Armando Angrisani 
email: armando.angrisani@lip6.fr
  
Learning unitaries with quantum statistical queries

come    

Learning unitaries with quantum statistical queries

Learning the dynamic properties of quantum systems is a fundamental problem at the intersection of machine learning (ML) and quantum physics. In the most general case, this task can be achieved under the broad framework of quantum process tomography (QPT) [START_REF] Isaac | Prescription for experimental determination of the dynamics of a quantum black box[END_REF]. However, QPT can be extremely resource-intensive, as learning the entire classical description of a unitary transformation requires exponentially many queries [START_REF] Gutoski | Process tomography for unitary quantum channels[END_REF] in the worst case. This complexity can be significantly reduced if the unitary is not completely arbitrary, but instead it belongs to a specific class. For instance, this approach has been fruitfully adopted for quantum Boolean functions [START_REF] Montanaro | Quantum boolean functions[END_REF], quantum juntas [START_REF] Chen | Testing and learning quantum juntas nearly optimally[END_REF][START_REF] Bao | Nearly optimal algorithms for testing and learning quantum junta channels[END_REF] and quantum circuits with bounded covering numbers [START_REF] Fanizza | Learning quantum processes without input control[END_REF]. On the other hand, the complexity of quantum process tomography could be drastically reduced if we restrict our attention only on local properties of the output state, as recently demonstrated in [START_REF] Huang | Learning to predict arbitrary quantum processes[END_REF]. Another scenario of interest is the one of property testing, where the learner is not asked to retrieve the classical description of the target process, but solely to test whether is satisfies some specific property [START_REF] Montanaro | A survey of quantum property testing[END_REF]. A further figure of merit in quantum process learning is the type of resources that the learner is allowed to use. For the special case of unitary transformations, the learner is usually given oracle access to the target unitary U and its inverse U : , or, alternatively, to the corresponding Choi-Jamiolkowski state. In this paper we consider this latter approach and we ask the following question:

Which classes of unitaries are efficiently learnable with noisy single-copy measurements of the Choi-Jamiolkowski state?

This question is motivated by near-term implementations of quantum algorithms, which involve several sources of noise and severely limited entangling capacity [START_REF] Preskill | Quantum computing in the nisq era and beyond[END_REF]. To this end, we adopt the model of quantum statistical queries (QSQs), previously introduced in [START_REF] Arunachalam | Quantum statistical query learning[END_REF][START_REF] Arunachalam | On the role of entanglement and statistics in learning[END_REF] as an extension of the (classical) statistical query model [START_REF] Kearns | Efficient noise-tolerant learning from statistical queries[END_REF]. In the QSQ model, we consider a learner without quantum memory that can only access noisy estimates of the expected values of chosen observables on an unknown initial state. Interestingly, several concept classes such as parities, juntas function, and DNF formulae are efficiently learnable in the QSQ model, whereas the classical statistical query model necessitates an exponentially larger number of samples. Despite these positive results, resorting to quantum statistical queries can be considerably limiting for some tasks. In particular, the authors of [START_REF] Arunachalam | On the role of entanglement and statistics in learning[END_REF] have established an exponential gap between QSQ learning and learning with quantum examples in the presence of classification noise. Quantum statistical queries have also found practical applications in classical verification of quantum learning, as detailed in [START_REF] Caro | Classical verification of quantum learning[END_REF]. Furthermore, they have been employed in the analysis of quantum error mitigation models [START_REF] Quek | Exponentially tighter bounds on limitations of quantum error mitigation[END_REF][START_REF] Arunachalam | On the role of entanglement and statistics in learning[END_REF] and quantum neural networks [START_REF] Du | Quantum noise protects quantum classifiers against adversaries[END_REF]. Alternative variations of quantum statistical queries have also been explored in [START_REF] Hinsche | One t gate makes distribution learning hard[END_REF][START_REF] Gollakota | On the hardness of pac-learning stabilizer states with noise[END_REF][START_REF] Nietner | On the average-case complexity of learning output distributions of quantum circuits[END_REF]. Moreover, the connection between quantum statistical queries and quantum differential privacy was investigated in [START_REF] Arunachalam | Quantum statistical query learning[END_REF], and an equivalence between quantum statistical query learning and quantum local differential privacy [START_REF] Angrisani | Quantum local differential privacy and quantum statistical query model[END_REF] .

Our contributions. In this paper we demonstrate that several classes of unitaries are efficiently learnable with quantum statistical queries with respect to their Choi state. In particular, we show our result for a natural distance over unitaries induced by the Choi-Jamiolkowski isomorphism and previously adopted in [START_REF] Montanaro | A survey of quantum property testing[END_REF][START_REF] Bao | Nearly optimal algorithms for testing and learning quantum junta channels[END_REF]. We emphasize that this choice of distance allows to predict the action of the target unitary on a random input state sampled from a locally scrambled ensemble [START_REF] Caro | Out-of-distribution generalization for learning quantum dynamics[END_REF]. We now give an informal version of our upper bounds. When not explicitly stated, the tolerance of a quantum statistical query is at least polynomially small.

• Constant depth circuits are learnable with polynomially many quantum statistical queries (Theorem 3.2).

• Quantum Oplog nq-juntas are efficiently learnable with polynomially many quantum statistical queries (Theorem 3.3).

• Quantum Boolean functions with constant total influence are efficiently learnable with polynomially many quantum statistical queries (Theorem 3.5). In order to prove this result, we show that the quantum Goldreich-Levin algorithm can be implemented with quantum statistical queries (Theorem 3.4).

While these positive results show that a wide class of unitaries can be efficiently learned in our model, we also argue that resorting to quantum statistical queries leads to an exponentially larger sample complexity for certain tasks. In particular, we give the following lower bound.

• There is a class of phase oracle unitaries that requires exponentially many quantum statistical queries with polynomially small tolerance to be learnt below distance 0.005 with high probability (Theorem 4.1);

• Estimating the unitarity of a quantum channel with error smaller than 0.24 and polynomially small tolerance requires double-exponentially many quantum statistical queries (Theorem 4.2).

Moreover, prior results imply that both tasks can be efficiently performed with polynomially many copies of the associated Choi-Jamiolkowski state. In Section 3.3.1, we complement our theoretical findings with a numerical simulation the quantum Goldreich-Levin algorithm implemented with quantum statistical queries. Finally, in Section 5 we suggest a potential application of our results to hybrid quantum machine learning. Prior work [START_REF] Franz | Classical surrogates for quantum learning models[END_REF][START_REF] Jerbi | Shadows of quantum machine learning[END_REF] showed that certain quantum learning models can be replaced by classical surrogates during the prediction phase. We argue that the learning algorithms provided in the present paper can also serve to this scope. To this end, we extend the definition of classical surrogates from the worst-case to the average-case.

Related work.

Our results generalize prior work in two ways. On the one hand, we show that several classes of unitaries are learnable in the QSQ model, while all previous results involved the access to stronger oracles. The adoption of a weaker oracle is particularly advantageous for near-term implementation, since the definition of QSQs accounts for the measurement noise.

On the other hand, we demonstrate that prior QSQ algorithms for learning classical Boolean functions can be generalized to unitary learning. In particular, Chen et al. [START_REF] Chen | Testing and learning quantum juntas nearly optimally[END_REF] showed that kjunta unitaries are learnable with Op4 k q copies of the Choi state, and Montanaro and Osborne [START_REF] Montanaro | Quantum boolean functions[END_REF] proposed the original version of the quantum Goldreich-Levin algorithm, requiring oracle access to the target unitary and its inverse. Furthermore, Atıcı and Servedio [START_REF] Atıcı | Quantum algorithms for learning and testing juntas[END_REF] provided an algorithm for learning classical k-junta functions with Op2 k q uniform quantum examples, and Arunachalam et al. [START_REF] Arunachalam | Quantum statistical query learning[END_REF] demonstrated that several classes of quantum Boolean functions are learnable with quantum statistical queries with respect to uniform quantum examples. In particular, they showed that classical k-junta functions are learnable with Op2 k `nq quantum statistical queries, and moreover that the (classical) Goldreich-Levin algorithm can be implemented in the QSQ model. In a subsequent work, Arunachalam et al. [START_REF] Arunachalam | On the role of entanglement and statistics in learning[END_REF] showed that the output of constant-depth circuits is learnable with polypnq quantum statistical queries and provided several hardness results for the QSQ model. Specifically, they showed an exponential lower bound for learning a class of classical Boolean functions, and a double exponential lower bound for testing the purity of a target state.

Open questions.

We distil several open questions concerning quantum statistical queries and process learning.

1. The main workhorse for QSQ learning classical Boolean functions is Fourier analysis.

While Fourier analysis is usually cast under the uniform distribution, the µ-biased Fourier analysis can be applied to every product distribution. In particular, µ-biased Fourier sampling can be used to learn linear functions [START_REF] Caro | Quantum learning boolean linear functions wrt product distributions[END_REF] and DNFs [START_REF] V Kanade | Learning dnfs under product distributions via µbiased quantum fourier sampling[END_REF] under product distributions with quantum examples. Can we extend these results to the QSQ model?

2. Which classes of channels can be learned under quantum statistical queries?

3. What is the power of quantum statistical queries for testing properties of unitaries (and more broadly channels)? While we provided a double exponential lower bound for testing unitarity, quantum statistical queries might suffice for testing other relevant properties.

4. Following [START_REF] Hinsche | One t gate makes distribution learning hard[END_REF][START_REF] Nietner | On the average-case complexity of learning output distributions of quantum circuits[END_REF], we can restrict our model to diagonal measurements. Which classes of channels are learnable under this restricted model?

Preliminaries

We start by introducing the mathematical notation and the background. For n ě 1, we will write rns " t1, 2, . . . , nu. Given T Ď rns, we will write T :" rnszT. We will denote the 2 n ˆ2n identity matrix as I n and we may omit the index n when is clear from the context. For a matrix A, we will denote as A ij the entry corresponding to the i-th row and the j-th column. We will use the indicator string S " px 1 , x 2 , . . . , x k , ˚, ˚. . . , ˚q to denote the set of n-element strings whose first k elements are x 1 , x 2 , . . . , x k , i.e. S " tpt 1 , t 2 , . . . , t n q| @i P rks : x i " t i u. Given a random variable X sampled according to a distribution ν, we will denote by E ν rXs its expected value and its variance by V ν rXs, and omit the index ν when it's clear from the context.

Quantum information theory

Let t|0y , |1yu be the canonical basis of C 2 , and H n " pC 2 q bn be the Hilbert space of n qubits. We use the bra-ket notation, where we denote a vector v P pC 2 q bn using the ket notation |vy and its adjoint using the bra notation xv|. For u, v P H n , we will denote by xu|vy the standard Hermitian inner product u : v. A pure state is a normalized vector |vy, i.e. | xv|vy | " 1. Let L n be the subset of linear operators on H n and let O n Ă L n be the subset of self-adjoint linear operators on H n . We represent the 2 n ˆ2n identity operator as I n and we omit the index n when it is clear from the context. We denote by O T n Ă O n be the subset of traceless self-adjoint linear operators on H n , by O ǹ Ă O n the subset of the positive semidefinite linear operators on H n and by S n Ă O ǹ the set of the quantum states of H n , i.e. S n :" tρ P L n : ρ ě 0, Trrρs " 1u. We denote by U n the unitary group, that is the set linear operators U P L n satisfying UU : " U : U " I, and we denote by Id : L n Ñ L n the identity map. For any operators A, B P L n , let xA, By, denote the normalized Hilbert-Schmidt inner product, xA, By " 1 2 n TrrA : Bs "

1 2 n ÿ i,jPt0,1u n A ij B ij . (1) 
We define the canonical maximally entangled state as |Ωy " 

Notably, they satisfy the following properties: 

I
for all |ψy , |ϕy P H n . We denote by P n :" tI, X, Y, Zu bn the Pauli basis. Elements of the Pauli basis are Hermitian, unitary, trace-less, they square to the identity and they are orthonormal to each other with respect the normalized Hilbert-Schmidt inner product. The Pauli basis forms an orthonormal basis for the set of linear operators L n . We also define the single-qubit stabilizers states as the eigenstates of single-qubit Pauli operators, i.e. stab :" t|0y, |1y, |`y, |´y, | `yy, | ýyu.

Ensembles of states and unitaries

We start by providing some rudimentary notions about the Haar measure µ n , which can be thought as the uniform distribution over the unitary group U n . For a comprehensive introduction to the Haar measure and its properties, we refer to [START_REF] Anna | Introduction to haar measure tools in quantum information: A beginner's tutorial[END_REF]. The Haar measure on the unitary group U n is the unique probability measure µ n that is both left and right invariant over the set U n , i.e., for all integrable functions f and for all V P U n , we have:

ż U n f pUqdµ n pUq " ż U n f pUVqdµ n pUq " ż U n f pVUqdµ n pUq. (4) 
Given a state |ϕy, we denote the k-th moment of a Haar random state as

E |ψy"µ n " |ψy xψ| bk ı :" E U"µ n " U bk |ϕy xϕ| bk U :bk ı . (5) 
Note that the right invariance of the Haar measure implies that the definition of E |ψy"µ n " |ψy xψ| bk ı does not depend on the choice of |ϕy. In many scenarios, random unitaries and states are sampled from distributions that match only the low-order moments of the Haar measure. This leads to the definition of t-designs, for integers t ě 1. Let ν be a probability distribution over the set of quantum states S n . The distribution ν is said to be a state t-design if

E |ψy"ν " |ψyxψ| bt ‰ " E |ψy"µ n " |ψyxψ| bt ‰ . ( 6 
)
Along with t-designs and Haar random ensembles, another important family of states (and unitaries) is the one of locally scrambled ensembles, introduced in [START_REF] Caro | Out-of-distribution generalization for learning quantum dynamics[END_REF]. An ensemble of n-qubit unitaries is called locally scrambled if it is invariant under pre-processing by tensor products of arbitrary local unitaries. That is, a unitary ensemble U LS is locally scrambled if for U " U LS and for any fixed U 1 , . . . , U n P U 1 also Up  n i"1 U i q " U LS . Accordingly, an ensemble S LS of n-qubit quantum states is locally scrambled if it is of the form S LS " U LS |0 n y for some locally scrambled unitary ensemble U LS . Notable examples of locally scrambled ensembles are the products of random single-qubit stabilizer states and the products of Haar random k-qubit states, which, in particular, include Haar random n-qubit states the products of Haar random single-qubit states. We emphasize that the above families include both product states and highly entangled states.

The Choi-Jamiolkowski isomorphism

Furthermore, we can represent a unitary U P U n with its dual pure state, known as Choi-Jamiolkowski state, or simply Choi state [START_REF] Choi | Completely positive linear maps on complex matrices[END_REF][START_REF] Jamiołkowski | Linear transformations which preserve trace and positive semidefiniteness of operators[END_REF]. The Choi state |vpUqy can be prepared by first creating the maximally entangled state on 2n qubits, which we denoted by |Ωy, and then applying U on half of the maximally entangled state. This is equivalent to preparing n Einstein-Podolsky-Rosen (EPR) pairs 1 ? 2 p|00y `|11yq (which altogether forms 2n qubits) and applying the unitary U to the n qubits coming from the second half of each of the EPR pairs. We have

|vpUqy " pI n b Uq |Ωy " 1 ? 2 n ÿ iPt0,1u n |iy b U |iy " 1 ? 2 n ÿ iPt0,1u n U ji |i, jy (7) 
This definition can be naturally extended to a general quantum channel N :

J pN q " Id b N p|ΩyxΩ|q " 1 2 n ÿ i,jPt0,1u n |iyxj| b N p|iyxj|q. (8) 
Clearly, J pUp¨qU : q " |vpUqyxvpUq|. Furthermore, we recall that each EPR pair can be prepared by a circuit of depth 2:

1 ? 2 p|00y `|11yq " CNOTpH b Iq |00y . ( 9 
)
Then that the n EPR pairs may be prepared in parallel with a constant depth circuit. The Choi states of Pauli strings is of particular interest:

|vpIqy " 1 ? 2 p|00y `|11yq, |vpXqy " 1 ? 2 p|01y `|10yq (10) 
i |vpYqy "

1 ? 2 p|01y ´|10yq, |vpZqy " 1 ? 2 p|00y ´|11yq. (11) 
We note that the Choi states of the Pauli basis are proportional to the Bell basis. This readily implies that the set t|vpIqy , |vpXqy , |vpYqy , |vpZqyu bn forms an orthonormal basis for 2n-qubit pure states with respect to the standard Hermitian inner product, i.e. @P, Q P P n : | xvpPq|vpQqy | " δ P,Q , where δ P,Q is the Kronecker's delta function.

Distance between unitaries and expected risk

The Choi-Jamiolkowski isomorphism induces a distance over unitaries, introduced in [START_REF] Low | Learning and testing algorithms for the clifford group[END_REF] and recently extended to general quantum channels in [START_REF] Bao | Nearly optimal algorithms for testing and learning quantum junta channels[END_REF]. In particular, we define

DpU, Vq :" }|vpUqyxvpUq| ´|vpVqyxvpVq|} tr " b 1 ´| xvpUq|vpVqy | 2 . ( 12 
)
We remark that closely related distances have also appeared in other works. In particular, the pseudo-distance distpU, Vq of [START_REF] Wang | Property testing of unitary operators[END_REF][START_REF] Chen | Testing and learning quantum juntas nearly optimally[END_REF] and DpU, Vq are within a constant factor ? 2, as also shown in ( [START_REF] Bao | Nearly optimal algorithms for testing and learning quantum junta channels[END_REF], Lemma 14). We now state a useful result relating Dp¨, ¨q to the action of unitaries on random states. To this end, we recall the definition of expected risk introduced in [START_REF] Caro | Out-of-distribution generalization for learning quantum dynamics[END_REF]. Let ν a distribution over pure states. We have,

R ν pU, Vq :" E |ψy"ν " › › ›U|ψyxψ|U : ´V|ψyxψ|V : › › › 2 tr ȷ , (13) 
We now rephrase a result of [START_REF] Montanaro | A survey of quantum property testing[END_REF] according to our notation.

Lemma 1.1 ([8], Proposition 21)

. Let µ n be the Haar measure over n-qubit states. For unitary operators U, V P U n , it holds that

R µ n pU, Vq " 2 n 2 n `1 DpU, Vq 2 (14) 
Therefore, DpU, Vq is an "average-case" measure of the distance between quantum channels, and it is closely related to task of learning the action of a unitary on a Haar-random state. Moreover, the following result swiftly extends this guarantee to all locally scrambled ensembles of states.

Lemma 1.2 ([20]

, Lemma 1, Lemma B.4). Let ν a locally scrambled ensemble of states. We have,

1 2 R µ n pU, Vq ď 2 n 2 n `1 R ν pU, Vq ď R µ n pU, Vq. (15) 

Fourier analysis on the unitary group

Let U P U n a unitary and consider the Pauli expansion U " ř PPP n p U P P. We observe that the corresponding Choi state |vpUqy admits an analogous expansion with the same coefficients:

|vpUqy " ˜In b ÿ PPP n p U P P ¸¨1 ? 2 n ÿ iPt0,1u n |i, iy '" ÿ PPP n p U P |vpPqy . ( 16 
)
We now recall the notion of influence of qubits on linear operators, introduced in [3] in the context of Hermitian operators and further developed in [START_REF] Chen | Testing and learning quantum juntas nearly optimally[END_REF][START_REF] Rouzé | Quantum talagrand, kkl and friedgut's theorems and the learnability of quantum boolean functions[END_REF]. The related influence of variables is widely used in the analysis of Boolean functions [START_REF] Ryan | Analysis of boolean functions[END_REF]. We define the quantum analogue of the bit-flip map as superoperator on L n :

d j :" I bpj´1q b ˆI ´1 2 Tr ˙b I bpn´jq . ( 17 
)
Then for P " Â n i"1 P i P P n , we have

d j P " # P if P j ‰ I, 0 if P j " I. (18) 
For a linear operator A P L n , A " ř PPP n p A P P, we have

d j A " ÿ P:P j ‰I p A P P. (19) 
For p ě 1, we denote by Inf p j pAq :" }d j A} p p the L p -influence of j on the operator A. For S P rns, we denote by Inf p pAq :" ř n j"1 Inf p j pAq the associated total L p -influence. We will often omit the index p when p " 2. Following [START_REF] Chen | Testing and learning quantum juntas nearly optimally[END_REF], we also define the influence of a subset of qubits S P rns as Inf S pAq "

ÿ PPP n : supppPqXS‰H | p A P | 2 . ( 20 
)
We observe that Inf j pAq " Inf tju pAq " ř PPP n :P j ‰I | p A P | 2 , as expected. Intuitively, the influence of a unitary U on a subset of qubits is a quantitative measure of the action of U on such subset.

The model

We first give the definition of the QSQ oracle. For a state ρ P S n , the QStat ρ oracle receives as input an observable O P L n , }O} ď 1 and a tolerance parameter τ ě 0, and returns a τ-estimate of TrrOρs, i.e.

QStat ρ : pO, τq Þ Ñ TrrρOs ˘τ.

A typical choice of the target state is the uniform quantum example |ψ f y :" ř xPt0,1u n 1 ?

2 n |x, f pxqy, for a suitable Boolean function f : t0, 1u n Ñ t0, 1u, which was first introduced in [START_REF] Nader | Learning dnf over the uniform distribution using a quantum example oracle[END_REF] and widely employed in previous works on quantum statistical query learning [START_REF] Arunachalam | Quantum statistical query learning[END_REF][START_REF] Arunachalam | On the role of entanglement and statistics in learning[END_REF]. In this case, we will shorten the notation to QStat f " QStat |ψ f yxψ f | . To adapt their framework to our goal of learning unitaries, we need to devise an alternative input state. A natural choice is the Choi-Jamiolkowki state, which found many applications in prior work about unitary learning [START_REF] Chen | Testing and learning quantum juntas nearly optimally[END_REF], and more broadly process learning [START_REF] Caro | Learning quantum processes and hamiltonians via the pauli transfer matrix[END_REF], motivating its adoption in the context of quantum statistical query. For brevity, we will write QStat U instead of QStat |vpUqyxvpUq| . We now detail the mutual relationship between the oracle QStat U and the previous oracles defined in terms of quantum examples. To this end, we consider two unitaries implementing f , notably the bit-flip oracle U f and the phase oracle V f . We have,

@x P t0, 1u n , y P t0, 1u : U f |x, yy " |x, y ' f pxqy , (22) 
@x P t0, 1u n : V f |xy " p´1q f pxq |xy (23) 
In particular we note that |ψ f y " 1 ?

2 n U f ř xPt0,1u n |x, 0y.
We show that QStat f can be simulated by QStat U f and conversely QStat V f can be simulated by QStat f . The first result shows that our framework generalizes the previous one based on quantum examples, while the second one allows us to transfer lower bounds from classical Boolean functions to unitaries, as formalized in Theorem 4.1.

Lemma 2.1 (Relations between QSQ oracles). Let f : t0, 1u n Ñ t0, 1u a Boolean function and consider the bit-flip oracle U f and the phase oracle V f . Then for every observable A P L n`1 , there exists an observable A 1 P L 2n`2 such that

xψ f |A|ψ f y " xvpU f q|A 1 |vpU f qy . ( 24 
)
and, similarly, for every observable B P L 2n , there exists an observable B 1 P L n`1 such that

xvpV f q|B|vpV f qy " xψ f |B 1 |ψ f y . ( 25 
)
Proof. The first result follows by selecting A 1 " I n b |0yx0| b A. As for the second result, we can write the following expansion B " ř P,QPP n c P,Q |vpPqyxvpQq|. From ([3], Proposition 9), we know that |vpV f qy " ř xPt0,1u n z f pxq |vpZ x qy, where we denoted Z x :"

 iPrns Z x i , with Z 0 " I and Z 1 " Z. Hence xvpU f q|B|vpU f qy " ÿ xPt0,1u n c 2 Z x ,Z x z f pxq 2 . ( 26 
)
Now, consider the observable T " ř xPt0,1u n c Z x ,Z x |xyxx| P L n and define

B 1 " H bpn`1q pI n b |1yx1|q ¨T ¨pI n b |1yx1|qH bpn`1q , (27) 
which is equivalent to perform the Fourier transform on |ψ f y, post-selecting on the last qubit being 1 and finally applying T on n qubits. The Fourier transform and the projection on |1yx1| give rise to

| p ψ f y " ÿ xPt0,1u n z f pxq |xy . ( 28 
)
Then the desired result follows by noting that

xψ f |B 1 |ψ f y " x p ψ f |T| p ψ f y " ÿ xPt0,1u n c 2 Z x ,Z x z f pxq 2 . ( 29 
)
We argue that this choice of the oracle is particularly suitable for learning the unitary evolution of states sampled from locally scrambled ensembles. This comes as a direct consequence of Lemmas 1.1 and 1.2, that together imply the following proposition. Lemma 2.2. For quantum unitaries U, V P U n and ν P S LS a locally scrambled ensemble of states, it holds that

1 2 DpU, Vq 2 ď R ν pU, Vq ď DpU, Vq 2 , ( 30 
)
where DpU, Vq 2 " 1 ´| xvpUq|vpVqy | 2 .

We also introduce the following notion of learnability of classes of unitaries with quantum statistical queries. Definition 2.1 (Unitary learning with QSQs). Let ε P r0, 1s, C Ď U n a class of unitaries and ν an ensemble of n-qubit states. We say that C is efficiently ε-learnable with quantum statistical queries with respect to ν if, for all U P C, there exists an algorithm A that runs in time polypnq, performs polypnq queries to the oracle QStat U with tolerance at least 1{polypnq and outputs a unitary

V P U n such that R ν pU, Vq ď ε. ( 31 
)
We emphasize that all the algorithms proposed in this work are proper learners, in the sense that they output a unitary V P C. Moreover, they are classical randomized algorithms, as they use no other quantum resource apart from the query access to QStat U . The QSQ model is considerably more restrictive than the oracle access model, where a learner has the freedom to implement the unitary U and its inverse U : on an arbitrary input state. Then, every algorithm implementable with QSQs can be also implemented with oracle access, but the converse it is not true in general. In particular, we demonstrate in Theorem 4.1 that there is a class of unitaries that is efficiently learnable with direct access to the Choi state, but requires exponentially many quantum statistical queries.

Learning classes of unitaries with quantum statistical queries

Our results are based on the following technical lemma, which extends ( [START_REF] Arunachalam | Quantum statistical query learning[END_REF], Lemma 4.1) to unitary operators. In particular, this lemma allows us to estimate the influence of subset of qubits defined in Eq. 20.

Lemma 3.1 (Learning the influence of a subset with a single QSQ). Let A P U n be a unitary operator and QStat A be the quantum statistical query oracle associated to the Choi 

p A Q |vpQqy '" ÿ PPT | p A P | 2 . ( 33 
)
Thus a single query to Qstat A with input pM, τq yields the desired outcome.

Remark 3.1 (Computational efficiency). We observe that the circuit implementing the measurement M " ř PPT |vpPqy xvpPq| can have exponential depth in the worst case. However, in some cases, even if the set T has exponential size, we can implement M with a polypnq circuit. For instance, the influence of the j-th qubit Inf j pAq can be expressed as

Inf j pAq " ÿ PPP n : P j ‰I | p A P | 2 " 1 ´ÿ PPP n : P j "I | p A P | 2 . ( 34 
)
Thus it suffices to estimate the expected value of |vpIqy j xvpIq| j b I n´1 . More generally, we can consider the indicator string S " px 1 , x 2 , . . . , x k , ˚, ˚. . . , ˚q to denote the set of n-bit strings whose first k elements are x 1 , x 2 , . . . , x k , i.e. S " tpt 1 , t 2 , . . . , t n q P t0, 1, 2, 3u n | @i P rks : x i " t i u.

Then we have,

ÿ PPS |vpPqy xvpPq| " |vpσ x 1 b σ x 2 b ¨¨¨b σ x k qy xvpσ x 1 b σ x 2 b ¨¨¨b σ x k q| b I n´k , (35) 
which again can be implemented by a polypnq circuit.

We will also need a further technical tool, which is an implementation of state tomography with quantum statistical queries, also previously exploited in [START_REF] Arunachalam | On the role of entanglement and statistics in learning[END_REF] for learning the output of shallow circuits. Here we propose a refined argument for the special case of pure states. Since the complexity is exponential in the number of qubits, this primitive can be used to efficiently estimate the reduced states of subsets of logarithmic size. 

" 1 2 n ÿ PPP n zI pTrrPρs ´xP q 2 ď 2 n τ 2 , ( 40 
)
where we used the inequality px `yq 2 ď 2px 2 `y2 q. Then picking τ " ε{ ? 2 n gives the desired result. We now delve into the case where the input state is pure. Thanks to ([35], Theorem 1), and since ρ " |ψyxψ| has rank 1, we obtain the following bound for the 1-distance:

}ρ ´p ρ} 1 ď c 2 n 2 n `1 }ρ ´p ρ} 2 ď ε. ( 41 
)
We now consider the dominant eigenstate of p ρ, denoted by | p ψy, which can be computed in polyp2 n q time. By ([36] 

Appetizer: learning constant-depth circuits

As a first application of the tools introduced before, we show that very shallow circuits are learnable sample-efficiently with QSQs according to a locally scrambled distribution. We will rely on the following recent result of [START_REF] Yu | Learning marginals suffices![END_REF], which essentially shows that "learning marginal suffices", i.e. learning the k-reduced density matrices of a state produced by a shallow circuit allows to perform a state tomography.

Theorem 3.1 (Adapted from [START_REF] Yu | Learning marginals suffices![END_REF], Theorem 4.3). Let ψ " |ψyxψ| a state produced by a circuit of depth at most D. For any state ρ, one of the following conditions must be satisfied: either }ρ ´ψ} tr ă ε; or }ρ s ´ψs } tr ą ε 2 {n for some s Ď t0, 1, . . . , n ´1u with |s| " 2 D .

An application of this result was also given in [START_REF] Arunachalam | On the role of entanglement and statistics in learning[END_REF], where the authors showed that the class of n-qubit trivial states is learnable with polypnq quantum statistical queries. We now extend their result from states to unitaries. Theorem 3.2 (Learning constant-depth circuits via QSQs). Let C the class of Op1q-depth circuits. Then for all U P C, there exists an algorithm that makes polypnq queries to QStat U with tolerance at least ε 2 4n ¨2´D{2 and returns a unitary W P U n such that DpU, Wq ď ε.

(44)

Proof. Let D be the depth of the circuit. First, we consider the ¨2´D{2 by means of Lemma 3.2. We can thus determine thanks to Theorem 3.1 a state |vpWqy such that }|vpWqyxvpWq| ´|vpUqyxvpUq|} tr ď ε. This immediately implies Eq. 44 by Lemma 2.2.

Learning quantum juntas

A unitary U P U n is a quantum k-junta if there exists S Ď rns with |S| " k such that U " V S b I S for some V S P U k . For a Pauli string P " Â iPrns P i P P n , we denote the reduced string as P S " Â iPS P i P P k . We now consider the Pauli expansions U " We will now show that quantum k-juntas are efficiently learnable in our model. Our proof combines the techniques used in [START_REF] Chen | Testing and learning quantum juntas nearly optimally[END_REF] for learning quantum k-juntas from oracle access and the ones used in [START_REF] Arunachalam | Quantum statistical query learning[END_REF] for learning (classical) k-juntas with quantum statistical queries. Note that the algorithm given in ([4], Theorem 28) has query complexity independent of n. Crucially, their algorithm involves a Pauli sampling as a subroutine to estimate the support of the Pauli strings with non-zero Fourier coefficients. We replaced this procedure by estimating the influences of each qubit by means of Lemma 3.1, introducing an additional factor n in the query complexity. Proof. Throughout this proof, we will use the following notation to deal with the reduced Choi state with respect to a given subset of the qubits. Recall that the Choi state is a state over a set of 2n qubits, which we label as ti 1 , i 2 , . . . , i n , i 1 1 , i 1 2 , . . . , i 1 n u. For S " ti j`1 , i j`2 , . . . u Ď ti 1 , i 2 , . . . , i n u we will denote S 2 :" ti j`1 , i j`2 , . . . u Y ti 1 j`1 , i 1 j`2 , . . . u. Clearly, |S 2 | " 2|S|. Our algorithm consists in two separate steps: first we perform n QStat U queries with tolerance Θpε 2 {kq to learn a subset T Ď rns containing all the variables i for which Inf 2 i pUq ě ε 2 {p16kq. Next we will define a reduced state on the subset T 2 and we will learn it by performing a state tomography with 4 2|T| ´1 QStat U queries with tolerance Ωpε4 ´2k q.

ř
Let U be a quantum k-junta over the subset Q Ď rns. Then, it is not hard to see that Inf 2 i pUq " 0 if i R Q. For each j P rns, we use Lemma 3.1 to estimate Inf 2 j pUq ˘ε2 {p20kq via a single Qstat U query. Suppose the outcomes of these queries are α 1 , . . . α n , and let

T " ␣ i P rns : α i ě ε 2 {p16kq ( .
We observe that T Ď Q, as Inf 2 i pUq " 0 implies that α i ď ε 2 {p20kq. On the other hand, for every i P QzT, we have that Inf 2 i pUq ă ε 2 {p8kq. Assume by contradiction that i R T and Inf 2 i pUq ě ε 2 {p4kq. Then we have:

α i ě Inf 2 i pUq ´ε 20k ą ε 2 16k ,
contradicting the fact that i R T. As a consequence,

ÿ iPT Inf 2 i pUq " ÿ iPQzT Inf 2 i pUq ď k ¨ε2 8k " ε 2 8 , (46) 
where the inequality follows from |Q| ď k.

We now describe the second phase of the learning algorithm. Let |T| " ℓ and consider the identity operator I bpn´ℓq acting on the subset T. Let ρ be the state obtained by measuring |vpUqy according to the projectors `|vpI bpn´ℓq qy xvpI bpn´ℓq q| , I bpn´ℓq ´|vpI bpn´ℓq qy xvpI bpn´ℓq q| ˘, and then conditioning on the first outcome, where in the last line we introduced the ℓ-qubit unitary V such that |ψy is the state isomorphic to V b I bpn´ℓq . We make the following claim on the distance between U and V b I bpn´ℓq , which we will prove in the following.

Claim 3.1. DpU, V b I bpn´ℓq q ď ε{2.

Denote ρ :" |ψy xψ|. We will learn ρ T 2 " Tr T 2 rρs by performing a state tomography via QStat queries on a reduced state of 2ℓ qubits. To this end, we query all 4 2ℓ ´1 non-identity Pauli strings with support on T with tolerance τ " ε2 ´2ℓ´1 . For all P P P 2ℓ " tI, X, Y, Zu b2ℓ , denote the obtained outcome by o P " TrrP ¨|vpI bpn´ℓq qy xvpI bpn´ℓq q| ¨p|vpUqy xvpUq|q ¨|vpI bpn´ℓq qy xvpI bpn´ℓq q|s ˘τ and set x P " minto P , 1u. Denote the estimated 2ℓ-qubit state by

p ρ T " 1 2 2ℓ
¨Ib2ℓ `ÿ PPP 2ℓ zI b2ℓ

x P P '.

Let | p ψ T y be the dominant eigenstate of p ρ T and let W be the unitary encoded by the state | p ψ T y, i.e. let |vpWqy :" | p ψ T y. We make a further claim and we delay its proof to the end.

Claim 3.2. DpV, Wq ď ε{2.

Then the theorem follows by combining Claims 3.1 and 3.2 with the triangle inequality and letting r U " W b I bpn´ℓq .

We present the proofs of Claims 3.1 and 3.2 below.

Proof of Claim 3.1. Recall that U " U Q b I Q is a k-junta which acts non trivially only on the set Q and that T Ď Q is the set of qubits with non-negligible influence learnt by the algorithm. It is sufficient to show that distpU Q , Vq ď ε{2. First, we observe that |vpUqy " |vpU Q qy b |vpI bpn´kq qy.

We will need the following decomposition of |vpU Q qy:

|vpU Q qy " ÿ P Q PP k p U P Q |vpP Q qy " ÿ P Q PP k supppP Q qXT"H p U P Q |vpP Q qy `ÿ P Q PP k : supppP Q qXT‰H p U P Q |vpP Q qy , ( 47 
)
where p U P Q " p U P Q bI n´k . Similarly, we can expand |vpVqy b |vpI bpk´ℓq qy as follows |vpVqy b |vpI bpk´ℓq qy "

ÿ P Q PP k supppP Q qXT"H p U P Q |vpP Q qy `ÿ P Q PP k : supppP Q qXT‰H p U P Q |vpI bk qy (48) 
Recall that the total influence of the qubits in T is at most ε 2 {8. This immediately implies a lower bound on the inner product between |vpVqy b |vpI bpk´ℓq qy and |vpU Q qy.

ˇˇ´xvpVq| b xvpI bpk´ℓq q| ¯|vpU Q qy ˇˇ" ÿ

P Q PP k : supppPqXT‰H | p U P Q | 2 "1 ´ÿ P Q PP k : supppPqXT‰H | p U P Q | 2 ě 1 ´ε2 8 ,
where the inequality is a direct application of Eq. 46. We can now prove the desired result

D 2 pU, V b I bpn´ℓq q " D 2 pU Q , V b I bpk´ℓq q " 1 ´| xvpVqy |vpU Q q| 2 ď ε 2 4 ,
where we used the stability of Dp¨, ¨q under tensor product.

Proof of Claim 3.2. We just need to ensure the following:

}p ρ T 2 ´ρT 2 } 2 ď ε 2 . ( 49 
)
We first make a preliminary observation. Let c P :" TrrPρ T s. Then,

px p ´cp q 2 ď ˆcp ε 2 8 `τ˙2 (50) 
This allow to upper bound the distance between the partial state ρ T 2 and its estimate p ρ T 2 .

}ρ T 2 ´p ρ T 2 } 2 2 "Trrpρ T ´p ρ T q 2 s "

1 16 ℓ Tr » - - ¨ÿ PPP 2ℓ zI b2ℓ pc P ´xP qP '2 fi ffi fl (51) 
" 1 4 ℓ ÿ PPP 2ℓ zI b2ℓ pc P ´xP q 2 ď 2 4 ℓ ¨ÿ PPP 2ℓ zI b2ℓ ε 4 64 c 2 p `τ2 'ď ε 4 32 `4ℓ τ 2 , (52) 
where we used the inequality px `yq 2 ď 2px 2 `y2 q and the fact that the purity Tr

" ρ 2 T 2 ı " 4 ´ℓ ř PPP 2ℓ c 2 P is bounded by 1.
Then picking τ " 2 ´ℓε{3 ensures the desired upper bound. By proceeding as in the proof of Lemma 3.2, we have

DpV, Wq ď ε 2 , ( 53 
)
as desired.

Learning quantum Boolean functions

A quantum Boolean function A is defined as a Hermitian unitary operator [START_REF] Montanaro | Quantum boolean functions[END_REF], i.e. an operator satisfying AA : " A : A " A 2 " I.

Notably, Pauli strings P P P n are Quantum Boolean and the unitary evolution (in the Heisenberg picture) of a Quantum Boolean function A is also Quantum Boolean. This can be easily checked by replacing A with U : AU into the above equation. A key property of quantum Boolean functions is that their Fourier coefficients are all real, i.e. @P P P n : p A P P R.

We will now demonstrate that the quantum Goldreich-Levin (GL) algorithm ( [START_REF] Montanaro | Quantum boolean functions[END_REF], Theorem 26) can be implemented via quantum statistical queries. Whereas the original algorithm requires oracles queries to the target unitary U and its adjoint, we show that the weaker access to QStat U suffices. A similar result was also established for uniform quantum examples ( [START_REF] Arunachalam | Quantum statistical query learning[END_REF], Theorem 4.4), which are quantum encodings of classical Boolean functions. While we will employ Theorem 3.4 for learning quantum Boolean functions, we remark that it does not require the target operator to be Hermitian and it could find broader applications for learning other classes of unitaries. Theorem 3.4 (Quantum Goldreich-Levin using QSQs). Let A P U n be a unitary operator and QStat A be the quantum statistical query oracle associated to the Choi state |vpAqy. There is a polypn, 1{γqtime algorithm that accesses A via queries to QStat A with tolerance at least γ 2 {4 and outputs a list L " tP p1q , P p2q , . . . , P pmq u Ď P n such that: The GL algorithm returns a list of "heavy-weight" Fourier coefficients. If A is a quantum Boolean function, we can easily recover the values of those coefficients, up to a global sign. We prove this result in the following lemma.

We can now finally provide a QSQ algorithm for learning quantum Boolean functions. We closely follow the proof of ( [START_REF] Rouzé | Quantum talagrand, kkl and friedgut's theorems and the learnability of quantum boolean functions[END_REF], Proposition 6.7), which provide an analogous learning algorithm for quantum Boolean functions under oracle query access. Theorem 3.5 (Learning Quantum Boolean Functions with QSQs). Let A be a quantum Boolean function. There is a polypn, 2 k q-time algorithm that accesses the state |vpAqy via QStat A queries with tolerance at least Ωp4 ´kq and outputs a quantum Boolean function A 1 such that mint}A ´A1 } 2 , }A À1 } 2 u ď ε, where

k ď kpεq " $ ' & ' % Inf 1 pAq 2 ¨e 48Inf 2 pAq ε 2 log 2Inf 2 pAq ε if Inf 2 pAq ě 1, Inf 1 pAq 2 ¨Inf 2 pAq ´1 ¨e 48Inf 2 pAq ε 2 log 2 ?
Inf 2 pAq ε else.

Proof. We can adapt the proof of Proposition 6.7 in [START_REF] Rouzé | Quantum talagrand, kkl and friedgut's theorems and the learnability of quantum boolean functions[END_REF] to the QSQ setting by replacing all the oracle access queries to A with queries to QStat A . In particular, this involves the implementation of the GL algorithm with the parameter γ " Θpε2 ´kq. This can be done in time polypn, 2 

}e iθ A ´B} 2 ď 1 ? 2 n mint}A ´B} 2 , }A `B} 2 u, (67) 
where the first inequality is proven in (Lemma 14, [START_REF] Bao | Nearly optimal algorithms for testing and learning quantum junta channels[END_REF]). Moreover, the accuracy guarantees of Theorem 3.5 are cast in terms of Inf 1 pAq, Inf 2 pAq. These parameters can be bounded for an observable evolved by a shallow circuit (in the Heisenberg picture), by using a variant of the light-cone argument, as done in ([31], Section 6.1). We now introduce some further notation to state their claim. For any j P rns, let N j Ď rms be the minimal set of qubits such that ˙" ˆU Tr N j

2

|N j | pOqU : ˙for any O P L n and denote L :" max i |tj : i P N j u|. Then, if O is a quantum Boolean function with Inf 1 pOq, Inf 2 pOq, }O} 2 " Op1q, and U is a unitary with L " Op1q, we can learn evolution in the Heisenberg picture U : OU by means of Theorem 3.5 by picking k " Op1q. This ensures that the algorithm runs in polypnq time and that the statistical queries have constant tolerance. Figure 1: Average performance of the Goldreich-Levin algorithm implemented with quantum statistical queries to the Choi-Jamiolkowski state. We tested the algorithm on 10 random 4qubit random unitaries, in predicting the absolute value of the outcome of Z observables on the unitary evolution of computational basis states. Each random unitary consists in 2 layers of Haar-random gates. We plotted the average error as a function of 1{γ, i.e. the inverse of the threshold of Algorithm 2. We set the tolerance of the quantum statistical queries as γ 2 {4.

Numerical result

We complement our analysis with a numerical simulation of the proposed algorithm for learning quantum Boolean functions. Given a 4-qubit random unitary U, implemented by a circuit consisting in 2 layers of Haar-random gates and a Pauli string P, we considered the quantum Boolean function U : PU. We implemented the quantum Goldreich-Levin algorithm with quantum statistical queries to estimate the high-weight Pauli coefficients of U : PU, and then we estimated their values, up to a global sign, by means of Lemma 3.3. Finally, we used the estimated quantum Boolean function to output an approximation of |TrrPU|0yx0|U : s|, as depicted in Figure 1. For each quantum statistical query with tolerance τ, we computed the expected value exactly and added a noisy perturbation, which we sampled from a normal distribution with mean zero and variance τ 2 {4. We tested our algorithm on the observables in tI, Zu b4 , and we did not witness a significant dependence between the performance and the locality of the observable. The choice of a shallow circuit is motivated by the results in [START_REF] Rouzé | Quantum talagrand, kkl and friedgut's theorems and the learnability of quantum boolean functions[END_REF], which establish a connection between the performance of the Goldreich-Levin algorithm to the complexity of the underlying circuit, as also discussed in Remark 3.2.

Exponential separations between QSQs and Choi state access

We will now prove a lower bound for learning Choi states with QSQs, and derive from it an exponential separation between learning unitaries from QSQs and learning unitaries with Choi state access. To this end, we combine Lemma 2.1 with an argument given in [START_REF] Arunachalam | On the role of entanglement and statistics in learning[END_REF] Where the lower bound is proven in [START_REF] Arunachalam | On the role of entanglement and statistics in learning[END_REF]. As for the variance, we notice the following

V A Tr " M|vpV f A qyxvpV f A q| ‰ "E A Tr " M|vpV f A qyxvpV f A q| 2 ‰ ´EA Tr " M|vpV f A qyxvpV f A q| ‰ 2 (73) "E A Tr " M 1 |ψ f A yxψ f A | 2 ‰ ´EA Tr " M 1 |ψ f A yxψ f A | ‰ 2 " 2 ´Ωpnq , (74) 
where the observable M 1 is the one obtained following the procedure of Lemma 2.1 and the upper bound follows again from [START_REF] Arunachalam | On the role of entanglement and statistics in learning[END_REF].

We also provide a double exponential lower bound for testing properties of channels, which also comes as a direct consequence of a lower bound for testing purity of states given in [START_REF] Arunachalam | On the role of entanglement and statistics in learning[END_REF]. First, recall that the unitarity [START_REF] Wallman | Estimating the coherence of noise[END_REF][START_REF] Carignan-Dugas | Bounding the average gate fidelity of composite channels using the unitarity[END_REF] of a quantum channel is defined as

upN q :" 2 n 2 n ´1 E |ψy"µ n Tr " N p|ψyxψ|q 2 ‰ ´2n 2 n ´1 Tr « N ˆI 2 n ˙2ff (75) 
Theorem 4.2 (Hardness of testing unitarity). Let A be an algorithm that estimates with high probability the unitarity of a quantum channel N with error smaller than 0.24 using Qstat N queries with tolerance at least τ. Then A must make at least 2 Ωpτ 2 2 n q such queries.

Proof. Assume the existence of an algorithm A contradicting the statement of the theorem. We will prove the theorem by contradiction, by first showing that the unitarity is closely related to the purity of the Choi state J pN q, and then applying the lower bound for testing purity given in ( [START_REF] Arunachalam | On the role of entanglement and statistics in learning[END_REF], Theorem 25 

the parameter θ is encoded in a quantum state, subsequently measured by a variational measurements depending on the x. While this model can provide quantum advantage for specific tasks, it would be interesting to obtain similar results beyond the flipped circuit model, and specifically for the setting where the instance x is encoded before the parameter θ. This goal can be achieved through the algorithms discussed in the present paper, since they do not require the unitary to be a flipped a circuit. However, the distance over unitaries we adopted brings accuracy guarantees for the prediction only when the input state is sampled from a locally scrambled ensemble. Thus, we need to extend the definition given in [START_REF] Franz | Classical surrogates for quantum learning models[END_REF] to incorporate the input distribution D. 

  p|ψy b |ϕyq " |ψy b |ϕy , F p|ψy b |ϕyq " |ϕy b |ψy ,

Lemma

  

  |ψy :" `Ibpℓq b |vpI bpn´ℓq qy xvpI bpn´ℓq q| ˘|vpUqy ˇˇpTr T 2 xvpUq|q |vpI bpn´ℓq qy ˇˇ:" |vpV b I bpn´ℓq qy ,

Tr j 2 ˆU Tr N j 2 |N

 22 j | pOqU :

  state |vpAqy. There is a procedure that on input a subset of Pauli strings T Ď P n , outputs τ-estimate of ř PPT | p A P | 2 using one query to QStat A with tolerance τ.

	Proof. Let M "	ř	PPT |vpPqy xvpPq|. We note that		
	xvpAq| M |vpAqy "	˜ÿ PPP n	QPT A P xvpPq| ¸¨ÿ p	|vpQqy xvpQq|	PPP n ÿ	p A P |vpPqy '	(32)
			"	˜ÿ PPP n	p A P xvpPq| ¸¨ÿ QPT		

  3.2 (State tomography).Let ρ P S n . There exists an algorithm that performs 4 n queries to the oracle QStat ρ with tolerance at least ε ¨4´n and returns a state p Moreover, if ρ " |ψyxψ| is a pure state, there exists an algorithm that performs 4 n queries to the oracle QStat We perform a state tomography by querying all 4 n ´1 non-identity Pauli strings with tolerance τ " ε ¨4´n . For all P P P n , denote the obtained outcome by

				o P " TrrPρs	˘τ
	and set x P " minto P , 1u. Denote the estimated state by
			p ρ :"	1 2 n ¨I	`ÿ PPP n zI	x P P '.	(38)
	This allows to upper bound the distance between the partial state ρ and its estimate p ρ.
								»				fi
	}ρ ´p ρ} 2 2 "Tr	"	pρ ´p ρq 2 ‰	"	1 4 n Tr	--	¨ÿ PPP n zI	pTrrPρs ´xP qP	'2	ffi fl	(39)
												ρ such that
					}ρ ´p ρ} 2 ď ε.		(36)

ρ with tolerance at least ε ¨2´n{2 and returns a pure state | p ψy such that }ρ ´| p ψyx p ψ|} tr ď ε. (

37

)

Proof.

  Choi state |vpUqy " I b U |Ωy and recall that |Ωy can be produced with a circuit of depth 2 over 2n qubits. Then we have |vpUqy " V |0 2n y for a suitable unitary V P U 2n implemented by a circuit of depth D `2. Let k " 2 D`2 . Then it suffices to learn all the k-local reduced density matrices of the states |vpUqy. There are `2n k ˘" O ´n2 D ¯of them and each of them is learnable in trace distance with accuracy ε 2 2n by performing 4 D`2 quantum statistical queries with tolerance ε 2 4n

Algorithm 1

 1 Learning quantum k-juntas with statistical queries for i " 1 to n do Estimate Inf 2 i pUq with a quantum statistical query with accuracy ε 2 {p20kq and store the result in the variable α i . end for Define the subset T " ␣ i P rns : α i ě ε 2 {p16kq ( and consider the set T 2 , which includes the qubits in T and the associated qubits in the dual space. for P P P |T 2 | do Produce an estimate o p of TrrP ¨|vpI bpn´ℓq qy xvpI bpn´ℓq q| ¨p|vpUqy xvpUq|q ¨|vpI bpn´ℓq qy xvpI bpn´ℓq q|s with a quantum statistical query with tolerance 2 ´ℓε{3. Set x P " minto P , 1u. (Learning quantum k-juntas via QSQs). Let U be a quantum k-junta. There is a polypn, 2 k , εq-time algorithm that accesses the state |vpUqy via QStat U queries with tolerance polyp2 ´k, εq and outputs a unitary r

	end for Reconstruct the density matrix p ρ T " 1 2 2ℓ	´Ib2ℓ `řPPP 2ℓ zI b2ℓ x P P ¯and compute its dominant
	eigenstate | p ψ T y.	
	Compute W such that |vpWqy :" | p ψ T y	
	return W b I bpn´ℓq .	
	Theorem 3.3 U such that	
	DpU, r Uq ď ε.	(45)

  Proof. Our algorithm closely follows the one proposed in[START_REF] Montanaro | Quantum boolean functions[END_REF]. The only difference is that, for each subset T Ď t0, 1, 2, 3u n , the oracle queries to A and A : are replaced by a Qstat A query that outputs a pγ 2 {4q-estimate of ř PPT | p A P | 2 , as in Lemma 3.1. The remaining part of the quantum Goldreich-Levin algorithm does not involve oracle access to A or A : , thus the rest of the proof coincides with the one of Theorem 26 in[START_REF] Montanaro | Quantum boolean functions[END_REF]. P L, S " pP 1 , P 2 , . . . , P k´1 , ˚, ˚, . . . , ˚q do for P k in tI, X, Y, Zu do Let S P k " pP 1 , P 2 , . . . , P k´1 , P k , ˚, ˚, . . . , ˚q. | 2 to within γ 2 {4 with a QStat query.Add S P k to L if the estimate of ř

	1. if | p A P | ě γ, then P P L;	
	2. and for all P P L, | p A P | ě γ{2.
	Algorithm 2 Quantum Goldreich-Levin algorithm with statistical queries
	L Ð p˚, ˚, . . . ,	˚q			
	for k " 1 to n do			
	for each S Estimate	ř	PPS P k	| p A P PPS P k	| p A P | 2 is at least γ 2 {2.
	end for			
	Remove S from L.	
	end for				
	end for				
	return L				

  k , ε ´1q via quantum statistical queries with tolerance Θpε 2 4 ´kq by Theorem 3.4. Moreover, we need to evaluate Op4 k q Fourier coefficients with accuracy ε4 ´k. By Lemma 3.3, this can be done, up to a global sign, in time Op4 k q with quantum statistical queries queries with tolerance Opε 2 4 ´kq. The remaining part of the proof doesn't involve oracle access queries, and then is identical to the one of ([START_REF] Rouzé | Quantum talagrand, kkl and friedgut's theorems and the learnability of quantum boolean functions[END_REF], Proposition 6.7).

			(66)
	If instead we are interested to the unitary evolution performed by A on a random state, we can
	observe that:		
	DpA, Bq ď	1 ? 2 n	min θPr0,2πq

Remark 3.2. Theorem 3.5 allows us to learn a quantum Boolean function in Hilbert-Schimdt distance, up to a global sign. In other terms, given a target observable A, we can estimate B such that either B or ´B is close to A in Hilbert-Schmidt distance. This enables the prediction of the norm of the expected value for an arbitrary state. This follows by an application of Holder's inequality.

||TrrAρs| ´|TrrBρs|| ď min t|TrrpA ´Bqρs| , |TrrpA `Bqρs|u (65) ď mint}A ´B} 2 , }A `B} 2 u ¨}ρ} 2 ď ε.

  and based on the following concept class (of classical functions): Theorem 4.1 (Hardness of learning phase oracles). The concept class of phase oracle unitaries V f A , i.e.tV f A | A P F nˆn Ωpnq many quantum statistical queries to QStat V f A of tolerance 1{polypnq to be learnt below distance D ă 0.05 with high probability.Proof. Our proof is based on the one of ([START_REF] Arunachalam | On the role of entanglement and statistics in learning[END_REF],Theorem 17). Their statement is analogous, with the class of quantum examples |ψ f A y replacing that of unitaries V f A . The only things we need to prove are the following}|vpV f A qyxvpV f A q| ´EB |vpV f B qyxvpV f B q|} tr ě 1 ´a17{32,and then the result follows from ([START_REF] Arunachalam | On the role of entanglement and statistics in learning[END_REF],Theorem 16). The first line follows by checking that}|vpV f A qyxvpV f A q| ´EB |vpV f B qyxvpV f B q|} tr " }|ψ f A yxψ f A | ´EB |ψ f B yxψ f B |} tr ě 1 ´a17{32, (72)

	C " requires 2 (70) ! u (69) f 2 max M:}M}"1 V A Tr " M|vpV f A qyxvpV f A q| ‰ " 2 ´Ωpnq (71)

A : t0, 1u n Ñ t0, 1u, f A pxq " x J Ax mod 2 | A P F nˆn 2 )

(68)

  ).

		E |ψy"µ n Tr	"	N p|ψyxψ|q 2 ‰	" E |ψy"µ n Tr	"	FN b2 p|ψyxψ| b2 q ‰	(76)
	" Tr	"	FN b2 pE |ψy"µ n |ψyxψ| b2 q ‰	" Tr	"	FN b2 ˆI 2 n p2 n `1q `F	˙ȷ	(77)
	" Tr	"	FN b2	ˆF 2 n p2 n `1q	˙ȷ `Tr	"	FN b2	ˆI 2 n p2 n `1q	˙ȷ	(78)
		" Tr	"	FN b2	ˆF 2 n p2 n `1q	˙ȷ `Tr	«	N	ˆI 2 n	˙2ff	2 n p2 n `1q

  Definition 5.1 (Worst-case and average-case surrogate models). Let ε ě 0 and 0 ď δ ď 1. A hypothesis class of quantum learning models F has a worst-case pε, δq-classical surrogate if there exists a process S that upon input of a learning model f P F produces a classical model g P G such that norm on the output space Y. Similarly, we say that F has an average-case pε, δqclassical surrogate if there exists a process S that upon input of a learning model f P F produces a classical model g P G such that

	"		ȷ		
	Pr	sup	} f pxq ´gpxq} ď ε	ě 1 ´δ,	(86)
		xPX			
	for a suitable				
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For each other coefficient P ‰ P ˚,we assign the sign with the following procedure. We first define the following observables M `and M

´,

M ´:" p|vpP ˚qy ´|vpPqyq pxvpP ˚q| ´xvpPq|q .

We now compute the expected values of M `with respect to |vpAqy:

" p p A P ˚`p A P q 2 , (61) and, similarly, for M

´,

So if p A P ˚and p A P have the same sign, µ `ą µ ´and vice-versa. Moreover, |µ `´µ ´| "

Then we can tell whether µ `ą µ ´by querying the oracle QStat A with the observable M `´M ´and tolerance τ 2 . If the output is positive, then we can conclude that µ `ą µ ´and assign p B P positive sign, and vice-versa if the output is negative. This proves the second part of the theorem.

Then we can rearrange the unitarity as follows

We can also use the Kraus representation N p¨q " ř ℓ K ℓ p¨qK : ℓ and write

where the last two identities are proven in ( [START_REF] Quek | Exponentially tighter bounds on limitations of quantum error mitigation[END_REF], Eqs. 160-164). Putting all together, we obtain:

Thus the unitarity of N and the purity of J pN q are within an exponentially small additive terms. Then the algorithm A would estimate the purity of J pN q with error smaller than 0.24 1{p4 n ´1q with less than 2 Ωpτ 2 2 n q queries, contradicting ( [START_REF] Arunachalam | On the role of entanglement and statistics in learning[END_REF], Theorem 25).

Application: Classical Surrogates

In this section we discuss a potential application of our results to quantum machine learning. We will consider particularly variational quantum algorithms for approximating a classical function f : X Ñ R. For a broad class of such algorithms [START_REF] Schuld | Quantum machine learning in feature hilbert spaces[END_REF][START_REF] Schuld | Supervised quantum machine learning models are kernel methods[END_REF], the prediction phase can be cast as follows: the input x P X is encoded into a quantum state with a suitable feature map x Þ Ñ ρpxq, which evolves according to a parametric channel U θ and subsequently is measured with a local observable O. Hence, the parametric circuit induces a hypothesis function hp¨q, which associates x to the following label hpxq " TrrOU θ pρpxqqs.

(84) Thus, given a distribution D over X , the goal is to find a parameter θ ˚satisfying the following:

where ε is a small positive constant. Given a set of examples px 1 , f px 1 qq, px 2 , f px 2 qq, . . . , px m , f px m qq one can then train this model in a hybrid fashion and select a parameter θ. Then the label of an unseen instance x m`1 can be predicted with accuracy ε preparing Opε ´2q copies of the state U θ pρpxqq and measuring the observable O.

A recent line of research showed that, in some cases, one can fruitfully perform the prediction phase with a purely classical algorithm, that goes under the name of classical surrogate [START_REF] Franz | Classical surrogates for quantum learning models[END_REF]. So far, the proposed approaches rely on the classical shadow tomography [START_REF] Jerbi | Shadows of quantum machine learning[END_REF] and the Fourier analysis of real functions [START_REF] Landman | Classically approximating variational quantum machine learning with random fourier features[END_REF][START_REF] Franz | Classical surrogates for quantum learning models[END_REF], which can be applied to the general expression of quantum models as trigonometric polynomials. Here we argue that the QSQ learning framework can find application in the quest for surrogate models, introducing more flexibility in the surrogation process. Particularly, [START_REF] Jerbi | Shadows of quantum machine learning[END_REF] resorts to a flipped model of quantum circuit where

The process S must be efficient in the size of the quantum learning model, the error bound ε and the failure probability δ.

In particular, it is easy to see that if the conditional distribution of the states ρpxq is locally scrambled, then we can produce an average-case classical surrogate of f pxq " TrrOU θ ρpxqs via QSQs by means of Theorems 3.2,3.3,3.5 . For instance, if D is the uniform distribution over r6s n , the ensemble t|ϕpxqyu x defined as follows is locally scrambled. We have:

While this example is just meant to motivate our definition of average-case surrogate models, the quest for quantum encodings mapping a target distribution over X to a locally scrambled distribution would be of primary importance for the design of surrogation processes. We also remark that worst-case surrogate models could be found by means of the quantum Goldreich-Levin algorithm, and in particular by exploiting the fact the unitary evolution in the Heisenberg picture of a Pauli string P P P n , i.e. U : θ pPq " U : θ PU θ , is a quantum Boolean function. This follows from the fact that the accuracy guarantees of Theorem 3.5 expressed in Hilbert-Schimdt distance can be transferred to an arbitrary state, as noted in Remark 3.2. This will allow learning U : θ pPq, up to a multiplicative sign, and hence to predict functions of the form hpxq " |TrrPU θ pρpxqqs| . (89)