow modulation
mode appears when two frequencies of the list are too close (in log-scale) for being
separated properly by the analysing wavelet.
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Fig. 5 Analysis of a model signal defined as the sum of 6 sine functions s(t ) =
∑6

1 sin(2π fi t ),
with fi = i f1 constant. (a) Fourier spectra of s: | ŝ |( f ) on which the two axes have been in-
verted. (b) S (8) (log f , t ), computed for Q = 8. (c) S (128) (log f , t ), computed for Q = 128.
(d) S (Q) (log f , t = 0). (e) Temporal signal s(t ) in the time window [-6.5s, 6.5s]. (f)
R[S (8), S (8)](log q, t ). (g) R[S (128), S (128)](log q, t ). (h) R[S (Q), S (Q)](log q, t = 0). In (d)
and (h) the plots for Q = 8 (resp. 128) are coloured in black (resp. red). R[S (Q), S (Q)](log q, t )
is defined in Eq. (27).

We observe that in the time-frequency distribution of s shown in Fig. 5(b) for
Q = 8, the higher harmonics cannot be distinguished, and their separation requires



Quantifying the rationality of rhythmic signals 15

increasing markedly the value of Q (for instance Q = 128 in Fig. 5(c)). Fig. 5(d)
illustrates two sections of these distributions for t = 0 (black curve, Q = 8 and
red curve, Q = 128). This phenomena is even more visible on the ratio distribution
R[S (Q),S (Q)](log q, t) in Fig. 5(h). R[S (Q),S (Q)](log q, t) presents an odd number
of peaks, it is symmetric around the central peak (q = 1). In that example, each
of the sixth frequency components contributes to this central peak. 11 lateral peaks
emerge for q > 1, and accumulate closer to the central peak. The positions of these
peaks correspond to all the possible distinguishable frequency ratios of the signal,
and the amplitude of these peaks is proportional to the number of combinations of
frequencies that produces a given ratio. To distinguish all the peaks in Fig. 5(g,h)
it was necessary to increase Q to 128. The total number of frequency ratios (for
q > 1) is

∑n−1
i=1 i = n(n − 1)/2 if n > 2 , in this example it is equal to 15. When there

is no redundancy in the frequency ratios, for instance if harmonic frequencies are
prime multiples of the fundamental frequency, each frequency ratio occurs once in
R[S (Q),S (Q)](log q, t).

3.2 Physiological signals: voice recordings

The voice signals reported in this manuscript were selected from the VOice-ICar-
fEDerico II (VOICED) database [32] recorded by the “Institute of High Performance
Computing and Networking of the National Research Council of Italy (ICAR-CNR)”
and the Hospital University of Naples “Federico II” during 2016 and 2017. This
database can be downloaded from the PhysioNet website [33]. It has been proposed
lately as a new element in research on automatic voice disorder detection and clas-
sification. Together with medical phonetic examinations of a set of 208 individuals,
among which 73 male and 135 female, voice signals, proportional to a local sound
emission intensity, were acquired for about 4-5 s and sampled at 8000 Hz at 32 bit,
vocal folds were examined by laryngoscopy and two medical questionnaires were
collected at the ambulatories of Phoniatrics and Videolaryngoscopy of the “Federico
II” Hospital of the University of Naples or at the medical room of the ICAR-CNR.
The protocol description is reported in [32]. Dysphonia is a quite common voice dis-
order (1/3 of adults will suffer from it once in their lifetime), it may originate from a
functional or organic alteration of the vocal apparatus and its mechanics and may not
systematically be considered as pathologic [34, 35]. On the one side, laryngoscopy is
an invasive technique that gives a direct view of the physical alterations of the vocal
tract [36]. On the other side, the analysis of the voice acoustic signal is not intru-
sive and, thanks to the improvement of signal analysis methods, it can nowadays be
used to guide or assist the recognition of the origin of a suspected dysphonia. Voice
classification methods from voice recordings by the recognition and quantification
of the voice timbre (or tone color) has rapidly attracted the interest of electronic
and computer science engineers. Globally, one can classify these methods in three
groups [37], (i) the time-domain methods which use autocorrelation functions or
their variants [38, 39] to search for repeatability between a temporal waveform and



16 A. Guillet, A. Arneodo, P. Argoul, and F. Argoul

its time lagged version, (ii) frequency domain methods which locate characteristic
frequencies and conclude to a spectral “coloraturas” for the voice, these methods
meet rapidly their limitations if the signal is not stationary, (iii) time-frequency
domain techniques [40, 41, 42], that we have chosen for this study.

The voice signal s(t), numbered #008, is that of a female of 51 years without
deep vocal impairment at the time of the test, ranked in the group of reflux laryngitis
(Fig. 6). This example was chosen because it has marked peaks which can be detected
by thresholding the signal (this is quite rare, because it requires both a particular
shape of the signal and a global stationarity of its amplitude). The Fourier spectra of
this signal (reported in log-log and log-lin scales in Fig. 6(b) and (c) respectively)
weight the power (in log-scale) of its spectral components; a fundamental mode
with frequency f1 ∼ 188 Hz and higher modes (harmonics), ranked as integer
multiples of f1: i f1 with i = 2, 3, 4, 5, ...with different powers. This simple frequency
decompositionwas observed inmost of the signals provided in theVOICEDdatabase,
this is a conspicuous characteristic of the human voice. These voice signals appear
as the alternance of quite regular large and sharp peaks (which give the fundamental
mode) and smaller oscillations which may be very irregular. In some cases these
smaller oscillations may be difficult to discriminate from the noise produced by some
friction of the vocal tracts. Even though this type of signal can be compared to the
sum of sine functions introduced in Fig. 5(e), the higher number of harmonics of
this signal and their different power means that it could be reproduced by a nonlinear
dynamical system (ruled by nonlinear ordinary differential equations) where the
different frequency components follow nonlinear rules [45]. Our purpose in this
paper is not to discuss the physical and biological mechanisms or the modelling of
voice signals, we have selected these examples as illustrations for our log-frequency
correlation method because their spectral decomposition is very rich in harmonics
(overtones) of the fundamental frequency.

The temporal change of the fundamental mode frequency f1(ti ) and the largest
peak amplitude A(ti ) can be extracted from the #008 voice signal by thresholding
its largest amplitude peaks (maxima: sP (ti ) and minima sp (ti )) as depicted in
Fig. 6(e). Fig. 6(c) shows that f1(t) is modulated in time, suggesting an irregularity
of the rhythm coming from some difficulty of the patient to maintain a constant value
of f1. In this example, a similar temporal modulation is also visible on the largest
peak amplitude A(ti ) (Fig. 6g). If these temporal variations were solely produced
by instrumental noise, the first return scatter plots of f1 and A at successive peaks
would give a symmetric cloud of points around the diagonal. In Fig. 6(d) for the
fundamental frequency modulation and in Fig. 6(h) for the amplitude modulation
these first return scatter plots are anisotropic, meaning that the dispersion of these
values extends beyond instrumental noise. This conclusion is also confirmed by the
temporal evolution of f1(ti ) (Fig. 6(c)) and A(ti ) (Fig. 6(g)), we notice that, in the
first second, the modulations of f1(ti ) have the largest amplitude and are quasi-
periodic, this first regime can also be recognised from the modulations of A(ti ).
This patient has a rather mild dysphonia (classified as produced by reflux laryngitis)
which can be recognised by an important set of harmonics and a rather low vocal
fold noise.
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Fig. 6 Analysis of the #008 voice signal s(t ) from the voice-icar-federico-ii database [32]. (a)
Zoom of the signal during 0.2 s. (b) | ŝ | plotted versus f in logarithmic scales (base 10 and base
2 respectively). (c) Local frequency f1(t ) computed from the detection of the extrema of larger
prevalence from the signal (see (e)). (d) First return inverse of interpeak intervals f1(ti ) = 1/∆Ti

scatter plot (these large amplitude peaks are marked with black dots in (e)). (e) Zoom of the signal
on the short interval (20 ms) showing the local maxima sP (ti ) (black dots) and minima sp (ti )
(black stars) which are used to compute both the local frequency: f1(ti ) = 1/∆Ti and the amplitude
A(ti ) of each larger amplitude peak: A(ti ) = sP (ti )− sp (ti ). (f) | ŝ | (in base 10 log-scale) plotted
versus f in Hz (linear scale). (g) Amplitude of the largest peaks A(ti ) versus time (see (e) for their
detection). (h) First return peak amplitude (A(ti+1) vs A(ti )) scatter plot.

The second voice signal illustrated here is that of a female of 62 years (#169 in the
VOICED database), with hyperkinetic dysphonia. In that case, the quasiperiodicity
observed in signal #008 is so much disrupted that it is impossible to use the previous
threshold method for extracting the largest signal peaks; the time-frequency analysis
is required to check to which extent we can find a timbre for this voice, and how it
changes with time. Fig. 7(b,c) reports the colour-coded images of the #008 (s1) and
the #169 (s2) time-frequency distributionsS (64) (log f , t). With a temporal averaging
of these time-frequency distributions 〈S (Q) (log f , t)〉t , we get a smooth estimate of
power spectrum distributions for these two examples (Fig. 7(d)). From the log-
frequency filtering by the Grossmann analysing wavelet, the shapes of the averaged
peaks shown in Fig. 7(d) are in general different from those which could be obtained
with a Welch estimator [43]. The fundamental band frequency of #169 is much
broader than that of #008, and shifted to greater values f1,1 ∼ 188.8Hz (voice #008)
and f1,2 ∼ 268Hz (voice #169), and we also note that it is quite impossible in #169 to
discriminate more than one harmonics from the averaged frequency spectrum. The
time frequency distributions in Fig. 7(b,c) highlight these differences. Whereas the
fundamental mode band and its harmonics are weakly modulated in time for #008,
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Fig. 7 Comparison of the time-frequency analysis of voice signals #008 (s1) and #169 (s2). (a)
Zooms of s1 and s2 in a 0.1s window. (b,c) Associated time-frequency distributions (Eq. (26))
S (64)[s1](log f , t ), and S (64)[s2](log f , t ) computed with a Grossmann analysing wavelet and a
quality factor Q = 64. The horizontal bands highlight the fundamental and harmonic frequencies.
(d) Corresponding temporal averages of the frequency distributions reported in panels (b) black
line and (c) red line. The ordinate of (d) (here the horizontal axes) is arbitrary and the frequency
distributions are normalised.

that of #169 are very irregular, the third and fourth harmonics can be mixed up and
indistinguishable, the harmonics above five are no longer visible. The vocal folds of
#169 can no longer maintain their tight contact that is essentiel for a correct sound
emission and the resulting effect, when hearing the voice, is that of a scratching
noise which covers completely the expected tone. This person is quite unable to sing
a melody.

3.3 Tuning voice pitches via the computation of correlation functions

3.3.1 Reference frequency distribution S0, j

For each signal s j , an “ideal” frequency distribution S0, j is first introduced in order
to compare the real frequency distribution S (Q)

j with a reference through the cross-
correlation defined in Eq. (27). Let us consider the vibrating string model used to
represent the sounds emitted by stringed instruments. When the string is plucked at
its ends, its natural frequencies are integer multiples of the fundamental frequency
depending on the square root of the force of tension of the string [44]. By analogy to
this model, the reference frequency distribution S0, j (log f ) is a Dirac comb model
in log scale defined as a sum of integer multiples of the fundamental frequency f1, j
of the studied signal
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S0, j (log f ) =
∑
n

cnδ
(
log

f
n f1, j

)
, (31)

with weights cn ≥ 0 and possible cut-off (cn = 0, ∀n > N). We assume that the
series of cn is bounded:

∑
n cn < +∞.

We compare then the spectrum of the comb reference model to itself. We build
an ideal ratio distribution by computing the auto-correlation of S0, j derived from
Eq. (28):

R00(log q) = R[S0, j,S0, j ](log q) =
∑
n

∑
m

cncmδ
(
log q

n
m

)
, (32)

this ratio distribution depends neither on time, nor on the signal under study. When
log q = 0 (q = 1), R00(0) =

∑
n c2n < +∞.

3.3.2 Cross-correlation R[S0, j,S
(Q)
j

]

The time distribution cross-correlation function between S0, j and S
(Q)
j is deduced

from Eq. (28):

R[S0, j,S
(Q)
j ](log q, t) =

∑
n

cnS
(Q)
j (log(qn f1, j ), t). (33)

Different degrees of “frequency matching” can also be captured by high peaks
in R[S0,S

(Q)
j ](log q, t), especially when q is a simple frequency ratio of harmonics

of f1, j and f1,0, for example 1:2 - octave, 2:3 - fifth, 3:4 - fourth would give
a perfect consonance, 3:5 - major sixth and 4:5 - major third would give a medial
consonance, 5:6 -minor third and 5:8 -minor sixthwould give imperfect consonance.
“Unmatched” frequency configurations would be obtained if a couple of frequency
ratio of harmonics belong to the dissonance list: 8:9 - major second, 8:15 - major
seventh, 9:16 - minor seventh, 15:16 - minor second, 32:45 (∼ 1/

√
2) - tritone [46].

In the following, we will denote Ri j = R[S (Q)
i ,S (Q)

j ], the time-frequency window
is fixed (Q = 64).

3.3.3 Application to two voice signals from the VOICED data base

For each of the two voice signals #008 and #169, we construct a Dirac comb model
as reference distribution. These distributions are such that their lowest frequency
peak matches the signal fundamental frequency (for instance for the signal #008:
f1,1 = 188.8Hz and for signal #169: f1,2 = 268Hz). The frequency of the highest
harmonic of the comb model is limited by the sampling frequency Fs : n f1, i . Fs/2
(Fs = 8000 Hz). We take cn = 1, ∀n ≤ 15:
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S0, j (log f ) =
15∑
n=1

δ

(
log

f
n f1, j

)
, j = 1, 2. (34)

For numerical computations, the frequency f is discretized in fk = fmin ·α
k−1, with

k = 1, 2, 3, ...N and N the size of the frequency vector f , fmin its minimum value
and α the geometric factor determined from N , fmin = 100 Hz (fixed by the voice
database), and fmax = Fs/2. The correlation function R0 j (log q, t) is computed by
combining this comb distributionwith that of the voice signal as in Eq. (29), using the
analytic expression of the log( f )-Fourier transform (Flog f ) of the comb distribution.
We do not take its Fourier transform numerically because it is the source of numerical
artefacts. For the comb model aligned to the fundamental frequency f1, j of signal
s j , it reads:

Flog f

[
S0, j

]
(u) =

15∑
n=1

exp(−i2πu log(n f1, j/ fmin)). (35)

u is the conjugated variable (through Fourier transformation) of log( f ). In that
space, we take the scalar product of Flog f

[
S0, j

]
with the conjugate of Flog f

[
S

(Q)
j

]

(computed numerically from WψQ [s j ](log f , t)) and compute its inverse Fourier
transform to recover the correlation function R[S0, j,S

(Q)
j ](log q).
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Fig. 8 Ratio distributions of voice signals ((1) #008 and (2) #169) and their frequency-
matched Dirac comb models (R0 j ). (a) Correlations of the frequency distribution 〈R0i 〉 =

R[S0, j, 〈S
(Q)
j 〉t ](log q) ( j = 1, 2, Q = 64) with their reference comb frequency distributions

(defined in the text). These correlations have been normalised to their maximum for ease of com-
parison. (b, c) Plot of R[S0, j, 〈S

(Q)
j 〉t ] versus q for q > 1 (b) and 1/q for q < 1 (c).

The time-averaged frequency ratio distributions R[S0, j, 〈S
(Q)
j 〉t ](log q) of each

voice signals #008 and #169 with its “best-fitted” Dirac comb model are presented
in Fig. 8. If the signals were regular and quasi-stationary, these ratio distributions
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should pinpoint ratios corresponding to themultiples of the fundamental frequencies.
The plot of these correlation functions in linear q and 1/q scales in Figs 8(b) and 8(c)
highlights a strong asymmetry, it is due to different amplitudes of the fundamental
mode and its harmonics compared to the constant coefficients in the comb model.
Again, as for frequency distributions, we note a strong difference of the ratio distri-
butions for signals #008 (s1) and #169 (s2). Confronting R[S0,S (Q)](log q, t) with
S (Q) (log f , t) for voice signal #169 (Fig. 9) unveils important features which were
not visible from the time averaged ratio distribution R[S0, 〈S (Q)〉t ](log q) (Fig. 8).
Even if the fundamental mode frequency and its harmonics vary a lot during these
3s record, their ratios do not change dramatically, as a characteristic property of
the mechanics of the vocal folds. In the middle of this signal (1.4s< t < 1.55s) (see
Fig. 9(a) for a zoom in this interval), four flat ratio bands can be noticed, suggesting
that this person put sufficient effort to recover for a short period of time a “mild
sensation” of timbre. How this intermittent loss and recovery of the voice timbre
occurs, the time range of these alternating sequences could be used as diagnosis cri-
teria or aftercare follow-up (invasive intervention is necessary if soft or hard nodules
are detected on the vocal cords (stage III), or voice exercises for earlier stages). It
has been recently shown for patients with neurodegenerative diseases, that not only
the patient’s ability to speak and formulate sentences is altered but also their voice
purely acoustic features [47].
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Fig. 9 Comparing R[S0, S (Q)](log q, t ) with S (Q) (log f , t ) for voice signal #169. (a) Zoom
of s(t ) in the [1.4s, 1.5s] interval. (b) Plot of a middle selection of 3s out of the 4.5s recorded
voice signal. (c) Temporal average of the frequency distribution 〈S (Q)〉t (log f ) computed with
a Grossmann analysing wavelet with quality factor Q = 64. (d) Colour-coded map of the time-
frequency distribution S (Q) (log f , t ). (e) Ratio distribution of the averaged frequency distribution:
R[S0, 〈S (Q)〉t ](log q). (f) Colour-coded map of the time-ratio distribution R[S0, S (Q)](log q, t ).
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Fig. 10 Comparison of the time-frequency analysis for two “normal” voice signals: s1 is a sung
vowel, s2 is simply a maintained vowel. (a) Zooms of s1 and s2 in a 0.1s window. (b,c) Asso-
ciated time-frequency distributions (Eq. (26)) S (Q)

1 (log f , t ), and S (Q)
2 (log f , t ) computed with

a Grossmann analysing wavelet with quality factor Q = 64. The horizontal bands highlight the
fundamental and harmonic frequencies. (d) Corresponding temporal averages of the frequency dis-
tributions reported in panels (b) black line and (c) red line. The ordinate of (d) (here the horizontal
axes) is arbitrary and the frequency distributions are normalised.

3.3.4 Cross-correlation R[S(Q)
i

,S
(Q)
j

] of two voice signals

There are two interpretations for the log-frequency cross-correlation function
R[S (Q)

i ,S (Q)
j ](log q, t), leading to different possible applications. Either we see

it as a distribution of the ratios q between the frequencies of S (Q)
i (log f , t) and

S
(Q)
j (log f , t), or we view it for each q as a measure of how well S (Q)

i (log f , t)

and S (Q)
j (log(q f ), t) match. For instance, in the example reported here, S (Q)

1 ,S (Q)
2

are obtained from two different persons holding a pitch in their vocal range. The
peaks in the correlation function R[S (Q)

1 ,S (Q)
2 ](log q) indicate the importance of

the corresponding frequency ratios between the voices, in accordance with its first
interpretation as a ratio distribution. When these ratios are close to simple rational
numbersm/n, they indicate the presence of am : n-synchronisation, that corresponds
to the consonance of the voices simply sung together. This outlines our strategy to
assess how rational the spectral relations of the voices are. The other interpretation
is as follows: assuming S(Q)

2 (log q f ) models the second voice transposed by q to a
different pitch, the peaks in R[S(Q)

1 , S(Q)
2 ](log q) also indicate for which pitch trans-

positions the second voice would best match the first voice. This allows us to tune
one voice with the other.

The possibility to match a real voice signal with reference model signals is
very interesting because it can limit the maximum harmonics frequency for this
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cross-correlation, as an “intelligent” low pass filtering. This would not be possible
by computing directly R[S (Q)

i ,S (Q)
j ]. We compare in Figs 10 and 11 two different

“normal” voices (“a” vowel) from the clinic research in the speech therapy laboratory
UNADREO in Toulouse (France). The frequency distributions S (Q)

i (log f , t) and
S

(Q)
j (log f , t) (i , j) plotted in Fig 10, have the same characteristic frequency peaks

structure as the voice #008, but we notice that the frequency distribution of the voice
s1 has greater energy in the harmonics around 1000 Hz, which is characteristic of
the emission of trained singer voices.

The cross-correlation ratio distribution Ri j = R[S (Q)
i ,S (Q)

j ] is quite different
from the auto-correlation ratio distributions R00, R(Q)

ii and R(Q)
j j . A common reference

Dirac comb is chosen for both s1 and s2 (i = 1 and j = 2) and is aligned to the
fundamental frequency f1,1 = 307.2Hz. The highest central peak indicates the ratio
of the fundamental frequencies, it is centered for R00, R11 and R22 and shifted to
q = f1,2/ f1,1 = 247/307.2 ∼ 2−0.315 for R12. R00 shows very sharp and narrow
peaks which line up symmetrically on either sides of q = 1. The amplitude of these
peaks recapitulates the weighting of the frequency ratios q for simple comb models
and gives us which distribution would be obtained if all the frequency components
of the signals had exactly the same power. We finish with the question of comparing
the ratio distributions of the voices to the ideal reference.

3.4 Frequency distribution matching and sonance

We propose to find the best match between R12 and R00 by computing yet another
cross-correlation:

R[R00, R12](log x, t) =
∫ ∞

0
R00(log q)R12(log xq, t)d log q (36)

=

∫ ∞

0
R00

(
log

q
x

)
R12(log q, t)d log q =

∑
n

∑
m

R12

(
log

m
n

x, t
)
. (37)

This new quantity can be obtained by two equivalent paths:

R[R00, R12](log x, t) = R[R01, R02](log x, t), (38)

each corresponding to two uses of the newly introduced parameter x that we call pitch
transposition. Either R12(log xq, t) is seen as the distribution of ratios q between the
first voiceS (Q)

1 (log f , t) and the second voice of transposed pitchS (Q)
2 (log x f , t). Or

the x in R00(log(q/x)) is seen as a varying ratio between the fundamental frequency
of the ideal distribution S0.

Indeed, the best matching is expected when the pitch of the second voice is
transposed to match the first one, thus when the voices are sung at unison, or
equivalently when the fundamental frequency ratios are matched between the pairs
of distributions: x = f1,2/ f1,1.
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Fig. 11 Comparing ratio distributions and sonance of the two voice signals of Fig. 10. (a) Plots of
the normalised ratio distributions R0 j = R[S0,1, 〈S

(Q)
j 〉](log q) with j = 1, 2. For both signals we

use the same Dirac comb model with the fundamental mode frequency of voice s1. (b) Plots of the
normalised ratio distributions R11, R22, R12 with Ri j = R[〈S (Q)

i 〉, 〈Sj 〉](log q) computed from
the two voices, and R00 = R[S0,1, S0,1](log q) computed from the comb Dirac model. (c) Plot of
the sonance (cross- and auto-) of the two voices with respect to the reference comb model ratio

distribution for an arbitrary pitch transposition log(x):G[Ri j ](log x) = R[R00, Ri j ](log x) with

i, j = 1, 2 green line, i, j = 1, 1 blue line and i, j = 2, 2 red line. (d) Sonance curves of Fig. 11(c)
are corrected by subtracting their lower envelope.

As a result, for two voices of fundamental frequency f1,1 and f1,2/x, the quantity
R[R00, R12](log x, t) as a function of the pitch transposition x has the following in-
terpretation: it measures how “ideal” (similar to the model R00) the spectral relations
are between the voices. Extrema of this curve appear directly related to the musical
property of consonance or dissonance of certain fundamental frequency ratios. For
this reason, we call this quantity the sonance between the two voices, and we rewrite
its definition (36) using the reference ratio distribution as the density of a measure
dG(log q) = R00(log q)d log(q):

G[R12](log x, t) = R[R00, R12](log x, t) =
∫ ∞

0
R12(log xq, t)dG(log q), (39)

that we could denote equivalentlyG[S (Q)
1 ,S (Q)

2 ](log x, t).
This sonance measure is a geometric function of a pitch transposition quantity

x, its maxima indicate the optimum relative pitch transpositions for which the two
voices sung together would match best. This term sonance bears some analogy with
the concepts of consonance and dissonance which were first suggested by Pythagoras
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(sixth century BC), hence our choice of the symbol G, but this similarity of terms
must be nuanced. Dissonance and consonance are not mathematical quantities since
they have been used to describe an empirical sensation of human beings (combination
of cochlea physiology and cognitive training) when hearing a mixture of sounds (two
or more)[49, 50].

In Fig. 11, we compute the sonance of the two voice records shown in Fig. 10, from
time-averaged frequency distributions (for convenience) referenced to the same comb
model. The comparison of the sonance profiles in (c) to the ones of the generating
auto- and cross-correlation functions R01 and R02 in (a), and R12, R11, R22 and
R00 in (b) draws our attention to important features. Apart from the asymmetry
(symmetry) of the cross-(auto-)sonances, expected for any correlation function, the
sonance profiles have a strong positive baseline and are much less peaked than their
simpler counterparts Ri j . This can be linked to the combined effects of a dense forest
of peaks in R00 and their width in the voices ratio distributions. Nevertheless, this
baseline can be subtracted, as shown in Fig. 11(d), for further comparison. The
highest peaks of G[Ri j ], pointing to the interval changes between the two voices
that would lead to the best consonances, are very similar to the ones already present
in Ri j . For instance, the global maxima of G[R12] to the left of x = 1 corresponds
to the ratio between the fundamental frequencies (voice s2 has a lower pitch than
voice s1). However, their prominence are different, and sonance profiles contain a
more detailed landscape of smaller peaks and wells, tracking the gains and losses
of consonance of the voices sung simultaneously at the corresponding relative pitch
transposition. The almost inexistent peak ofG[R12](0) indicates that these two voices
sung together without any tone adjustment would be quite dissonant because their
fundamental and harmonic frequencies have few commensurability: the frequency
ratios are not close to simple rational numbers m/n. In agreement with the common
intuition, the central value of the auto-sonance is also higher for the singer voice
than for the untrained one,G[R11](0) > G[R22](0).

The implementation of a frequency reassignment would be particularly beneficial
to this time-dependent application, improving successively the discrimination of
higher harmonics in the CWT, the resulting ratio distributions and the resolution of
the sonance landscape. In particular, recent developments in this area based on the
synchrosqueezing transform [51, 52] could be important for further developing the
sonance concept proposed herein.

As a last remark, the sonance profile of the voices is directly influenced by two
choices: first, the quality factor of the wavelet Q, which determines the distinguisha-
bility of the frequencies and their ratios, and second, the choice of the number of
harmonics and their amplitude in the reference comb model S0. We believe that, for
a realistic sonance profile, Q should be related to the critical band of the ear [49] and
is, together with the design of the reference ratio distribution R00, representative of
the musical training of the ear.
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4 Conclusion

Wehave introduced time-log-frequency ratio distributions based on analytic wavelets
that we have applied to model and physiological signals (voice records). We found
that the Grossmann wavelet is a natural shape for this task. A second correlation
operationwas defined to compare thematching of the voices ratio distributionwith an
ideally rational one, called sonance. This function of a pitch transposition estimates,
in a sense, the “harmony” produced by the two voices sung together. This work
has shown that a geometric correlation function, in log-frequency is best suited to
uncover characteristic frequency ratios between different signals. The application to
voice records has been selected not only for its simplicity to perform and reproduce,
but also because it gives credit to the concept of frequency ratios in voiced sounds.
This method is presently generalized to physiological signals recorded from different
organs or tissues, such as the heart and the breath, extending the application of these
ratio distributions.
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