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Abstract: We consider an epidemic change-point detection in a large class of causal time series models,

including among other processes, AR(∞), ARCH(∞), TARCH(∞), ARMA-GARCH. A test statistic based

on the Gaussian quasi-maximum likelihood estimator of the parameter is proposed. It is shown that, under

the null hypothesis of no change, the test statistic converges to a distribution obtained from a difference of

two Brownian bridge and diverges to infinity under the epidemic alternative. Numerical results for simulation

and real data example are provided.

Keywords: causal processes, epidemic change-point, semi-parametric statistic, quasi-maximum likelihood

estimator.

1 Introduction

We consider a general class of affine causal time series models in a semiparametric setting. Let (ξt)t∈Z be a

sequence of centered independent and identically distributed (iid) random variables satisfying Eξ2
0 = 1 and Θ

a compact subset of Rd (d ∈ N). For T ⊂ Z and any θ ∈ Θ, define

Class ACT (Mθ, fθ): A process {Xt, t ∈ T } belongs to ACT (Mθ, fθ) if it satisfies:

Xt = Mθ(Xt−1, Xt−2, . . .) · ξt + fθ(Xt−1, Xt−2, . . .) ∀t ∈ T , (1.1)

where Mθ, fθ : R∞ → R are two measurable functions.

Numerous classical time series such as AR(∞), ARCH(∞), TARCH(∞) or ARMA-GARCH models be-

long to this class. The existence of a stationary and ergodic solution as well as the inference for the class

ACZ(Mθ∗ , fθ∗) have been addressed by Bardet and Wintenberger (2009). This class of models is now well

studied, see for instance, Bardet et al. (2012), Kengne (2012) for change-point detection on this class; Bardet

et al. (2017) for inference based on the Laplacian quasi-likelihood; Bardet et al. (2020), Kengne (2020) for

works relating to model selection problems.
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2 Epidemic change-point detection in general causal time series

We focus here on the epidemic change-point detection in the class ACT (Mθ, fθ). Assume that a trajectory

(X1, · · · , Xn) of the process {Xt, t ∈ Z} is observed and consider the following test hypotheses:

H0: (X1, · · · , Xn) is a trajectory of the process {Xt, t ∈ Z} ∈ ACZ(Mθ∗0
, fθ∗0 ) with θ∗0 ∈ Θ.

H1: there exists (θ∗1 , θ
∗
2 , t
∗
1, t
∗
2) ∈ Θ2 × {2, 3, · · · , n − 1}2 (with θ∗1 6= θ∗2 and t∗1 < t∗2) such that (X1, · · · , Xn)

belongs to AC{1,··· ,t∗1}(Mθ∗1
, fθ∗1 )

⋂
AC{t∗1+1,··· ,t∗2}(Mθ∗2

, fθ∗2 )
⋂
AC{t∗2+1,··· ,n}(Mθ∗1

, fθ∗1 ).

H1 is the epidemic alternative; that is, there are two change-points (i.e, three regimes) such that the structure

of the data reverts back to its original state (the first regime) after the second change-point (i.e., the structure

of the first and the third regime is the same, and different from the second regime). This hypothesis refers to the

so-called epidemic period, which runs from t∗1 to t∗2. Such models can be used to perform ”crisis phenomenon”

or some seasonal variation with a dependence structure. For example, it is well known that, the GARCH model

can be used for many stocks index return. During a financial crisis, one could see high variations in the volatility,

wile the post-crisis behaviour tend to close to the pre-crisis volatility. Some macroeconomic indicators, such as

energy consumption/demand, which exhibit an autoregressive component (see, for instance, Contreras et al.

(2003) or Burman and Shumway (2006)) are known to follow such phenomena during an economic depression

period. See also Subsection 4.2 for an application to the concentrations of carbon monoxide; which could be

higher during a period of heat stress.

Several works in the literature are devoted to the epidemic change-point detection in time series. We refer

among others, to Levin and Kline (1985), Yao (1993), Csörgö and Horváth (1997), Račkauskas and Suquet

(2004), Guan (2007), Jarušková and Piterbarg (2011), Aston and Kirch (2012a, 2012b), Bucchia (2014),

Graiche et al. (2016). As pointed out by Diop and Kengne (2021), most of these procedures are developed for

the epidemic change-point detection in the mean of random variables. The latter authors addressed this issue

for a general class of integer valued time series.

In this new contribution, we propose a test based on the Gaussian quasi-likelihood for the epidemic change-

point detection in the class of affine causal models ACT (Mθ, fθ). Under the null hypothesis of no change, the

proposed statistic converges to a distribution obtained from a difference between two Brownian bridges; this

statistic diverges to infinity under the epidemic alternative. These findings lead to a test which has correct

size asymptotically and is consistent.

The rest of the paper is outlined as follows. Section 2 provides some assumptions and the definition of the

Gaussian quasi-likelihood. Section 3 focuses on the construction of the test statistic and the asymptotic studies

under the null and the epidemic alternative. Some numerical results for simulation and real data example are

displayed in Section 4. Section 5 is devoted to the proofs of the main results.

2 Assumptions and QMLE

Throughout the sequel, we use the following notations:

• ‖x‖ :=
»∑p

i=1 |xi|2, for any x ∈ Rp;

• ‖x‖ :=
»∑p

i=1

∑q
j=1 |xi,j |2, for any matrix x = (xi,j) ∈ Mp,q(R); where Mp,q(R) denotes the set of

matrices of dimension p× q with coefficients in R;
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• ‖f‖Θ := supθ∈Θ (‖f(θ)‖) for any function f : Θ −→Mp,q(R);

• ‖Y ‖r := E (‖Y ‖r)1/r
, where Y is a random vector with finite r−order moments;

• T`,`′ = {`, `+ 1, · · · , `′} for any (`, `′) ∈ N2 such as ` ≤ `′.

In the sequel, 0 denote the null vector of any space. For Ψθ = fθ, Mθ, M
2
θ and any compact set K ⊆ Θ, define

Assumption Ai(Ψθ,K) (i = 0, 1, 2): Assume that ‖∂iΨθ(0)/∂θi‖K < ∞ and there exists a sequence of

non-negative real number (α
(k)
i (Ψθ,K))i≥1 such that

∞∑
k=1

α
(i)
k (Ψθ,K) <∞ satisfying

∥∥∥∂iΨθ(x)

∂θi
− ∂iΨθ(y)

∂θi

∥∥∥
K
≤
∞∑
k=1

α
(i)
k (Ψθ,K)|xk − yk| for all x, y ∈ R∞,

where x, y, xk, yk are respectively replaced by x2, y2, x2
k, y2

k if Ψθ = hθ := M2
θ .

For any r ≥ 1, define

Θ(r) =
{
θ ∈ Rd

/
A0(fθ, {θ}) and A0(Mθ, {θ}) hold with

∞∑
k=1

¶
α

(0)
k (fθ, {θ}) + ‖ξ0‖rα(0)

k (Mθ, {θ}
©
< 1
}

⋃{
θ ∈ Rd

/
fθ = 0 and A0(hθ, {θ}) holds with ‖ξ0‖2r

∞∑
k=1

α
(0)
k (hθ, {θ}) < 1

}
.

These Lipschitz-type conditions are notably useful when studying the existence of solutions of the class

ACT (Mθ, fθ). If θ ∈ Θ(r), then there exists a stationary and ergodic solution X = (Xt)t∈Z ∈ ACZ(Mθ, fθ)

satisfying ‖X0‖r <∞ (see Bardet and Wintenberger (2009)).

Consider a trajectory (X1, · · · , Xn) of a process X = (Xt)t∈Z. If (X1, · · · , Xn) ∈ AC{1,··· ,n}(Mθ, fθ), then

for any segment T ⊂ {1, · · · , n}, the conditional Gaussian quasi-(log)likelihood computed on T is given by,

L(T, θ) := −1

2

∑
t∈T

qt(θ) with qt(θ) =
(Xt − f tθ)2

htθ
+ log(htθ) (2.1)

where f tθ = fθ
(
Xt−1, Xt−2 . . .

)
, M t

θ = Mθ

(
Xt−1, Xt−2 . . .

)
and htθ = (M t

θ)
2. In the sequel, we deal with an

approximated quasi-(log)likelihood contrast given for any segment T ⊂ {1, · · · , n} by,

L̂(T, θ) := −1

2

∑
t∈T

q̂t(θ) where q̂t(θ) :=

(
Xt − f̂ tθ

)2
ĥtθ

+ log
(
ĥtθ
)

with f̂ tθ = fθ
(
Xt−1, . . . , X1, 0, 0, · · ·

)
, M̂ t

θ = Mθ

(
Xt−1, . . . , X1, 0, 0, · · ·

)
and ĥtθ = (M̂ t

θ)
2; and define,

θ̂n(T ) := argmax
θ∈Θ

(L̂(T, θ)) (2.2)

The following assumptions are needed to study the asymptotic behavior of the estimator defined in (2.2).

Assumption D(Θ): ∃h > 0 such that inf
θ∈Θ

(hθ(x)) ≥ h for all x ∈ RN.

Assumption Id(Θ): For a process (Xt)t∈Z ∈ ACZ(Mθ∗ , fθ∗) and for all θ ∈ Θ,(
fθ∗(X0, X−1, · · · ) = fθ(X0, X−1, · · · ) and hθ∗(X0, X−1, · · · ) = hθ(X0, X−1, · · · ) a.s.

)
⇒ θ∗ = θ.
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Assumption Var(Θ): For a process (Xt)t∈Z ∈ ACZ(Mθ∗ , fθ∗), one of the families
(∂fθ∗
∂θi

(X0, X−1, · · · )
)

1≤i≤d

or
(∂hθ∗
∂θi

(X0, X−1, · · · )
)

1≤i≤d is a.e. linearly independent.

Under H0 and the above assumptions, Bardet and Wintenberger (2009) established the consistency and the

asymptotic normality of the estimator θ̂n(T1,n) for the class ACZ(Mθ∗0
, fθ∗0 ).

3 Test statistic and asymptotic results

Under H0, recall that (see Bardet and Wintenberger (2009)), for the class ACZ(Mθ∗0
, fθ∗0 ), it holds that

√
n
(
θ̂(T1,n)− θ∗0

) D−→
n→∞

N
(
0 , F−1GF−1

)
, with G := E

[∂q0(θ∗0)

∂θ

∂q0(θ∗0)

∂θ

′]
and F := E

[∂2q0(θ∗0)

∂θ∂θ′

]
, (3.1)

where ′ denotes the transpose. For any segment T ⊂ {1, · · · , n}, consider the following matrices,

Ĝ(T ) :=
1

Card(T )

∑
t∈T

(∂q̂t(θ̂(T ))

∂θ

)(∂q̂t(θ̂(T ))

∂θ

)′
and F̂ (T ) :=

1

Card(T )

∑
t∈T

∂2q̂t(θ̂(T ))

∂θ∂θ′
. (3.2)

Under H0, Ĝ(T1,n) and F̂ (T1,n) are consistent estimators of G and F , respectively.

In the sequel, we follow the idea of Diop and Kengne (2021). Let (un)n≥1, (vn)n≥1 be two integer valued

sequences such that: (un, vn) = o(n) and un, vn −→
n→∞

+∞. For all n ≥ 1, define the matrix

Σ̂(un) =
1

3

[
F̂ (T1,un

)Ĝ(T1,un
)−1F̂ (T1,un

) + F̂ (Tun+1,n−un
)Ĝ(Tun+1,n−un

)−1F̂ (Tun+1,n−un
)

+ F̂ (Tn−un+1,n)Ĝ(Tn−un+1,n)−1F̂ (Tn−un+1,n)
]

(3.3)

where Ĝ(T1,un
)−1, Ĝ(Tun+1,n−un

)−1, Ĝ(Tn−un+1,n)−1 are replaced by 0 if these matrices are not invertible.

Also, define the set

Tn =
¶

(k1, k2) ∈ ([vn, n− vn] ∩ N)
2

with k2 − k1 ≥ vn
©
.

For all (k1, k2) ∈ Tn, set

Cn,k1,k2 =
(k2 − k1)

n3/2

î
(n− (k2 − k1)) θ̂(Tk1+1,k2)− k1θ̂(T1,k1)− (n− k2)θ̂(Tk2+1,n)

ó
, (3.4)

and consider the test statistic

Q̂n = max
(k1,k2)∈Tn

Q̂n,k1,k2 with Q̂n,k1,k2 = C ′n,k1,k2Σ̂(un)Cn,k1,k2 . (3.5)

As pointed out by Diop and Kengne (2021), this test statistic coincides with those proposed by Rackauskas

and Suquet (2004) (statistic UI(n, ρ)), Jarusková and Piterbarg (2011) (statistic T 2
1 ), Bucchia (2014) (statistic

Tn(α, β)) or Aston and Kirch (2012) (statistic TB2
n ) for the particular case of epidemic change-point detection

in the mean. In this sense, the test considered here can be seen as a generalization of these procedures.

The following theorem provides the asymptotic behavior of the statistic Q̂n under the null hypothesis. In the

condition (3.6) in this theorem, we make the convention that if Ai(Mθ,Θ) holds, then α
(i)
k (hθ,Θ) = 0 for all

k ∈ N and if Ai(hθ,Θ) holds, then α
(i)
k (Mθ,Θ) = 0 for all k ∈ N.
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Theorem 3.1 Under H0 with θ∗0 ∈
◦
Θ∩Θ(4), assume that D(Θ), Id(Θ), Var(Θ) (for the class ACZ(Mθ∗0

, fθ∗0 )),

Ai(fθ,Θ), Ai(Mθ,Θ) (or Ai(hθ,Θ)) hold with

α
(i)
k (fθ,Θ) + α

(i)
k (Mθ,Θ) + α

(i)
k (hθ,Θ) = O(k−γ) for i = 0, 1, 2 and some γ > 3/2. (3.6)

Then,

Q̂n
D−→

n→∞
sup

0≤τ1<τ2≤1
‖Wd(τ1)−Wd(τ2)‖2 , (3.7)

where Wd is a d-dimensional Brownian bridge.

For any α ∈ (0, 1), denote cd,α the (1 − α)-quantile of the distribution of sup0≤τ1<τ2≤1 ‖Wd(τ1)−Wd(τ2)‖2.

Therefore, at a nominal level α ∈ (0, 1), the critical region of the test is (Q̂n > cd,α); which leads to a

procedure with correct size asymptotically. Table 1 of Diop and Kengne (2021) provides the values of cd,α for

α = 0.01, 0.05, 0.10 and d = 1, . . . , 5.

For asymptotic under the epidemic alternative, the following additional condition is needed.

Assumption B: There exists (τ∗1 , τ
∗
2 ) ∈ (0, 1)2 with τ∗1 < τ∗2 , such that (t∗1, t

∗
2) = ([nτ∗1 ], [nτ∗2 ]) (where [·] is

the integer part).

We have the following result.

Theorem 3.2 Under H1 with θ∗1 , θ
∗
2 ∈

◦
Θ∩Θ(4), assume that D(Θ), Id(Θ), Var(Θ) (for the classes ACZ(Mθ∗1

, fθ∗1 )

and ACZ(Mθ∗2
, fθ∗2 )), Ai(fθ,Θ), Ai(Mθ,Θ) (or Ai(hθ,Θ)) and (3.6) hold. Then,

Q̂n
P−→

n→∞
+∞. (3.8)

This theorem shows that the proposed procedure is consistent. An estimator of the change-points t∗ = (t∗1, t
∗
2)

under the epidemic alternative is given by

t̂n = argmax
(k1,k2)∈Tn

C ′n,k1,k2Σ̂(un)Cn,k1,k2 .

Remark 3.3 The nonlinear framework used in the present paper imposes a stronger condition on the Lipschitz-

type coefficients when the model is linear, but the results of Theorem 3.1 and 3.2 apply to a wider class of models.

For example, consider an ARMA(p, q) model with

Pθ∗0 (L)Xt = Qθ∗0 (L)ξt, for all t ∈ Z, (3.9)

where Pθ(z) = 1 − α1z − · · · − αpzp, Qθ∗0 (z) = 1 + β1z + · · · + β∗pz, θ = (α1, · · · , αp, β1, · · · , βq) and θ∗0 the

true parameter. We know that (see Brockwell and Davis (1991)) if the polynomials Pθ∗0 and Qθ∗0 are coprime

with the roots outside the unit circle, then there exists a stationary solution of (3.9) which is causal and

invertible. For such example, a weaker condition with Θ a compact subset of {θ = (α1, · · · , αp, β1, · · · , βq) ∈
Rp+q, Pθ and Qθ are coprime with the roots outside the unit circle} is enough. That is, in the case of the

model (3.9), the condition ”θ∗0 ∈
◦
Θ∩Θ(4)” can be replaced by ”‖ξ0‖4 <∞, Θ = {θ = (α1, · · · , αp, β1, · · · , βq) ∈

Rp+q, Pθ and Qθ are coprime with the roots outside the unit circle}, θ∗0 ∈
◦
Θ” and the result of Theorem 3.1

holds. See other details in Subsection 4.1 for the case of an ARMA(1,1). This remark is also applied to

Theorem 3.2.
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4 Some numerical results

This section presents some results of a simulation study and a real data example. For a sample size n, the

statistic Q̂n is computed with un = [(log(n))
5/2

] and vn = [(log(n))
2
] (see also Remark 1 in Kengne (2012)).

The empirical levels and powers are obtained after 200 replications at the nominal level α = 0.05.

4.1 Simulation study

We consider the following models:

(i) ARMA(1,1) processes:

Xt = α∗0 + α∗1Xt−1 + ξt + β∗1ξt−1 for all t ∈ Z. (4.1)

The parameter of the model is θ∗ = (α∗0, α
∗
1, β
∗
1) ∈ Θ, where Θ is a compact subset of R3 such as: for all

θ = (α0, α1, β1) ∈ Θ, |α1| < 1 and |β1| < 1. Since we can write for all t ∈ Z,

Xt =
α∗0

1 + β∗1
+ (α∗1 + β∗1)

(
Xt−1 +

∑
k≥2

(−β∗1)k−1Xt−k
)

+ ξt,

the model (4.1) belongs to the classACZ(Mθ∗ , fθ∗) with fθ(x1, · · · ) =
α0

1 + β1
+(α1+β1)

(
x1+

∑
k≥2(−β1)k−1xk

)
and Mθ ≡ 1 for all θ = (α0, α1, β1) ∈ Θ. In accordance with Remark 3.3, the conditions |α∗1| < 1 and |β∗1 | < 1,

with are weaker than the Lipschitz-type assumptions A0(Ψθ,Θ) (which would require that the parameter space

Θ be a subset of
{

(α0, α1, β1) ∈ R3 with 0 < |α1 + β1|/(1− |β1|) < 1
}

) suffices to get a stationary solution of

(4.1) which is causal and invertible. Moreover, if ξ0 is a non-degenerate random variable, then the assumptions

Id(Θ) and Var(Θ) hold; and for any r ≥ 1 such that Eξr0 < ∞, Θ(r) = Θ. In the sequel, we deal with an

ARMA(1,1) with a non zero mean (θ∗ = (α∗0, α
∗
1, β
∗
1)), an ARMA(1,1) with mean zero (θ∗ = (α∗1, β

∗
1)) and an

AR(1) with a non zero mean (θ∗ = (α∗0, α
∗
1)).

We consider the change-point test with an epidemic alternative where the parameter of the model is θ∗0

under H0, and θ∗1 , θ∗2 under H1. Firstly, two trajectories with n = 500 of an ARMA(1,1) (with mean zero) are

generated: a trajectory under H0 with θ∗0 = (−0.4,−0.25) and a trajectory under H1 with breaks at (t∗1, t
∗
2) =

(150, 350), θ∗1 = (−0.4,−0.25), θ∗2 = (−0.4, 0.1). Figure 1 displays the statistic Q̂n,k1,k2 . One can see that, for

the scenario without change, the values of this statistic are below the horizontal triangle which represents the

limit of the critical region (see Figure 1(a)). Under the epidemic alternative, max(k1,k2)∈Tn Q̂n,k1,k2 is greater

than the critical value of the test and is reached around the points where the changes occur (see the dotted

lines in Figure 1(b)).

(ii) GARCH(1,1) processes:

Xt = σtξt with σ2
t = α∗0 + α∗1X

2
t−1 + β∗1σ

2
t−1, (4.2)

the parameter θ∗ = (α∗0, α
∗
1, β
∗
1) ∈ Θ, a compact subset of ]0,∞[×[0,∞[2 such as: for all θ = (α0, α1, β1) ∈ Θ,

α1 + β1 < 1. For all t ∈ Z, we get

Xt = ξt

√
α∗0/(1− β∗1) + α∗1

∑
k≥1

(β∗1)k−1X2
t−k.
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Figure 1: The statistics Q̂n,k1,k2 for trajectories of an ARMA(1,1) with mean zero: (a) a scenario without change,

where the true parameter θ∗0 = (−0.4,−0.25) is constant; (b) a scenario under the epidemic alternative where the

parameter θ∗1 = (−0.4,−0.25) changes to θ∗2 = (−0.4, 0.1) at t1 = 150 and reverts back to θ∗1 at t2 = 350.

Therefore, the model (4.2) belongs to the class ACZ(Mθ∗ , fθ∗) with Mθ(x1, · · · ) =
»

α0

1−β1
+ α1

∑
k≥1 β

k−1
1 x2

k

and fθ ≡ 0 for all θ = (α0, α1, β1) ∈ Θ. The Lipschitz-type conditions Ai(Ψθ,Θ) (i = 0, 1, 2) hold automatically

and D(Θ) is satisfied with h = inf
θ=(α0,α1,β1)∈Θ

»
α0

1−β1
> 0. In addition, if ξ0 is a non-degenerate random

variable, then the assumptions Id(Θ) and Var(Θ) hold; and for any r ≥ 1 such that Eξr0 < ∞, Θ(r) = {θ =

(α0, α1, β1) ∈ Θ; ‖ξ0‖2r(α1 + β1) < 1}. In the sequel, we consider a GARCH(1,1) (θ∗ = (α∗0, α
∗
1, β
∗
1)) and an

ARCH(1) (θ∗ = (α∗0, α
∗
1)).

For both the ARMA and GARCH model, we carry out the change-point test with an epidemic alternative

where the parameter of the model is θ∗0 under H0, and θ∗1 , θ∗2 under H1 with change-points at (t∗1, t
∗
2) =

(0.3n, 0.7n) for sample size n = 500, 1000. The empirical levels and powers are displayed in Table 1. The

AR(1) example is related to the real data application, see Subsection 4.2. The results in this table show that,

the empirical level approaching the nominal one when n increases and the empirical power increases with n and

is overall close to one when n = 1000. These findings are consistent with the asymptotic results of Theorems

3.1 and 3.2.

4.2 Real data example

We consider the daily concentrations of carbon monoxide in the Vitória metropolitan area. These daily levels

are obtained from the State Environment and Water Resources Institute, where the data were collected at

eight monitoring stations. There are 455 available observations that represent the average concentrations from

September 11, 2009 through December 09, 2010 (see Figure 2(a)). The data are a part of a large dataset (avail-

able at https://rss.onlinelibrary.wiley.com/pb-assets/hub-assets/rss/Datasets/RSSC%2067.2/C1239deSouza-

1531120585220.zip) which were analyzed by Souza et al. (2018) to quantify the association between respiratory

disease and air pollution concentrations.

To test the presence of an epidemic change in this series, we apply our detection procedure with the
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Table 1: Empirical sizes and powers for the epidemic change-point detection in the models (4.1) and (4.2).

n = 500 n = 1000

AR(1)
Empirical levels: θ∗0 = (813, 0.3) 0.025 0.035

Empirical powers: θ∗1 = (813, 0.3); θ∗2 = (933, 0.24); 1.000 1.000

ARMA(1,1) with zero mean
Empirical levels: θ∗0 = (−0.4,−0.25) 0.045 0.050

Empirical powers: θ∗1 = (−0.4,−0.25); θ∗2 = (−0.4, 0.1); 0.760 0.990

ARMA(1,1) with non zero mean
Empirical levels: θ∗0 = (1, 0.15, 0.2) 0.065 0.060

Empirical powers: θ∗1 = (1, 0.15, 0.2); θ∗2 = (1, 0.5, 0.2); 0.925 1.000

ARCH(1)
Empirical levels: θ∗0 = (0.6, 0.4) 0.035 0.045

Empirical powers: θ∗1 = (0.6, 0.4); θ∗2 = (0.2, 0.4); 0.910 0.995

GARCH(1,1)
Empirical levels: θ∗0 = (0.15, 0.3, 0.25) 0.080 0.060

Empirical powers: θ∗1 = (0.15, 0.3, 0.25); θ∗2 = (0.15, 0.3, 0.55); 0.730 0.920

ARMA(p, q) model. We have applied the test with several values of p and q; and the results after change-point

detection show a preference (in the sense of AIC and BIC) for an AR(1). Figure 2(b) displays the values of

Q̂n,k1,k2 for all (k1, k2) ∈ Tn. The critical value on nominal level α = 5% is cd,α = 5.69 and the resulting test

statistic is Q̂n = 6.61; which implies that the null hypothesis H0 is rejected (i.e., an epidemic change-point

is detected). The vector of the break-points estimated is t̂n = (143, 330); i.e, the point where the peak in

the graph is reached (see Figure 2(b)). The locations of the changes correspond to the dates January 31 and

August 06, 2010. This corresponds to the period where the winds are weaker and the austral winter; these

meteorological factors are noticeable to increase the concentration of the carbon monoxide. The estimated

model on each regime is given by:

Xt =



813.39
(19.72)

+ 0.309
(0.08)

Xt−1 + ξt for t ≤ 143,

933.27
(22.43)

+ 0.240
(0.07)

Xt−1 + ξt for 144 ≤ t ≤ 330,

822.83
(22.82)

+ 0.293
(0.09)

Xt−1 + ξt for t ≥ 331,

(4.3)

where in parentheses are the standard errors of the estimators. From (4.3), one remark that, the parameter

of the first regime is close to that of the third regime; which strengthens the hypothesis of the existence of an

epidemic change-point.

5 Proofs of the main results

To simplify the expressions, in this section, we will use the conditional Gaussian quasi-log-likelihood up to

multiplication by 1/2, given by L(T, θ) := −
∑
t∈T

qt(θ) and L̂(T, θ) := −
∑
t∈T

q̂t(θ).
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Figure 2: Plot of Q̂n,k1,k2 for the epidemic change-point detection applied to the daily averages concentrations for

carbon monoxide in the Vitória metropolitan area, between September 11, 2009 and December 09, 2010 with an AR(1)

process. The vertical lines in (a) are the estimated breakpoints. The horizontal triangle in (b) represents the limit of

the critical region of the test, whereas the dotted lines show the point where the maximum of Q̂n,k1,k2 is reached.

5.1 Proof of Theorem 3.1

Let Σ := F−1GF−1, where F and G are the matrices defined in (3.1). Define the statistic

Qn = max
(k1,k2)∈Tn

Qn,k1,k2 with Qn,k1,k2 = C ′n,k1,k2ΣCn,k1,k2 .

Consider the following lemma; we can go along similar lines as in the proof of Lemma 6.3 in [12] to show the

part (i). The part (ii) is established in [6].

Lemma 5.1 Suppose that the assumptions of Theorem 3.1 hold. Then,

(i) max(k1,k2)∈Tn
∣∣Q̂n,k1,k2 −Qn,k1,k2 ∣∣ = oP (1);

(ii)
(
∂
∂θ qt(θ

∗
0),Ft

)
t∈Z is a stationary ergodic, square integrable martingale difference sequence with covariance

matrix G.

Let two integers k, k′ ∈ [1, n], θ̄ ∈ Θ and i ∈ {1, 2, · · · , d}. Applying the mean value theorem to θ 7→
∂
∂θi
L(Tk,k′ , θ), there exists θn,i between θ̄ and θ∗0 such that

∂

∂θi
L(Tk,k′ , θ̄) =

∂

∂θi
L(Tk,k′ , θ

∗
0) +

∂2

∂θ∂θi
L(Tk,k′ , θn,i)(θ̄ − θ∗0);

i.e,

(k′ − k + 1)Fn(Tk,k′ , θ̄)(θ̄ − θ∗0) =
∂

∂θ
L(Tk,k′ , θ

∗
0)− ∂

∂θ
L(Tk,k′ , θ̄) (5.1)

with

Fn(Tk,k′ , θ̄) = − 1

(k′ − k + 1)

∂2

∂θ∂θi
L(Tk,k′ , θn,i)1≤i≤d. (5.2)

The following lemma will be useful in the sequel.

Lemma 5.2 Suppose that the assumptions of Theorem 3.1 hold. If (jn)n≥1 and (kn)n≥1 are two integer valued

sequences such that jn < kn, kn −→
n→∞

∞ and kn − jn −→
n→∞

∞, then
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(i) 1√
kn−jn

∥∥ ∂
∂θ L̂(Tjn,kn , θ)− ∂

∂θL(Tjn,kn , θ)
∥∥

Θ

P−→
n→∞

0;

(ii) Fn(Tjn,kn , θ̂(Tjn,kn))
a.s.−→
n→∞

F .

Proof.

(i) See the proof of Theorem 2 in [6].

(ii) Applying (5.2) with θ̄ = θ̂(Tjn,kn), we obtain

Fn(Tjn,kn , θ̂(Tjn,kn)) =
( 1

kn − jn + 1

∂2

∂θ∂θi
L(Tjn,kn , θn,i)

)
1≤i≤d

=
1

kn − jn + 1

( ∑
t∈Tjn,kn

∂2qt(θn,i)

∂θ∂θi

)
1≤i≤d

,

where θn,i belongs between θ̂(Tjn,kn) and θ∗0 . Since θ̂(Tjn,kn)
a.s.−→
n→∞

θ∗0 , θn,i
a.s.−→
n→∞

θ∗0 for any i = 1, · · · , d

(from the consistency of the QMLE) and that F = E
[∂2q0(θ∗0 )

∂θ∂θ′

]
exists (see [6]), by the uniform strong law

of large numbers, for any i = 1, · · · , d, we get∥∥∥ 1

kn − jn + 1

∑
t∈Tjn,kn

∂2qt(θn,i)

∂θ∂θi
− E

[∂2q0(θ∗0)

∂θ∂θi

]∥∥∥
≤
∥∥∥ 1

kn − jn + 1

∑
t∈Tjn,kn

∂2qt(θn,i)

∂θ∂θi
− E

[∂2q0(θn,i)

∂θ∂θi

]∥∥∥+
∥∥∥E[∂2q0(θn,i)

∂θ∂θi

]
− E

[∂2q0(θ∗0)

∂θ∂θi

]∥∥∥
≤
∥∥∥ 1

kn − jn + 1

∑
t∈Tjn,kn

∂2qt(θ)

∂θ∂θi
− E

[∂2q0(θ)

∂θ∂θi

]∥∥∥
Θ

+ o(1) = o(1) + o(1) = o(1).

This establishes the lemma. �

Now, let us show that

Qn
D−→

n→∞
sup

0≤τ1<τ2≤1
‖Wd(τ1)−Wd(τ2)‖2 . (5.3)

Remark that, Qn,k1,k2 can be rewritten as

Qn,k1,k2 =
∥∥G−1/2F · Cn,k1,k2

∥∥2

where Cn,k1,k2 is defined in (3.4). Let (k1, k2) ∈ Tn. Applying (5.1) with θ̄ = θ̂(Tk1+1,k2) and Tk,k′ = Tk1+1,k2 ,

we obtain

Fn(Tk1+1,k2 , θ̂(Tk1+1,k2)) · (θ̂(Tk1+1,k2)− θ∗0) =
1

k2 − k1

( ∂
∂θ
L(Tk1+1,k2 , θ

∗
0)− ∂

∂θ
L(Tk1+1,k2 , θ̂(Tk1+1,k2))

)
.(5.4)

With θ̄ = θ̂(Tk2+1,n) and Tk,k′ = Tk2+1,n, (5.1) implies

Fn(Tk2+1,n, θ̂(Tk2+1,n)) · (θ̂(Tk2+1,n)− θ∗0) =
1

n− k2

( ∂
∂θ
L(Tk2+1,n, θ

∗
0)− ∂

∂θ
L(Tk2+1,n, θ̂(Tk2+1,n))

)
. (5.5)

Moreover, as n→ +∞, from the asymptotic normality of the QMLE (see [6]) and Lemma 5.2(ii), we have
∥∥√k1

Ä
θ̂(T1,k1)− θ∗0

ä ∥∥ = OP (1),
∥∥√k2 − k1

Ä
θ̂(Tk1+1,k2)− θ∗0

ä∥∥ = OP (1);∥∥√n− k2

Ä
θ̂(Tk2+1,n)− θ∗0

ä ∥∥ = OP (1);∥∥Fn(Tk1+1,k2 , θ̂(Tk1+1,k2))− F
∥∥ = o(1) and

∥∥Fn(Tk2+1,n, θ̂(Tk2+1,n))− F
∥∥ = o(1).

(5.6)
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Then, for n large enough, it holds from (5.4) that

√
k2 − k1F ·

Ä
θ̂(Tk1+1,k2)− θ∗0

ä
=

1√
k2 − k1

( ∂
∂θ
L(Tk1+1,k2 , θ

∗
0)− ∂

∂θ
L(Tk1+1,k2 , θ̂(Tk1+1,k2))

)
−
√
k2 − k1

( Ä
Fn(Tk1+1,k2 , θ̂(Tk1+1,k2))− F

ä Ä
θ̂(Tk1+1,k2)− θ0

ä )
=

1√
k2 − k1

( ∂
∂θ
L(Tk1+1,k2 , θ

∗
0)− ∂

∂θ
L(Tk1+1,k2 , θ̂(Tk1+1,k2))

)
+ oP (1)

=
1√

k2 − k1

( ∂
∂θ
L(Tk1+1,k2 , θ

∗
0)− ∂

∂θ
L̂(Tk1+1,k2 , θ̂(Tk1+1,k2))

)
+ oP (1)

+
1√

k2 − k1

( ∂
∂θ
L̂(Tk1+1,k2 , θ̂(Tk1+1,k2))− ∂

∂θ
L(Tk1+1,k2 , θ̂(Tk1+1,k2))

)
=

1√
k2 − k1

( ∂
∂θ
L(Tk1+1,k2 , θ

∗
0)− ∂

∂θ
L̂(Tk1+1,k2 , θ̂(Tk1+1,k2))

)
+ oP (1),

where the last equality is obtained from Lemma 5.2(i). This is equivalent to

F ·
Ä
θ̂(Tk1+1,k2)− θ∗0

ä
=

1

k2 − k1

( ∂
∂θ
L(Tk1+1,k2 , θ

∗
0)− ∂

∂θ
L̂(Tk1+1,k2 , θ̂(Tk1+1,k2))

)
+ oP

( 1√
k2 − k1

)
. (5.7)

For n large enough, θ̂(Tk1+1,k2) is an interior point of Θ and we have ∂
∂θ L̂(Tk1+1,k2 , θ̂(Tk1+1,k2)) = 0. Thus,

from (5.7), we obtain

F ·
Ä
θ̂(Tk1+1,k2)− θ∗0

ä
=

1

k2 − k1

∂

∂θ
L(Tk1+1,k2 , θ

∗
0) + oP

( 1√
k2 − k1

)
. (5.8)

Similarly, using (5.5), we also obtain

F ·
Ä
θ̂(Tk2+1,n)− θ∗0

ä
=

1

n− k2

∂

∂θ
L(Tk2+1,n, θ

∗
0) + oP

( 1√
n− k2

)
. (5.9)

The subtraction of (5.8) and (5.9) gives

F ·
Ä
θ̂(Tk1+1,k2)− θ̂(Tk2+1,n)

ä
=

1

k2 − k1

∂

∂θ
L(Tk1+1,k2 , θ

∗
0)− 1

n− k2

∂

∂θ
L(Tk2+1,n, θ

∗
0)

+ oP

( 1√
k2 − k1

+
1√

n− k2

)
;

i.e.,

(k2 − k1)(n− k2)

n3/2
F ·
Ä
θ̂(Tk1+1,k2)− θ̂(Tk2+1,n)

ä
=

1

n3/2

[
(n− k2)

∂

∂θ
L(Tk1+1,k2 , θ

∗
0)− (k2 − k1)

∂

∂θ
L(Tk2+1,n, θ

∗
0)
]

+ oP (1). (5.10)

By going along similar lines, we can also show that

k1(k2 − k1)

n3/2
F ·
Ä
θ̂(T1,k1)− θ̂(Tk1+1,k2)

ä
=

1

n3/2

[
(k2 − k1)

∂

∂θ
L(T1,k1 , θ

∗
0)− k1

∂

∂θ
L(Tk1+1,k2 , θ

∗
0)
]

+ oP (1). (5.11)
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Combining (5.10) and (5.11), we get

F · Cn,k1,k2 =
1

n3/2

[
(n− (k2 − k1))

∂

∂θ
L(Tk1+1,k2 , θ

∗
0)− (k2 − k1)

( ∂
∂θ
L(Tk2+1,n, θ

∗
0) +

∂

∂θ
L(T1,k1 , θ

∗
0)
)]

+ oP (1).

=
1√
n

[ ∂
∂θ
L(Tk1+1,k2 , θ

∗
0)− (k2 − k1)

n
L(T1,n)

]
+ oP (1)

=
1√
n

[ ∂
∂θ
L(T1,k2 , θ

∗
0)− ∂

∂θ
L(T1,k1 , θ

∗
0)− (k2 − k1)

n
L(T1,n)

]
+ oP (1)

=
1√
n

[( ∂
∂θ
L(T1,k2 , θ

∗
0)− k2

n
L(T1,n)

)
−
( ∂
∂θ
L(T1,k1 , θ

∗
0)− k1

n
L(T1,n)

)]
+ oP (1);

i.e.,

G−1/2F · Cn,k1,k2 =
G−1/2

√
n

[( ∂
∂θ
L(T1,k2 , θ

∗
0)− k2

n
L(T1,n)

)
−
( ∂
∂θ
L(T1,k1 , θ

∗
0)− k1

n
L(T1,n)

)]
+ oP (1). (5.12)

According to Lemma 5.1(ii), applying the central limit theorem for the sequence
(
∂
∂θ qt(θ

∗
0),Ft

)
t∈Z, we obtain

1√
n

( ∂
∂θ
L(T1,[nτ1], θ

∗
0)− [nτ1]

n

∂

∂θ
L(T1,n, θ

∗
0)
)

=
1√
n

( [nτ1]∑
t=1

∂

∂θ
qt(θ

∗
0)− [nτ1]

n

n∑
t=1

∂

∂θ
qt(θ

∗
0)
)

D−→
n→∞

BG(τ1)− τ1BG(1),

where BG is a Gaussian process with covariance matrix min(s, t)G. Hence,

G−1/2

√
n

( ∂
∂θ
L(T1,[nτ1], θ

∗
0)− [nτ1]

n

∂

∂θ
L(T1,n, θ

∗
0)
)

D−→
n→∞

Bd(τ1)− τ1Bd(1) = Wd(τ1)

in D([0, 1]), where Bd is a d-dimensional standard motion, and Wd is a d-dimensional Brownian bridge.

Similarly, we get

G−1/2

√
n

( ∂
∂θ
L(T1,[nτ2], θ

∗
0)− [nτ2]

n

∂

∂θ
L(T1,n, θ

∗
0)
)

D−→
n→∞

Bd(τ2)− τ2Bd(1) = Wd(τ2).

Thus, as n→∞, it comes from (5.12) that

Qn,[nτ1],[nτ2] =
∥∥G−1/2F · Cn,[nτ1],[nτ2]

∥∥2 D−→
n→∞

‖Wd(τ1)−Wd(τ2)‖2 in D([0, 1]).

Hence, for n large enough, we have

Qn = max
vn≤k1<k2≤n−vn

k1<k2−vn

Qn,k1,k2 = sup
vn
n ≤τ1<τ2≤1− vn

n

Qn,[nτ1],[nτ2]
D−→

n→∞
sup

0≤τ1<τ2≤1
‖Wd(τ1)−Wd(τ2)‖2 ;

which establishes (5.3). Using Lemma 5.1(i), we can conclude the proof of the theorem. �

5.2 Proof of Theorem 3.2

Under the epidemic alternative, (Y1, · · · , Yn) is a trajectory of Y = {Yt, t ∈ Z} which belongs to

AC{··· ,−1,0,1,··· ,t∗1}(Mθ∗1
, fθ∗1 )

⋂
AC{t∗1+1,···t∗2}(Mθ∗2

, fθ∗2 )
⋂
AC{t∗2+1,··· }(Mθ∗1

, fθ∗1 ), (t∗1, t
∗
2) = ([τ∗1n], [τ∗2n]) (with

0 < τ∗1 < τ∗2 < 1) and θ∗1 6= θ∗2 .
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For any n ∈ N, we have

Q̂n = max
(k1,k2)∈Tn

Q̂n,k1,k2 ≥ Q̂n,t∗1 ,t∗2 = C ′n,t∗1 ,t∗2 Σ̂(un)Cn,t∗1 ,t∗2 ,

where Cn,t∗1 ,t∗2 and Σ̂(un) are defined in (3.3) and (3.4). We can also write,

Cn,t∗1 ,t∗2 = − (t∗2 − t∗1)(n− (t∗2 − t∗1))

n3/2

Å
θ̂(T1,t∗1

)− θ̂(Tt∗1+1,t∗2
) +

n− t∗2
n− (t∗2 − t∗1)

(
θ̂(Tt∗2+1,n)− θ̂(T1,t∗1

)
)ã
.

Moreover, by definition, the three matrices in the formula of Σ̂n(un) are positive semi-definite. Then, according

to the assumption B and for n large enough, we can find a constant C > 0 such that, it holds a.s.

Q̂n ≥ Q̂n,t∗1 ,t∗2

≥ (t∗2 − t∗1)2(n− (t∗2 − t∗1))2

n3

Å
θ̂(T1,t∗1

)− θ̂(Tt∗1+1,t∗2
) +

n− t∗2
n− (t∗2 − t∗1)

(
θ̂(Tt∗2+1,n)− θ̂(T1,t∗1

)
)ã′

×
[
F̂ (T1,un

)Ĝ(T1,un
)−1F̂ (T1,un

) + F̂ (Tn−un+1,n)Ĝ(Tn−un+1,n)−1F̂ (Tn−un+1,n)
]

×
Å
θ̂(T1,t∗1

)− θ̂(Tt∗1+1,t∗2
) +

n− t∗2
n− (t∗2 − t∗1)

(
θ̂(Tt∗2+1,n)− θ̂(T1,t∗1

)
)ã

≥ C × n
Å
θ̂(T1,t∗1

)− θ̂(Tt∗1+1,t∗2
) +

n− t∗2
n− (t∗2 − t∗1)

(
θ̂(Tt∗2+1,n)− θ̂(T1,t∗1

)
)ã′

×
[
F̂ (T1,un)Ĝ(T1,un)−1F̂ (T1,un) + F̂ (Tn−un+1,n)Ĝ(Tn−un+1,n)−1F̂ (Tn−un+1,n)

]
×
Å
θ̂(T1,t∗1

)− θ̂(Tt∗1+1,t∗2
) +

n− t∗2
n− (t∗2 − t∗1)

(
θ̂(Tt∗2+1,n)− θ̂(T1,t∗1

)
)ã
. (5.13)

From the asymptotic properties of the QMLE, and the study of the stationary regime approximation developed

by Bardet et al. (2012) (see Proposition 6.1 and Corollary 6.1 of these authors), we deduce

• θ̂(T1,un
)

a.s.−→
n→∞

θ∗1 , θ̂(Tn−un+1,n)
a.s.−→
n→∞

θ∗1 , θ̂(T1,t∗)− θ̂(Tt∗1+1,t∗2
)

a.s.−→
n→∞

θ∗1 − θ∗2 6= 0;

• n− t∗2
n− (t∗2 − t∗1)

(
θ̂(Tt∗2+1,n)− θ̂(T1,t∗1

)
) a.s.−→
n→∞

0;

• F̂ (T1,un
)Ĝ(T1,un

)−1F̂ (T1,un
) + F̂ (Tn−un+1,n)Ĝ(Tn−un+1,n)−1F̂ (Tn−un+1,n)

a.s.−→
n→∞

2Σ(1),

where Σ(1) denotes the covariance matrix of the stationary model of the first and third regimes, defined as in

(3.1) and computed at θ∗1 . This matrix, which is defined on the stationary regime is positive definite (see [6]).

This implies Q̂n,t∗1 ,t∗2
a.s.−→
n→∞

+∞. Thus, the theorem is obtained from (5.13). �
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