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The settling behavior of individual spheres in a quiescent fluid was studied experimentally. The dynamics
of the spheres was analyzed in the parameter space of particle-to-fluid density ratio (Γ) and Galileo number
(Ga), with Γ ∈ (1.1,7.9) and Ga ∈ (100,340). The experimental results showed for the first time that the mean
trajectory angle with the vertical exhibits a complex behavior as Ga and Γ are varied. Numerically predicted
regimes such as Vertical Periodic for low Γ values, and Planar Rotating for high Γ values were validated.
In particular, for the denser spheres, a clear transition from planar to non-planar trajectories was observed,
accompanied by the emergence of semi-helical trajectories corresponding to the Planar Rotating Regime. The
spectra of trajectory oscillations were also quantified as a function of Ga, confirming the existence of oblique
oscillating regimes at both low and high frequencies. The amplitudes of the perpendicular velocities in these
regimes were also quantified and compared with numerical simulations in the literature. The terminal velocity
and drag of the spheres were found to depend on the particle-to-fluid density ratio, and correlations between
the drag coefficient and particle Reynolds number (Rep) as a function of Ga were established, allowing for the
estimation of drag and settling velocity using Ga, a control parameter, rather than the response parameter Rep.

I. Introduction

Particles in fluids are representative of many natural and in-
dustrial systems and therefore extensively investigated in a va-
riety of scenarios such as turbulence [7, 8, 14], and low [6, 26]
to moderate [19, 36] Reynolds number such as this work. Par-
ticularly, and despite its apparent simplicity, the physics of
finite size spheres settling hides a hierarchy of rich intricate
phenomena, some of which are still shrouded in mystery. We
are for instance still unable to finely model and predict the
terminal velocity of a particle settling in a turbulent environ-
ment. The role of linear and non-linear drag [16, 30], the link
with possible scenarios enhancing the settling [22] or hinder-
ing it [25], the influence of finite size effects [10] and the role
of collective effects [1] are just some examples of subtle cou-
plings which still need to be further explored to improve our
capacity to predict the turbulent settling of spherical particles.
Challenges are particularly important for environmental issues
such as the forecast of particle and pollutants deposition in the
atmosphere, rivers and seas.

Interestingly, even the non-turbulent situation, where a
sphere settles in a quiescent fluid, is already far from trivial
and results in a series of path instabilities [19] not yet fully
understood. These path instabilities are related to a complex
wake dynamics which emerges for a sphere with a relative ve-
locity with respect to the surrounding fluid. It is indeed well
known for instance that the wake behind a fixed sphere of typ-
ical size d, in a steady stream with velocity U and viscos-
ity ν , has a number of bifurcations that depend on Reynolds
number Re = Ud/ν . These transitions have been thoroughly
explored in numerical and theoretical [12, 24, 31] and experi-
mental [23, 27] studies for the case of fixed spheres in a steady
stream for which the onsets of different wake bifurcations are
finely characterised.
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When the sphere is not fixed (e.g. if it is settling under grav-
ity or rising due to buoyancy in a quiescent fluid), these wake
instabilities develop into path instabilities [11] as the momen-
tum and torque exerted by the perturbed fluid onto the particle
will influence its trajectory. A pioneering work regarding flu-
idised beds already highlighted the non-applicability of New-
ton’s free settling law on rising particles [21], caused by the
aforementioned wake effect on the particle trajectory. Jenny
and coworkers [19, 20] made the first systematic numerical
study exploring the trajectory dynamics of a single spherical
particle settling or rising in a quiescent unconfined fluid. This
study was refined later by Zhou and Dušek [36]. The complex
dynamics of rising or settling spheres has also been character-
ized experimentally and theoretically [2, 3, 17, 18, 29, 34].

Two dimensionless numbers control the free sphere set-
tling problem: particle-to-fluid density ratio Γ = ρp/ρ f (with
ρp and ρ f the particle and fluid densities respectively) and
Galileo number Ga =

√
|Γ−1|g)d3/2

p /ν (with dp the parti-
cle diameter, g the local acceleration of gravity and ν the
kinematic viscosity of the surrounding fluid). The Galileo
number was defined here as Ga =Ugdp/ν , where the charac-
teristic velocity is the buoyancy velocity Ug =

√
|Γ−1|gdp.

The different regimes and bifurcations of single settling or ris-
ing spheres were then assessed in a Γ – Ga parameter space.
While the regimes observed for both density ratio below one
(rising spheres and bubbles) [2, 3, 17, 21] and for density ratio
above unity (particle settling) [18, 19, 29, 34, 36] are inter-
esting, we will restrict ourselves to density ratios larger than
unity in the present article. To keep this introduction con-
cise, a detailed review of previous investigations is provided
in Sec. III, to which our experimental observations are sys-
tematically compared. We specifically stress that a number of
important regions of the parameter space still remain exper-
imentally unveiled and need to explored in order to charac-
terise the settling regimes and corroborate numerical predic-
tions. This is particularly the case for particle-to-fluid density
ratios larger than 3.9 for which no experimental data is avail-
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able.
Besides the complexity of path instabilities, the drag force

experienced by the particles is an important element of the
problem which has interested the scientific community. In-
quiring in particular on whether the drag force of fixed spheres
in a steady stream could be used to estimate the terminal set-
tling or rising velocity of freely moving particles. Raaghav
et al. [29] have studied the drag of rising and settling parti-
cles and concluded that for density ratios between 0.86 and
3.9, the particle settling drag estimated from the mean ver-
tical terminal velocity of the spheres does not differ signifi-
cantly from that of a fixed sphere in free stream flowing at
the same velocity. The latter implies that the drag coeffi-
cient CD does not depend on particle-to-fluid density ratio.
This idea is used extensively in the literature, and it has been
widely used to obtain correlations and empirical models as-
suming a simple dependency of CD on particle Reynolds num-
ber Rep = vpdp/ν [5, 32]. This has been proven incorrect
for light particles where a marked dependency appears when
Γ < 0.1 [2, 21].
Another practical issue is that the correlations for drag and
settling velocity available in the literature are usually given
in terms of the particle Reynolds number. However, when
the particles are free to move, the velocity vp is not a control
parameter but a response parameter. For the case of settling
particles, these correlations do not allow to give an explicit
expression for the terminal velocity in terms of the drag coef-
ficient CD, because CD itself depends on the terminal velocity.
However, from a pure dimensional analysis approach, the nat-
ural expected dependencies of the drag coefficient for settling
spheres are both on Γ and Ga, which are actual control pa-
rameters, only depending on known physical parameter of the
problem (densities of the particles and the fluid, fluid viscos-
ity, particle diameter and acceleration of gravity). This brings
the two following questions: (i) to which extent is the approx-
imation of CD not depending on density ratio valid? And (ii)
can a correlation of CD be given in terms of Ga rather than
Rep? This would allow to know the drag coefficient a priori
without requiring to know the terminal velocity beforehand.

In the present article, we investigate experimentally the set-
tling of spherical particles in a quiescent fluid over a broad
region of the parameter space, namely 1 < Γ < 8 and 100 <
Ga < 350 (symbols in figure 2 indicate all points explored in
the parameter space). For all the investigated conditions, we
fully characterize the trajectory properties of the particles as
well as the drag coefficient derived from the particle’s termi-
nal velocity. The article is organized as follows. We first in-
troduce the experimental setup in Sec. II. The results are then
described in Sec. III. Finally, our conclusions are summarized
in Sec. IV.

II. Experimental Methods

A. Experimental setup and protocol

The experiments are performed in a transparent PMMA
tank with a square cross-section of 170 × 170 mm2 and a
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FIG. 1. Experimental setup. Two cameras image the particles settling
inside the water tank.

height of 710 mm, shown in Figure 1. The tank is filled with
different mixtures of pure glycerol (Sigma-Aldrich W252506-
25KG-K) and distilled water, ranging from 0% to 40% glyc-
erol concentration. The viscosity of each mixture is measured
with a rheometer Kinexus ultra+ from Malvern industries with
a maximum uncertainty of 0.6%. The kinematic viscosity ν

ranges from 10−6 to 1.05×10−3 m2/s. Moreover, as the vis-
cosity is dependent on the temperature, an air-conditioning
system keeps a constant room temperature of (22 ± 0.6)◦C
yielding a 2% uncertainty on the precise value of the viscos-
ity.
A 150 mm region of fluid above and below the visualisation
volume is set to ensure both the disappearance of any initial
condition imposed on the particles release and the effects of
the bottom of the tank. Furthermore, a minimum distance of
20 mm between the tank walls and the particles is maintained.
In this configuration and using the correlations proposed by
Chhabra et al. [9] the settling velocity hindering due to wall
effects is estimated to be lower than 3%.
The trajectory of the settling particles is recorded using two
high speed cameras (model fps1000 from The Slow Motion
Camera Company Ltd) with a resolution of 720× 1280 px2

and a frame rate of 2300 fps. The movies recorded from
these two cameras allow the implementation of time resolved
4D-Lagrangian Particle Tracking (4D-LPT) to reconstruct the
particle trajectories [4]. This method tracks particles with
an uncertainty of 90µm which is estimated from the dispar-
ity between rays when stereo-matching the particle between
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the two cameras. This experimental noise on the particle po-
sition is short time correlated and gets significantly reduced
by the high temporal redundancy associated to the oversam-
pling achieved with the frame rate of 2300Hz and the sub-
sequent gaussian filtering of the trajectories (further detailed
below) used to estimate particle velocity. As a consequence,
the uncertainty on the instantaneous velocity along trajecto-
ries is less than 4 mm/s [4] while the associated uncertainty
for the velocity averaged over a given trajectory drops below a
few hundred microns per second. Backlight illumination was
used, with two LED panels facing each camera on the oppo-
site side of the tank, as represented by the dark blue rectangles
in Fig. 1.

Various series of experiments were carried with different
optical magnification ratios, in order to access large scale
properties of the trajectories (with lower magnification) as
well as higher resolution data (with higher magnification).
The magnification was varied by keeping the same optics
mounted on the cameras, and varying the distance A from the
cameras to the exterior of the tank’s wall. The datasets corre-
sponding to these different situations are detailed in the next
subsection.

In order to span the Γ - Ga parameters space, we consid-
ered a set of spherical particles with different diameters (dp)
and densities (ρp), while varying the water-glycerol mixture
in order to vary the fluid viscosity ν . Varying the fluid viscos-
ity ν allows to change Ga for a given type of particle, at the
expense of the slight modification of the value of Γ due to the
associated variation of the fluid density. The characteristics of
the particles and the ranges of values Ga and Γ investigated
in this articles are reported in Table I. Overall, a total of 68
points in the Γ - Ga parameters space has been explored (see
figure 2. For each point up to 25 independent drops were re-
leased in order to test the repeatability of the observed regimes
and the eventual presence of bi-stable regions where different
settling regimes could co-exist in the same region of the pa-
rameters space. The particle’s diameter and sphericity were

Material (label) ρp (kg/m3) dp (mm) Γ Ga Ra(µm)
Metal 7950 {1,2,3} 6.6-7.8 112-290 9
Glass 2500 3 2.1-2.5 130-270 15

Polyamide 1150 6 1.1-1.3 124-340 120

TABLE I. Properties of the different settling particles investigated.
See text for details.

measured using a microscope with a precision of 10 µm. In
particular, no significant deviation from the spherical shape
or the manufacturer’s documented diameter could be mea-
sured. The surface roughness of the particles was also mea-
sured, with a Scanning Electron Microscope ZEISS SUPRA
55 VP, over an area of 200×500 µm2. The arithmetical mean
height of rugosities Ra reported in table I shows a high de-
gree of smoothness as Ra/dp < 0.05, therefore roughness is
not expected to alter the spheres dynamics [35]. In particu-
lar, the following particles were used: Metal - Stainless Steel
Ball AISI 316 Grade 100 from COMAC Europe; Glass - Soda
Lime Grade 60 and Polyamide - PA 6.6 Grade 2 both from

Marteau & Lemarié.
The experimental procedure is the following: the tank is

filled with a water-glycerol mixture and after approximately
24 hours the temperature at different positions in the fluid’s
bulk differs in less than 0.6◦C thus thermal equilibrium is
reached. Then a standard calibration of the 4D-LPT system
is performed [4]. The spheres are released at the center of
the tank with standard Stainless Steel Anti-acid and Anti-
magnetic chemical tweezers. The tweezers are completely
submerged below the air-liquid interface and released after
approximately 20 s when the fluid free surface is at rest. A
minimum time of 120 s is taken between successive drops to
ensure that the fluid has no perturbations left from the previ-
ous drop. The waiting time is chosen to be at least 12 viscous
relaxation times τ = d2

p/ν . Note that the viscous times vary
between different cases and the resulting waiting time is in
between 12τ and 1000τ , with a median value of 150τ .

B. Data sets

The experiments were conducted using two different op-
tical magnifications, resulting in various values of the non-
dimensional trajectory length l∗max = h/dp ranging from 11.6
to 200 (see Fig. 1). Note that the lowest values of l∗max (11.6
and 23.3) correspond to the larger optical magnification, or
small A (hence giving better spatial resolution, but shorter
tracks) while the larger values of l∗max were obtained with the
smaller magnification, or large A (resulting in a larger field
of view, hence giving access to longer trajectories, what is
important in particular to properly estimate the frequency of
oscillating regimes). The values of l∗max are reported in the
Γ− Ga parameters space in Fig. 2.

All the relevant geometric (inclination and planarity) and
dynamic characteristics (spectral content and terminal veloc-
ity) of particle trajectories cannot be equally addressed from
the different datasets as the accuracy of their estimate depends
on the maximum accessible track length l∗max. Empirically,
we found that to reasonably resolve trajectory inclination, a
dimensionless trajectory length of at least l∗ >∼ 10 (which is
accessible with all datasets) is needed. This has been tested
by checking the estimation of the inclination angle using the
longest trajectories in the oblique regime and successively
considering shorter and shorter portions of those long tracks.
On the other hand, the quantification of the planarity via the
eigenvalue method detailed in Sec. III, requires l∗ >∼ 23 - a
condition not met for plastic particles, due to their large di-
ameter. This conclusion has been reached by checking the
estimation of the planarity using the longest available trajecto-
ries in the chaotic regime and successively considering shorter
and shorter portions of those long tracks. This effect will be
explored further in Section III C. Finally, the spectral anal-
ysis required long trajectories, an issue further discussed in
Sec. III D.

In order to reduce experimental noise (due to inevitable par-
ticle detection errors in the Lagrangian Particle Tracking treat-
ment [28]), the raw trajectories are smoothed by convolution
with a Gaussian kernel of width σ = 12 frames. It behaves
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FIG. 2. Particle-to-fluid density ratio (Γ) – Galileo number (Ga) space of parameters. Data points are classified by their maximum trajectory
length l∗max = h/dp.

as a low-pass filter with a cut-off frequency fc = fps/σ =
2300 Hz/σ = 192 Hz. Spectral analysis is therefore expected
to be well resolved for frequencies up to of the order of 80 Hz
as to respect the Nyquist-Shannon sampling theorem.

As previously mentioned, for each data point in the Γ -
Ga parameters space, at least 10 and up to 25 experimental
repetitions were executed and their trajectories analysed.
This is mandatory in order to test the repeatability of the
observed regimes, estimate uncertainties, and eventually
detect multi-stable regions of the parameters space where
multiple settling regimes may coexist. The uncertainties in
quantities extracted from this data (e.g. trajectory angle or
planarity) are taken as the standard deviation over the total
set of drops for each data point. For computed quantities (i.e.
Reynolds number, Galileo number and Drag coefficient) the
errors are estimated from a standard propagation of errors,
see for instance [29].

Finally, in the remainder of this article, dimensionless pa-
rameters are denoted by a superscript asterisk. Spatial vari-
ables are normalized by particle diameter x∗ = x/dp, veloc-
ities are normalized by the buoyancy velocity v∗ = v/Ug =

v/
√
|Γ−1|gdp, and time is normalized by the response time

of the particles τg = dp/Ug.

III. Results

In this section, we first recall and present the different set-
tling regimes reported in the literature. Then, the features
of the 68 points experimentally investigated in the parame-
ter space (Fig. 2) are described. Particular emphasis is put on

their geometric and spectral properties, as well their terminal
velocity and drag coefficient estimation

A. Different Regimes

The different regimes in the parameters space obtained
from numerical simulations by Zhou and Dušek [36] are rep-
resented by different colors in Fig. 2. Seven distinct regimes
were numerically identified, whose features are summarized
in the following:

1. Rectilinear Regime (white), with planar vertical trajec-
tories and no inclination or oscillations;

2. Steady Oblique Regime (gray), with planar and oblique
trajectories with respect to the vertical, and no oscilla-
tions;

3. Oblique Oscillating Regime, with planar and oblique
trajectories, and the presence of oscillations. The fre-
quency of oscillations f ∗ depends on the particle-fluid
density ratio Γ, with a High-Frequency Regime (HF, or-
ange) at f ∗ ≃ 0.18 and a Low-Frequency (LF, green) at
f ∗ ≃ 0.068.

4. Planar or Rotating Regime (yellow), a bi-stable region
of the parameters space composed of oblique and (High
or Low-Frequency) oscillating trajectories, which could
be either planar or exhibit a slowly rotating symme-
try plane (thus generating helicoid-like trajectories), co-
existing with Chaotic Regimes. The High-Frequency
Regime, Low-Frequency Regime, and Chaotic Regime
coexist in this zone.
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5. Vertical Periodic Regime (blue), where the trajectories
are planar, rectilinear and vertical, and oscillate at f ∗ ∈
(0.141,0.15);

6. and finally the Chaotic Regime (pink), with oblique and
non-planar trajectories with no periodic oscillations.

A systematic study of the bifurcations between regimes was
performed numerically by [36]. That study narrowed down
the limits between regimes, in terms of Ga and Γ, and has
reported new regimes not previously detected in the simu-
lations by Jenny et al. [19, 20] (such as a Helical/Rotating
Regime and a Vertical Periodic Regime). They also demon-
strate the existence of bi-stable zone in the parameters space,
where two regimes could co-exist. For instance, for moder-
ate particle-to-fluid density ratios Γ <∼ 2 a bi-stable regime
between a Chaotic and a Vertical Oscillating Regime are re-
ported, while for larger density ratios they report bi-stability
between Planar Oscillating and Helical Regimes. Further-
more, they have better quantified trajectory parameters such as
angle, velocities and spectral content. Note that this descrip-
tion of the dynamics of individual particles was later used as
a benchmark for numerical investigations of collective parti-
cle effects [15, 33]. Few analytical results have been derived
regarding the bifurcations between different settling regimes,
one exception being the transition between the Rectilinear and
the Steady Oblique Regimes which have been analytically
shown by Fabre et al. [13] to occur at a critical Galileo number
of the order of 155, independently of the particle-to-fluid den-
sity ratio, in excellent agreement with the numerical findings
previously mentioned.

To the best of our knowledge, only three experimental stud-
ies [18, 29, 34] have explored the predictions made by afore-
mentioned simulations and theories. Horowitz et al. [18]
were mostly interested in regimes for rising spheres or slightly
denser than the fluid and high Galileo numbers: they studied
particle-to-fluid density ratios Γ below 1.4 and Galileo num-
bers ranging from 102 to 104. In particular, they studied tra-
jectory angle and drag following the work of Karamanev [21].
Intriguingly, most findings from this study deviate from nu-
merical simulations by Zhou and Dušek [36], in particular for
the case of settling particles which will be investigated here.
On the other hand, Veldhuis and Biesheuvel [34], although
with some discrepancies, observed several of the dynamical
regimes observed in the numerical simulations. In particular,
oblique trajectories with no significant frequencies (Steady
Oblique Regime in simulations) were reported. They also re-
port oblique trajectories with oscillations at three dominant
dimensionless frequencies of 0.07, 0.017 and 0.025 (Oblique
Oscillating Regime in simulations), whose presence depends
on the particle-to-fluid density ratio Γ. Finally, an oblique
chaotic regime with no dominant frequencies and random tra-
jectory curvature (Chaotic Regime) was described. These
regimes were measured for particle-to-fluid density ratios Γ

of 1.3 and 2.3 at various Galileo numbers spanned by vary-
ing the fluid viscosity. Finally, in 2022, Raaghav et al. [29]
performed experiments on rising and settling particles, with
four particle-to-fluid density ratios (Γ = 0.87, 1.12, 3.19 and
3.9) and Ga ranging from 100 to 700. They confirmed and

contradicted some results of previous numerical simulations
and experiments. The low Ga regimes (up to the Steady
Oblique Regime) is unambiguously confirmed, in agreement
with previous studies. For higher Galileo numbers (typically
above 200), they found however discrepancies both with pre-
vious numerical and experimental studies. For instance, they
observed a bi-stable behavior (between the Oscillating and
Chaotic Regimes) for moderately dense spheres (Γ ≃ 1.1) in
the range 250 < Ga < 300 in agreement with by Zhou and
Dušek [36], but for density ratios above 3, they did not observe
the High-Frequency Oblique Oscillating Regime reported by
Zhou and Dušek [36]; they confirmed though the existence
of a helical mode, although no bi-stability with the Chaotic
Regime was observed, contrary to the findings by Zhou and
Dušek [36] reported.

Our experiments confirm the existence of all the predicted
regimes, in regions of the parameters space in relatively good
agreement with the ones delimited by numerical simulations.
Figures 3(a-c) qualitatively show some examples of trajecto-
ries. More specifically, Fig. 3 (a-c) show some representa-
tive 3D trajectories for Γ ≈ 7.9 particles, from the l∗max = 200
dataset. The trajectories have been arbitrarily centered in the
horizontal axis. Sub-figures show top and side views.

Fig. 3(a) represents a case of planar and oblique type of tra-
jectories measured here at Ga = 200. Note that steady and
oscillating regimes are almost indistinguishable in such a rep-
resentation by a simple visual inspection of the trajectories
as the amplitude of oscillations is of the order of the parti-
cle diameter. The distinction between the two regimes will
be quantitatively discussed later, based on the estimation of
the particle velocity and their spectral analysis (the example
shown in Fig. 3(a) is actually an oblique oscillating case). It
can also be noted that the angle of the trajectories with the
vertical in this oblique regime remains almost constant for all
drops (the angle will be quantitatively investigated in the next
subsection, and is of the order of 5◦ in the present example),
but each trajectory has its own direction so that the ensem-
ble forms a cone hence preserving the global symmetry of the
problem.

Fig. 3(b) represents a sample of trajectories of Γ ≈ 7.9 par-
ticles at Ga = 217. By combining the side and top views,
it can be seen that several of these trajectories are consis-
tent with portions of helicoids (for instance the red and the
dark blue curves, which appears as quasi circular from the
top view, although even with the l∗max = 200 dataset, we only
catch half of the period at most). Those co-exist with non-
planar chaotic trajectories (as for instance the black and yel-
low curves). These measurements fall in the tri-stable regime
previously mentioned.

Finally, Fig. 3(c) presents several trajectories that fall in the
Chaotic Regime: all trajectories are different and no pattern
of planarity or oscillations is present.

After this brief qualitative description of some observed
trajectory regimes, the next Subsections present a systematic
quantitative analysis of the different properties used to charac-
terise trajectory geometry and dynamics: angle with the verti-
cal, planarity, spectral content, terminal velocity, and drag.
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FIG. 3. Typical trajectories for particles with Γ ≈ 7.9 in the: (a) Steady Oblique; (b) Planar or Rotating; and (c) Chaotic Regimes.

B. Trajectories Angle

For each recorded trajectory we define the settling orien-
tation as the angle between a 3D linear fit of the trajectory
and the vertical, and for each given set of parameters (Ga,Γ)
we define the mean settling orientation as the ensemble av-
erage of settling angles over all trajectories recorded at those
parameters. Fig. 4 shows the mean settling orientation as a
function of Ga for the three different classes of particles inves-
tigated (Γ ≈ 7.9, Γ ≈ 2.5 and Γ ≈ 1.1). Besides, the different
settling regimes as reported from numerical simulations and
previously shown in Fig. 2 are delimited by the dashed ver-
tical lines and identified by coloured rectangles that respect
the colour code in Fig. 2. Furthermore, the type of symbols
represents the value l∗max, also following the nomenclature of
Fig. 2.

A smooth transition from rectilinear to oblique (primary
regular bifurcation) is seen around the expected critical
Galileo number of 150 for Γ ≈ 1.1 and Γ ≈ 7.9 particles and,
although there is a lack of data points in this region of Ga
for Γ ≈ 2.5 particles, the available data points are consistent
with a similar transition also occurring in the same range of
Ga for those particles. More precisely, if the threshold be-
tween this regimes is defined as the Galileo number value at
which the angle of the mean settling orientation has a non-
zero angle, Γ ≈ 1.1 and Γ ≈ 7.9 particles present threshold
values of (125± 10) and (115± 10) respectively, leading to
a joint threshold at Ga = (120± 15). The trajectory angle is
then found to continuously vary with the Galileo number; see
for example Γ ≈ 7.9 particles: the angle varies monotonously
from 0 to 6 degrees in the Ga range 110-190. With this re-
spect, the transition between the rectilinear regime and the
steady oblique regime in our experiment somewhat appears as
an imperfect bifurcation rather than a sharp bifurcation with a
critical Galileo number Ga ≈ 155. The origin of such an im-
perfect bifurcation remains unclear and would deserve further

future investigations.
Additionally, the maximum observed angles are (5.7◦ ±

0.2◦), (5.1◦ ± 0.2◦) and (5.1◦ ± 0.2◦) for density ratios 7.9,
2.5 and 1.1, respectively. This maximum angle is reached
around Ga = 200 in all cases in the region of parameters space
that has been identified in numerical simulations by Zhou and
Dušek [36] and previous experiments [18, 29] as correspond-
ing to the Oblique Regimes, although the distinction between
steady and oscillating regimes requires further analysis of the
spectral content of the trajectories, which will be presented
later. We note also that, although the detailed trend of the set-
tling angle with Ga as presented here has not been systemat-
ically explored in previous studies, the values we observe for
the maximum settling angle are in good agreement with the
range of angles previously reported: “of about 4 to 6 degrees”
in the Steady Oblique and Oblique Oscillating Regimes in nu-
merical simulations by Zhou and Dušek [36], “ approximately
4◦ to 7.5◦ ” in [18] and “ approximately 2.8◦ to 7.4◦ ” in [29].

It can be seen in Fig. 4 that for large Galileo numbers (typ-
ically Ga > 200) multiple values of the average settling an-
gle can be observed for similar values of Ga. These situa-
tions are generally consistent with regions of the parameters
space which have been identified in numerical simulations ei-
ther as multi-stable (yellow) or chaotic (pink). For the denser
particles, such multi-values of the settling angle are for in-
stance pronounced in the range Ga ∈ (200,230) encompass-
ing both the HF-Oblique Oscillating (orange) and tri-stable
Planar/Rotating (yellow) regions of the numerical parameters
space, what may suggest that the multi-stable Planar/Rotating
Regime, identified numerically around Ga ≈ 220, may actu-
ally extend further into the HF-Oblique Oscillating region at
lower Galileo numbers. For the lightest particles, the trend to
observe multiple values of the settling angle is very clear in
regions of Ga expected to correspond to the Chaotic Regime
(pink), in particular in the range Ga ∈ (200,260). For the in-
termediate density case (Γ ≈ 2.5), this trend is observed in the
vicinity of the LF-Oblique Oscillating Regime (green), what
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FIG. 4. Trajectory angle versus Galileo number for the three particle
densities. Regimes are delimited by dashed vertical lines and identi-
fied by colors following Fig. 2. Symbols represent the value of l∗max,
according to Fig. 2.

may be a sign that as for the dense particles case, the region
numerically identified as bi-stable Planar/Rotating (yellow)
may actually extend to lower values of Ga particularly into
the LF-Oblique Oscillating region.

It is also interesting to see that for the Γ ≈ 1.1 particles
the drop of the settling angle in the range Ga ∈ (250,300)
is consistent with the numerical prediction of a Vertical Peri-
odic Regime (blue) appearing in that range and surrounded by
Chaotic Regimes.

Overall, measured settling angles are consistent with what
is expected from the numerical parameters space. With the ex-
ception of a probably more extended multi-stable region (yel-
low) overlapping (partially or totally) the Oblique-Oscillating
regions.

C. Trajectories Planarity

The trajectory planarity is quantified by the ratio of eigen-
values λ2/λ1 (with λ1 ≥ λ2) of the dimensionless perpendic-
ular (to gravity) velocity correlation matrix defined as:

⟨v∗⊥ v∗T
⊥ ⟩=

[
< v∗x

2 > < v∗xv∗y >
< v∗yv∗x > < v∗y

2 >

]
, (1)

with v∗ = v/Ug. Perfectly planar trajectories yield λ2/λ1=0,
while non-vanishing values of this ratio indicate a departure
from planarity [37]. Note that the analysis of the planarity
only yields meaningful results for trajectories with l∗max >

33.3. Fig. 5 shows the ratio
√

λ2/λ1 versus Ga number, for
the three types of particles. As in previous figures, the differ-
ent regimes are delimited by dashed vertical lines and identi-
fied by coloured rectangles.

Planarity is lost at Ga = (220±15) for Γ ≈ 7.9 particles and
at Ga = (220± 15) for Γ ≈ 2.5 particles. At these points the
ratio between the eigenvectors of the velocity correlation ma-
trix

√
λ2/λ1 increases from approximately 0.15 to 0.50 for

Γ ≈ 7.9 particles (0.30 for Γ ≈ 2.5 particles). The range of
Galileo number where planarity is found to be lost is consis-
tent with the transition towards the Planar or Rotating Regime
reported in numerical simulations by Zhou and Dušek [36],
with a possible overlap with the LF-Oblique Oscillating re-
gion for Γ≈ 1.1 particles and with the HF-Oblique Oscillating
region for Γ ≈ 2.5 particles. On the other hand, no clear tran-
sition between planar and non-planar trajectories is observed
for Γ ≈ 1.1 particles, which may be due to too small values of
l∗max.

In the case of Γ ≈ 7.9 particles, the loss of planarity seems
to be associated to the emergence of helicoidal trajectories.
Fig. 3(b) presents indeed a sample of trajectories for Γ ≈ 7.9
particles, representative of the ensemble of trajectories at
Ga ∼ 217, that are consistent with a half-helicoid. Simi-
lar trajectories are found at Ga = {215, 217, 221} and Ga
= {228,233}, for several values of l∗max > 33.3. Hence the
aforementioned loss of planarity for data with Galileo num-
bers larger than (220± 15) (see Fig. 5) can be related to the
appearance of these helicoid-like trajectories. Limitations of
the measurement volume, even in the l∗max = 200 configura-
tion, do not allow to be fully conclusive as only a portion of
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FIG. 5. Planarity versus Galileo number for the three particle densi-
ties. Regimes are delimited by dashed vertical lines and identified by
colors following Fig. 2. Symbols represent the value of l∗max, accord-
ing to Fig. 2.

the helicoid’s period is recognizable. However, assuming that
these trajectories are helicoids, the radius of their horizontal
projection (Fig. 3(b) top view) would be roughly 7 particle
diameters, and their pitch would be approximately 500 par-
ticle diameters. Similar helicoid-like trajectories have also

been seen experimentally in previous studies, although for
smaller density ratios, Γ < 3.9 (recall that metallic particles in
the present study have a density ratio Γ ≃ 7.5, which has not
been investigated in previous works): [34] reported what are
possibly helicoidal trajectories for particles with density ratio
of the order of Γ ≃ 2.5 (hence close to the present Γ ≈ 2.5
particles), while [29] found similar trajectories for particles
with Γ = {3.2, 3.9}. Their results show a pitch of the order
of 430 dp which is comparable to the one of 500 dp found
here. In this sense, the results of this work confirm the ex-
istence of such non-planar, very likely helicoidal, regime for
Ga ∈ (215,233) at larger particle-to-fluid density ratios, in the
range of metallic particles (Γ≈ 7.9). Recall that the short l∗ in
the data sets of Γ ≈ 2.5 and Γ ≈ 7.9 particles do not allow to
see a portion of an helicoid long enough to make such claims.

Fig. 5 for Γ ≈ 2.5 an Γ ≈ 7.9 particles also shows signa-
tures of non-planarity in the region numerically identified as
chaotic (Ga >∼ 230), in agreement with the sample trajectories
shown in Fig. 3(c), where several trajectories show a clear de-
parture from simple portions of helicoids. A clear distinction
between non-planar helicoidal and chaotic trajectories, with a
systematic characterization of the pitch and radius of the heli-
coids and of the frontier with the Chaotic Regime would nev-
ertheless require further dedicated experiments with a taller
visualisation volume.

D. Trajectories Oscillations

We analyze the emergence of oscillatory dynamics by
studying the fluctuations of the horizontal (i.e. perpendicu-
lar to gravity) dimensionless velocity: v′∗⊥ := v∗⊥ −⟨v∗⊥⟩. In
particular, while oblique-oscillatory regimes have been exper-
imentally reported for density ratios below 3.9, we want to
confirm here their existence at higher density ratios (i.e. for
the Γ ≈ 7.9 particles, with Γ = 7.9) and in that case evalu-
ate the corresponding frequency. On the other hand, the ex-
istence of a Vertical Periodic Regime (light blue region in
Fig. 2) for density ratios below 1.8, as predicted by Zhou
and Dušek [36] was only very recently corroborated exper-
imentally [29]. This regime is expected to have trajectories
with zero angle and Low-Frequency Oscillations. Recall that
the regime has been already discussed in the previous section
where a sharp decrease in trajectory angle was found. We will
therefore confirm here that the oscillations are at the Low-
Frequency f ∗ ≈ 0.06.

Numerical simulations by Zhou and Dušek [36] predict the
existence of Oblique-Oscillatory Regimes for Ga of the or-
der of 200, with a characteristic dimensionless frequency f ∗

which depends on the density ratio Γ. More specifically, the
simulations by Zhou and Dušek [36] predict a transition from
a Low-Frequency Regime (with a dominant dimensionless
frequency f ∗ ≈ 0.07, corresponding to green regimes in pre-
vious graphs) to a High-Frequency Regime (with f ∗ ≈ 0.18,
corresponding to orange regimes in previous graphs) occur-
ring at Γ ≈ 2.3. However, previous experiments by Veldhuis
and Biesheuvel [34] and Raaghav et al. have only partially
confirmed this scenario. Veldhuis and Biesheuvel [34] for
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instance did observe Oblique-Oscillating Regimes in the ex-
pected range of Galileo number for particles with density ra-
tios Γ ≈ 1.5 and Γ ≈ 2.5, but they report a dominant charac-
teristic frequency of f ∗ ≈ 0.25 for the lower density ratio case
(i.e. about three times higher than the numerical prediction)
while two main frequencies, of the order of 0.07 and 0.25,
were detected for the larger density ratio. On the other hand,
Raaghav et al. consistently report a Low-Frequency Oblique-
Oscillating Regime (with f ∗ ≈ 0.06) for particles with den-
sity ratio Γ ≈ 1.1, but did not find any planar High-Frequency
Oblique-Oscillating Regime for particles with Γ = 3.9, for
which only non-planar helical trajectories (similar to those re-
ported in the previous section of this work) were observed.
The existence of Oblique-Oscillating Regimes (and eventually
the value of their frequency) for high density ratios therefore
remains open.

0 4 8 12 16 20 24
-0.06

-0.04

-0.02

0

0.02

0.04

0.06
 7.9 / High Freq.

  1.1 / Low Freq.

FIG. 6. Typical perpendicular (to gravity) velocity fluctuations for
particles with Γ ≈ 1.1 and Ga = 208 that correspond to the Low-
Frequency Regime (continuous line), and particles with Γ ≈ 7.9 and
Ga = 200 in the High-Frequency Regime (dashed line).

Fig. 6, shows a sample of perpendicular velocity fluctu-
ations versus time for Γ ≈ 7.9 particles at Ga = 200, and
Γ ≈ 1.1 particles for Ga = 208. They exhibit a clear os-
cillatory dynamics, which is oblique (remember that θ ≈ 5◦

for particles at these Ga) with marked frequency and ampli-
tude differences. Γ ≈ 7.9 particles show higher frequency and
smaller amplitude than Γ ≈ 1.1 particles. These observations
are in qualitative agreement with numerical predictions. The
amplitude ratio between the High and Low-Frequency perpen-
dicular dimensionless velocity oscillations of approximately 5
times is found however to be substantially smaller than what
is reported in numerical simulations by Zhou and Dušek [36]
where a ratio of 12 is observed. From the oscillations reported
in Fig. 6, it is possible to estimate the typical dimensionless
frequencies f ∗ for both regimes which is found to be of the
order of 0.07 for the Low-Frequency case (Γ ≈ 1.1 particles)
and of the order of 0.2 for the High-Frequency case (Γ ≈ 7.9
particles). These values are in good agreement with the nu-
merical prediction, and the spectral analysis that follows.
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FIG. 7. PSD of parallel and perpendicular dimensionless velocity
fluctuations (v′∗∥ and v′∗⊥, respectively) for Γ ≈ 7.9 particles. Colors
correspond to Regimes defined in Fig. 2.
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FIG. 8. PSD of parallel and perpendicular dimensionless velocity
fluctuations (v′∗∥ and v′∗⊥, respectively) for Γ ≈ 2.5 particles in the
LF-Oblique Oscillating Regime (a) and Vertical Periodic Regime (b)
and (c) for Γ ≈ 1.1 particles in the LF-Oblique Oscillating Regime.

A more accurate and systematic analysis of the oscillatory
dynamics in the different regimes can be performed by com-
puting the Power Spectral Density (PSD) of the velocity fluc-
tuations averaged over multiple realizations in a narrow range
of Ga. Fig. 7 presents various PSD of velocity fluctuations
at different values of the Galileo number, for the l∗max = 200
data-set of Γ ≈ 7.9 particles. Both parallel and perpendicular
components of velocity fluctuations have been analyzed. Each
sub-figure presents the ensemble average of all PSDs in ranges
of Ga where the spectral content was found to be robust: Ga =
{187, 195, 198, 202, 205} for Fig. 7(a), Ga = {215, 217, 221}
for Fig. 7(b), Ga = {227, 233} for Fig. 7(c), and Ga = 235 for
Fig. 7(d). We note that the spectral resolution, limited by the
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accessible trajectory length, is 0.01. All measurements with
Ga smaller than 187 have no spectral content (settling is then
stationary, either vertical or oblique), therefore not shown.

The perpendicular velocity fluctuations PSDs presented in
Fig. 7(a) show that for Ga ∈ (187,205) oscillations have a
broad frequency peak centred around a dominant frequency
f ∗ = (0.19± 0.01), and a secondary frequency around f ∗ =
(0.27± 0.01). The dominant frequency confirms the High-
Frequency nature of the oscillations qualitatively discussed in
the previous paragraphs for Γ ≈ 7.9 particles at Ga = 200,
corresponding to the perpendicular velocity signal shown in
Fig. 6. It is also in agreement with the frequency predicted
in numerical simulations by Zhou and Dušek [36] for such
dense particles in this range of Galileo number, where a High-
Frequency Oblique Oscillating Regime, with f ∗ = 0.18 has
been reported by Zhou and Dušek [36].

The main difference between these experiments and the
simulations by Zhou and Dušek [36] is the non-negligible
intensity of the peak at f ∗ ≈ 0.27 (and possibly a sub-
harmonic of f ∗ ≈ 0.13). The existence of the frequency peak
at f ∗ = 0.27 reminds of the observation by Veldhuis and
Biesheuvel [34] who reported a similar frequency for parti-
cles both the Low and High-Frequency Regimes and was in-
terpreted as a possible fourth harmonic of the Low-Frequency
f ∗ = 0.07.

When Ga is increased to the range (215,221), the trajecto-
ries lose any significant spectral signature. Neither the paral-
lel, nor the perpendicular velocity PSD in Fig. 7(b) show any
marked peak. Only a mild peak at f∗ = (0.01±0.01) is present
for both parallel and perpendicular velocities and a mild peak
at f∗ = (0.19± 0.01), with an intensity 6 times smaller than
in the previous Ga range for the parallel velocity. The angular
and planarity analysis in the previous Subsection suggest that
trajectories of Γ ≈ 7.9 particles in this range of Ga might fall
in the Planar or Rotating Regime, with some evidence of the
existence on helicoidal trajectories in this regime. The esti-
mated pitch of the helicoids (≈ 500dp) would correspond to a
frequency of oscillation of f ∗ = v∗∥/(500) ≈ 0.002, in princi-
ple out of reach of the 0.01 resolution of the present spectral
analysis. The mild peak at f ∗ ≈ 0.01 might however be a rem-
iniscence of this slow helicoidal motion.

At higher Ga, in the range Ga ∈ (225,235), the perpendic-
ular velocity fluctuations PSD presented in Fig. 7(c) have a
marked peak at the frequency f ∗ = (0.055 ± 0.010) with a
broad base extending towards lower frequencies, down to the
spectral resolution of 0.1. This behavior is similar to the one
reported by Raaghav et al. [29] for particles with density ratio
Γ ≈ 3.9 at Ga ∼ 210, where a peak at f ∗ ≃ 0.05 and a peak
at f ∗ ≃ 0.005 were reported. This was interpreted as a proba-
ble superposition of Low-Frequency oblique oscillations and
a slow helical rotation. This scenario is consistent with the
combined analysis of angle, planarity and spectral content in
the present study. Indeed Fig. 4(a) shows that trajectories in
the range Ga ∈ (225,235) are oblique, while Fig. 5 indicates
coexistence of planar and non-planar (hence compatible with
helical motion) trajectories in this range of Ga. Intriguingly
while both, Raaghav et al.’s and the present experiments seem
to observe this co-existence of Low-Frequency Oblique and

helicoidal trajectories for high density ratio particles, such a
behavior has not been reported in numerical simulations by
Zhou and Dušek [36].

At the largest Ga explored, Fig. 7(d) presents the PSDs for
the case Ga = 235. It does not present any dominant frequency,
as it is expected for Chaotic dynamics.

Overall, our study of oscillations for the high density ratio
particles (Γ ≈ 7.9), is in good agreement with numerical
simulations apart from the range Ga ∈ (227,233) where Low-
Frequency oscillations, possibly co-existing with non-planar
helical motion, were observed but not reported in simulations.
Reasonable agreement is also found with previous experi-
ments by Raaghav et al. at density ratio Γ ≈ 3.9, although we
do confirm the existence of the High-Frequency oscillating
region for Ga ∈ (187,205), which they did not observe, but
is predicted by the simulations by Zhou and Dušek [36]. We
do not observe however the same regimes as in the study by
Veldhuis and Biesheuvel [34] at Γ ≈ 2.5; in particular in the
Oblique Oscillating Regimes, they report a Low-Frequency
behavior (at f ∗ ≈ 0.07) rather than a High-Frequency one,
as predicted by the simulations. It is likely that is due to the
fact that the density ratio they considered is very close to
the Low/High-Frequency transition, found to occur around
Γ ≈ 2.3 in the simulations.

Fig. 8 presents PSDs of velocity fluctuations for Γ ≈ 1.1
and Γ ≈ 2.5 Particles, at different values of the Galileo num-
ber corresponding to the following data sets: l∗max = 23.3 for
Γ ≈ 2.5 particles; and l∗max = 11.6 for Γ ≈ 1.1 particles. Both
parallel and perpendicular components of velocity fluctua-
tions have been analyzed. Each sub-figure presents the en-
semble average of all the PSDs in the following Ga regimes:
Γ ≈ 2.5 Particles in the L-F Oscillating Regime showed in
Fig. 7(a); and Γ ≈ 1.1 Particles in the L-F Oscillating and
Vertical Periodic Regimes, presented in Fig. 8(b) and (c), re-
spectively.

The perpendicular velocity fluctuations PSDs presented in
Fig. 8(b) show that for Ga = 208 oscillations have a broad
frequency peak centred around a dominant frequency f ∗ =
(0.043± 0.021). While the parallel velocity presents a peak
at the same frequency but with 10 times less energy. Note that
the uncertainty is considerably higher here since the trajecto-
ries are shorter (l∗max = 11.6 or 23.3). The dominant frequency
confirms the Low-Frequency nature of the oscillations qualita-
tively identified in the velocity signal shown in Fig. 6. This is
also in agreement with the frequency predicted by numerical
simulations by Zhou and Dušek [36] and observations from
Veldhuis and Biesheuvel [34].

On the other hand, Fig. 8 (c) presents the perpendicular
and parallel velocity PSDs of Γ ≈ 1.1 particles in the range
Ga ∈ (269, 272). We observe a single broad frequency peak
centered around f ∗ = (0.085±0.021), that overlaps with the
Low-Frequency. As for the sub-figure (a), the parallel veloc-
ity presents a peak at the same frequency but with 10 times
less energy. This peak is at frequencies slightly lower than
the frequency identified by Zhou and Dušek [36] for the ver-
tical periodic regime (of the order of f ∗ ≈ 0.15). Overall,
given the small (although not strictly zero) angle previously
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reported for particles in this range of parameters, our observa-
tions are globally consistent with the existence of such a Verti-
cal Periodic Regime. It is worth noting that the experiments of
Raaghav et al. also measured non-strictly-zero angles of 0.3◦

for similar range of parameters. Raaghav et al. have measured
a frequency of f ∗ = 0.15 very close to the numerical predic-
tion by Zhou and Dušek. Besides they have shown that in
this region of the parameters space both Chaotic and Vertical
Oscillating trajectories may co-exist. This may be a possible
explanation for the broader than expected peak at lower fre-
quency here measured; given the low spectral resolution of the
present measurements (for this particular dataset) we might
actually be seeing a combination of Chaotic (broad spectra)
and Vertical Periodic trajectories (with, a priori, f ∗ = 0.15).
Finally, Fig. 8(a) presents the perpendicular and parallel ve-
locity PSDs of Γ ≈ 2.5 particles in the range Ga ∈ (190, 210).
The perpendicular velocity fluctuations PSD presented in
Fig. 8(c) shows that oscillations have a broad frequency peak
centred around a dominant frequency f ∗ = (0.054± 0.013).
Additionally, note that, as the trajectories are longer than for
Γ ≈ 1.1 (l∗max ∈ (33.3, 100)), the uncertainty in this case is
smaller (though still larger than for Γ ≈ 7.9). This spectral
content is in agreement with the Low-Frequency Regime pre-
dicted in numerical simulations by Zhou and Dušek [36], and
what Veldhuis and Biesheuvel [34] have measured for parti-
cles in this area of the parameters space. A difference with
the experiments of Veldhuis and Biesheuvel [34] is however
seen as they have found harmonic contributions at around
f ∗ = 0.27 [34].

E. Settling Velocity & Drag

In this last section we investigate the terminal settling ve-
locity of the particles which results from the balance of the
drag force and net gravity (i.e. gravity plus buoyancy). The
measure of terminal velocity therefore allows to estimate the
drag coefficient of the falling spheres and compare it to tabu-
lated values for fixed spheres.

As previously discussed, the dimensional analysis of the
problem of a sphere falling in a quiescent viscous fluid, yields
two dimensionless control parameters: Ga − Γ. When ad-
dressing the further question of the terminal vertical velocity
vs, an additional dimensionless parameter emerges: the termi-
nal particle Reynolds number Rep = vsdp/ν . It is important
to note that Rep is a response parameter of the problem which
depends on the control parameters Γ and Ga (we shall write
then Rep(Ga,Γ)), therefore implying a possible impact of the
path instabilities (which depend on both Ga and Γ) previously
discussed on the terminal velocity of the spheres. Similarly,
when it comes to address the question of the drag force expe-
rienced by the falling sphere, this introduces another dimen-
sionless parameter, the drag coefficient CD, which shall also
be considered a priori as a function of both Ga and Γ (we
shall write CD(Ga,Γ)). This situation therefore contrasts with
the case of the drag force of a fixed sphere in a prescribed
mean stream, as in that situation, the density ratio is not a
relevant parameter, and Reynolds number is then the unique

control parameter of the problem. The drag coefficient solely
depends in that case on the sphere Reynolds number CD(Rep).
This then raises several points for the case of settling spheres:
(i) Are the usual correlations for the drag coefficient CD(Rep)
(not explicitly dependent on the density ratio Γ) still valid for
the case of falling spheres (where Rep and CD may have ex-
plicit dependencies on both Ga and Γ)? Recall that explicit
dependency on density ratio is known to be potentially major
for light particles with Γ ≪ 1 [2, 21];
(ii) Rep being a response parameter, usual correlations for the
drag coefficient of fixed spheres CD(Rep) are impractical as
Rep is not known beforehand: correlations directly implying
the actual control parameters (Ga,Γ) (eventually only Ga if
explicit dependency on density ratio is found not to be impor-
tant) would be more practical;
(iii) If density ratio is found to play a role, how important are
the associated effects?
We address here these questions.

1. New correlation relations between Galileo number and
terminal particle Reynolds number / Drag coefficient

Consider a settling particle within a given point of the
parameters space (Ga,Γ), with a terminal settling veloc-
ity vs(Ga,Γ). From the definition of the terminal particle
Reynolds number Rep = vsdp/ν and of the Galileo number
Ga = Ugdp/ν , we can define the dimensionless particle ter-
minal velocity v∗s , which can be rewritten in terms of Ga and
Rep [7]:

v∗s (Ga,Γ) =
vs

Ug
=

Rep(Ga,Γ)
Ga

. (2)

Regarding drag, considering that in the terminal settling
the drag force FD = 1

8 ρ fCDπd2
pv2

s equals the gravity-buoyancy
force Fg =

π

6 (ρp −ρ f )d3
pg = π

6 ρ f d2
pU2

g , from relation (2) the
drag coefficient can be simply expressed as [7]:

CD(Ga,Γ) =
4
3

(
Ga

Rep(Γ,Ga)

)2

. (3)

Note that in this expression, the particle Reynolds number
Rep(Ga,Γ) a response parameter of the problem, which is not
known a priori and needs to be measured. As further dis-
cussed below it can be analytically expressed only in the van-
ishing Galileo number limit, which corresponds to the steady
vertical Stokes settling regime.

Fig. 9 presents the measurements of Rep versus Galileo
number, for all particles (of all density ratios and for all the
settling regimes) explored in the present study. The points ap-
pear to be relatively well packed on a main common trend,
implying a minor direct dependency of Rep on the density ra-
tio Γ (note that an implicit dependency on Γ still exist via
Ga =

√
(Γ−1)gd3

p/ν). Some scatter of the points is however
visible, which may still reflect a possible explicit (minor) cor-
rection to the main trend due to the density ratio (this aspect
will be further discussed in the next Subsection).
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FIG. 9. Galileo number versus particle Reynolds number alongside
with the empirical correlation from Eq. 5. The symbols represent
the different density ratios (i.e. particle material): squares – Γ ≈ 1.1;
triangles – Γ ≈ 2.5; circles – Γ ≈ 7.9. Whereas the edge colors repre-
sent the different trajectory regimes, as in Fig. 2: black – Rectilinear
& Oblique; green – Low-Freq.; orange – High-Freq.; yellow – Planar
or Rotating; and magenta – Chaotic & Vertical Periodic.

Before addressing such possible corrections, let first con-
sider as a first approximation that Rep is independent on the
density ratio and only explicitly dependent on Ga. According
to (3), that implies then that the drag coefficient CD is itself
also independent of the density ratio, and solely dependent
on Ga. Since Rep and Ga are then related, CD can be equiv-
alently considered as Ga-dependent or Rep-dependent. This
is in agreement with previous studies by [18, 29] who mea-
sured the drag coefficient of falling spheres and did not ob-
serve, within the scatter of their measurements, a significant
deviation compared to the fixed sphere case.

It can be noted that the empirical finding that neither CD nor
Rep explicitly depend on Γ, while they are univoquely related
via Ga, is trivial in the Stokes settling regime (in the limit
of vanishing Ga and Rep). In this limit, analytical solutions
of Stokes equations, lead indeed to CD(Rep) = 24/Rep, that
combined with Eq. 3 yields Rep =

1
18 Ga2.

For non vanishing Ga and Rep, a univoque relation be-
tween Rep and Ga supports then the idea that an explicit cor-
relation Rep(Ga) between these two parameters (via (6)) can
be derived using classical correlations for CD(Rep) for fixed
spheres. We propose here to use the correlation by [5], which
accurately fits the drag coefficient for spheres over a broad
range of Reynolds number (up to Rep <∼ 2×105):

CD(Rep) =
24

Rep
(1+0.150Rep

0.681)+
0.407

1+ 8710
Rep

. (4)

By including this expression of CD(Rep) into (3), we can
indeed provide a direct correlation for the terminal particle
Reynolds number (and hence for the particle terminal veloc-
ity) only depending on the actual control parameter of the
problem which is the Galileo number:

Rep
†(Ga) =

Ga2(22.5+Ga1.364)

0.0258Ga2.6973 +2.81Ga2.0306 +18Ga1.364 +405
.

(5)
This expression is represented in Fig. 9 by the solid line,

and is found in very good agreement with the global trend
measured for the settling particles in our experiments (what
essentially confirms that the drag coefficient for fixed spheres
reasonably applies to the case of falling spheres). Beyond this
agreement, the above correlation is of great practical inter-
est as it allows a direct determination of the settling velocity
of a sphere from the sole a priori knowledge of its Galileo
number (which is a true control parameter, only requiring to
know the particle-to-fluid density ratio, the sphere diameter,
the acceleration of gravity and the ambient fluid’s kinematic
viscosity), without the need of using the traditional CD(Rep)
correlation to solve (numerically) the non-linear equation (3):
Rep

2CD(Rep) =
4
3 Ga2.

Similarly, a direct correlation between the drag coefficient
and the actual control parameter of problem (Ga) (rather than
the usual correlation CD(Rep), which connects two response
parameters) can be derived by re-introducing expression (5)
back into (3):

C†
D(Ga)=

4
3

(
0.0258Ga2.6973 +2.81Ga2.0306 +18Ga1.364 +405

Ga(22.5+Ga1.364)

)2
.

(6)

2. Density ratio effect

The new correlations (5) and (6) we just proposed assume
that both the terminal Reynolds number Rep and the drag co-
efficient CD only depend on Ga and do not depend explicitly
on Γ. Based on Fig. 9, this seems a reasonable global assump-
tion, though some scatter of the points in Fig. 9 and small
deviations (in particular for the less dense particles, Γ ≈ 1.1
particles, represented as squares in the figure) with respect to
relation (5) cannot rule out a possible (minor) effect of density
ratio.

To better test possible deviations due to density ratio ef-
fects, we show in Fig. 10 and 11 the terminal Reynolds num-
ber and the drag coefficient compensated respectively by rela-
tions (5) and (6) such that a value of zero would correspond to
a perfect match (hence with no density effects).

Fig. 10 (for the compensated terminal Reynolds num-
ber) shows that although the measurements for all different
datasets obtained in this work are indeed distributed around
zero, they can deviate from this density-independent trend
with a scatter of typically ±10%. More importantly it can
be seen that (apart for two outliers out of the 68 independent
measurements we carried) the scatter of the points present a
systematic trend with the density ratio, where less dense par-
ticles (notably Γ ≈ 1.1 particles and, to a less extent, Γ ≈ 2.5
particles) are systematically below the correlation derived
from fixed spheres, while heavy particles are systematically
above. The density-independence approximation seems there-
fore to give a reasonable average trend to predict the terminal
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Reynolds number using relation (5) though denser particles
will have a positive bias (settling up to 10% faster in the range
of densities explored here) and lighter particles a negative bias
(up to 13% slower in the rage of densities explored here).

Similarly Fig. 11 shows that (apart for the same two outliers
out of the 68 independent measurements we carried), a sys-
tematic effect of density ratio can be observed on the drag co-
efficient CD, where less dense particles (notably Γ ≈ 1.1 parti-
cles) have a systematic positive bias (i.e. their drag coefficient
is larger, up to +15% in the range of densities we explored)
compared to the correlation derived from fixed spheres, while
heavy particles have systematic negative bias (i.e. their drag
coefficient is lower, up to -15% in the range of densities
we explored) compared to the correlation derived from fixed
spheres. The overall drag coefficient spread is 30%.
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FIG. 10. Galileo number versus particle Reynolds number compen-
sated by the empirical correlation from Eq. 5. The symbols represent
the different density ratios (i.e. particle material): squares – Γ ≈ 1.1;
triangles – Γ ≈ 2.5; circles – Γ ≈ 7.9. Whereas the edge colors repre-
sent the different trajectory regimes, as in Fig. 2: black – Rectilinear
& Oblique; green – Low-Freq.; orange – High-Freq.; yellow – Planar
or Rotating; and magenta – Chaotic & Vertical Periodic.

These results challenge the widespread idea that the drag
coefficient (and eventually then its connection to the termi-
nal settling velocity via relation (6)) of freely settling spheres
(i.e. with Γ > 1) do not explicitly depend on the density ra-
tio Γ. Previous studies are however not in contradiction with
this claim [2, 18, 29, 34]. Indeed, while these studies did not
specifically focus on a quantitative estimation of possible fine
deviations from the fixed sphere case, small systematic devi-
ations can actually be observed in the reported data. In par-
ticular, we find a systematic explicit dependence on Γ, as CD
and Rep vary in 25% to 30% between the less dense (Γ ≈ 1.1)
and the denser particles (Γ ≈ 7.5). It is worth to remark that
the results from the denser particles (Γ≈ 7.9 particles) and the
intermediate density ratio ones (Γ ≈ 2.5 particles) are hardly
distinguishable (in particular regarding the drag coefficient in
Fig. 11). This suggests that the Γ dependency might be most
relevant for Γ values close to one, i.e. closer to the rising par-
ticle case where a clear dependency with Γ was reported for
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FIG. 11. Drag coefficient compensated by the empirical correlation
from Eq. 6 versus Galileo number. The symbols represent the differ-
ent density ratios (i.e. particle material): squares – Γ ≈ 1.1; triangles
– Γ ≈ 2.5; circles – Γ ≈ 7.9. Whereas the edge colors represent
the different trajectory regimes, as in Fig. 2: black – Rectilinear &
Oblique; green – Low-Freq.; orange – High-Freq.; yellow – Planar
or Rotating; and magenta – Chaotic & Vertical Periodic.

the drag coefficient [2, 21] and has been found to be systemat-
ically larger compared to the case of fixed spheres. Deviations
for light particles with Γ <∼ 1 remain small and comparable to
the ones we report here for Γ ≈ 1.1 particles with Γ >∼ 1, and
become important for very light spheres with Γ ≪ 1.

IV. Conclusions

We presented in this article an experimental study on the
settling of single spheres in a quiescent flow, with a system-
atic characterization of settling regimes, settling terminal ve-
locity and drag coefficient of spheres with density ratios up to
Γ ≃ 8 (previous similar studies were limited to Γ < 4). The
spheres dynamics is analyzed in the parameters space Γ−Ga,
with particle-to-fluid density ratios Γ ∈ (1.1,7.9) and Galileo
numbers Ga ∈ (100,340).

Overall, our results on the settling regimes are in very
good agreement with the numerical simulations by Zhou and
Dušek [36] and in partial agreement with previous experi-
ments by Veldhuis & Biesheuvel [34] and Raaghav et al. [29]
over a narrower range of density ratios.

In particular, we confirm that for all situations, trajectories
eventually become chaotic in the high Galileo number limit
(typically for Ga > 250) although the details of the route to
chaos depends on the density ratio of the particles. For the
lowest density ratio, we observe all the regimes predicted by
Zhou and Dušek [36] simulations. In particular we confirm
the Low-Frequency nature of Oblique Oscillating Regime (for
Ga <∼ 200 for Γ = 1.1 and around Ga ≈ 200 for Γ = 2.5)
with a dominant dimensionless frequency f ∗ ≈ 0.06. While
this regime (predicted by Zhou and Dušek [36]) was reported
by Raaghav et al. [29], it was not clearly observed in exper-
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iments by Veldhuis & Biesheuvel. We also confirm that par-
ticles with density ratio close to unity (Plastic Particles with
Γ = 1.1) exhibit a “pocket” of vertical periodic settling in the
range Ga ∈ (250,300). This regime predicted in simulations
by Zhou and Dušek [36] was also reported in experiments by
Raaghav et al. although it was not observed by Veldhuis &
Biesheuvel.

For the densest particles we investigated (Metallic Particles
with Γ = 7.9), which are also the densest reported for such
experimental studies, we confirm the existence of a High-
Frequency Oblique Oscillating Regime, around Ga ≈ 200
with f ∗ ≈ 0.18. This regime was not observed in experi-
ments Raaghav et al. [29] at Γ = 3.9 who only reported he-
lical/rotating trajectories. We also observe such helical tra-
jectories (around Ga ≈ 220), which we find to co-exist with
the High-Frequency Oblique Oscillating Regime for Ga <∼
220, in agreement with what Zhou and Dušek [36] identi-
fied as a mult-stable Planar-or-Rotating Regime, where both
planar (oblique oscillating trajectories) and non-planar (he-
lical trajectories) could be observed. We find however that
the range of multi-stability is probably larger than what is
reported in the numerical study by Zhou and Dušek [36],
as helicoids were randomly observed over almost the entire
range of Galileo numbers a priori corresponding to the High-
Frequency Oblique Oscillating Regime. This may explain
why the High-Frequency Oblique Oscillating Regime was not
reported in [29], who may have only (randomly) observed he-
lical trajectories in this range. Concerning the helical trajecto-
ries, although the limited extent of the measurement volume in
our experiment did not allow to fully characterize the helical
properties, raw estimates of the radius (about 7 particle diam-
eters) and the pitch (several hundreds particle diameters) of
the portion of helicoids we observed are consistent with pre-
vious values reported in experiments by Raaghav et al. [29]
and simulations by Zhou and Dušek [36].

Finally, our study of the spheres terminal settling veloc-
ity (vs) and drag coefficient CD carries two important re-

sults. First, neglecting density ratio dependencies, we have
proposed two new correlations directly relating the terminal
Reynolds number Rep = vsdp/ν and the drag coefficient CD
to the Galileo number Ga. For the case of settling spheres,
these relations are more handy to use compared to classical
correlations between the CD and Rep as, contrary to Ga which
is a true control parameter of the problem, Rep is a response
parameter which cannot be determined beforehand. Secondly,
we have shown that the usual approximation to neglect an ex-
plicit dependency on the density ratio Γ (other than the im-
plicit dependency through Ga of the terminal Reynolds num-
ber and drag coefficient) for settling spheres is not justified
from the dimensional analysis and not fully supported by ex-
perimental findings. In particular, a trend was observed were
the drag coefficient of the lightest particles was systematically
larger than for the densest particles, with a difference up to
about 30% over the entire range of parameters we investi-
gated. This indicates that, at least in the range of Galileo num-
bers explored here (with rich and complex settling regimes),
while using the drag coefficient from usual correlations tabu-
lated for fixed spheres (which can be considered as infinitely
dense) at the corresponding Reynolds number may give the
good order of magnitude of the terminal velocity, an accurate
estimate would require to account for finite density ratio ef-
fects. Beyond the case of spheres settling in quiescent fluid
addressed here, such corrections may also play a role in the
context of modeling the drag force coupling of finite size in-
ertial particles advected and settling in turbulent flows.
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