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we characterize, using methods and results of [START_REF] Simpson | Words with simple Burrows-Wheeler Transforms[END_REF], those which cluster perfectly, but there are also infinitely many of them which cluster but not perfectly.

Finally, we turn to generalizations of Arnoux-Rauzy languages: these include Arnoux-Rauzy languages on more than three letters, for which we give a (non-optimal) bound on the possible length of a clustering word, and episturmian languages, which include Sturmian languages, Arnoux-Rauzy languages, some periodic languages, and some intermediate cases which behave essentially like Sturmian words. Among episturmian languages on three letters we give in Theorem 22 a full characterization of those which produce only finitely many clustering words: rather unexpectedly, these include not only Arnoux-Rauzy languages, but also some (not all) of the periodic and intermediate cases.

USUAL DEFINITIONS

Let A be a finite set called the alphabet, its elements being letters. A word w of length n = |w| is a 1 a 2 • • • a n , with a i ∈ A. The concatenation of two words w and w is denoted by ww .

A word is primitive if it is not a power of another word.

The reverse of a word w = w 1 ...w n is the word w = w n ...w 1 .

By a language Λ over A we mean a factorial extendable language: a collection of sets (Λ n ) n≥0

where the only element of Λ 0 is the empty word, and where each Λ n for n ≥ 1 consists of words of length n, such that for each v ∈ Λ n there exists a, b ∈ A with av, vb ∈ Λ n+1 , and each v ∈ Λ n+1 can be written in the form v = au = u b with a, b ∈ A and u, u ∈ Λ n .

A word v = v 1 ...v r occurs at index i in a word w = w 1 ...w s if v 1 = w i , ...v r = w i+r-1 , we say also that w contains v and v is a factor of w.

The complexity function of a language Λ is p(n) = #Λ n , n ≥ 0.

The Rauzy graph of length n of a language Λ is a directed graph whose vertex set consists of all words of length n of Λ, with an edge from w to w whenever w = av, w = vb for letters a and b, and the word avb is in Λ; this edge is then labelled by b.

A word w in Λ is right special (resp. left special) if it has more than one right extension wx (resp. left extension xw) in Λ, with x in A. If w is both right special and left special, then w is bispecial. If #Λ 1 > 1, the empty word ε is bispecial. To resolve a bispecial word w is to find all words in Λ of the form xwy for letters x and y.

A singular word is w = xvy for letters x, y, such that some x vy, x = x, and xvy , y = y, exist in Λ.

For a word w, we denote by w ω the one-sided infinite word www..., and by Λ w the language consisting of all the factors of w ω . A language Λ is closed under reversal if w ∈ Λ ⇔ w ∈ Λ.

A language Λ is uniformly recurrent if for every word w in Λ, there exists a constant K such that w occurs in every word in Λ of length at least K.

BURROWS-WHEELER AND CLUSTERING

Let A = {a 1 < a 2 < • • • < a r } be an ordered alphabet.

Definition 1. The (cyclic) conjugates of w are the words

w i • • • w n w 1 • • • w i-1 , 1 ≤ i ≤ n. If w is
primitive, w has precisely n conjugates. Let w i,1 • • • w i,n denote the i-th conjugate of w where the n conjugates of w are ordered by ascending lexicographical order.

Then the Burrows-Wheeler transform of w, defined in [START_REF] Burrows | A block-sorting lossless data compression algorithm[END_REF] and denoted by B(w), is the word w 1,n w 2,n • • • w n,n . In other words, B(w) is obtained from w by first ordering its conjugates in ascending order in a rectangular array, and then reading off the last column.

We say w is clustering for the permutation π if B(w) = (πa 1 ) nπa 1 • • • (πa r ) nπa r , where π is a permutation on A and n a is the number of occurrences of a in w (we allow some of the n a to be 0, thus, given the order and w, there may be several possible π). We say w is perfectly clustering if it is clustering for the symmetric permutation πa i = a r+1-i , 1 ≤ i ≤ r.

Non-primitive words. As remarked in [START_REF] Mantaci | SCIORTINO: Burrows-Wheeler transform and Sturmian words[END_REF], the Burrows-Wheeler transform can be extended to a non-primitive word w 1 • • • w n , by ordering its n (non necessarily distinct) cyclic conjugates by non-strictly increasing lexicographical order and taking the word made by their last letters. Then B(v m ) is deduced from B(v) by replacing each of its letters x i by x m i , and v m is clustering for π iff v is clustering for π.

We shall now relate clustering to an order condition. This condition can be traced to [START_REF] Ferenczi | ZAMBONI: Languages of k-interval exchange transformations[END_REF], but was first mentioned explicitly in [START_REF] De Luca | Extremal values of semi-regular continuants and codings of interval exchange transformations[END_REF] in the particular case of symmetric permutations, and [START_REF] Ferenczi | Languages of general interval exchange transformations[END_REF] in the general case, where it is studied extensively.

Theorem 1. For a given order < on the alphabet A, a primitive word w over A is clustering for the permutation π if and only if every bispecial word v in the language Λ w satisfies the following order condition: whenever xvy and x vy are in Λ w with letters x = x and y = y , then π -1 x < π -1 x if and only if y < y .

Any bispecial word in Λ w is a factor of ww and is of length at most |w| -2.

Proof

We begin by proving the last assertion. Suppose v is a bispecial of Λ w . Then v must occur at two different positions in some word w k . If |w| = n and |v| ≥ |w| -1, this implies in particular w i ...w n w 1 ...w i-2 = w j ...w n w 1 ...w j-2 for 1 < j -i < n, and we notice that each w l is in at least one member of the equality, thus we get that w is a power of a word whose length is the GCD of n and j -i, which contradicts the primitivity. Thus the length of v is at most |w| -2, and it occurs in ww.

We prove now that our order condition is equivalent to the following modified order condition:

whenever z = z 1 ...z n and z = z 1 ...z n are two different cyclic conjugates of w, z < z (lexico- graphically) if and only if π -1 z k < π -1 z k for the largest k ≤ n such that z k = z k .
Indeed, by definition z < z if and only if z j < z j for the smallest j ≥ 1 such that z j = z j . If w satisfies the order condition, we apply it to the bispecial word z k+1 ...z n z 1 ...z j-1 , with k and j as defined, and get the modified order condition.

Let v be a bispecial word in Λ w ; by the first paragraph of this proof it can be written as z 1 ...z k-1

for some 1 ≤ k ≤ n, with the convention that k = 1 whenever v is empty, for at least two different cyclic conjugates z of w.

Then its possible extensions are the corresponding z n z 1 ...z k , thus, if the modified order condition is satisfied, v does satisfy the requirement of the order condition.

The modified order condition implies clustering, as then if two cyclic conjugates of w satisfy z < z , their last letters z n and z n satisfy either

z n = z n or π -1 z n < π -1 z n . Suppose w = w 1 • • • w n is clustering for π.
Suppose two cyclic conjugates of w are such that

z k = z k , z j = z j for k + 1 ≤ j ≤ n.
Then z < z is (by definition of the lexicographical order) equivalent to z k+1 ...z n z 1 ..z k < z k+1 ...z n z 1 ..z k , and, as these two words have different last letters, because of the clustering this is equivalent to π -1 z k < π -1 z k , thus the modified order condition is satisfied.

Theorem 1 remains valid if w = v m is non-primitive (it can be slightly improved as there are less bispecial words to be considered, it is enough to look at factors of vv of length at most |v| -2).

The following consequences of Theorem 1 or of [START_REF] Ferenczi | Clustering words and interval exchanges[END_REF] seem to be new.

Proposition 2. If w clusters for the order < and the permutation π, its reverse clusters for the π-order, defined by x < π y whenever π -1 x < π -1 y, and the permutation π -1 .

Proof

This follows immediately from Theorem 1.

Proposition 3. Let w be a word on A, ordered by <.

If w is perfectly clustering, Λ w is closed under reversal.

Proof

By Theorem 4 of [START_REF] Ferenczi | Clustering words and interval exchanges[END_REF], every perfectly clustering word w is such that ww is in the language Λ generated by a minimal discrete interval exchange with the symmetric permutation (we refer the reader to [START_REF] Ferenczi | Clustering words and interval exchanges[END_REF] for the definitions), and Λ w = Λ. It is known from [START_REF] Ferenczi | ZAMBONI: Languages of k-interval exchange transformations[END_REF] that such a Λ is stable under reversal, thus we get our first assertion. This could also be deduced from Corollary 4.4 of [START_REF] Simpson | Words with simple Burrows-Wheeler Transforms[END_REF].

Proposition 4. Let w be a word on A, ordered by <.

If Λ w is closed under reversal, the following conditions are equivalent

(1) w is clustering.

(2) w is perfectly clustering.

(3) For all words u and v with u = ū and v = v, if uv is conjugate to w, then u < ū if and

only if v < v.

Proof

We begin by showing the equivalence between (1) and (2) then we show that (2) ⇔ (3). Clearly

(2) ⇒ (1). To see that (1) ⇒ (2), assume that w is clustering for some permutation π on A. Let A be the set of all letters a ∈ A which occur in w. To show that w is perfectly clustering, it suffices to show that π -1 a < π -1 b ⇔ b < a for each pair of distinct letters a, b ∈ A . To this end, we will show that the following set

E = {(a, b) ∈ A × A : a = b and a < b ⇔ π -1 a < π -1 b}
is empty. We begin by establishing two claims:

Claim 1 : Assume xvy, x vy ∈ Λ w with v a word, letters x = x and y = y . Then (x, x ) ∈ E if and only if (y, y ) ∈ E.

Proof : As Λ w is closed under reversal, we also have yvx, y vx ∈ Λ w . By Theorem 1 we obtain

y < y ⇔ π -1 x < π -1 x ⇔ x < x ⇔ π -1 y < π -1 y .
Claim 2 : Assume xvy, x vy ∈ Λ w with v a word, letters x = x and y = y . If (x, x ) ∈ E, then x < x ⇔ y < y .

Proof : Again by Theorem 1 we have x < x ⇔ π -1 x < π -1 x ⇔ y < y .

Now assume to the contrary that E = ∅ and let (x 1 , y 1 ) ∈ E. Without loss of generality we may assume that x 1 < y 1 . Let u and v be conjugates of w with u beginning in x 1 and v beginning in

y 1 . Then we may write u = x 1 v 1 x 2 v 2 • • • x n v n and v = y 1 v 1 y 2 v 2 • • • y n v n for some n ≥ 2 with
words v i and letters x i = y i for each i = 1, 2, . . . , n. By application of Claims 1 and 2 we have that (x i , y i ) ∈ E and x i < y i for i = 1, 2, . . . , n. As u and v are conjugate to one another, in particular they have the same number of occurrences of each letter, and hence the same is true of the words

x = x 1 x 2 • • • x n and y = y 1 y 2 • • • y n .
Pick a permutation σ of {1, 2, . . . , n} such that y i = x σ(i) for each i = 1, 2, . . . , n. It follows that x i < x σ(i) for each i = 1, 2, . . . , n. Putting i equal to σ j (1) we obtain x σ j (1) < x σ j+1 (1) for each j ≥ 0. Thus

x 1 < x σ(1) < x σ 2 (1) < • • • . Since σ n! (1) = 1 we eventually get x 1 < x 1 , a contradiction.
We next show that (2) ⇒ (3). So assume that w is perfectly clustering. Then by Theorem 1

we have that Λ w satisfies the following order condition : whenever xzy and x zy are in Λ w with

x = x and y = y , we have y < y ⇔ x < x. Assume uv is conjugate to w with u = ū and v = v.

Write u = rxtx r and v = sy t ys with words r, s, t, t , letters x, x , y, y , x = x and y = y . Thus

x rsy , ysrx ∈ Λ w and hence also xrsy ∈ Λ w . Applying the order condition to the words xrsy and x rsy we obtain y < y ⇔ x < x or equivalently u < ū ⇔ v < v as required. Thus, if xzy = y zx , as these words do not overlap one another we can write w = xzyry zx s for some choice of words r, s. Put u = zyry z and v = x sx. Then as uv is conjugate to w and

u = ū and v = v, we deduce y < y ⇔ u < ū ⇔ v < v ⇔ x < x as required.
We use now Theorem 1 to give a simple criterion which will be useful to avoid clustering.

Lemma 5. Let x, y, z be three different letters in an alphabet A, and w be a word on A. Suppose w is clustering for the order < and the permutation π. Let v be a bispecial word in Λ w :

• if the four words xvy, xvz, yvx, zvx are in Λ w , then x is not between y and z (or z and y)

for the order <, x is not between y and z (or z and y) for the order < π , and x is not on the same side of y and z for the orders < and < π ;

• if three of the four words xvy, xvz, yvx, zvx are in Λ w , then x is not between y and z (or z and y) for the order <, or x is not between y and z (or z and y) for the order < π .

Proof

By Theorem 1, we have to check the order condition, for any fixed < and π. To check the requirement of the order condition for the bispecial word v, we write the extension graph of v, with x y z in the order < on a line, x y z in the order < π on a line below, and an edge from x below to y above whenever x vy is in Λ w . If two of these edges have an intersection not reduced to an endpoint, the order condition is not satisfied.

In the first case, suppose y < x < z. if the π order is x, y, z, or x, z, y, or y, x, z, the edges xz and zx intersect; if it is y, z, x or z, y, x, xy and yx intersect; if it is z, x, y, xy and zx intersect.

This takes all possible π-orders into account, and no clustering is possible. The same is true if z < x < y by left/right symmetry. Thus x cannot be in the middle for the order <, nor for the π-order by up/down symmetry.

If x < y and x < π y, or y < x and y < π x, xy and yx intersect whatever the position of z, thus we get the remaining assertions of the first case.

Suppose now for example xvy, yvx and xvz are in Λ w , we have to test all orders where x is twice in the middle. As above, if x < y and x < π y, or y < x and y < π x, xy and yx intersect.

There remain z < x < y and y < π x < π z, and y < x < z and z < π x < π y, and in both cases xz intersects yx. And similarly for other sets of three words.

ARNOUX-RAUZY

3.1. Definitions. Throughout Section 3, we use the alphabet {a, b, c}, which can be equipped with any one of the six possible orders.

Definition 2. An AR language is a language on {a, b, c} generated by three families of words A k , B k , C k , build recursively from A 0 = a, B 0 = b, C 0 = c, by using a sequence of combinatorial rules (a), (b), (c), such that each one of the three rules is used infinitely many times, where

• by rule (a) at stage k, A k+1 = A k , B k+1 = B k A k , C k+1 = C k A k ; • by rule (b) at stage k, A k+1 = A k B k , B k+1 = B k , C k+1 = C k B k ; • by rule (c) at stage k, A k+1 = A k C k , B k+1 = B k C k , C k+1 = C k .
By an AR word we shall mean a factor of an AR language.

A standard AR word is an

A k , B k , or C k , in an AR language If the rules at stage k is (x k ), k ≥ 0, the word D = x 0 x 1 .... is called the directive word of Λ.
The Tribonacci language is the AR language defined by the directive word (abc) ω .

Every AR language is uniformly recurrent and closed under reversal, and has one right special and one left special of each length [START_REF] Arnoux | Représentation géométrique de suites de complexité 2n + 1 (French)[END_REF], thus AR languages are in the slightly more general class of episturmian languages, see Section 4.2 below.

An equivalent way to define an AR language is through AR morphisms. For x, y in {a, b, c}, we define σ x x = x, σ x y = yx if x = y. For a word w, σ x w is defined by making σ x a morphism for the concatenation, and the morphism σ w is defined to be σ

w 1 • • • • • σ wn if w = w 1 ...w n .
We do the same with the morphisms τ x defined by τ x y = σ x y for each x, y ∈ A.

If the directive word of Λ is D = x 0 x 1 ..., we put D k = x 0 ...x k-1 ,

and we have

A k = σ D k a, B k = σ D k b, C k = σ D k c, Āk = τ D k a, Bk = τ D k b, Ck = τ D k c.
Being closed under reversal, Λ can be generated either by

σ D k x, x ∈ A, k ≥ 0, or by τ D k x, x ∈ A, k ≥ 0.
For an AR language Λ, note first that for all k A k begins with a, B k with b, C k with c. As explained in [START_REF] Arnoux | Représentation géométrique de suites de complexité 2n + 1 (French)[END_REF], the three rules correspond to the building of the successive bispecials w k in Λ, with rules (a), (b), (c) corresponding respectively to

w k+1 = w k A k , w k+1 = w k B k , w k+1 = w k C k ,
starting with w 0 being the empty word. From this and the closure under reversal, we deduce that AR rule (x), x = a, b, c, is used at stage k if and only if the bispecial w k is resolved by An AR word w belonging to an AR language whose first rule is (x) will be such that each letter of w which is not x is preceded (except if it is the first letter of w), and followed (except if it is the last letter of w) by x, and x is the only letter with this property. We call x the separating letter of w.

{aw k x, bw k x, cw k x, xw k a, xw k b, xw k c},
We recall the description of the Rauzy graphs for AR languages from [START_REF] Arnoux | Représentation géométrique de suites de complexité 2n + 1 (French)[END_REF]: there are a left special factor G with three left extensions, a right special factor R with three right extensions, a central branch (with at least one vertex) from G to R, and three branches from R to G. The three elementary circuits in the Rauzy graphs of length n begin at R and follow one of the three branches from

R to G then the central branch. Their labels are A k , B k , C k for |w k-1 | + 1 ≤ n ≤ |w k |.
We shall always use the obvious notation that if x, y or z is a, b or c, X, Y and Z are the corresponding A, B or C.

Let (Rabc) be the following assumption: the rule at stage 0 is (a), and the first rule different from (a) is (b). If it is not satisfied, we can make a permutation on the letters. When (Rabc) holds, we define λ 1 > 0 as the stage of the first rule (b), λ 2 > λ 1 as the stage of the first rule (c).

The following LMS notation is defined in [START_REF] Cassaigne | Recurrence functions of Arnoux-Rauzy sequences and answer to a question posed by Morse and Hedlund[END_REF]; it is equivalent to the ABC notation, and will be useful to express and show some of our results.

Lemma 6. Assuming (Rabc), for all k > λ 1 , A k , B k , and C k have three different lengths, and we rename them such that

|S k | < |M k | < |L k |. We put S k = A k , M k = C k , L k = B k for all 1 ≤ k ≤ λ 1 , S 0 = c, M 0 = b, L 0 = a.
The AR rules can be written as

• if w k+1 = w k S k , S k+1 = S k , M k+1 = M k S k , L k+1 = M k L k ; • if w k+1 = w k M k ,, S k+1 = M k , M k+1 = S k M k , L k+1 = L k M k ; • if w k+1 = w k L k , S k+1 = L k , M k+1 = S k L k , L k+1 = M k L k .
We have w p+1 = w p L p whenever p = 0, p = λ 1 , p = λ 2 , or at stage p we have a rule

(x 1 )
preceded by a string of rules (x 2 ) and a string of rules (x 3 ), for {x 1 , x 2 , x 3 } = {a, b, c}, thus this happens for infinitely many p. We have w p+1 = w p S p whenever the rules at stages p -1 and p are the same, and w p+1 = w p M p for the remaining p.

Proof

We have

w k = a k , A k = a, B k = ba k , C k = ca k for all 1 ≤ k ≤ λ 1 , then w λ 1 +1 = a λ 1 ba λ 1 ,
and The fourth assertion is proved in [START_REF] Cassaigne | Weak mixing and eigenvalues for Arnoux-Rauzy sequences[END_REF], although with non-strict inequalities, but the proof, using the AR rules, does give the strict ones.

A λ 1 +1 = aba λ 1 = M λ 1 +1 , B λ 1 +1 = ba λ 1 = S λ 1 +1 C λ 1 +1 = ca λ 1 ba λ 1 = L λ 1 +1 have
The last one comes from the fourth one and the fact that

|M p+1 | is either |M p | + |S p | or |M p | + |L p |.
Proposition 8. In an AR language Λ satisfying (Rabc), the primitive words v such that vv is in Λ are all the A p for p ≥ 0, the B p for p ≥ λ 1 , the C p for p ≥ λ 2 , and some (possibly none) of their (cyclic) conjugates.

Proof

Let Z p = A p for p ≥ 1, B p for p ≥ λ 1 + 1, or C p for p ≥ λ 2 + 1. Then w p Z p is in Λ while by Lemma 6 Z p is a suffix of w p , thus Z 2 p is in Λ. This is true also for A 0 = a as aa is a suffix of

w 1 A 1 , for B λ 1 as w λ 1 +1 B λ 1 +1 = w λ 1 B 2 λ 1 is in Λ, and for C λ 2 as w λ 2 +1 C λ 2 +1 = w λ 2 C 2 λ 2 is in Λ.
Note that some conjugates of the Z p may have the same property, but for the Tribonacci language

and v = A 2 = aba, vv is in Λ but no v v for v = baa or v = aab.
As remarked in [START_REF] Brlek | On the number of squares in a finite word[END_REF], for a primitive v, if vv is in Λ, then v is the label of a circuit in the Rauzy graph of length |v| where no vertex is used more than once; thus v can only be some conjugate of some A p , B p , or C p , for a p such that |w p-1 | + 1 ≤ |v| ≤ |w p |. This will not be the case for the conjugates of B p , p < λ 1 , as then B p is strictly longer than w p and B p+1 = B p because the rule at stage p is not (b), nor for the conjugates of C p , p < λ 2 , as then C p is strictly longer than w p and

C p+1 = C p because the rule at stage p is not (c).
For non-primitive words Proposition ?? fails: in an AR language Λ where there are five consecutive rules (a) at stages p to p + 4,

A 4 p is in Λ while A 2 p is not any A k , B k or C k in Λ. If we take p = 0, we see that A 2 0 = aa is not an A k , B k or C k in any AR language.
Proposition 9. For a primitive word v, the following assertions are equivalent

(1) v is conjugate to a standard AR word,

(2) vv is an AR word,

(3) v v is an AR word for some conjugate v of v, (4) all the conjugates of v are in some AR language Λ, (5) x can be de-substituted down (using the six AR morphisms τ x and σ x , x ∈ A) to a single letter. 

Proof

If v satisfies (2) with vv in Λ, then v v is in Λ for the conjugate v = v, which gives (3) 
, and if v satisfies (3) with v v in Λ, all the conjugates of v , thus of v, are in Λ, thus we get (4).

Suppose v satisfies (4), with all the conjugates of v in an AR language Λ. In the Rauzy graph of length |v| of Λ, we see each conjugate v (i) ; there is an edge between v (i) and the next one in the circular order, because either v (i) has only one right extension or v (i) has all the possible right extensions. Thus there is a circular path whose vertices are all the v (i) , each one occurring only once as v is primitive; at least one vertex v in this path is on the central branch, and if we start from this point the circular path is an allowed path. Thus v v is in Λ, as remarked in [START_REF] Brlek | On the number of squares in a finite word[END_REF], thus v is conjugate to a standard AR word by the reasoning above, thus v is conjugate to a standard AR word. Thus we have proved the equivalence of (1), ( 2), ( 3) and (4).

To deal with (5), let us show first that a standard AR word Z is conjugate to its reverse. This is true if Z has one letter. Other Z are of the form Z = σ x Z , for a shorter standard AR word Z .

Then, if we suppose Z is conjugate to Z , we get that Z = σ x Z is conjugate to σ x Z , and the latter is conjugate to Z = τ x Z as these two words are of the form yw and wy for some letter y.

Let v be a standard AR word, with separating letter a, and v a conjugate of v. Then v must either begin or end in a, otherwise v = xv"y with each of x and y different from a; then every conjugate of v which begins in a must contain yx as a factor, and in particular v contains yx which contradicts the fact that a is the separating letter of w. If v starts in a, then v = τ a u , by the properties of the separating letter, and if v ends in

a then v = σ a u . If v = σ a u , then u is conjugate to the standard AR word u such that v = σ a u. If v = τ a u , then v is also conjugate to v,
where v = τ a ū for a standard AR word u, and u is conjugate to u. Then we apply the same process to u as long as u has at least two letters, and end when we get to a single letter.

Finally, to get that (5) implies (1), it is enough to prove that if u is conjugate to a standard AR word u, then, for any letter x, σ x u or τ x u is also conjugate to a standard AR word, and this is true 

Proof

We want to estimate the minimal length of a word containing at least three xw λ 2 y, (x, y) = (c, c), so that we can apply Lemma 9. As is noticed in [START_REF] Morse | Symbolic dynamics II. Sturmian trajectories[END_REF], a word w occurs in any word of Λ whose length is at least |w| -1 + t(w), where t(w) is the maximal return time of w, i.e. the maximal possible difference between the indexes of two consecutive occurrences of w. And t(w) is the same as t(u), where u is the longest singular word contained in w, or u is a single letter if w contains no singular word.

We reprove, with other notations, Lemma 2.3 of [START_REF] Cassaigne | Recurrence functions of Arnoux-Rauzy sequences and answer to a question posed by Morse and Hedlund[END_REF]. Let v = zw p-1 z be a singular word. We define four assertions:

(OA q ) v occurs once in w q A q , v does not occur in w q B q or w q C q , (OB q ) v occurs once in w q B q , v does not occur in w q A q or w q C q , (OC q ) v occurs once in w q C q , v does not occur in w q A q or w q B q , (OT q ) v occurs at least once in w q A q , w q B q and w q C q , the maximal return time of v is

|L q | = max(|A q |, |B q |, |C q |).
If w p = w p-1 Z p-1 , z is the first letter of Z p-1 and Z p = Z p-1 , thus (OZ p ) holds. Then the AR rules imply that if the rule at stage q is (a), (OA q ) implies (OT q+1 ), (OB q ) implies (OB q+1 ), (OC q ) implies (OC q+1 ), and mutatis mutandis for rules (b) and (c).

We need to know the maximal return times of u = yw λy y and u = xw λx x. The analysis above implies that t(u) is known as soon as we see a rule (y) after λ 2 , which happens at stage µ y , and that t(u) = |L µy+1 |, and similarly t(u ) = |L µx+1 |.

The rule at stage λ 2 is (c). There are only rules (c) (or none) (strictly) between λ 2 and µ x , there are only rules (x) or (c) (or none) (strictly) between µ x and µ y . By Lemma 5, for p = λ 2 , and p = µ y , we have w p+1 = w p L p . This is true also for p = µ x if λ x < λ y , and in any case this happens for no other λ 2 ≤ p ≤ µ y . In particular, we get that L µy = Y µy and L µy+1 is the longest of X µy+1 and C µy+1 .

First case, λ x < λ y .

Then λ y = λ 2 -1. We know that xw λ 2 c and cw λ 2 x, which contain u as maximal singular word, occur in any word in Λ of length at least |w λ 2 | + |L µx+1 | + 1, and this is smaller than the required bound as

|w λ 2 | -|w λ 2 -1 | = |Y λ 2 -1 | < |L λ 2 | < |M µy | ≤ |L µy+1 | -|L µx+1 |.
We know also that yw λ 2 c and cw λ 2 y, which contain u as maximal singular word, occur in any 

word
|L λ 2 +1 | = |X λ 2 -1 | + |C λ 2 -1 | + 2|Y λ 2 -1 |.
And we conclude by Lemma 9.

Second case, λ y < λ x .

Then 

λ x = λ 2 -1.
|M µy | ≥ |M µx+1 |.
The sharpness of the bound in Theorem 10 will be studied in Corollary 16 and Examples 1, 2 and 3 below.

3.4. AR words conjugate to standard.

Lemma 13. If a bispecial v in a language Λ w is resolved by a subset of {avb, avc, ava, bva, cva}, v satisfies the requirement of the order condition for any order < such that a is at an end, and the symmetric permutation. If in Λ w a bispecial v is resolved by a subset of {av b, cv b, bv b, bv a, bv c}, both v and v satisfy the requirement of the order condition for the orders a < c < b or b < c < a, and the symmetric permutation.

Proof

We draw the extension graphs as in the proof of Lemma 4 and check that any two edges do not intersect except at their endpoints.

Lemma 11 provides a partial converse to Lemma 9, as it allows us to build clustering AR words in the absence of the obstructions in its hypothesis, but it does not give a necessary condition for clustering, as we shall see in Section 3.5 below. Using the rules between λ 2 and µ y as determined in the proof of Theorem 10, we track bw λ b b and aw λa a as in Theorem 10, and get that one of them, namely u = yw λy y, does not occur in w p Z p , nor in w p+1 Z p+1 when needed, hence in Z 2 p , and thus w λ 2 satisfies the order condition in Λ Zp . We look now at any longer bispecial w t resolved by rule (c): as there are only rules (c) and (x) (strictly) between λ 2 and µ y , the yw q y defined above is u as long as λ 2 ≤ t ≤ µ y , and we know that u does not occur in Z 2 p . Thus all these bispecials satisfy the order condition in Λ Zp ; as for still longer bispecial words of Λ, they are too long to occur in Z 2 p , as w µy+1 = w µy L µy has a length greater than 2|L µy |.

There remain to consider the A p , B p or C p for initial values of p. It is immediate that those of the form ca k or ba k do cluster, while the C p , λ 1 + 1 ≤ p ≤ λ 2 -1, are dealt with as in the proof of Proposition 7, by changing the language and checking that p ≤ µ y in the new language, and all these cluster.

The following statements give an equivalent criterion for A p , B p and C p to cluster, which gives more information and does not particularize any order of apparition of the rules. Moreover, in the cases where Z p clusters, when assertion (1), resp. (2), resp. (3) is satisfied, it does cluster perfectly for any order for which a, resp. b, resp. c, is in the middle of {a, b, c}, and does not cluster for any order and permutation other than those mentioned.

Proof

Suppose first (Rabc) holds. Then the fisrt result is deduced directly from Proposition 12. As for the second one, it is a consequence of Proposition 12 in the case of assertion (3), with orders dictated by Lemmas 9 and 11, and is proved in the same way in the case of assertion (1) or (2). The other cases for the order of apparition of the rules are deduced by a permutation of the letters, after which we get the same conclusions.

Thus, as clustering is invariant by conjugacy, we know all the clustering AR words satisfying the assertions of Proposition 7. We know also all the clustering AR words which are conjugate to a power of a standard AR word, or equivalently can be de-substituted to a power of one letter by way of the six AR morphisms, they are the powers of the standard clustering words of Proposition 12 or Corollary 13 and all their conjugates. But this does not tell which ones are in a fixed language.

In a given AR language Λ, we find now a clustering word, conjugate to a standard AR word, which is longer than all the ones in Proposition 12.

whenever X λ 2 = w λ 2 -1 Y λ 2 , which is equivalent to D being as in the assertion above.

Example 1. Take the Tribonacci language or any AR language where the directive word D begins with abcab. The A p , B p or C p which cluster (perfectly) for the order a < c < b (or its symmetric) are A 0 to A 4 , B 0 to B 3 , C 0 to C 4 = cabaabacaba, of length 11, the longest standard word which clusters, while B 4 = bacabaabacaba, of length 13, is the shortest standard one which does not cluster. Also, A 0 to A 2 , B 0 to, B 3 , C 0 to C 3 cluster (perfectly) for the order a < b < c (or its symmetric), A 0 to A 2 , B 0 to B 2 , C 0 and C 1 cluster (perfectly) for the order b < a < c (or its symmetric).

In the notations of Theorem 10 λ a < λ b , x = a, y = b, and the bound is 26. The word in Proposition 14 is v 1 = aB 4 C 4 = aL 4 M 4 = (abacaba) 2 cabaabacaba, of length 25, which thus is conjugate to a standard AR word. It is a palindrome, and we check that it is the only clustering word of maximal length in Λ. We are in one of the cases where the bound is sharp.

Anther clustering word is the non-primitive v 2 = A 3 3 = (abacaba) 3 , of length 21, which is conjugate to a power of standard.

For v = v 1 , or v = v 2 , vv is not in the Tribonacci language.
Example 2. Take any AR language Λ where D begins with abacba. In the notations of Theorem10

we have λ b < λ a , x = b, y = a and we are in the first case of the proof.

The bound in Theorem 10 is 45, and we look at words of length 44. By the reasoning of Theorem 10 bw λ 2 c and cw λ 2 b must occur in all words of this length; the assertion OT µa+1 above holds for the singular word aw λ 2 -1 a, and, by looking precisely at its occurrences, we check that the only word in Λ of length 44 without aw λ 2 c and without cw

λ 2 a is v = w λa L µa M µa , namely v = abaaba(cabaababaabacabaaba) 2 .
We check that v cannot cluster for any order and permutation, by hand or by noticing that the four extensions aw λ 2 c, bw λ 2 c, cw λ 2 a, cw λ 2 b appear in vv as do indeed cw λ 2 c and aw λ 2 a, thus v does not cluster and v is not conjugate to a standard AR word.

Thus no word of length 44 can cluster and the bound in Theorem 10 is not optimal in the first case of the proof.

The word in Proposition 14 has length 43. It is indeed v deprived of its first letter, and is a clustering word of maximal length in Λ; it is not the only one, as its reverse is also clustering.

Example 3. Take any AR language Λ where D begins with abcba. The bound in Theorem 10 is 24, and we are in the second case of the proof. By the same reasoning as in Example 2 the only word of length 23 which might cluster is v = a(bacaba) 2 cababacaba, and we check that v cannot cluster for any order and permutation, nor can any word of length 23, and the bound in Theorem 10 is not optimal in the second case of the proof.

Indeed v is L µa M µa thus is conjugate to L µa+1 , hence by Proposition 7 v is conjugate to a standard AR word, but does not cluster. Thus the word in Proposition 14, which is v deprived of its first letter and has length 22, is a clustering word of maximal length in Λ; it is not the only one, as its reverse is also clustering.

Conjecture 1. In a given AR language Λ satisfying (Rabc), the word in Proposition 14 is the longest clustering word, or, if this fails, the longest clustering word conjugate to a standard AR word.

3.5.

Clustering AR words non conjugate to standard. We turn now to words which are not conjugate to standard AR words.

Example 4. For all n, ba(ca) n b is an AR word not conjugate to a standard AR word, and it is perfectly clustering.

The following propositions characterize, in two steps, all the words having this property, by identifying the particular way they are generated in the general construction of [START_REF] Simpson | Words with simple Burrows-Wheeler Transforms[END_REF].

Proposition 19. Let w on the alphabet A = {a, b, c} be a perfectly clustering AR word which is not in the range of any of the six AR morphisms τ x and σ x for x ∈ {a, b, c}. Then, up to a permutation of the letters a, b and c, there exists a word v on the alphabet {a, c} containing both a and c such that the conjugate w = b -1 wb is obtained from τ v (b) by inserting a single b between each pair of consecutive occurrences of a or between each pair of consecutive occurrences of c in τ v (b) (where at most one of aa and cc can occur) plus a b at the very beginning. Furthermore, w is a palindrome beginning and ending in b containing both a and c but no a 2 nor c 2 , is primitive, and any order for which w is perfectly clustering has b as the middle letter.

Conversely, any word w built as above is a perfectly clustering AR word for the order a < b < c, not in the range of any of the six AR morphisms.

Proof

Let w be as in the first sentence. Then w is not a power of a single letter and |w| ≥ 5. Let a denote the separating letter of w. Since w is not in the range of τ a nor σ a , w begins and ends in some letter different from a. Let b denote the first letter of w. Then w also ends in b, because otherwise cb is in Λ w but not bc, while Λ w is closed under reversal by Proposition ??. Also, since a is the separating letter of w, bb does not occur in w, although it occurs in Λ w . Thus w is a palindrome, as w must be conjugate to w, but the only conjugate of w which does not contain bb is w itself. Also, w is primitive: if w = v n for some n ≥ 2, then as v must begin and end in b, bb is a factor of w, a contradiction. As w is perfectly clustering and bb ∈ Λ w , by Theorem 1 b must be the middle letter under any (perfectly) clustering order on A, and furthermore aa does not occur in w. Let us consider the conjugate w = b -1 wb. Note that w begins in a and ends in abb.

Claim 2 : w = ψ(τ v (b)) for some word v on the alphabet {a, c} beginning in a and containing c and where the mapping ψ, defined in Section 3 of [START_REF] Simpson | Words with simple Burrows-Wheeler Transforms[END_REF], amounts to inserting a single b in the middle of each occurrence of aa and ab in τ v (b). τ u (w) is a perfectly clustering AR word for the order a < b < c. Furthermore, every conjugate of τ u (w) different from τ u (w) is not an AR word and hence in particular, τ u (w) is not conjugate to a standard AR word. We note that w is a perfectly clustering word (for the order a < b < c) and no conjugate of w is in the range of τ a nor τ c . In fact, every conjugate of w (other than w) contains bb as a factor, hence is not in the range of τ a nor τ c , and by assumption the same is true for w. By application of Lemmas 3.7 and 3.8 of [START_REF] Simpson | Words with simple Burrows-Wheeler Transforms[END_REF], w = ψ(ub) where u is a word on the alphabet {a, c} and ub is also perfectly clustering relative to the order a < b < c. Note that if b occurred in u, then w would admit an occurrence of bb contrary to our assumption that a is the separating letter of w. Thus ub contains both a and c

In the other direction, we begin by considering the case when u is empty. It follows from Proposition 17 that v is perfectly clustering AR word for the order a < b < c. Furthermore v contains each of a, b and c, begins and ends in b and has either a or c as a separating letter.Now let v be a conjugate of v with v = v. Then v contains bb and either ac or ca or both and hence v is not an AR word. Now assume that u is a non-empty word on the alphabet {a, c}. The properties of v being an AR word containing each letter, and no conjugate v = v being an AR word, are clearly stable under application of τ u . By Lemmas 3.3 and 3.4 in [START_REF] Simpson | Words with simple Burrows-Wheeler Transforms[END_REF], the clustering property is also stable by application of τ u .

However, there are also infinitely many primitive AR words which cluster but not perfectly, and hence are not conjugate to a standard AR word.

Example 5. The word w = abaca, which belongs to the Tribonacci language, does cluster for the order a < c < b (and no other one), for the permutation πa = c, πb = a, πc = b (thus not perfectly), and in the language Λ w the bispecial a is resolved by caa, aab, bac, thus the bispecials of Λ w are not in any AR language, though they all satisfy the order condition. Thus abaca is not conjugate to a standard AR word, and it is clustering but not perfectly clustering. The same properties are shared by aba n ca n for all n.

Question 1. What are the primitive AR words which cluster but not perfectly?

As for general clustering words on three letters, they are characterized in [START_REF] Simpson | Words with simple Burrows-Wheeler Transforms[END_REF] for the symmetric permutation, and in [START_REF] Ferenczi | Clustering words and interval exchanges[END_REF] for all permutations, and are not always AR words.

Proposition 21. For any order and any permutation π different from the identity, there are infinitely many π-clustering words on three letters which are not AR words.

Proof

We fix an order and a permutation. By [START_REF] Ferenczi | Clustering words and interval exchanges[END_REF], any word w such that ww is in the language Λ corresponding to an interval exchange transformation built with this order and this permutation, and satisfying the i.d.o.c. condition, is clustering for this order and this permutation. Such a Λ is uniformly recurrent, and contains infinitely many squares, by [START_REF] Ferenczi | Structure of K-interval exchange transformations: induction, trajectories, and distance theorems[END_REF] if π is the symmetric permutation, [START_REF] Ferenczi | A generalization of the self-dual induction to every interval exchange transformation[END_REF] in general, thus there are infinitely many such clustering words w. If a word w in Λ contains all the extensions xvy of all bispecial words v in Λ longer than some constant, w cannot be an AR word. And this will be true for any long enough clustering word w in Λ.

RELATED LANGUAGES

4.1. Sturmians. On two letters a and b, as is shown in [START_REF] Arnoux | Représentation géométrique de suites de complexité 2n + 1 (French)[END_REF], the Sturmian languages of [START_REF] Morse | Symbolic dynamics II. Sturmian trajectories[END_REF] can be generated by words A k and B k , which are called standard Sturmian words, using AR-type rules on two letters. Each Sturmian language contains infinitely many clustering words, and all these are known since [START_REF] Mantaci | SCIORTINO: Burrows-Wheeler transform and Sturmian words[END_REF] and [START_REF] Jenkinson | Characterisations of balanced words via orderings[END_REF]. For sake of completeness, we reprove this result by the methods of the present paper.

Proposition 22. The primitive clustering Sturmian words, as well as the primitive clustering words on {a, b}, are all the standard Sturmian words and all their conjugates.

Proof

Note first that the only clustering words with the identity as permutation are the a m and b m , thus we can restrict ourself to perfectly clustering words, for the order a < b. The Sturmian languages are identified in [START_REF] Morse | Symbolic dynamics II. Sturmian trajectories[END_REF] with 2-interval exchange languages, thus we deduce from [START_REF] Ferenczi | Clustering words and interval exchanges[END_REF] that a primitive Sturmian word v, or a primitive word v on {a, b}, is clustering iff vv is a factor of a Sturmian language. This, by the same proof as Proposition ??, is equivalent to v conjugate to some A p or B p in some Sturmian language.

Note that, for Sturmian languages or more generally for interval exchange languages, the necessary and sufficient condition for v to cluster in Theorem 1 is, by [START_REF] Ferenczi | Languages of general interval exchange transformations[END_REF], equivalent to the one given in [START_REF] Ferenczi | Clustering words and interval exchanges[END_REF], namely that vv be a factor of such a language.

However, to determine if a given word clusters, our Theorem 1 is more explicit. Take for example the two Sturmian words v = abaa and v = baab, v and v are factors of the Fibonacci language, while vv and v v are not in this language. It is easy to check by hand that v clusters (for a < b and the symmetric permutation) and v does not cluster for any order and permutation; thus we know that vv must be in some Sturmian language and v v cannot be in any Sturmian language, but it is easier, and quicker in general than computing the Burrows-Wheeler transform, to check directly that the bispecials in vv satisfy the order condition and those in v v do not; in this last case, it is immediate that no order condition can be satisfied by the empty bispecial, as aa, bb, ab, ba occur in v v .

4.2. Episturmians on three letters. In the literature, for which we refer the reader to the two surveys [START_REF] Berstel | Sturmian and episturmian words (a survey of some recent results)[END_REF] and [START_REF] Glen | Episturmian words: a survey[END_REF], we found only the definition of episturmian infinite words, one-sided in general though two-sided words are briefly considered in [START_REF] Glen | Episturmian words: a survey[END_REF]. To make the present paper coherent, we define here the corresponding languages, our definition having been chosen to correspond to what is used in practice.

Definition 3. A language is episturmian if it is uniformly recurrent, closed under reversal, and admits at most one right special factor of each length.

An episturmian language on three letters can be generated by AR rules or by AR morphisms, as is proved in the founding paper [START_REF] Droubay | Episturmian words and some constructions of de Luca and Rauzy[END_REF]. Indeed, these episturmian languages can be defined by a modification of Definition 2 above, where the assumption "each one of the three rules is used infinitely many times" is replaced by "each one of the three rules is used at least once".

The description of the bispecial words is deduced from the one given after Definition 2 by the following modifications: the possible bispecials are among the w k , and w k has at most three suffix return words which are among A k , B k and C k . More precisely, A k is a return word of w k , or equivalently the label of an elementary circuit in the Rauzy graphs, if and only if w k A k , or equivalently w k a, is in Λ, and similarly for B k and C k .

Lemma 23. The word w p A p is in an episturmian language Λ on three letters if and only if the directive word of Λ is such that there exist rules (a) at or after stage p, and similarly for B p and rules (b), C p and rules (c).

Proof

Suppose for example there is a rule (a) at or after stage p. Then, for some q ≥ p, w q+1 = w q A q , thus w q A q is in Λ, and so is w p A p as w p is a suffix of w q and A p is a prefix of A q .

Suppose there is no rule (a) at or after stage p. Then w p A p cannot be in B r or C r as B r and C r do not have A p in their decomposition by AR rules. As there are infinitely many rules (b) or (c), the length of B r or C r tends to infinity with r, thus this contradicts uniform recurrence.

But the bispecial word a does not satisfy the requirement of the order condition, for any order and permutation, and its four extensions bab, bac, cab, cac occur in every long enough factor of Λ. Thus by Theorem 1 Λ contains only finitely many clustering words.

4.3. Larger alphabets. AR languages can be generalized to any alphabet A = {a 1 , a 2 , • • • , a r } (note that here the order will not necessarily be a 1 < a 2 < • • • < a r ).

Definition 4. An AR language is generated by words A k for all i = j.

Each rule is used infinitely many times. The directive word is defined in the usual way. The

A (i)
k are again the labels of the elementary circuits in the Rauzy graphs. The r-Bonacci language, r ≥ 3, is defined by D = (a 1 ...a r ) ω .

There the methods of Section 3 apply mutatis mutandis, but the number of cases to be considered grows very quickly, and a lot of space would be required to generalize all the above study.

Thus we shall just generalize Theorem 10, with some loss of optimality. q ), that v occurs once in w q A (j) q and does not occur in any w q A (i)

q , i = j (a, b, c being denoted also by a 1 , a 2 , a 3 ), and OT q , that v occurs at least once in each w q A (i) q and the maximal return time of v is max 1≤i≤r (|A In the language Λ u , we check that w 0 is resolved by {aa, ab, ac, ad, ba, ca, da}, w 2 is resolved by {cw 2 c, aw 2 c, cw 2 a, dw 2 c, cw 2 d}, w 3 is resolved by {aw 3 d, dw 3 a, dw 3 c, cw 3 d}, thus, if u clusters, by Lemma 4 each one of a, c, d must be at an end of the order between them, thus no word of length 57 can cluster for any order and permutation.

In the general case, we do not try to replace the |w λ 2 | in the bound by |w λy | as the proof would be complicated by the presence of rules (a i ), i ≥ 4, between stages λ 2 and µ y , and the improved bound is not optimal even for 4-Bonacci.

Similarly, the main result of Section 4.3 can be generalized to episturmian languages on larger alphabets: an episturmian language Λ on r letters contains infinitely many clustering words if and only if, up to a permutation of letters, its directive word is D (1) D (2) • • • D (r-1) , where D (1) is a finite word on the alphabet {a 1 , a 2 }, D (2) is a finite word on the alphabet {a 3 , x 3 } with x 3 = a 1 or

x 3 = a 2 , D (3) is a finite word on the alphabet {a 4 , x 4 } with x 4 = a 3 or x 4 = x 3 , ..., D (r-2) is a finite word on the alphabet {a r-1 , x r-1 } with x r-1 = a r-2 or x r-1 = x r-2 , D (r-1) is a one-sided infinite word on the alphabet {a r , x r } with x r = a r-1 or x r = x r-1 . This can be proved in the same way as Theorem 22.

Finally we show that ( 3 )

 3 ⇒ (2). Again by application of Theorem 1 it suffices to show that Λ w satisfies the following order condition : whenever xzy and x zy are in Λ w with |xzy| ≤ |w|,z a word, x, x , y, y ∈ A, x = x and y = y , we have y < y ⇔ x < x. So assume that xzy, x zy ∈ Λ w with |xzy| ≤ |w|, x = x and y = y . Then y zx ∈ Λ w since Λ w is closed under reversal. Let w be a conjugate of w beginning in xzy. If the words xzy and y zx are equal, then in particular x = y and y = x , and therefore y < y iff x < x, which is what we want. If the words xzy and y zx are not equal, then we claim that these two words cannot overlap one another, i.e., no non-empty prefix of one is equal to a suffix of the other. In fact, let u be a non-empty prefix of xzy and let u be a suffix of y zx , then we will show u = u . This is clear if |u| = |u |. So let's suppose |u| = |u |. Now if u = xzy then u = y zx and hence u = u . On the other hand if u is a proper prefix of xzy, then we can write u = xv and u = vx for some prefix v (possibly empty) of z. As x = x , it follows that u and u are not abelian equivalent (u having one additional occurrence of x than u ) and hence in particular u = u . A similar argument holds if u is a non-empty suffix of xzy and u a prefix of y zx .

  two of these six words being equal. Moreover, the words A k , B k , C k are the (suffix) return words of w k i.e. w k Z k contains w k as a prefix and suffix and at no other place, for Z = A, B, C.

Theorem 12 .

 12 We recall that, assuming (Rabc), λ 2 is the stage of the first rule (c); Let λ a be the stage of the last rule (a) before λ 2 , λ b the stage of the last rule (b) before λ 2 , µ a the stage of the first rule (a) after λ 2 , µ b the stage of the first rule (b) after λ 2 . Let x and y be the elements of {a, b} such that µ x < µ y . Then no word of length at least |w λy | + max(|C µy+1 |, |X µy+1 |) + 1 can cluster for any permutation and any order.

Corollary 15 .( 1 )( 2 )( 3 )

 15123 With or without the assumption (Rabc), Z p clusters if and only if at least one of the three following assertions holds: neither the letters a, b, c nor the letters a, c, b occur in the word D p z at any increasing sequence of indices, neither the letters b, a, c nor the letters b, c, a occur in the word D p z at any increasing sequence of indices, neither the letters c, a, b nor the letters c, b, a occur in the word D p z at any increasing sequence of indices.

Claim 1 :

 1 Each letter of A must occur in w. By assumption each of a and b occurs in w. If c does not occur in w, then w is a perfectly clustering binary palindrome of the form w = bub where u begins and ends in the letter a. Furthermore w cannot contain a factor of the form ba n b with n > 1, for otherwise Λ w contains both aa and bb, which contradicts Theorem 1. Moreover, as bb does not occur in w, it follows that any two consecutive occurrences of b in w must be separated by a single a. Thus w = ba(ba) n b for some n ≥ 0 and hence w = τ b (a n+1 b) contradicting that w is not in the range of τ b .

k , 1 ≤

 1 i ≤ r, starting from A (i) 0 = a i ,1 ≤ i ≤ r, and by rule (a i ) at stage k, A

Proposition 25 .For 4 -

 254 We denote by (a), (b), (c) the first three rules by order of appearance, and define all quantities in Theorem 10 above in the same way. Let v be an AR word on an r-letter alphabet of length at least|w λ 2 | + max 1≤i≤r (|A (i) µy+1 |) + 1.Then v cannot cluster for any permutation and any order on the alphabet. Bonacci, this bound is not optimal; the better bound |w λy | + max 1≤i≤r (|A(i) µy+1 |) + 1 holds but is not optimal either.ProofIn this case Lemma 9 is still valid, by restricting the orders on A to the set {a, b, c}, and again we need to know the maximal return times of u = xw λx x and u = yw λy y. These are computed exactly as in Theorem 10, mutatis mutandis: the assertions are now (O (j)

  These evolve like in the proof of Theorem 10, and thus the maximal return time of u is max 1≤i≤r (|A (i) µy |), the maximal return time of u is max 1≤i≤r (|A (i) µx )|. We conclude immediately as we keep the quantity |w λ 2 | in the bound. For 4-Bonacci, if we denote the letters by a, b, c, d, we have λ 2 = 2, w 3 = abacaba, w 2 = aba, w 1 = a, w 0 is the empty word. The bound in the conclusion is |C 6 | + 4 = 60, but in this simple case we can mimic the end of the proof of Theorem 10 and replace the |w λ 2 | in the bound by |w λy |, thus getting |C 6 | + 2 = 58. As C 6 = C 5 B 5 , by the usual reasoning the only word of length |C 6 | + 1 which does not contain bw λ 2 c nor cw λ 2 b is, up to cyclic conjugacy, u = aB 5 C 5 .

  A p is a suffix of w p iff |A p | ≤ |w p | or equivalently iff p ≥ 1,B p is a suffix of w p iff |B p | ≤ |w p | or equivalently iff p ≥ λ 1 + 1, C p is a suffix of w p iff |C p | ≤ |w p | or equivalently iff p ≥ λ 2 + 1, |M p | + |S p | > |L p | for all p > 0, |L p | < |M p+1 | for all p > 0.Proof By the analysis of Lemma 5, A p is a suffix of w p for p = 1 and strictly longer than w p for p = 0, B p is a suffix of w p for p = λ 1 + 1 and strictly longer than B p for p ≤ λ 1 . C p is strictly longer than w p for p = λ 1 + 1. If C p is strictly longer than w p for some p ≤ λ 2 -1, then w p+1 = w p Y p and C p+1 = C p Y p for Y = A, B, thus C p+1 is strictly longer than w p+1 . Then w λ 2 +1 = w λ 2 C λ 2 and C λ 2 +1 = C λ 2 is a suffix of w λ 2 +1 . Suppose now Z p is a suffix of w

three different lengths; this is preserved by further rules. The other assertions are straightforward, see

[START_REF] Cassaigne | Recurrence functions of Arnoux-Rauzy sequences and answer to a question posed by Morse and Hedlund[END_REF] 

for more details. 3.2. Lengths, squares, conjugates. Lemma 7. Assuming (Rabc), p , for Z = A, B, C. Then either w p+1 = w p Z p and Z p+1 = Z p , or w p+1 = w p Y p and Z p+1 = Z p Y p , thus in both cases Z p+1 is a suffix of w p+1 , and thus shorter.

  Suppose v satisfies (1); to show that vv is always an AR word, by Proposition ?? what remains to prove is that when v is one of the initial A p , B p , C p , or is conjugate to any A p , B p , C p in an AR language Λ satisfying (Rabc), then vv is in an AR language Λ . This is true for B 0 , C 0 by exchanging a with b or c. For B p , 1 ≤ p ≤ λ 1 , this will be true for Λ defined by the same rules as Λ up to stage p -1, then rule (b) at stage p, and any admissible sequence of rules beyond: in this language our B p is B λ 1. For C p , 1 ≤ p ≤ λ 1 , this will be true for Λ" deduced from the previous Λ by exchanging b and c. For C p , λ 1 + 1 ≤ p ≤ λ 2 -1, this will be true for Λ defined by the same rules as Λ up to stage p -1, then rule (c) at stage p, and any admissible sequence of rule beyond: in this language our C p is C λ 1 . Let now u be a conjugate to some Z p which is a suffix of w

p ; then we define Λ by the same rules as Λ up to stage p -1, then rule (z) at stage p, and any admissible sequence of rules beyond: then w p Z 2 p , thus Z 3 p , thus uu is in Λ. This will still be true for Z p = B λ 1

or Z p = C λ 2 if we define Λ by the same rules as Λ up to stage p, then rule (z) at stage p + 1, and any admissible sequence of rules beyond. Thus we get (2).

  in Λ of length at least |w λ 2 | + |L µy+1 | + 1. But we can improve this bound a little if we want only to see yw λ 2 c or cw λ 2 y. Indeed, u occurs in any word Z in Λ of length |L µy | + |u| -1. Also, u is a prefix of yw λ 2 c and there is only one way to extend u to the right to length |w λ 2 | + 2, giving yw λ 2 c, u is a suffix of cw λ 2 y, and there is only one way to extend u to the left to length |w λ 2 | + 2, giving cw λ 2 y. Thus yw λ 2 c or cw λ 2 y is in Z, provided Z is long enough to ensure that , so we have to check this is at least |w λ 2 | + 2 -|u|. Thus we have to prove that |L µy+1 | > 2(|w λ 2 | -|w λ 2 -1 |): the right side is 2|Y λ 2 -1 | while the left side is at least

we can extend u to the right or left as far as that length while remaining in Z; in the worst case, we can extend it by a length |Z|-|u| 2

  Again, we have to check that xw λ 2 c and cw λ 2 x occur in any word of the required length, and yw λ 2 c or cw λ 2 y occur in any word of the required length. Using the same methods as in the previous paragraph, this is done by checking that |w λ 2 | -|w λy | < |L µy+1 | -|L µx+1 | and |L µx+1 | > 2(|w λ 2 | -|w λy |). We have |w λ 2 | -|w λy | = t(|Y λy | + |X λy |), for some positive integer t. Knowing the rules between stages λ 2 and µ x , we get that both |L µx+1 | and |M µx+1 | are at least 2t(|X λy | + |Y λy |). Then we can conclude, using also that |L µy+1 | -|L µx+1 | is at least

  B p or C p for the values in the hypotheses. Then, using the rules between λ 2 and µ y as determined in the proof of Theorem 10, we check that A λ 2 , B λ 2 and C λ 2 all appear in the decomposition of Z p by the AR rules. As each A λ 2 and B λ 2 in this decomposition is preceded by w λ 2 , if |Z p | ≥ |w λ 2 | then w λ 2 A λ 2 and w λ 2 B λ 2 , thus w λ 2 a and w λ 2 b, occur in Z 2 p . Indeed, for these values of p, we have |Z p | ≥ |w λ 2 | + 1 by Lemma 6, thus cw λ 2 a and cw λ 2 b occur in Z 2 p . A symmetric reasoning holds for aw λ 2 c and bw λ 2 c, asw λ 2 A λ 2 = A λ 2 w λ 2 , w λ 2 B λ 2 = B λ 2 w λ 2 ,where A λ 2 ends with a and B λ 2 ends with b. This contradicts the clustering by Lemma 9.In the positive direction, let Z p be an A p for p ≥ 0, or a B p for p ≥ λ 1 , or a C p for p ≥ λ 2 . By the reasoning of Proposition ??, Z 2 p is a suffix of w p Z p , orw p+1 Z p+1 if Z p = A 0 , Z p = B λ 1 or Z p = C λ 2, and the bispecials in the language Λ Zp are resolved by AR rules. By Lemma 11, those which are resolved by rule (a) or (b) satisfy the order condition ; as for bispecials w t resolved by rule (c), they do satisfy the order condition if they are resolved in Λ Zp by {cwc, awc, cwa} or {cwc, bwc, cwb}. This will happen if the longest singular word aw q a occurring in awc and cwa, or the longest singular word bw q b occurring in cwb and bwc, does not occur in Z 2 p .

Proposition 14

. With the assumption (Rabc) and the notations of Theorem 10 above, Y p clusters if and only if p ≤ µ x , C p and X p cluster if and only if p ≤ µ y .

Proof

We begin by the negative direction. Let Z p be A p ,
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as both these words are conjugate to σ x u.

For v to be conjugate to v such that v v is an AR word, it is not enough that all the conjugates of v are AR words, take abc for example. Also, a conjugate of a standard AR word is not necessarily a standard AR word, for example caba is standard in the Tribonacci language, but abac is not standard in any AR language, otherwise it could be written as the concatenation of two words with the same last letter.

To emphasize the part played by the cyclic conjugates, we notice the following fact.

Proposition 10. Let Λ be any language on an alphabet A such that for every w in Λ and a in A, there exists v in Λ such that wva is in Λ. Then the closure of Λ for the cyclic conjugacy is made of all the possible words on A.

Proof

Let x 1 x 2 . . . x n be any word. We will show x 1 x 2 . . . x n is in this closure, denoted by Λ . Let

x n wx n-1 be in Λ such that w contains each letter sufficiently many times. So x n-1 x n w is in Λ . Now write w = ux n-2 v where u contains each letter sufficiently many times. So x n-1 x n ux n-2 is in Λ (factorial property of languages), hence x n-2 x n-1 x n u is in Λ (closed under cyclic conjugates). And so on for x n-3 , x n-4 , ...

Non-clustering AR words.

Lemma 11. Let Λ be an AR language satisfying (Rabc). If u ∈ Λ contains at least three of the non-singular words xw λ 2 y, x, y in {a, b, c}, (x, y) = (c, c), u cannot cluster for any permutation π and any order on {a, b, c}, nor can v if u = vv.

Proof

Suppose u contains at least three of cw λ 2 a, cw λ 2 b , bw λ 2 c, aw λ 2 c. As w λ 1 is both a prefix and a suffix of w λ 2 , u contains also cw λ 1 , w λ 1 c and at least three of aw λ 1 , w λ 1 a, bw λ 1 , w λ 1 b. As u is in Λ and the rule at stage λ 1 is (b), u contains cw λ 1 b, bw λ 1 c and at least either aw λ 1 b or bw λ 1 a. As w λ 1 begins and ends with a, u contains ca, ac, ab, ba, aa.

Suppose u clusters, then we apply Lemma 4. By its first assertion applied to the empty bispecial, we must assign a to an end of the < order and the opposite one of < π . Then, by the second assertion applied to w λ 1 and w λ 2 , as we cannot give two ends to both b and c, we must assign b to the middle of one order, and c to the middle of the other one. Thus, up to left/right and up/down symmetries in the pictures in the proof of Lemma 4, we have a < b < c and b < π c < π a. But we know that cw λ 1 b and bw λ 1 c are factors of u, which gives two intersecting lines bc and cb in the picture for w λ 1 , and this contradicts Theorem 1.

Together with uniform recurrence, Lemma 9 provides our main answer to Dolce's question: in a given AR language, there are only finitely many clustering words. This is noticed in [START_REF] Brlek | Burrows-Wheeler transform of words defined by morphisms[END_REF] in the particular case of an infinite sequence of words in the Tribonacci language called the Tribonacci standard words, for which the Burrows-Wheeler transform is explicitly computed, and this is generalized to r-Bonacci, see Section 4.3 below. Note also that both AR words and clustering are mentioned in [START_REF] Simpson | Words with simple Burrows-Wheeler Transforms[END_REF], but no relation between these notions is established.

The following theorem gives an estimate for the maximal length of a clustering word, for which some claims to optimality will be given In Corollary 16 below. It relies on a method used in [START_REF] Morse | Symbolic dynamics II. Sturmian trajectories[END_REF] for Sturmian languages and [START_REF] Cassaigne | Recurrence functions of Arnoux-Rauzy sequences and answer to a question posed by Morse and Hedlund[END_REF] for AR languages. Proposition 16. Let Λ be an AR language satisfying (Rabc). With the notations of Theorem 10, let also µ be the stage of the first rule in the string of rules (z), z = x or z = c, just before stage µ y . The word v = S µy-µ+1 µy M µy is a primitive perfectly clustering (for the order a < c < b or its symmetric) word of Λ conjugate to a standard AR word. .

Proof

We have S µy = Z µy and, by Lemma 5, L µy = Y µy . We define another AR language Λ by the same rules as Λ up to (and including) stage µ y -1, then µ y -µ + 1 rules (z), and any acceptable sequence of rules beyond. Then Λ has the same x and y as Λ, and v is conjugate to X2µy+µ-1 ( (of It remains to prove that v is in Λ. We know that w µy+1 L µy+1 = w µy L µy M µy L µy is in Λ. We have µ ≥ µ x ; suppose first that either µ > µ x , or µ = µ x and λ y < λ x . Then by Lemma 5

is in Λ, and all we have to prove is that M µ is a suffix of L µ , which is true by Lemma 6 as µ ≥ λ 2 + 1.

Suppose now that

Going backward through rules (c), what we have to prove is that X λ 2 is a suffix of w µ Y λ 2 . Then the rule at stage λ 2 -1 is (y), thus we have to prove that X λ 2 -1 is a suffix of w µ , and this is true as 

Proof

Take an AR language where D begins with abc n . Then we get B p = ba(caba) n for some p ≤ µ x .

For a general AR language, the smallest possible value of the length of the word in Proposition 14 is |S µa S µa M µa | where D begins with abcba, which gives 22.

Corollary 18. When the directive word D begins with ab n 1 c n 2 a n 3 b for any integers n i ≥ 1, i = 1, 2, 3, the word of Proposition 14 has maximal length among clustering words of Λ, and the bound in Theorem 10 is optimal. Assuming (Rabc), in all other cases, there is a gap between the length of the word in Proposition 14 and the bound in Theorem 10.

Proof

We look at the proof of Proposition 14. In the case where either µ > µ x , or µ = µ x and λ y < λ x , there is always a difference of at least 2 between the best bound in Theorem 10 and the length of the word in Proposition 14. In the case where µ = µ x and λ x < λ y , this difference is reduced to 1 and Λ ub contains each of ab, ba, ac, ca. It follows from Lemma 3.1 of [START_REF] Simpson | Words with simple Burrows-Wheeler Transforms[END_REF] that cc is not in Λ ub and hence each occurrence of c in ub must be directly preceded and followed by the letter a. In other words, a is a separating letter of ub and w is obtained from ub by inserting a single b in the middle of each aa occurring in u, plus an additional b at the end. Also u is a palindrome. is a bispecial AR word from which it follows that w is an AR word as required.

By an iterated application of

We note that the shortest w verifying the assumptions of Proposition 17 is (up to a permutation of the letters) bacab, built from τ ac b.

Proposition 20. Assume v is a perfectly clustering AR word which is not conjugate to a standard AR word, nor to any power of a standard AR word. Then up to a permutation of the letters, v is conjugate to a word of the form τ u (w) where u (possibly empty) is on the alphabet {a, c} and where w is as in Proposition 17.

Conversely, let v be as in the previous sentence; then it is an AR word perfectly clustering for the order a < b < c. Furthermore, every conjugate of v different from v is not an AR word and hence v is not conjugate to any power of a standard AR word.

Proof

By Proposition 7, an AR word is conjugate to a power of a standard if and only if it can be desubstituted to a power of one letter by way of the six AR morphisms. This means that otherwise we can write v = f (w) where f (possibly the identity) is some concatenation of AR morphisms, and where v is not in the range of any of the six AR morphisms. Assume w is perfectly clustering for the order a < b < c, then f cannot involve τ b nor σ b and hence is a concatenation of {τ a , τ c , σ a , σ c }; replacing v by a conjugate, we can get that f is a concatenation of τ a , τ c . By Lemmas 3.3 and 3.4 in [START_REF] Simpson | Words with simple Burrows-Wheeler Transforms[END_REF], we have that v is also perfectly clustering for a < b < c.

The assertion (Rabc) is defined as for AR languages.

Theorem 24. An episturmian language Λ on three letters, satisfying (Rabc), contains infinitely many clustering words if and only if its directive word is D D", where D is a finite word on the alphabet {a, b} and D" is a one-sided infinite word on the alphabet {a, c} or {b, c}.

When this is not the case, with the notations of Theorem 10, no word of length at least Suppose D is not D D" as in the hypothesis. Then after the first rule (c) there is at least one rule (a) and one rule (a). Thus all the quantities in Theorem 10 can be defined, and we can follow the reasoning of this theorem, with the following modifications: the assertion (OA q ) is now that v occurs once in w q A q , does not occur in w q C q or w q B q , and w q A q is in Λ, and similarly for (OB q )

and (OC q ); the assertion (OT q ) is now that v occurs at least once in each w q Z q which is in Λ, Z in {A, B, C}, and the maximal return time of v is the maximal length of these Z q . Then, we get the maximal return times of the two special words, and conclude immediately as, in contrast with Theorem 10, we keep the quantity |w λ 2 | in the bound.

Example 6. Let D = abc(ab) ω . This gives an episturmian language which contains only finitely many clustering words, but is not an AR language. Its complexity function is p(n) = 2n + 1 for

Note that these properties are shared by all episturmian languages where D = abcD" where D" is a one-sided infinite word on {a, b} in which both a and b occur infinitely many times. By Theorem 22, any episturmian language whose complexity is at least n + 1 for all n but is strictly smaller than the p(n) of Example 6 produces infinitely many clustering words. One can wonder whether this is still true for any language, or at least for any uniformly recurrent language, of complexity at least n + 1 for all n but strictly smaller than this p(n). For sake of completeness, we give a (non episturmian) counter-example. for n ≥ 4. Its Rauzy graphs of length 4 and more have the same shape as the Rauzy graphs of Sturmian languages, thus the alternating of resolution rules ensures that Λ is uniformly recurrent.