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October 4, 2023

Abstract

We propose several algorithms for learning unitary operators from quantum statistical
queries (QSQs) with respect to their Choi-Jamiolkowski state. Quantum statistical queries
capture the capabilities of a learner with limited quantum resources, which receives as input
only noisy estimates of expected values of measurements. Our methods hinge on a novel
technique for estimating the Fourier mass of a unitary on a subset of Pauli strings with a
single quantum statistical query, generalizing a previous result for uniform quantum exam-
ples. Exploiting this insight, we show that the quantum Goldreich-Levin algorithm can be
implemented with quantum statistical queries, whereas the prior version of the algorithm
involves oracle access to the unitary and its inverse. Moreover, we prove that Oplog nq-
juntas and quantum Boolean functions with constant total influence are efficiently learnable
in our model, and constant-depth circuits are learnable sample-efficiently with quantum
statistical queries. On the other hand, all previous algorithms for these tasks require direct
access to the Choi-Jamiolkowski state or oracle access to the unitary. In addition, our upper
bounds imply that the actions of those classes of unitaries on locally scrambled ensembles
can be efficiently learned. We also demonstrate that, despite these positive results, quantum
statistical queries lead to an exponentially larger sample complexity for certain tasks, com-
pared to separable measurements to the Choi-Jamiolkowski state. In particular, we show an
exponential lower bound for learning a class of phase-oracle unitaries and a double expo-
nential lower bound for testing the unitarity of channels, adapting to our setting previous
arguments for quantum states. Finally, we propose a new definition of average-case sur-
rogate models, showing a potential application of our results to hybrid quantum machine
learning.

Learning the dynamic properties of quantum systems is a fundamental problem at the inter-
section of machine learning (ML) and quantum physics. In the most general case, this task
can be achieved under the broad framework of quantum process tomography (QPT) [1]. How-
ever, QPT can be extremely resource-intensive, as learning the entire classical description of a
unitary transformation requires exponentially many queries [2] in the worst case. This com-
plexity can be significantly reduced if the unitary is not completely arbitrary, but instead it
belongs to a specific class. For instance, this approach has been fruitfully adopted for quan-
tum Boolean functions [3], quantum juntas [4, 5] and quantum circuits with bounded covering
numbers [6]. On the other hand, the complexity of quantum process tomography could be
drastically reduced if we restrict our attention only on local properties of the output state, as
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recently demonstrated in [7]. Another scenario of interest is the one of property testing, where
the learner is not asked to retrieve the classical description of the target process, but solely to
test whether is satisfies some specific property [8]. A further figure of merit in quantum pro-
cess learning is the type of resources that the learner is allowed to use. For the special case of
unitary transformations, the learner is usually given oracle access to the target unitary U and
its inverse U:, or, alternatively, to the corresponding Choi-Jamiolkowski state. In this paper we
consider this latter approach and we ask the following question:

Which classes of unitaries are efficiently learnable with noisy single-copy measurements of the
Choi-Jamiolkowski state?

This question is motivated by near-term implementations of quantum algorithms, which in-
volve several sources of noise and severely limited entangling capacity [9]. To this end, we
adopt the model of quantum statistical queries (QSQs), previously introduced in [10, 11] as an ex-
tension of the (classical) statistical query model [12]. In the QSQ model, we consider a learner
without quantum memory that can only access noisy estimates of the expected values of chosen
observables on an unknown initial state. Interestingly, several concept classes such as parities,
juntas function, and DNF formulae are efficiently learnable in the QSQ model, whereas the clas-
sical statistical query model necessitates an exponentially larger number of samples. Despite
these positive results, resorting to quantum statistical queries can be considerably limiting for
some tasks. In particular, the authors of [11] have established an exponential gap between QSQ
learning and learning with quantum examples in the presence of classification noise. Quantum
statistical queries have also found practical applications in classical verification of quantum
learning, as detailed in [13]. Furthermore, they have been employed in the analysis of quan-
tum error mitigation models [14, 11] and quantum neural networks [15]. Alternative variations
of quantum statistical queries have also been explored in [16, 17, 18]. Moreover, the connection
between quantum statistical queries and quantum differential privacy was investigated in [10],
and an equivalence between quantum statistical query learning and quantum local differential
privacy [19] .

Our contributions. In this paper we demonstrate that several classes of unitaries are effi-
ciently learnable with quantum statistical queries with respect to their Choi state. In particular,
we show our result for a natural distance over unitaries induced by the Choi-Jamiolkowski
isomorphism and previously adopted in [8, 5]. We emphasize that this choice of distance al-
lows to predict the action of the target unitary on a random input state sampled from a locally
scrambled ensemble [20]. We now give an informal version of our upper bounds. When not
explicitly stated, the tolerance of a quantum statistical query is at least polynomially small.

• Constant depth circuits are learnable with polynomially many quantum statistical queries
(Theorem 3.2).

• Quantum Oplog nq-juntas are efficiently learnable with polynomially many quantum sta-
tistical queries (Theorem 3.3).

• Quantum Boolean functions with constant total influence are efficiently learnable with
polynomially many quantum statistical queries (Theorem 3.5). In order to prove this
result, we show that the quantum Goldreich-Levin algorithm can be implemented with
quantum statistical queries (Theorem 3.4).
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While these positive results show that a wide class of unitaries can be efficiently learned in our
model, we also argue that resorting to quantum statistical queries leads to an exponentially
larger sample complexity for certain tasks. In particular, we give the following lower bound.

• There is a class of phase oracle unitaries that requires exponentially many quantum sta-
tistical queries with polynomially small tolerance to be learnt below distance 0.005 with
high probability (Theorem 4.1);

• Estimating the unitarity of a quantum channel with error smaller than 0.24 and polyno-
mially small tolerance requires double-exponentially many quantum statistical queries
(Theorem 4.2).

Moreover, prior results imply that both tasks can be efficiently performed with polynomially
many copies of the associated Choi-Jamiolkowski state. In Section 3.3.1, we complement our
theoretical findings with a numerical simulation the quantum Goldreich-Levin algorithm im-
plemented with quantum statistical queries. Finally, in Section 5 we suggest a potential ap-
plication of our results to hybrid quantum machine learning. Prior work [21, 22] showed that
certain quantum learning models can be replaced by classical surrogates during the prediction
phase. We argue that the learning algorithms provided in the present paper can also serve to
this scope. To this end, we extend the definition of classical surrogates from the worst-case to
the average-case.

Related work. Our results generalize prior work in two ways. On the one hand, we show that
several classes of unitaries are learnable in the QSQ model, while all previous results involved
the access to stronger oracles. The adoption of a weaker oracle is particularly advantageous for
near-term implementation, since the definition of QSQs accounts for the measurement noise.
On the other hand, we demonstrate that prior QSQ algorithms for learning classical Boolean
functions can be generalized to unitary learning. In particular, Chen et al. [4] showed that k-
junta unitaries are learnable with Op4kq copies of the Choi state, and Montanaro and Osborne
[3] proposed the original version of the quantum Goldreich-Levin algorithm, requiring oracle
access to the target unitary and its inverse.

Furthermore, Atıcı and Servedio [23] provided an algorithm for learning classical k-junta
functions with Op2kq uniform quantum examples, and Arunachalam et al. [10] demonstrated
that several classes of quantum Boolean functions are learnable with quantum statistical queries
with respect to uniform quantum examples. In particular, they showed that classical k-junta
functions are learnable with Op2k ` nq quantum statistical queries, and moreover that the (clas-
sical) Goldreich-Levin algorithm can be implemented in the QSQ model. In a subsequent work,
Arunachalam et al. [11] showed that the output of constant-depth circuits is learnable with
polypnq quantum statistical queries and provided several hardness results for the QSQ model.
Specifically, they showed an exponential lower bound for learning a class of classical Boolean
functions, and a double exponential lower bound for testing the purity of a target state.

Open questions. We distil several open questions concerning quantum statistical queries and
process learning.

1. The main workhorse for QSQ learning classical Boolean functions is Fourier analysis.
While Fourier analysis is usually cast under the uniform distribution, the µ-biased Fourier
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analysis can be applied to every product distribution. In particular, µ-biased Fourier sam-
pling can be used to learn linear functions [24] and DNFs [25] under product distributions
with quantum examples. Can we extend these results to the QSQ model?

2. Which classes of channels can be learned under quantum statistical queries?

3. What is the power of quantum statistical queries for testing properties of unitaries (and
more broadly channels)? While we provided a double exponential lower bound for test-
ing unitarity, quantum statistical queries might suffice for testing other relevant proper-
ties.

4. Following [16, 18], we can restrict our model to diagonal measurements. Which classes of
channels are learnable under this restricted model?

1 Preliminaries

We start by introducing the mathematical notation and the background. For n ě 1, we will
write rns “ t1, 2, . . . , nu. Given T Ď rns, we will write T :“ rnszT. We will denote the 2n ˆ 2n

identity matrix as In and we may omit the index n when is clear from the context. For a matrix
A, we will denote as Aij the entry corresponding to the i-th row and the j-th column. We
will use the indicator string S “ px1, x2, . . . , xk, ˚, ˚ . . . , ˚q to denote the set of n-element strings
whose first k elements are x1, x2, . . . , xk, i.e. S “ tpt1, t2, . . . , tnq| @i P rks : xi “ tiu. Given a
random variable X sampled according to a distribution ν, we will denote by EνrXs its expected
value and its variance by VνrXs, and omit the index ν when it’s clear from the context.

1.1 Quantum information theory

Let t|0y , |1yu be the canonical basis of C2, and Hn “ pC2qbn be the Hilbert space of n qubits. We
use the bra-ket notation, where we denote a vector v P pC2qbn using the ket notation |vy and its
adjoint using the bra notation xv|. For u, v P Hn, we will denote by xu|vy the standard Hermitian
inner product u:v. A pure state is a normalized vector |vy, i.e. | xv|vy | “ 1. Let Ln be the subset
of linear operators on Hn and let On Ă Ln be the subset of self-adjoint linear operators on Hn.
We represent the 2n ˆ 2n identity operator as In and we omit the index n when it is clear from
the context. We denote by OT

n Ă On be the subset of traceless self-adjoint linear operators on
Hn, by O`

n Ă On the subset of the positive semidefinite linear operators on Hn and by Sn Ă O`
n

the set of the quantum states of Hn, i.e. Sn :“ tρ P Ln : ρ ě 0, Trrρs “ 1u. We denote by Un
the unitary group, that is the set linear operators U P Ln satisfying UU: “ U:U “ I, and we
denote by Id : Ln Ñ Ln the identity map. For any operators A, B P Ln, let xA, By, denote the
normalized Hilbert-Schmidt inner product,

xA, By “
1
2n TrrA:Bs “

1
2n

ÿ

i,jPt0,1un

A˚
ijBij. (1)

We define the canonical maximally entangled state as |Ωy “ 1?
2n

ř

i,jPt0,1un |i, iy. Moreover, the
identity I and the flip operator F associated to a tensor product of two Hilbert spaces Hb2

n are
defined as

I :“
ÿ

i,jPt0,1un

|i, jyxi, j|, F :“
ÿ

i,jPt0,1un

|i, jyxj, i|. (2)
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Notably, they satisfy the following properties:

I p|ψy b |ϕyq “ |ψy b |ϕy , F p|ψy b |ϕyq “ |ϕy b |ψy , (3)

for all |ψy , |ϕy P Hn. We denote by Pn :“ tI, X, Y, Zubn the Pauli basis. Elements of the Pauli
basis are Hermitian, unitary, trace-less, they square to the identity and they are orthonormal to
each other with respect the normalized Hilbert-Schmidt inner product. The Pauli basis forms
an orthonormal basis for the set of linear operators Ln. We also define the single-qubit stabilizers
states as the eigenstates of single-qubit Pauli operators, i.e. stab :“ t|0y, |1y, |`y, |´y, | ` yy, | ´

yyu.

1.2 Ensembles of states and unitaries

We start by providing some rudimentary notions about the Haar measure µn, which can be
thought as the uniform distribution over the unitary group Un. For a comprehensive introduc-
tion to the Haar measure and its properties, we refer to [26]. The Haar measure on the unitary
group Un is the unique probability measure µn that is both left and right invariant over the set
Un, i.e., for all integrable functions f and for all V P Un, we have:

ż

Un

f pUqdµnpUq “

ż

Un

f pUVqdµnpUq “

ż

Un

f pVUqdµnpUq. (4)

Given a state |ϕy, we denote the k-th moment of a Haar random state as

E|ψy„µn

”

|ψy xψ|
bk
ı

:“ EU„µn

”

Ubk |ϕy xϕ|
bk U:bk

ı

. (5)

Note that the right invariance of the Haar measure implies that the definition of E|ψy„µn

”

|ψy xψ|
bk
ı

does not depend on the choice of |ϕy. In many scenarios, random unitaries and states are sam-
pled from distributions that match only the low-order moments of the Haar measure. This
leads to the definition of t-designs, for integers t ě 1. Let ν be a probability distribution over
the set of quantum states Sn. The distribution ν is said to be a state t-design if

E|ψy„ν

“

|ψyxψ|bt‰ “ E|ψy„µn

“

|ψyxψ|bt‰ . (6)

Along with t-designs and Haar random ensembles, another important family of states (and
unitaries) is the one of locally scrambled ensembles, introduced in [20]. An ensemble of n-qubit
unitaries is called locally scrambled if it is invariant under pre-processing by tensor products of
arbitrary local unitaries. That is, a unitary ensemble ULS is locally scrambled if for U „ ULS and
for any fixed U1, . . . , Un P U1 also Up

Ân
i“1 Uiq „ ULS. Accordingly, an ensemble SLS of n-qubit

quantum states is locally scrambled if it is of the form SLS “ ULS |0ny for some locally scrambled
unitary ensemble ULS. Notable examples of locally scrambled ensembles are the products of
random single-qubit stabilizer states and the products of Haar random k-qubit states, which,
in particular, include Haar random n-qubit states the products of Haar random single-qubit
states. We emphasize that the above families include both product states and highly entangled
states.
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1.3 The Choi-Jamiolkowski isomorphism

Furthermore, we can represent a unitary U P Un with its dual pure state, known as Choi-
Jamiolkowski state, or simply Choi state [27, 28]. The Choi state |vpUqy can be prepared by
first creating the maximally entangled state on 2n qubits, which we denoted by |Ωy, and then
applying U on half of the maximally entangled state. This is equivalent to preparing n Ein-
stein–Podolsky–Rosen (EPR) pairs 1?

2
p|00y ` |11yq (which altogether forms 2n qubits) and ap-

plying the unitary U to the n qubits coming from the second half of each of the EPR pairs. We
have

|vpUqy “ pIn b Uq |Ωy “
1

?
2n

ÿ

iPt0,1un

|iy b U |iy “
1

?
2n

ÿ

iPt0,1un

Uji |i, jy (7)

This definition can be naturally extended to a general quantum channel N :

J pN q “ Id b N p|ΩyxΩ|q “
1
2n

ÿ

i,jPt0,1un

|iyxj| b N p|iyxj|q. (8)

Clearly, J pUp¨qU:q “ |vpUqyxvpUq|. Furthermore, we recall that each EPR pair can be prepared
by a circuit of depth 2:

1
?

2
p|00y ` |11yq “ CNOTpH b Iq |00y . (9)

Then that the n EPR pairs may be prepared in parallel with a constant depth circuit. The Choi
states of Pauli strings is of particular interest:

|vpIqy “
1

?
2

p|00y ` |11yq, |vpXqy “
1

?
2

p|01y ` |10yq (10)

i |vpYqy “
1

?
2

p|01y ´ |10yq, |vpZqy “
1

?
2

p|00y ´ |11yq. (11)

We note that the Choi states of the Pauli basis are proportional to the Bell basis. This readily im-
plies that the set t|vpIqy , |vpXqy , |vpYqy , |vpZqyu

bn forms an orthonormal basis for 2n-qubit pure
states with respect to the standard Hermitian inner product, i.e. @P, Q P Pn : | xvpPq|vpQqy | “

δP,Q, where δP,Q is the Kronecker’s delta function.

1.4 Distance between unitaries and expected risk

The Choi-Jamiolkowski isomorphism induces a distance over unitaries, introduced in [29] and
recently extended to general quantum channels in [5]. In particular, we define

DpU, Vq :“ }|vpUqyxvpUq| ´ |vpVqyxvpVq|}tr “

b

1 ´ | xvpUq|vpVqy |2. (12)

We remark that closely related distances have also appeared in other works. In particular,
the pseudo-distance distpU, Vq of [30, 4] and DpU, Vq are within a constant factor

?
2, as also

shown in ([5], Lemma 14). We now state a useful result relating Dp¨, ¨q to the action of unitaries
on random states. To this end, we recall the definition of expected risk introduced in [20]. Let ν
a distribution over pure states. We have,

RνpU, Vq :“ E|ψy„ν

„

›

›

›
U|ψyxψ|U: ´ V|ψyxψ|V:

›

›

›

2

tr

ȷ

, (13)

We now rephrase a result of [8] according to our notation.
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Lemma 1.1 ([8], Proposition 21). Let µn be the Haar measure over n-qubit states. For unitary opera-
tors U, V P Un, it holds that

Rµn pU, Vq “
2n

2n ` 1
DpU, Vq2 (14)

Therefore, DpU, Vq is an “average-case” measure of the distance between quantum chan-
nels, and it is closely related to task of learning the action of a unitary on a Haar-random state.
Moreover, the following result swiftly extends this guarantee to all locally scrambled ensembles
of states.

Lemma 1.2 ([20], Lemma 1, Lemma B.4). Let ν a locally scrambled ensemble of states. We have,

1
2
Rµn pU, Vq ď

2n

2n ` 1
RνpU, Vq ď Rµn pU, Vq. (15)

1.5 Fourier analysis on the unitary group

Let U P Un a unitary and consider the Pauli expansion U “
ř

PPPn
pUPP. We observe that the

corresponding Choi state |vpUqy admits an analogous expansion with the same coefficients:

|vpUqy “

˜

In b
ÿ

PPPn

pUPP

¸

¨

˝

1
?

2n

ÿ

iPt0,1un

|i, iy

˛

‚“
ÿ

PPPn

pUP |vpPqy . (16)

We now recall the notion of influence of qubits on linear operators, introduced in [3] in the con-
text of Hermitian operators and further developed in [4, 31]. The related influence of variables
is widely used in the analysis of Boolean functions [32]. We define the quantum analogue of
the bit-flip map as superoperator on Ln:

dj :“ Ibpj´1q b

ˆ

I ´
1
2

Tr
˙

b Ibpn´jq. (17)

Then for P “
Ân

i“1 Pi P Pn, we have

djP “

#

P if Pj ‰ I,
0 if Pj “ I.

(18)

For a linear operator A P Ln, A “
ř

PPPn
pAPP, we have

dj A “
ÿ

P:Pj‰I

pAPP. (19)

For p ě 1, we denote by Infp
j pAq :“ }dj A}

p
p the Lp-influence of j on the operator A. For

S P rns, we denote by Infp
pAq :“

řn
j“1 Infp

j pAq the associated total Lp-influence. We will often
omit the index p when p “ 2. Following [4], we also define the influence of a subset of qubits
S P rns as

InfSpAq “
ÿ

PPPn :
supppPqXS‰H

| pAP|2. (20)

We observe that InfjpAq “ InftjupAq “
ř

PPPn :Pj‰I | pAP|2, as expected. Intuitively, the influence
of a unitary U on a subset of qubits is a quantitative measure of the action of U on such subset.
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2 The model

We first give the definition of the QSQ oracle. For a state ρ P Sn, the QStatρ oracle receives as
input an observable O P Ln, }O} ď 1 and a tolerance parameter τ ě 0, and returns a τ-estimate
of TrrOρs, i.e.

QStatρ : pO, τq ÞÑ TrrρOs ˘ τ. (21)

A typical choice of the target state is the uniform quantum example |ψ f y :“
ř

xPt0,1un
1?
2n |x, f pxqy,

for a suitable Boolean function f : t0, 1un Ñ t0, 1u, which was first introduced in [33] and
widely employed in previous works on quantum statistical query learning [10, 11]. In this case,
we will shorten the notation to QStat f “ QStat|ψ f yxψ f |. To adapt their framework to our goal of
learning unitaries, we need to devise an alternative input state. A natural choice is the Choi-
Jamiolkowki state, which found many applications in prior work about unitary learning [4],
and more broadly process learning [34], motivating its adoption in the context of quantum sta-
tistical query. For brevity, we will write QStatU instead of QStat|vpUqyxvpUq|. We now detail the
mutual relationship between the oracle QStatU and the previous oracles defined in terms of
quantum examples. To this end, we consider two unitaries implementing f , notably the bit-flip
oracle U f and the phase oracle Vf . We have,

@x P t0, 1un, y P t0, 1u : U f |x, yy “ |x, y ‘ f pxqy , (22)

@x P t0, 1un : Vf |xy “ p´1q f pxq |xy (23)

In particular we note that |ψ f y “ 1?
2n U f

ř

xPt0,1un |x, 0y. We show that QStat f can be simulated
by QStatU f and conversely QStatVf can be simulated by QStat f . The first result shows that our
framework generalizes the previous one based on quantum examples, while the second one
allows us to transfer lower bounds from classical Boolean functions to unitaries, as formalized
in Theorem 4.1.

Lemma 2.1 (Relations between QSQ oracles). Let f : t0, 1un Ñ t0, 1u a Boolean function and
consider the bit-flip oracle U f and the phase oracle Vf . Then for every observable A P Ln`1, there exists
an observable A1 P L2n`2 such that

xψ f |A|ψ f y “ xvpU f q|A1|vpU f qy . (24)

and, similarly, for every observable B P L2n, there exists an observable B1 P Ln`1 such that

xvpVf q|B|vpVf qy “ xψ f |B1|ψ f y . (25)

Proof. The first result follows by selecting A1 “ In b |0yx0| b A. As for the second result, we
can write the following expansion B “

ř

P,QPPn
cP,Q|vpPqyxvpQq|. From ([3], Proposition 9), we

know that |vpVf qy “
ř

xPt0,1un
zf pxq |vpZxqy, where we denoted Zx :“

Â

iPrns Zxi , with Z0 “ I
and Z1 “ Z. Hence

xvpU f q|B|vpU f qy “
ÿ

xPt0,1un

c2
Zx ,Zx

zf pxq
2
. (26)

Now, consider the observable T “
ř

xPt0,1un cZx ,Zx |xyxx| P Ln and define

B1 “ Hbpn`1qpIn b |1yx1|q ¨ T ¨ pIn b |1yx1|qHbpn`1q, (27)

8



which is equivalent to perform the Fourier transform on |ψ f y, post-selecting on the last qubit
being 1 and finally applying T on n qubits. The Fourier transform and the projection on |1yx1|

give rise to
|pψ f y “

ÿ

xPt0,1un

zf pxq |xy . (28)

Then the desired result follows by noting that

xψ f |B1|ψ f y “ xpψ f |T|pψ f y “
ÿ

xPt0,1un

c2
Zx ,Zx

zf pxq
2
. (29)

We argue that this choice of the oracle is particularly suitable for learning the unitary evo-
lution of states sampled from locally scrambled ensembles. This comes as a direct consequence
of Lemmas 1.1 and 1.2, that together imply the following proposition.

Lemma 2.2. For quantum unitaries U, V P Un and ν P SLS a locally scrambled ensemble of states, it
holds that

1
2

DpU, Vq2 ď RνpU, Vq ď DpU, Vq2, (30)

where DpU, Vq2 “ 1 ´ | xvpUq|vpVqy |2.

We also introduce the following notion of learnability of classes of unitaries with quantum
statistical queries.

Definition 2.1 (Unitary learning with QSQs). Let ε P r0, 1s, C Ď Un a class of unitaries and ν
an ensemble of n-qubit states. We say that C is efficiently ε-learnable with quantum statistical
queries with respect to ν if, for all U P C, there exists an algorithm A that runs in time polypnq,
performs polypnq queries to the oracle QStatU with tolerance at least 1{polypnq and outputs a
unitary V P Un such that

RνpU, Vq ď ε. (31)

We emphasize that all the algorithms proposed in this work are proper learners, in the sense
that they output a unitary V P C. Moreover, they are classical randomized algorithms, as they
use no other quantum resource apart from the query access to QStatU . The QSQ model is
considerably more restrictive than the oracle access model, where a learner has the freedom to
implement the unitary U and its inverse U: on an arbitrary input state. Then, every algorithm
implementable with QSQs can be also implemented with oracle access, but the converse it is
not true in general. In particular, we demonstrate in Theorem 4.1 that there is a class of unitaries
that is efficiently learnable with direct access to the Choi state, but requires exponentially many
quantum statistical queries.

3 Learning classes of unitaries with quantum statistical queries

Our results are based on the following technical lemma, which extends ([10], Lemma 4.1) to
unitary operators. In particular, this lemma allows us to estimate the influence of subset of
qubits defined in Eq. 20.
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Lemma 3.1 (Learning the influence of a subset with a single QSQ). Let A P Un be a unitary
operator and QStatA be the quantum statistical query oracle associated to the Choi state |vpAqy. There
is a procedure that on input a subset of Pauli strings T Ď Pn, outputs τ-estimate of

ř

PPT | pAP|2 using
one query to QStatA with tolerance τ.

Proof. Let M “
ř

PPT |vpPqy xvpPq|. We note that

xvpAq| M |vpAqy “

˜

ÿ

PPPn

pA˚
P xvpPq|

¸

¨

˝

ÿ

QPT

|vpQqy xvpQq|
ÿ

PPPn

pAP |vpPqy

˛

‚ (32)

“

˜

ÿ

PPPn

pA˚
P xvpPq|

¸

¨

˝

ÿ

QPT

pAQ |vpQqy

˛

‚“
ÿ

PPT

| pAP|2. (33)

Thus a single query to QstatA with input pM, τq yields the desired outcome.

Remark 3.1 (Computational efficiency). We observe that the circuit implementing the measure-
ment M “

ř

PPT |vpPqy xvpPq| can have exponential depth in the worst case. However, in some
cases, even if the set T has exponential size, we can implement M with a polypnq circuit. For
instance, the influence of the j-th qubit InfjpAq can be expressed as

InfjpAq “
ÿ

PPPn :
Pj‰I

| pAP|2 “ 1 ´
ÿ

PPPn :
Pj“I

| pAP|2. (34)

Thus it suffices to estimate the expected value of |vpIqyj xvpIq|j b In´1. More generally, we
can consider the indicator string S “ px1, x2, . . . , xk, ˚, ˚ . . . , ˚q to denote the set of n-bit strings
whose first k elements are x1, x2, . . . , xk, i.e. S “ tpt1, t2, . . . , tnq P t0, 1, 2, 3un| @i P rks : xi “ tiu.
Then we have,

ÿ

PPS

|vpPqy xvpPq| “ |vpσx1 b σx2 b ¨ ¨ ¨ b σxk qy xvpσx1 b σx2 b ¨ ¨ ¨ b σxk q| b In´k, (35)

which again can be implemented by a polypnq circuit.

We will also need a further technical tool, which is an implementation of state tomography
with quantum statistical queries, also previously exploited in [11] for learning the output of
shallow circuits. Here we propose a refined argument for the special case of pure states. Since
the complexity is exponential in the number of qubits, this primitive can be used to efficiently
estimate the reduced states of subsets of logarithmic size.

Lemma 3.2 (State tomography). Let ρ P Sn. There exists an algorithm that performs 4n queries to
the oracle QStatρ with tolerance at least ε ¨ 4´n and returns a state pρ such that

}ρ ´ pρ}2 ď ε. (36)

Moreover, if ρ “ |ψyxψ| is a pure state, there exists an algorithm that performs 4n queries to the oracle
QStatρ with tolerance at least ε ¨ 2´n{2 and returns a pure state |pψy such that

}ρ ´ |pψyxpψ|}tr ď ε. (37)
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Proof. We perform a state tomography by querying all 4n ´ 1 non-identity Pauli strings with
tolerance τ “ ε ¨ 4´n. For all P P Pn, denote the obtained outcome by

oP “ TrrPρs ˘ τ

and set xP “ mintoP, 1u. Denote the estimated state by

pρ :“
1
2n

¨

˝I `
ÿ

PPPnzI

xPP

˛

‚. (38)

This allows to upper bound the distance between the partial state ρ and its estimate pρ.

}ρ ´ pρ}2
2 “Tr

“

pρ ´ pρq2‰ “
1
4n Tr

»

—

–

¨

˝

ÿ

PPPnzI

pTrrPρs ´ xPqP

˛

‚

2
fi

ffi

fl

(39)

“
1
2n

ÿ

PPPnzI

pTrrPρs ´ xPq2 ď 2nτ2, (40)

where we used the inequality px ` yq2 ď 2px2 ` y2q. Then picking τ “ ε{
?

2n gives the desired
result. We now delve into the case where the input state is pure. Thanks to ([35], Theorem 1),
and since ρ “ |ψyxψ| has rank 1, we obtain the following bound for the 1-distance:

}ρ ´ pρ}1 ď

c

2n

2n ` 1
}ρ ´ pρ}2 ď ε. (41)

We now consider the dominant eigenstate of pρ, denoted by |pψy, which can be computed in
polyp2nq time. By ([36], Proposition 2) we know that |pψyxpψ| is the unique closest pure state to
pρ. Since ρ is also a pure state, this immediately implies

›

›

›
|pψyxpψ| ´ ρ

›

›

›

tr
ď

›

›

›
|pψyxpψ| ´ pρ

›

›

›

tr
` }ρ ´ pρ}tr (42)

ď2}ρ ´ pρ}tr ď ε, (43)

3.1 Appetizer: learning constant-depth circuits

As a first application of the tools introduced before, we show that very shallow circuits are
learnable sample-efficiently with QSQs according to a locally scrambled distribution. We will
rely on the following recent result of [37], which essentially shows that “learning marginal
suffices”, i.e. learning the k-reduced density matrices of a state produced by a shallow circuit
allows to perform a state tomography.

Theorem 3.1 (Adapted from [37], Theorem 4.3). Let ψ “ |ψyxψ| a state produced by a circuit of
depth at most D. For any state ρ, one of the following conditions must be satisfied: either }ρ ´ ψ}tr ă ε;
or }ρs ´ ψs}tr ą ε2{n for some s Ď t0, 1, . . . , n ´ 1u with |s| “ 2D.

An application of this result was also given in [11], where the authors showed that the class
of n-qubit trivial states is learnable with polypnq quantum statistical queries. We now extend
their result from states to unitaries.

11



Theorem 3.2 (Learning constant-depth circuits via QSQs). Let C the class of Op1q-depth circuits.
Then for all U P C, there exists an algorithm that makes polypnq queries to QStatU with tolerance at
least ε2

4n ¨ 2´D{2 and returns a unitary W P Un such that

DpU, Wq ď ε. (44)

Proof. Let D be the depth of the circuit. First, we consider the Choi state |vpUqy “ I b U |Ωy

and recall that |Ωy can be produced with a circuit of depth 2 over 2n qubits. Then we have
|vpUqy “ V |02ny for a suitable unitary V P U2n implemented by a circuit of depth D ` 2.
Let k “ 2D`2. Then it suffices to learn all the k-local reduced density matrices of the states
|vpUqy. There are

`2n
k

˘

“ O
´

n2D
¯

of them and each of them is learnable in trace distance

with accuracy ε2

2n by performing 4D`2 quantum statistical queries with tolerance ε2

4n ¨ 2´D{2 by
means of Lemma 3.2. We can thus determine thanks to Theorem 3.1 a state |vpWqy such that
}|vpWqyxvpWq| ´ |vpUqyxvpUq|}tr ď ε. This immediately implies Eq. 44 by Lemma 2.2.

3.2 Learning quantum juntas

A unitary U P Un is a quantum k-junta if there exists S Ď rns with |S| “ k such that

U “ VS b IS

for some VS P Uk. For a Pauli string P “
Â

iPrns Pi P Pn, we denote the reduced string as PS “
Â

iPS Pi P Pk. We now consider the Pauli expansions U “
ř

PPPn
pUPP and VS “

ř

PSPPk
pVPS PS.

Their coefficients satisfy the following relation.

pUP “
1
2n TrrUPs “

1
2n TrrVSPSsTrrPS ISs “

#

pVPS if supppPq P S,
0 else.

As for the Choi state, we have

|vpUqy “
ÿ

PPPn

pUP |vpPqy “
ÿ

supppPqPS

pVPS |vpPS b ISqy “ |vpVSqy |vpISqy .

We will now show that quantum k-juntas are efficiently learnable in our model. Our proof
combines the techniques used in [4] for learning quantum k-juntas from oracle access and the
ones used in [10] for learning (classical) k-juntas with quantum statistical queries. Note that the
algorithm given in ([4], Theorem 28) has query complexity independent of n. Crucially, their
algorithm involves a Pauli sampling as a subroutine to estimate the support of the Pauli strings
with non-zero Fourier coefficients. We replaced this procedure by estimating the influences of
each qubit by means of Lemma 3.1, introducing an additional factor n in the query complexity.
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Algorithm 1 Learning quantum k-juntas with statistical queries
for i “ 1 to n do

Estimate Inf2
i pUq with a quantum statistical query with accuracy ε2{p20kq and store the

result in the variable αi.
end for
Define the subset T “

␣

i P rns : αi ě ε2{p16kq
(

and consider the set T2, which includes the
qubits in T and the associated qubits in the dual space.
for P P P|T2| do

Produce an estimate op of

TrrP ¨ |vpIbpn´ℓqqy xvpIbpn´ℓqq| ¨ p|vpUqy xvpUq|q ¨ |vpIbpn´ℓqqy xvpIbpn´ℓqq|s

with a quantum statistical query with tolerance 2´ℓε{3.
Set xP “ mintoP, 1u.

end for
Reconstruct the density matrix pρT “ 1

22ℓ

´

Ib2ℓ `
ř

PPP2ℓzIb2ℓ xPP
¯

and compute its dominant

eigenstate |pψTy.
Compute W such that |vpWqy :“ |pψTy

return W b Ibpn´ℓq.

Theorem 3.3 (Learning quantum k-juntas via QSQs). Let U be a quantum k-junta. There is a
polypn, 2k, εq-time algorithm that accesses the state |vpUqy via QStatU queries with tolerance polyp2´k, εq

and outputs a unitary rU such that
DpU, rUq ď ε. (45)

Proof. Throughout this proof, we will use the following notation to deal with the reduced Choi
state with respect to a given subset of the qubits. Recall that the Choi state is a state over a set of
2n qubits, which we label as ti1, i2, . . . , in, i1

1, i1
2, . . . , i1

nu. For S “ tij`1, ij`2, . . . u Ď ti1, i2, . . . , inu

we will denote S2 :“ tij`1, ij`2, . . . u Y ti1
j`1, i1

j`2, . . . u. Clearly, |S2| “ 2|S|.
Our algorithm consists in two separate steps: first we perform n QStatU queries with toler-

ance Θpε2{kq to learn a subset T Ď rns containing all the variables i for which Inf2
i pUq ě ε2{p16kq.

Next we will define a reduced state on the subset T2 and we will learn it by performing a state
tomography with 42|T| ´ 1 QStatU queries with tolerance Ωpε4´2kq.

Let U be a quantum k-junta over the subset Q Ď rns. Then, it is not hard to see that Inf2
i pUq “

0 if i R Q. For each j P rns, we use Lemma 3.1 to estimate Inf2
j pUq ˘ ε2{p20kq via a single QstatU

query. Suppose the outcomes of these queries are α1, . . . αn, and let

T “
␣

i P rns : αi ě ε2{p16kq
(

.

We observe that T Ď Q, as Inf2
i pUq “ 0 implies that αi ď ε2{p20kq. On the other hand, for every

i P QzT, we have that Inf2
i pUq ă ε2{p8kq. Assume by contradiction that i R T and Inf2

i pUq ě

ε2{p4kq. Then we have:

αi ě Inf2
i pUq ´

ε

20k
ą

ε2

16k
,

contradicting the fact that i R T. As a consequence,

ÿ

iPT

Inf2
i pUq “

ÿ

iPQzT

Inf2
i pUq ď k ¨

ε2

8k
“

ε2

8
, (46)
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where the inequality follows from |Q| ď k.
We now describe the second phase of the learning algorithm. Let |T| “ ℓ and consider

the identity operator Ibpn´ℓq acting on the subset T. Let ρ be the state obtained by measuring
|vpUqy according to the projectors

`

|vpIbpn´ℓqqy xvpIbpn´ℓqq| , Ibpn´ℓq ´ |vpIbpn´ℓqqy xvpIbpn´ℓqq|
˘

,
and then conditioning on the first outcome,

|ψy :“

`

Ibpℓq b |vpIbpn´ℓqqy xvpIbpn´ℓqq|
˘

|vpUqy
ˇ

ˇpTrT2 xvpUq|q |vpIbpn´ℓqqy
ˇ

ˇ

:“ |vpV b Ibpn´ℓqqy ,

where in the last line we introduced the ℓ-qubit unitary V such that |ψy is the state isomorphic
to V b Ibpn´ℓq. We make the following claim on the distance between U and V b Ibpn´ℓq, which
we will prove in the following.

Claim 3.1. DpU, V b Ibpn´ℓqq ď ε{2.

Denote ρ :“ |ψy xψ|. We will learn ρT2 “ TrT2
rρs by performing a state tomography via

QStat queries on a reduced state of 2ℓ qubits. To this end, we query all 42ℓ ´ 1 non-identity
Pauli strings with support on T with tolerance τ “ ε2´2ℓ´1. For all P P P2ℓ “ tI, X, Y, Zub2ℓ,
denote the obtained outcome by

oP “ TrrP ¨ |vpIbpn´ℓqqy xvpIbpn´ℓqq| ¨ p|vpUqy xvpUq|q ¨ |vpIbpn´ℓqqy xvpIbpn´ℓqq|s ˘ τ

and set xP “ mintoP, 1u. Denote the estimated 2ℓ-qubit state by

pρT “
1

22ℓ

¨

˝Ib2ℓ `
ÿ

PPP2ℓzIb2ℓ

xPP

˛

‚.

Let |pψTy be the dominant eigenstate of pρT and let W be the unitary encoded by the state
|pψTy, i.e. let |vpWqy :“ |pψTy. We make a further claim and we delay its proof to the end.

Claim 3.2. DpV, Wq ď ε{2.

Then the theorem follows by combining Claims 3.1 and 3.2 with the triangle inequality and
letting rU “ W b Ibpn´ℓq.

We present the proofs of Claims 3.1 and 3.2 below.

Proof of Claim 3.1. Recall that U “ UQ b IQ is a k-junta which acts non trivially only on the set
Q and that T Ď Q is the set of qubits with non-negligible influence learnt by the algorithm. It is
sufficient to show that distpUQ, Vq ď ε{2. First, we observe that |vpUqy “ |vpUQqy b |vpIbpn´kqqy.
We will need the following decomposition of |vpUQqy:

|vpUQqy “
ÿ

PQPPk

pUPQ |vpPQqy “
ÿ

PQPPk
supppPQqXT“H

pUPQ |vpPQqy `
ÿ

PQPPk :
supppPQqXT‰H

pUPQ |vpPQqy , (47)

where pUPQ “ pUPQbIn´k . Similarly, we can expand |vpVqy b |vpIbpk´ℓqqy as follows

|vpVqy b |vpIbpk´ℓqqy “
ÿ

PQPPk
supppPQqXT“H

pUPQ |vpPQqy `
ÿ

PQPPk :
supppPQqXT‰H

pUPQ |vpIbkqy (48)
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Recall that the total influence of the qubits in T is at most ε2{8. This immediately implies a
lower bound on the inner product between |vpVqy b |vpIbpk´ℓqqy and |vpUQqy.

ˇ

ˇ

ˇ

´

xvpVq| b xvpIbpk´ℓqq|

¯

|vpUQqy

ˇ

ˇ

ˇ
“

ÿ

PQPPk :
supppPqXT‰H

|pUPQ |2

“1 ´
ÿ

PQPPk :
supppPqXT‰H

|pUPQ |2 ě 1 ´
ε2

8
,

where the inequality is a direct application of Eq. 46. We can now prove the desired result

D2pU, V b Ibpn´ℓqq “ D2pUQ, V b Ibpk´ℓqq “ 1 ´ | xvpVqy |vpUQq|2 ď
ε2

4
,

where we used the stability of Dp¨, ¨q under tensor product.

Proof of Claim 3.2. We just need to ensure the following:

}pρT2 ´ ρT2}2 ď
ε

2
. (49)

We first make a preliminary observation. Let cP :“ TrrPρTs. Then,

pxp ´ cpq2 ď

ˆ

cp
ε2

8
` τ

˙2

(50)

This allow to upper bound the distance between the partial state ρT2 and its estimate pρT2 .

}ρT2 ´ pρT2}2
2 “TrrpρT ´ pρTq2s “

1
16ℓ

Tr

»

—

–

¨

˝

ÿ

PPP2ℓzIb2ℓ

pcP ´ xPqP

˛

‚

2
fi

ffi

fl

(51)

“
1
4ℓ

ÿ

PPP2ℓzIb2ℓ

pcP ´ xPq2 ď
2
4ℓ

¨

˝

ÿ

PPP2ℓzIb2ℓ

ε4

64
c2

p ` τ2

˛

‚ď
ε4

32
` 4ℓτ2, (52)

where we used the inequality px ` yq2 ď 2px2 ` y2q and the fact that the purity Tr
”

ρ2
T2

ı

“

4´ℓ
ř

PPP2ℓ
c2

P is bounded by 1. Then picking τ “ 2´ℓε{3 ensures the desired upper bound. By
proceeding as in the proof of Lemma 3.2, we have

DpV, Wq ď
ε

2
, (53)

as desired.

3.3 Learning quantum Boolean functions

A quantum Boolean function A is defined as a Hermitian unitary operator [3], i.e. an operator
satisfying

AA: “ A: A “ A2 “ I. (54)
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Notably, Pauli strings P P Pn are Quantum Boolean and the unitary evolution (in the Heisen-
berg picture) of a Quantum Boolean function A is also Quantum Boolean. This can be eas-
ily checked by replacing A with U: AU into the above equation. A key property of quantum
Boolean functions is that their Fourier coefficients are all real, i.e.

@P P Pn : pAP P R. (55)

We will now demonstrate that the quantum Goldreich-Levin (GL) algorithm ([3], Theorem
26) can be implemented via quantum statistical queries. Whereas the original algorithm re-
quires oracles queries to the target unitary U and its adjoint, we show that the weaker access
to QStatU suffices. A similar result was also established for uniform quantum examples ([10],
Theorem 4.4), which are quantum encodings of classical Boolean functions. While we will em-
ploy Theorem 3.4 for learning quantum Boolean functions, we remark that it does not require
the target operator to be Hermitian and it could find broader applications for learning other
classes of unitaries.

Theorem 3.4 (Quantum Goldreich-Levin using QSQs). Let A P Un be a unitary operator and
QStatA be the quantum statistical query oracle associated to the Choi state |vpAqy. There is a polypn, 1{γq-
time algorithm that accesses A via queries to QStatA with tolerance at least γ2{4 and outputs a list
L “ tPp1q, Pp2q, . . . , Ppmqu Ď Pn such that:

1. if | pAP| ě γ, then P P L;

2. and for all P P L, | pAP| ě γ{2.

Proof. Our algorithm closely follows the one proposed in [3]. The only difference is that, for
each subset T Ď t0, 1, 2, 3un, the oracle queries to A and A: are replaced by a QstatA query that
outputs a pγ2{4q-estimate of

ř

PPT | pAP|2, as in Lemma 3.1. The remaining part of the quantum
Goldreich-Levin algorithm does not involve oracle access to A or A:, thus the rest of the proof
coincides with the one of Theorem 26 in [3].

Algorithm 2 Quantum Goldreich-Levin algorithm with statistical queries
L Ð p˚, ˚, . . . , ˚q

for k “ 1 to n do
for each S P L,S “ pP1, P2, . . . , Pk´1, ˚, ˚, . . . , ˚q do

for Pk in tI, X, Y, Zu do
Let SPk “ pP1, P2, . . . , Pk´1, Pk, ˚, ˚, . . . , ˚q.
Estimate

ř

PPSPk
| pAP|2 to within γ2{4 with a QStat query.

Add SPk to L if the estimate of
ř

PPSPk
| pAP|2 is at least γ2{2.

end for
Remove S from L.

end for
end for
return L

The GL algorithm returns a list of “heavy-weight” Fourier coefficients. If A is a quantum
Boolean function, we can easily recover the values of those coefficients, up to a global sign. We
prove this result in the following lemma.
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Lemma 3.3. Let A “
ř

P
pAPP a quantum Boolean function and let L Ď Pn a list of Pauli strings.

Assume that | pAP| ą τ{2 for all P. There is a procedure running in time Op|L|q that accesses the state
|vpAqy via QStatA queries with tolerance at least τ2 and outputs some estimates

!

pBP
ˇ

ˇP P L
)

such that

1. for all P P L, pBP “ ˘ pAP ˘ τ

2. for all P, Q P L, sgn
´

pBP pBQ

¯

“ sgn
´

pAP pAQ

¯

,

where sgnp¨q is that function that on input x P R returns the sign of x.

Proof. By Lemma 3.1, we can estimate the values of pA2
P up to error τ2 via a QStat query with

tolerance τ2. Let pB2
P be such estimates. Then we have that

|pBP| ď

b

A2
P ` τ2 ď | pAP| ` τ, (56)

which proves the first part of the lemma. It remains to estimate the signs of the coefficients,
up to a global sign. Let P˚ “ arg max pB2

P˚ , that is the largest estimated squared coefficient.

We arbitrarily assign the positive sign to this coefficient, i.e. we let pBP˚ “

b

pB2
P˚ . For each

other coefficient P ‰ P˚,we assign the sign with the following procedure. We first define the
following observables M` and M´,

M` :“ p|vpP˚qy ` |vpPqyq pxvpP˚q| ` xvpPq|q , (57)
M´ :“ p|vpP˚qy ´ |vpPqyq pxvpP˚q| ´ xvpPq|q . (58)

We now compute the expected values of M` with respect to |vpAqy:

µ` :“ xvpAq| M` |vpAqy “ (59)

“

¨

˝

ÿ

QPPn

pAQ xvpQq| p|vpP˚qy ` |vpPqyq

˛

‚

¨

˝pxvpP˚q| ` xvpPq|q
ÿ

QPPn

pAQ |vpQqy

˛

‚ (60)

“ p pAP˚ ` pAPq2, (61)

and, similarly, for M´,

µ´ :“ xvpAq| M´ |vpAqy “ (62)

“

¨

˝

ÿ

QPPn

pAQ xvpQq| p|vpP˚qy ´ |vpPqyq

˛

‚

¨

˝pxvpP˚q| ´ xvpPq|q
ÿ

QPPn

pAQ |vpQqy

˛

‚ (63)

“ p pAP˚ ´ pAPq2. (64)

So if pAP˚ and pAP have the same sign, µ` ą µ´ and vice-versa. Moreover, |µ` ´ µ´| “

4
ˇ

ˇ

ˇ

pAP pAP˚

ˇ

ˇ

ˇ
ą τ2. Then we can tell whether µ` ą µ´ by querying the oracle QStatA with the

observable M` ´ M´ and tolerance τ2. If the output is positive, then we can conclude that
µ` ą µ´ and assign pBP positive sign, and vice-versa if the output is negative. This proves the
second part of the theorem.
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We can now finally provide a QSQ algorithm for learning quantum Boolean functions. We
closely follow the proof of ([31], Proposition 6.7), which provide an analogous learning algo-
rithm for quantum Boolean functions under oracle query access.

Theorem 3.5 (Learning Quantum Boolean Functions with QSQs). Let A be a quantum Boolean
function. There is a polypn, 2kq-time algorithm that accesses the state |vpAqy via QStatA queries with
tolerance at least Ωp4´kq and outputs a quantum Boolean function A1 such that mint}A ´ A1}2, }A `

A1}2u ď ε, where

k ď kpεq “

$

’

&

’

%

Inf1
pAq2 ¨ e

48Inf2pAq

ε2 log 2Inf2pAq

ε if Inf2
pAq ě 1,

Inf1
pAq2 ¨ Inf2

pAq
´1

¨ e
48Inf2pAq

ε2 log
2
?

Inf2pAq

ε else.

Proof. We can adapt the proof of Proposition 6.7 in [31] to the QSQ setting by replacing all
the oracle access queries to A with queries to QStatA. In particular, this involves the imple-
mentation of the GL algorithm with the parameter γ “ Θpε2´kq. This can be done in time
polypn, 2k, ε´1q via quantum statistical queries with tolerance Θpε24´kq by Theorem 3.4. More-
over, we need to evaluate Op4kq Fourier coefficients with accuracy ε4´k. By Lemma 3.3, this
can be done, up to a global sign, in time Op4kq with quantum statistical queries queries with
tolerance Opε24´kq. The remaining part of the proof doesn’t involve oracle access queries, and
then is identical to the one of ([31], Proposition 6.7).

Remark 3.2. Theorem 3.5 allows us to learn a quantum Boolean function in Hilbert-Schimdt
distance, up to a global sign. In other terms, given a target observable A, we can estimate B
such that either B or ´B is close to A in Hilbert-Schmidt distance. This enables the prediction of
the norm of the expected value for an arbitrary state. This follows by an application of Holder’s
inequality.

||TrrAρs| ´ |TrrBρs|| ď min t|TrrpA ´ Bqρs| , |TrrpA ` Bqρs|u (65)
ď mint}A ´ B}2, }A ` B}2u ¨ }ρ}2 ď ε. (66)

If instead we are interested to the unitary evolution performed by A on a random state, we can
observe that:

DpA, Bq ď
1

?
2n

min
θPr0,2πq

}eiθ A ´ B}2 ď
1

?
2n

mint}A ´ B}2, }A ` B}2u, (67)

where the first inequality is proven in (Lemma 14, [5]). Moreover, the accuracy guarantees
of Theorem 3.5 are cast in terms of Inf1

pAq, Inf2
pAq. These parameters can be bounded for

an observable evolved by a shallow circuit (in the Heisenberg picture), by using a variant of
the light-cone argument, as done in ([31], Section 6.1). We now introduce some further nota-
tion to state their claim. For any j P rns, let Nj Ď rms be the minimal set of qubits such that
Trj
2

ˆ

U
TrNj

2|Nj|
pOqU:

˙

“

ˆ

U
TrNj

2|Nj|
pOqU:

˙

for any O P Ln and denote L :“ maxi |tj : i P Nju|. Then,

if O is a quantum Boolean function with Inf1
pOq, Inf2

pOq, }O}2 “ Op1q, and U is a unitary with
L “ Op1q, we can learn evolution in the Heisenberg picture U:OU by means of Theorem 3.5 by
picking k “ Op1q. This ensures that the algorithm runs in polypnq time and that the statistical
queries have constant tolerance.
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Figure 1: Average performance of the Goldreich-Levin algorithm implemented with quantum
statistical queries to the Choi-Jamiolkowski state. We tested the algorithm on 10 random 4-
qubit random unitaries, in predicting the absolute value of the outcome of Z observables on
the unitary evolution of computational basis states. Each random unitary consists in 2 layers
of Haar-random gates. We plotted the average error as a function of 1{γ, i.e. the inverse of the
threshold of Algorithm 2. We set the tolerance of the quantum statistical queries as γ2{4.

3.3.1 Numerical result

We complement our analysis with a numerical simulation of the proposed algorithm for learn-
ing quantum Boolean functions. Given a 4-qubit random unitary U, implemented by a circuit
consisting in 2 layers of Haar-random gates and a Pauli string P, we considered the quantum
Boolean function U:PU. We implemented the quantum Goldreich-Levin algorithm with quan-
tum statistical queries to estimate the high-weight Pauli coefficients of U:PU, and then we
estimated their values, up to a global sign, by means of Lemma 3.3. Finally, we used the esti-
mated quantum Boolean function to output an approximation of |TrrPU|0yx0|U:s|, as depicted
in Figure 1. For each quantum statistical query with tolerance τ, we computed the expected
value exactly and added a noisy perturbation, which we sampled from a normal distribution
with mean zero and variance τ2{4. We tested our algorithm on the observables in tI, Zub4, and
we did not witness a significant dependence between the performance and the locality of the
observable. The choice of a shallow circuit is motivated by the results in [31], which establish
a connection between the performance of the Goldreich-Levin algorithm to the complexity of
the underlying circuit, as also discussed in Remark 3.2.

4 Exponential separations between QSQs and Choi state access

We will now prove a lower bound for learning Choi states with QSQs, and derive from it an
exponential separation between learning unitaries from QSQs and learning unitaries with Choi
state access. To this end, we combine Lemma 2.1 with an argument given in [11] and based on
the following concept class (of classical functions):

C “

!

fA : t0, 1un Ñ t0, 1u, fApxq “ xJAx mod 2 | A P Fnˆn
2

)

(68)
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Theorem 4.1 (Hardness of learning phase oracles). The concept class of phase oracle unitaries VfA ,
i.e.

tVfA | A P Fnˆn
2 u (69)

requires 2Ωpnq many quantum statistical queries to QStatVfA
of tolerance 1{polypnq to be learnt below

distance D ă 0.05 with high probability.

Proof. Our proof is based on the one of ([11], Theorem 17). Their statement is analogous, with
the class of quantum examples |ψ fA y replacing that of unitaries VfA . The only things we need
to prove are the following

}|vpVfA qyxvpVfA q| ´ EB|vpVfB qyxvpVfB q|}tr ě 1 ´
a

17{32, (70)

max
M:}M}“1

VATr
“

M|vpVfA qyxvpVfA q|
‰

“ 2´Ωpnq (71)

and then the result follows from ([11], Theorem 16). The first line follows by checking that

}|vpVfA qyxvpVfA q| ´ EB|vpVfB qyxvpVfB q|}tr “ }|ψ fA yxψ fA | ´ EB|ψ fB yxψ fB |}tr ě 1 ´
a

17{32, (72)

Where the lower bound is proven in [11]. As for the variance, we notice the following

VATr
“

M|vpVfA qyxvpVfA q|
‰

“EATr
“

M|vpVfA qyxvpVfA q|2
‰

´ EATr
“

M|vpVfA qyxvpVfA q|
‰2 (73)

“EATr
“

M1|ψ fA yxψ fA |2
‰

´ EATr
“

M1|ψ fA yxψ fA |
‰2

“ 2´Ωpnq, (74)

where the observable M1 is the one obtained following the procedure of Lemma 2.1 and the
upper bound follows again from [11].

We also provide a double exponential lower bound for testing properties of channels, which
also comes as a direct consequence of a lower bound for testing purity of states given in [11].
First, recall that the unitarity [38, 39] of a quantum channel is defined as

upN q :“
2n

2n ´ 1
E|ψy„µn Tr

“

N p|ψyxψ|q2‰´
2n

2n ´ 1
Tr

«

N
ˆ

I
2n

˙2
ff

(75)

Theorem 4.2 (Hardness of testing unitarity). Let A be an algorithm that estimates with high prob-
ability the unitarity of a quantum channel N with error smaller than 0.24 using QstatN queries with
tolerance at least τ. Then A must make at least 2Ωpτ22nq such queries.

Proof. Assume the existence of an algorithm A contradicting the statement of the theorem. We
will prove the theorem by contradiction, by first showing that the unitarity is closely related to
the purity of the Choi state J pN q, and then applying the lower bound for testing purity given
in ([11], Theorem 25).

E|ψy„µn Tr
“

N p|ψyxψ|q2‰ “ E|ψy„µn Tr
“

FNb2p|ψyxψ|b2q
‰

(76)

“ Tr
“

FNb2pE|ψy„µn |ψyxψ|b2q
‰

“ Tr
„

FNb2
ˆ

I ` F

2np2n ` 1q

˙ȷ

(77)

“ Tr
„

FNb2
ˆ

F

2np2n ` 1q

˙ȷ

` Tr
„

FNb2
ˆ

I

2np2n ` 1q

˙ȷ

(78)

“ Tr
„

FNb2
ˆ

F

2np2n ` 1q

˙ȷ

` Tr

«

N
ˆ

I
2n

˙2
ff

2n

p2n ` 1q
(79)
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Then we can rearrange the unitarity as follows

upN q “
1

4n ´ 1
Tr

“

FNb2 pFq
‰

´
1

4n ´ 1
Tr

«

N
ˆ

I
2n

˙2
ff

(80)

We can also use the Kraus representation N p¨q “
ř

ℓ Kℓp¨qK:

ℓ and write

Tr
“

FNb2 pFq
‰

“
ÿ

ℓ,ℓ1

Tr
”

FpKℓ b Kℓ1qFpK:

ℓ b K:

ℓ1q

ı

(81)

“
ÿ

ℓ,ℓ1

|TrrKℓK
:

ℓ1s|
2 “ 4nTrrJpN q2s, (82)

where the last two identities are proven in ([14], Eqs. 160-164). Putting all together, we obtain:

4n

4n ´ 1
TrrJpN q2s ´

1
4n ´ 1

ď upN q ď
4n

4n ´ 1
TrrJpN q2s (83)

Thus the unitarity of N and the purity of J pN q are within an exponentially small additive
terms. Then the algorithm A would estimate the purity of J pN q with error smaller than 0.24 `

1{p4n ´ 1q with less than 2Ωpτ22nq queries, contradicting ([11], Theorem 25).

5 Application: Classical Surrogates

In this section we discuss a potential application of our results to quantum machine learning.
We will consider particularly variational quantum algorithms for approximating a classical
function f : X Ñ R. For a broad class of such algorithms [40, 41], the prediction phase can be
cast as follows: the input x P X is encoded into a quantum state with a suitable feature map
x ÞÑ ρpxq, which evolves according to a parametric channel Uθ and subsequently is measured
with a local observable O. Hence, the parametric circuit induces a hypothesis function hp¨q,
which associates x to the following label

hpxq “ TrrOUθpρpxqqs. (84)

Thus, given a distribution D over X , the goal is to find a parameter θ˚ satisfying the following:

Ex„D|hpxq ´ f pxq| “ Ex„D|TrrOUθ˚pρpxqqs ´ f pxq| ď ε, (85)

where ε is a small positive constant. Given a set of examples px1, f px1qq, px2, f px2qq, . . . , pxm, f pxmqq

one can then train this model in a hybrid fashion and select a parameter θ. Then the label of
an unseen instance xm`1 can be predicted with accuracy ε preparing Opε´2q copies of the state
Uθpρpxqq and measuring the observable O.

A recent line of research showed that, in some cases, one can fruitfully perform the pre-
diction phase with a purely classical algorithm, that goes under the name of classical surrogate
[21]. So far, the proposed approaches rely on the classical shadow tomography [22] and the
Fourier analysis of real functions [42, 21], which can be applied to the general expression of
quantum models as trigonometric polynomials. Here we argue that the QSQ learning frame-
work can find application in the quest for surrogate models, introducing more flexibility in
the surrogation process. Particularly, [22] resorts to a flipped model of quantum circuit where
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the parameter θ is encoded in a quantum state, subsequently measured by a variational mea-
surements depending on the x. While this model can provide quantum advantage for specific
tasks, it would be interesting to obtain similar results beyond the flipped circuit model, and
specifically for the setting where the instance x is encoded before the parameter θ. This goal
can be achieved through the algorithms discussed in the present paper, since they do not re-
quire the unitary to be a flipped a circuit. However, the distance over unitaries we adopted
brings accuracy guarantees for the prediction only when the input state is sampled from a lo-
cally scrambled ensemble. Thus, we need to extend the definition given in [21] to incorporate
the input distribution D.

Definition 5.1 (Worst-case and average-case surrogate models). Let ε ě 0 and 0 ď δ ď 1. A
hypothesis class of quantum learning models F has a worst-case pε, δq-classical surrogate if
there exists a process S that upon input of a learning model f P F produces a classical model
g P G such that

Pr
„

sup
xPX

} f pxq ´ gpxq} ď ε

ȷ

ě 1 ´ δ, (86)

for a suitable norm on the output space Y . Similarly, we say that F has an average-case pε, δq-
classical surrogate if there exists a process S that upon input of a learning model f P F pro-
duces a classical model g P G such that

PrrEx„D} f pxq ´ gpxq} ď εs ě 1 ´ δ. (87)

The process S must be efficient in the size of the quantum learning model, the error bound ε
and the failure probability δ.

In particular, it is easy to see that if the conditional distribution of the states ρpxq is locally
scrambled, then we can produce an average-case classical surrogate of f pxq “ TrrOUθρpxqs via
QSQs by means of Theorems 3.2,3.3,3.5 . For instance, if D is the uniform distribution over r6sn,
the ensemble t|ϕpxqyux defined as follows is locally scrambled. We have:

|ϕpxqy “

n
â

i“1
|ϕpxiqy where |ϕpxiqy “

$

’

’

’

’

’

’

’

’

’

&

’

’

’

’

’

’

’

’

’

%

|0y if xi “ 1
|1y if xi “ 2
|`y if xi “ 3
|´y if xi “ 4
|y`y if xi “ 5
|y´y if xi “ 6.

(88)

While this example is just meant to motivate our definition of average-case surrogate models,
the quest for quantum encodings mapping a target distribution over X to a locally scrambled
distribution would be of primary importance for the design of surrogation processes. We also
remark that worst-case surrogate models could be found by means of the quantum Goldreich-
Levin algorithm, and in particular by exploiting the fact the unitary evolution in the Heisenberg
picture of a Pauli string P P Pn, i.e. U :

θpPq “ U:

θPUθ, is a quantum Boolean function. This
follows from the fact that the accuracy guarantees of Theorem 3.5 expressed in Hilbert-Schimdt
distance can be transferred to an arbitrary state, as noted in Remark 3.2. This will allow learning
U :

θpPq, up to a multiplicative sign, and hence to predict functions of the form

hpxq “ |TrrPUθpρpxqqs| . (89)

22



Acknowledgments

The author thanks Chirag Wadhwa and Mina Doosti for helpful discussions and comments on
the draft of the paper, and for sharing the draft of their related work on quantum statistical
queries. He also thanks Elham Kashefi, Daniel Stilck França, Alex B. Grilo, Tom Gur, Yao Ma,
Dominik Leichtle and Sean Thrasher for helpful discussions at different stages of this project.
The author acknowledges financial support from the QICS (Quantum Information Center Sor-
bonne).

References

[1] Isaac L Chuang and Michael A Nielsen. Prescription for experimental determination of
the dynamics of a quantum black box. Journal of Modern Optics, 44(11-12):2455–2467, 1997.

[2] Gus Gutoski and Nathaniel Johnston. Process tomography for unitary quantum channels.
Journal of Mathematical Physics, 55(3), 2014.

[3] Ashley Montanaro and Tobias J Osborne. Quantum boolean functions. Chicago Journal OF
Theoretical Computer Science, 1:1–45, 2010.

[4] Thomas Chen, Shivam Nadimpalli, and Henry Yuen. Testing and learning quantum jun-
tas nearly optimally. In Proceedings of the 2023 Annual ACM-SIAM Symposium on Discrete
Algorithms (SODA), pages 1163–1185. SIAM, 2023.

[5] Zongbo Bao and Penghui Yao. Nearly optimal algorithms for testing and learning quan-
tum junta channels. arXiv preprint arXiv:2305.12097, 2023.

[6] Marco Fanizza, Yihui Quek, and Matteo Rosati. Learning quantum processes without
input control. arXiv preprint arXiv:2211.05005, 2022.

[7] Hsin-Yuan Huang, Sitan Chen, and John Preskill. Learning to predict arbitrary quantum
processes. arXiv preprint arXiv:2210.14894, 2022.

[8] Ashley Montanaro and Ronald de Wolf. A survey of quantum property testing. arXiv
preprint arXiv:1310.2035, 2013.

[9] John Preskill. Quantum computing in the nisq era and beyond. Quantum, 2:79, 2018.

[10] Srinivasan Arunachalam, Alex B Grilo, and Henry Yuen. Quantum statistical query learn-
ing. arXiv preprint arXiv:2002.08240, 2020.

[11] Srinivasan Arunachalam, Vojtech Havlicek, and Louis Schatzki. On the role of entangle-
ment and statistics in learning. arXiv preprint arXiv:2306.03161, 2023.

[12] Michael Kearns. Efficient noise-tolerant learning from statistical queries. Journal of the
ACM (JACM), 45(6):983–1006, 1998.

[13] Matthias C Caro, Marcel Hinsche, Marios Ioannou, Alexander Nietner, and Ryan Sweke.
Classical verification of quantum learning. arXiv preprint arXiv:2306.04843, 2023.

23



[14] Yihui Quek, Daniel Stilck França, Sumeet Khatri, Johannes Jakob Meyer, and Jens Eis-
ert. Exponentially tighter bounds on limitations of quantum error mitigation, 2022. URL
https://arxiv.org/abs/2210.11505.

[15] Yuxuan Du, Min-Hsiu Hsieh, Tongliang Liu, Dacheng Tao, and Nana Liu. Quantum
noise protects quantum classifiers against adversaries. Physical Review Research, 3(2),
may 2021. doi: 10.1103/physrevresearch.3.023153. URL https://doi.org/10.1103%

2Fphysrevresearch.3.023153.

[16] M Hinsche, M Ioannou, A Nietner, J Haferkamp, Y Quek, D Hangleiter, J-P Seifert, J Eisert,
and R Sweke. One t gate makes distribution learning hard. Physical Review Letters, 130(24):
240602, 2023.

[17] Aravind Gollakota and Daniel Liang. On the hardness of pac-learning stabilizer states
with noise. Quantum, 6:640, 2022.

[18] Alexander Nietner, Marios Ioannou, Ryan Sweke, Richard Kueng, Jens Eisert, Marcel Hin-
sche, and Jonas Haferkamp. On the average-case complexity of learning output distribu-
tions of quantum circuits. arXiv preprint arXiv:2305.05765, 2023.

[19] Armando Angrisani and Elham Kashefi. Quantum local differential privacy and quantum
statistical query model. arXiv preprint arXiv:2203.03591, 2022.

[20] Matthias C Caro, Hsin-Yuan Huang, Nicholas Ezzell, Joe Gibbs, Andrew T Sornborger,
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