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Abstract

Time Sensitive Networking (TSN) is gaining interest in the critical
embedded networking community thanks to the various Quality of Ser-
vice (QoS) mechanisms that can be rolled out to offer different levels of
determinism to flows in a switched Ethernet network. Among these stan-
dards, limited jitter flows can benefit from the Time Aware Shaper (TAS)
which requires the deployment of the IEEE802.1AS synchronization. In-
deed, TAS assumes a global time with a bounded drift between any two
nodes. In this paper, we derive a refined and general mathematical model
that offers upper and lower bounds on the worst-case precision that can
be applied to different Ethernet technologies. Results for 100Base-T and
1000Base-T technologies are given. Both simulations and empirical mea-
surements validate the almost two times closer upper bound we obtain
compared to the state-of-the-art model.

1 Introduction

Sharing on-board networks between critical flows and less/non-critical ones is a
popular trend [1] [2], since it simplifies network architecture and limits resource
over-provisioning. Time Sensitive Networking (TSN) is proposed by IEEE in
this context. It is a set of standards which bring an Ethernet based solution
with various Quality-of-Service mechanisms. Of particular interest is the Time
Aware Shaper (TAS) [3] that offers scheduled transmissions to flows requiring a
limited jitter service. It relies on a network wide synchronization of all devices
(end systems and switches).
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In TSN, synchronization is standardized by IEEE802.1AS [4] which is a
profile of the IEEE1588 [5] synchronization standard designed for non-critical
systems. The main goal of IEEE802.1AS is to offer a sub-microsecond precision
in a 7-hop switched network. It is based on timestamps, which might be inac-
curate. Work has been devoted to the evaluation of this inaccuracy. Loschmidt
et al. [6] [7] study the sources of timestamp inaccuracy when using PTP, high-
lighting inaccuracies caused by the physical layer. In [8] [9], Garner et al. use
simulations and measurements on a 7-hop network in order to verify compli-
ance with various audio/video application constraints. Lim et al. [10] show that
the synchronization is hardly impacted by the network load using simulation.
Gutiérrez et al. [11] study the achievable precision with IEEE 802.1AS. Using
simulation, they derive the probability of meeting a maximum precision con-
straint as a function of the number of hops. In this simulator, they introduce
some sources of inaccuracy described by Loschmidt et al. [6] [7]. Additionally,
they propose an analytical model to derive an upper bound on the worst-case
precision of IEEE 802.1AS for 100Base-T networks by accounting for inaccuracy
sources such as clock drift, clock granularity and the physical jitter described by
Loschmidt et al. Theoretical results are given for 100-hop network. In [12], Put-
tnies et al. develop a IEEE802.1AS simulation model using OMNeT++/ INET
framework, containing the core time synchronization. In previous work [13], we
extended this model by adding realistic inaccuracy sources described in [6] [7]
and calibrated the simulator to make it representative of the IEEE802.1AS
hardware that we use.

In this paper, we extend the model of [11]. We introduce a more realistic,
yet still general, model to bound the precision of IEEE802.1AS. We model more
accurately the physical layer communication delay variations using the work of
Loschmidt et al. [7]. An important contribution of our work is the definition of
a communication model that accounts for both physical jitter and link asymme-
tries, that we illustrate in the result section for both 100Base-T and 1000Base-T
technologies.

We propose as well a finer modelling of the other sources of inaccuracy and
of the more precise two-step mode of IEEE802.1AS. We challenge our model
and the model of [11] with thorough fine-grained simulations and measurement
campaigns on network architectures representative of automobile [10], satellite
[2] and airplane [14] networks. Our model being analytical, it scales to any
network size. We show that our bound is two times less pessimistic than the
state-of-the-art model of [11]. Experiments on a 1-hop platform show that our
bound is 56ns higher in absolute value compared to the worst precision measured
during 200 1-hour experiments. And finally, we show that 1000Base-T gives 41%
smaller precision bound than 100Base-T on our platform.

2 IEEE 802.1AS overview

IEEE802.1AS is a IEEE1588 Precision Timing Protocol (PTP) profile for Time
Sensitive Networking (TSN). It synchronizes time-aware systems clocks across
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Figure 1: IEEE802.1AS network architecture.

a network using the master slave paradigm. Such a network is depicted in
Figure 1. The Grandmaster (GM) broadcasts synchronization information on
its Master ports (M). Each device receiving the information on a slave port (S)
forwards it to its master ports, the passive ones (P) ignore them to avoid cyclic
dependencies. The selection of the Grandmaster and the synchronization tree
(defined by the type of each port) can be chosen dynamically, using the Best
Master Clock Algorithm (BMCA), or statically.

Synchronization relies on: i) the measurement of the link propagation delay
with the Peer-to-Peer delay mechanism and ii) the distribution of synchroniza-
tion informations.

The peer-to-peer delay mechanism uses three messages that are exchanged
periodically (every second by default) between a requester and a responder.
All the ports of a time-aware system are requesters, but also responders to
respond to the request of the neighbor time-aware system. As depicted in Fig-
ure 2 - Left, four hardware timestamps are needed: i) t1 is measured when the
Pdelay req is issued ; ii) t2 is obtained upon reception of this message ; iii) t3
is measured when the Pdelay resp is sent ; iv) t4 is measured upon reception
of Pdelay resp. In this paper we consider the two-step mode where t3 is sent
in a separate Pdelay resp follow up message since it offers a higher precision.
The standard also proposes an alternate one-step mode, where t3 is transmitted
in the Pdelay resp message. The propagation delay of the link D, called the
Pdelay, is given by:

D =
nr × (t4 − t1)− (t3 − t2)

2
(1)

nr is the neighborRateRatio. It compensates the relative clock drift and is
defined using t3 and t4 timestamps from two consecutive Pdelay procedures as
illustrated in Figure 2 - Left:

nr =
freq
fresp

=
t′3 − t3
t′4 − t4

(2)

Eq. (1) assumes that the propagation time is symmetric. Existing asymme-
tries can be compensated if they can be estimated.

The distribution of synchronization information relies on the transmission of
two messages. Every syncInterval (125ms by default), the Grandmaster sends a
Syncmessage out of its master ports, followed by a Follow Upmessage (two-step
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Figure 2: Left : Two consecutive Peer-to-Peer delay exchanges. We get nr =
1.00002 and D = 200ns; Right : Synchronization distribution mechanism.

mode) containing O, the exact transmission time of the Syncmessage (a.k.a. the
preciseOriginTimestamp in the norm), as pictured in Figure 2 - Right. Sync and
Follow Up are received via the slave ports of the time-aware system connected
to the Grandmaster. If the receiving device has ports in the master state, it
directly forwards the Sync. Next, it updates the Follow Up message that carries
the preciseOriginTimestamp O, the rateRatio r and the correctionField C, then
sends it to the children time-aware systems.

The rateRatio ri allows for logical syntonization of a time-aware system i to
the Grandmaster rate. It is set to 1 by the Grandmaster and is updated on each
hop with ri = ri−1 × nri, where i is the receiving node and i − 1 the sending
node.

The correctionField C carries the time elapsed in the time-aware systems
and on the links on the path between the Grandmaster and the time-aware
system preceding the last hop. At hop i, Ci is calculated using the previous
correction field Ci−1, the previous rateRatio ri−1, its current neighborRateRatio
nr, its current value of Di and the residence time tSi − tRi of the Sync in its
buffer:

Ci = Ci−1 +Di × ri−1 + (tSi − tRi )× ri−1 × nr (3)

At each Sync + Follow Up reception, a time-aware system i calculates the
difference between its local time and the estimated Grandmaster time GMi to
update its clock correction value that can be positive or negative. The Grand-
master time GMi is estimated by system i:

GMi(t) = O + Ci−1 +Di + (t− tRi ) (4)

where O is the preciseOriginTimestamp, Ci−1 the correctionField transported
by the Follow Up, Di the previous hop Pdelay retrieved by the peer-to-peer
delay procedure and (t − tRi ) the time elapsed since the reception of the last
Sync.

3 Modeling sources of inaccuracies

We now introduce a generic system model that we use for the formal develop-
ment of the worst-case precision bound of Section 4. This model captures the
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sources of synchronisation inaccuracy due to the timing behavior of the network
and the time-aware systems. They are related to i) the physical inaccuracy of
clocks like drift and granularity and ii) the communication delay variability
induced by the physical layer implementation of the network interface card.

3.1 Clock model

3.1.1 Clock drift ρ

Oscillators are imperfect: their oscillation frequency does not stay constant over
time. This frequency variation, called drift rate, is measured in parts per million
(ppm) defined by the number of seconds the local clock deviates in a million
seconds of the reference time. The accuracy of an oscillator is characterized by a
bound on this drift rate. For instance, an oscillator characterized with +10ppm
(resp. -10ppm), may run up to 10µs faster (resp. slower) with respect to a
perfect time every second. Practically, the drift varies over time due to aging
or external conditions, such as temperature.

Drift is maximized when the clock undergoes a constant drift rate given
by its oscillator upper bound (10ppm for instance). A clock can therefore be
modeled with Eq. (5) where ti is the time on device i, tp the perfect time,
ρi the bound on the drift rate of i oscillator and I the interval since the last
synchronisation.

ti = tp + ρi × I (5)

This drift can be mitigated by periodic re-synchronization using IEEE802.1AS
for instance. However, re-synchronization is prone to multiple inaccuracies that
we model in the following.

3.1.2 Clock granularity G

The granularity G is the duration between two increments of the clock counter.
Thus, each timestamp measured in the IEEE802.1AS protocol undergoes an
error between 0 and G. Since synchronization mechanisms rely on measuring
delays (i.e. differences of timestamps), any delay undergoes an error between
−G and G.

Figure 3: Impact of clock granularity on a duration measurement.

The naive example in Figure 3 pictures the delay between the reception time
t and transmission time t′ of a message. Without granularity, this duration is
48ns. With a granularity of 10ns, the clock reading is of 10 at reception time
and of 50 at transmission time, leading to a duration of 40ns.
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3.2 Communication model

Implementation-specific features of the physical layer technology impact the
accuracy of transmission delay measurement, as highlighted by [6] [13]. Al-
though the propagation delay on the link is constant, the delay between the
message timestamping and its actual transmission (or between the reception
and its timestamping) varies due to hardware implementation and transmission
technology. It triggers two kinds of inaccuracies:

• A physical jitter J that varies over time according to a distribution. On
a given link, Loschmidt’s measurements show that the distribution of this
jitter may depend on the direction of the communication. For instance, for
1000Base-T, the delay follows a uniform distribution on one direction and
a normal one on the other direction, with different widths. For 100Base-T,
the jitter follows the same normal distribution in both directions.

• A constant link asymmetry latency A that induces a larger delay in one
direction. It is related to technological choices. For instance, a link layer
using an optical fiber where a different wavelength is used per direction
induces an asymmetric propagation delay.

A refined characterization of the communication delay is captured by the com-
munication model in Fig 4. It is characterized by a directional communication
delay and jitter, link asymmetry latency and residence time. Numerical values
have to be set according to the physical layer characteristics.

Figure 4: Illustration of the communication model.

Directional communication delay and jitter We assume an asymmetric
communication delay. For two time-aware systems α and β, the delay dα→β

from α to β belongs to an interval dα→β ∈
[
dmin
α→β , d

max
α→β

]
. The size of this

interval is defined as the jitter Jα→β :

Jα→β = dmax
α→β − dmin

α→β (6)

This jitter can be set according to a characterization of its width distribution
for a target PHY layer from extensive measurements similar to the ones done
in [13]. Similarly, delay dβ→α and corresponding jitter Jβ→α are defined for
direction β → α. Directional communication delays and jitters are illustrated
in Figure 4.
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Link asymmetry latency A In the case of an asymmetrical propagation
channel, a constant latency A is added to the delay of one direction. In Figure 4,
a link asymmetry latency A is added for direction β → α. Thus:

dmin
β→α = dmin

α→β +A and dmax
β→α = dmin

α→β +A+ Jβ→α (7)

Residence time τ Any back-to-back request-response synchronization mech-
anism, such as the one used for the Pdelay computation, necessitates some pro-
cessing time on the responder side before transmission. This processing time is
typically called the residence time and denoted τ .

4 Bounding the worst-case precision

This section gives the main developments leading to the computation of upper
and lower bounds. Starting from the original model in [11], we derive a less
pessimistic model of duration measurement error and residence time error, we
introduce errors caused by link asymmetry, neighborRateRatio measurement
inaccuracies, the two-step mode of IEEE802.1AS and variations of the periodic
synchronisation interval induced by other flows.

4.1 Upper and lower bounds on synchronization precision

The instantaneous precision Pi(t) of a time-aware system i is the difference
between its estimation of the Grandmaster clock ti(t) and the Grandmaster
clock tGM (t):

Pi(t) = ti(t)− tGM (t) (8)

Let PU
i (resp. PL

i ) be the upper (resp. lower) bound on precision of system
i. These bounds are constructed to meet the following constraints:

PU
i ≥ max

t
Pi(t) and PL

i ≤ min
t

Pi(t) (9)

This precision depends on two quantities: first, the relative clock drift be-
tween the Grandmaster and time-aware system i since last synchronisation
point, second, the wrong estimation of the Grandmaster time by the time-
aware system i at the previous synchronisation point, which is due to the
implementation-specific sources of inaccuracy modeled before.

Let’s note Edrifti(t) the clock drift at time t between the Grandmaster and
the time-aware system i since the last synchronisation point. This drift lies
between −EU

drifti
and EU

drifti
. Let’s also denote δGMi the error in the estima-

tion of the Grandmaster clock at the last synchronisation point. It lies between
δGML

i and δGMU
i . Consequently, we have:

PU
i = EU

drifti + δGMU
i (10)

PL
i = −EU

drifti + δGML
i (11)
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4.2 Derivation of EU
drifti

The worst drift occurs when the clocks of the Grandmaster and the time-aware
system i drift in opposite directions. This drift is corrected at each synchroni-
sation point, and it increases until the next synchronisation point. Therefore,
the largest possible drift is observed right before a synchronisation point. Let’s
assume that previous synchronization occurred I time units ago. The bound
EU

drifti
is given by:

EU
drifti = I × (|ρi|+ |ρGM |) (12)

In an ideal situation, I would be equal to syncInterval Is. However, in prac-
tice, Sync and Follow Up can be delayed by other messages in switch queues.
The worst situation is when the first Follow Up message undergoes the small-
est possible network traversal delay, while the second one undergoes the largest
possible one. In this case, the delay I is the sum of the syncInterval Is and
the largest network jitter Jfup that the Follow Up message can experience :
I = Is + Jfup.

If the topology of the network, the port queuing disciplines (TAS, CBS, etc.)
and flows are known, Jfup can be upper bounded using a worst-case latency
analysis, e.g. [15].

4.3 Derivation of δGMU
i

δGMU
i (resp. δGML

i ) represents an upper bound (resp. lower bound) on the
Grandmaster’s time estimation error on the time-aware system i made at the
last synchronization point. We develop the construction of δGMU

i and provide
final equations for its lower bound counterpart in Table 1.

Let’s consider the time when the time-aware system i receives a Follow Up

message. Let’s denote this time tfupGM if expressed in the Grandmaster refer-

ence clock and tfupi if expressed in the clock of time-aware system i. Upon
Follow Up message reception, time-aware system i calculates its estimation of
the Grandmaster current time using (4):

GMi = O + Ci−1 +Di + (tfupi − tRi ) (13)

By definition, δGMU
i is upper-bounding the error between its estimation of

the Grandmaster clock and tfupGM :

δGMU
i ≥ δGMi with δGMi = GMi − tfupGM (14)

This error is illustrated in Figure 5 where in the time base of the Grand-
master, the Sync is transmitted at time 5ns and the last Follow Up message is
received at time 1870ns because the communication delay is of 180ns for the
first hop and 195ns for the second hop, the residence time in the switch is of
995ns and the delay tfup2 − tR2 is of 495ns.

Conversely, the end node gets GMi = 1930ns, leading to an error of δGMi =
60ns because the Pdelay mechanism estimates a link delay of 220ns instead of
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Figure 5: Illustration of errors that impact GMi. G = 10ns for all systems.

180ns and 230ns instead of 195ns, the clock granularity of the switch induces
an under-estimation of τ1 and the clock granularity of the end node an under-
estimation of tfup2 − tR2 . Moreover, the initial Sync is transmitted at 5ns but
the Follow Up carries a value O = 0ns because of the clock granularity of the
Grandmaster.

The worst synchronization error is observed when the synchronization pro-
tocol triggers an estimate of the Sync traversal time that is as large as possible
compared to the smallest possible Sync network traversal delay. The bound on
the synchronization error is the sum of bounds on the errors induced by the
different components of GMi:

δGMU
i = δOU + δCU

i−1 + δDU
i + δ(tfupi − tRi )

U (15)

with δDU
i the upper bound on the Pdelay error and δCU

i−1 the upper bound
on the correctionField error. Both types of errors originate from the Pdelay
mechanism. The correctionField error originates as well from errors on the
rateRatio and on the residence time estimation. Bounds on δOU and δ(t− tRi )

U

are a consequence of the granularity on timestamps readings.
In the model of [11], δO is neglected and δ(t− tRi ) is not accounted for. In our

version, δ(t− tRi ) captures the more precise two-step mode of IEEE802.1AS. Our
derivation of δDU

i differs from [11] since it captures the communication channel
asymmetries, the neighborRateRatio error and finer residence time error. The
derivation of δCU

i−1 follows the one of [11] but its numerical values change since
it relies on δDU

i .

4.3.1 Bounding Pdelay error with δDU
i

δDU
i bounds δDi, the error made by system i when it estimates the link delay

with its parent system j. We have δDU
i = Dworst − Dbest, with Dworst the

highest estimation of Pdelay and Dbest the smallest error-free one, i.e. dmin
j→i.

Computing δDU
i comes to maximize Dworst. Since Dworst follows Eq. (1), it

comes to maximize nr and (t4 − t1) and minimize (t3 − t2).

Maximizing nr over-estimation We define δnrUi = nriworst − nri, with
nriworst

the largest possible value of the neighborRateRatio and nri the error-
free one. From Eq. 2, computing nriworst

comes to maximize the numerator

9



Figure 6: Left: Illustration of the Pdelay resp propagation delay variation with
jitter J (solid gray) and the worst-case propagation delay scenario for the neigh-
borRateRatio computation (black dashed arrow)
Right: Illustration of the Pdelay req and Pdelay resp propagation delay vari-
ation due to jitter J (solid gray) and the worst-case propagation delay scenario
for the Pdelay computation (black dashed arrow)

t′3 − t3 and minimize the denominator t′4 − t4, compared to the real delay that
led to these timestamps.

t′3− t3 being the difference between two timestamps internal to a time-aware
system, the maximum over-estimation of this difference is a granularity unit G
(see section 3.1.2).

For the same reason, the maximum under-estimation of t′4 − t4 includes a
granularity unit G. Additionally, it is impacted by the physical jitter. Indeed,
as illustrated in Fig, 6 - Left, the variation of the propagation delay due to
physical jitter can lead to a underestimation of −Jj→i. In practice, the worst
t′4−t4 delay happens if the first Pdelay resp message experiences a propagation
delay of dmax

j→i and the timestanp t4 is taken exactly on a clock tick, while the

second one experiences the smallest propagation delay dmin
j→i and t′4 is taken an

arbitrary small instant before a clock tick.
Finally, clock drift also has an impact on the computation. A maximum

positive drift ρj in the responder increases t′3 − t3 because the clock is faster
than reality. Conversely, a maximum negative drift−ρi decreases t

′
4−t4. Overall

δnr is :
δnrUi = nriworst

− nri

=
t′3 − t3 +G

t′4 − t4 −G+ (dmin
j→i − dmax

j→i)
− t′3 − t3

t′4 − t4

=
2G+G× (ρj − ρi) + Jj→i × (1 + ρj)

Ip × (1− 2ρi + ρ2i ) + (ρi − 1)× (G+ Jj→i)

(16)

Maximizing t4 − t1 t4 − t1 is the duration between the transmission of a
request and the reception of a response message. Similarly to the t′4− t4 case in
nr computation, t4− t1 is impacted by the granularity G, the variable propaga-
tion delay and the physical asymmetry A. Adding the granularity G maximizes
t4 − t1 (like for t′3 − t3). The maximum propagation delay dmax occurs twice:
once for the Pdelay req, once for the Pdelay resp, as illustrated in Figure 6 -
Right. The impact of the physical asymmetry A is experienced in one direction.
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Minimizing t3 − t2 Since t3 − t2 is a duration between two internal events of
a system, granularity G has to be removed.

Calculus of δDU
i To summarize, the bound δDU

i is:

δDU
i =

max(t4 − t1)(nri + δnrUi )−min(t3 − t2)

2
− dmin

j→i

= [(τi + 2dmin
j→i + Jj→i + Ji→j +A)(ρi + 1) +G]

(nri + δnrUi )− [τi(1− ρj)−G]/2− dmin
j→i

4.3.2 Bounding the correctionField error

The correctionField Ci−1 in a time-aware system i− 1 is computed by Eq. (3).
It depends on the correctionField and the rateRatio in the previous system i−2,
the neighborRateRatio and the Pdelay between systems i− 2 and i− 1 and the
residence time in i − 1. Worst-case values of neighborRateRatio, Pdelay and
residence time (t3 − t2) have been set in part 4.3.1.

The rateRatio is computed by ri = ri−1 × nri. For the rest of the paper,
we assume (as done in [11]) that all time-aware systems are identical: same
clock with the same drift rate bounds, granularity and physical interface with
the same physical jitter and asymmetries. Thus nr1 = ... = nri = nr and
δnr1

U = ... = δnri
U = δnrU . Therefore we have: ri = nri. To calculate the

bound on rateRatio overestimation δri
U , we apply the following derivation:

δrUi = (nr + δnrU )i − nri = i× nri−1δnrU + ...+ (δnrU )i

In order to simplify this equation, the powers of δnr are neglected since they
are very small compared to the main term i× nri−1 as done in [11] and thus:

δrUi ≈ i× nri−1 × δnrU (17)

We can now compute the upper bound on the error δC in a time-aware
system i− 1. From Eq. (3), we have:

δCU
i−1 = Ci−1worst − Ci−1

= [Ci−2 + δCU
i−2 + (dmin

(i−2)→(i−1) + δDU
i−1)(ri−2 + δrUi−2)

+ (τ i−1 +G)(ri−1 + δrUi−1)]

− [Ci−2 + dmin
(i−2)→(i−1)ri−2 + τ i−1ri−1]

As for the neighborRateRatio, we assume that our time-aware systems use the
same hardware. Thus we have dmin

GM→1 = ... = dmin
(i−2)→(i−1), δD

U
0 = ... = δDU

i−1

and τ0 = ... = τ i−1. Thus, previous equation simplifies to:
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Table 1: Lower bound formulas on synchronization precision.
PL
i PL

i = −(|ρi|+ |ρGM |)(Is + Jfup) + δGML
i

δGML
i δCL

i−1 + δDL
i − 2G

δCL
i−1 δDL

i−1(
nri−2−1
nr−1 )−G(nr

i−1−1
nr−1 − 1)

+δnr((dmax
(i−2)→(i−1) + δDL

i−1)
∑i−2

j=0 j × nrj−1

+(τi−1 −G)
∑i−1

j=1 j × nrj−1)

δDL
i

[(τi+2dmin
i→j+A)(1−ρi)−G](nr+δnrL)−(τi(1+ρj)+G)

2
−(dmin

i→j + Jj→i +A)

δnrL
−[2G+Jj→i(1−ρj)+G(ρi−ρj)]

Ip(1+2ρi+ρ2
i )+(ρi+1)(G+Jj→i)

δCU
i−1 = δDU

i−1

(
nri−2 − 1

nr − 1

)
+G

(
nri−1 − 1

nr − 1
− 1

)
+ δnrU (dmin

(i−2)→(i−1) + δDU
i−1)

i−2∑
j=0

j × nrj−1

+ δnrU (τi−1 +G)

i−1∑
j=1

j × nrj−1 (18)

4.3.3 Bounding δO and δ(tfupi − tRi )

The preciseOriginTimestamp O gets the value of the clock at the last tick no
later than the current instant. Thus O can be under-approximated by up to the
granularity G. This erroneous timestamps is carried in the Sync messages but
can only reduce the value of GMi. Therefore O cannot be over-approximate
and δOU = 0.

(tfupi − tRi ) is the duration between the reception of the Sync and the recep-
tion of the Follow Up (when the correction occurs). Being a duration between
two events in the time-aware system, it can be over-approximated by the gran-
ularity G.

4.4 Upper bound on precision PU
i

Finally, we can express the upper precision bound PU
i as the sum of the drift

between the Grandmaster’s clock and the time-aware system’s clock since the
last synchronisation and errors that occurred by estimating the Grandmaster’s
time on the time-aware system i:

PU
i = (|ρi|+ |ρGM |)(Is + Jfup) + δCU

i−1 + δDU
i +G (19)
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Table 2: 100Base-T and 1000Base-T parameters.
G ρGM ρSlave dmin Jj→i Ji→j

100Base-T 10ns 0.02ppm 10ppm 200ns 75ns 75ns
1000Base-T 10ns 0.02ppm 10ppm 200ns 29.7ns 8ns

A τ Jfup
100Base-T 32ns 1ms 2ms
1000Base-T 6.85ns 1ms 2ms

5 Results

First we compare our model to the state of the art one for 100Base-T technology.
Second we instantiate the model with 1000Base-T links and compare the results
with the bound obtained with 100Base-T links.

5.1 Bound tightness validation

Simulations, exhaustive search and measurements are leveraged to address two
questions: how close our bound on worst-case precision is and how it compares
to the previous model of Gutiérrez et al. [11].

In order to provide a fair comparison, we instantiate our model for 100Base-T
links. Unless mentioned, we use the values of granularity, clock drift, propaga-
tion delay, jitter and asymmetry from our previous work [13]. These values are
specific to the switches that we use as well and thus allows a very fine compar-
ison between the experimental measurements and the bound. Since 100Base-T
jitter does not depend on the direction, we denote J = Ji→j = Jj→i. For the
residence time τ , we use a common value of the literature [11]. Jfup is set to
2ms based on network calculus analysis using a commercially available tool1 on
our embedded use-case. Numerical values are given in Table 2. For the protocol
configuration, we use the default parameters of AS: Is = 0.125s and Ip = 1s.

Figure 7: Comparison of simulated, exhaustive search and precision bound for
100Base-T physical layer according to the number of hops.

1https://www.realtimeatwork.com/rtaw-pegase/
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5.1.1 Simulation and exhaustive search study

Figure 7 compares, as a function of the number of hops, our upper bound and
the one of Gutiérrez et al. [11] to simulations calculated with our open-source
simulation library [13] and to an exhaustive search as detailed later. Results
are produced with the parameters of Table 2, except for the Grandmaster drift
which is set to 0ppm (perfect clock assumption) and for Jfup, set to 0 as well,
since we don’t simulate data traffic.

For the sake of fairness, we integrate δDU
i in δGMU

i for the derivation of [11].
Indeed, authors neglect δDU

i because they evaluate their bound on a 100-hop
network. With a 10-hop network, δDU

i is not negligible anymore.
Simulation results are obtained from a set of 400 1-hour and 10 12-hour

simulations for the upper part and a set of 10 1-hour and 1 12-hour simulations
for the lower part of Fig. 7. We have randomized initial settings (initial clock
desynchronization, AS mechanism start time, physical asymmetry) except for
the slave clock drift which is set to the worst value (i.e. 10ppm) for fair com-
parison with the bounds. We have kept the worst precision recorded at each
hop among all runs.

The exhaustive search is carried out by testing all the possible combina-
tions of the parameter values in order to determine the time of transmission
or reception of synchronization messages, and deduce the timestamps and syn-
chronization calculations. The worst offset between the Grandmaster’s clock
and the clock of a time-aware system is recorded across all executions. Param-
eters range and sampling interval are chosen as follows. For the propagation
delay, the start time of synchronization, the delay between the reception of a
Pdelay req and the transmission of the Pdelay resp or the delay between the
transmission of a Sync and its corresponding Follow Up, an interval of one gran-
ularity is set since it is enough to capture the worst error. The physical jitter
is evaluated over its entire interval [0, J ]. The sampling size has been chosen to
get a tractable resolution and meaningful results for a 2-hop network topology.
A sampling step of 1.5ns (resp. 0.05ns) for the 2-hop (resp. 1-hop) network
triggers 15 billion (resp. 4.1billion) combinations. We limit the search to 2 hop
due to combinatorial explosion and as is enough to cover all AS mechanisms.

From Figure 7 - Top, we observe that our bound is two times closer to the
worst precision observed during the simulation when compared to the one of
Gutiérrez et al. Their larger pessimism is due to an overestimation of the error
impacting some delays: the error related to the physical jitter is accounted for
any duration while this error never happens for the Sync residence time duration
or for the duration between the reception of Pdelay Req and the transmission
of Pdelay Resp. Moreover, the errors caused by the granularity on a duration
measurement are also overestimated in the model of [11] compared to our model.
This pessimism is even more obvious with a 100-hop network, as shown in Fig. 7
- Bottom. After 100 hops, the state-of-the-art model reaches 21.174 µs while
our bound is 12.843 µs. The simulation reaches 2.952 µs, which is far from
the bound because the sequence of events which leads to the worst-case is less
likely as the number of hops increases. The evolution of the bounds according
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to the number of hops being linear, in the following we focus on networks more
representative of embedded networks i.e. up to 10-hop. From a complexity
point of view, both models are implemented in O(N).

Figure 8 focuses on the first two hops. For each hop, it shows the precision
distribution obtained by simulations, the results of the exhaustive search and
the bounds. We observe that our bounds are very close to the exhaustive search
worst observation for the 2 first hops. Indeed, for the upper bound (resp. lower),
we observe a difference with the exhaustive search of 5.4% (resp. 9.4%) for the
first hop and 5.4% (resp. 9.9%) the second hop. We also see that the model of
Gutiérrez et al. fails at the first hop as it produces an upper bound which is
smaller than the worst observed precision with the simulator and the exhaustive
search because [11] doesn’t consider the 100Base-T asymmetries.

5.1.2 Experimental validation

A 3-hop chain of four Fraunhofer IPMS switches has been deployed where the
first switch of the chain acts as the Grandmaster. A netTimeLogic PPS analyzer
captures clock progress. The switches use two-step mode, a pdelayInterval of 1s
and a syncInterval of 0.125ms.

20 experiments of 1-hour of precision measurements have been made. Each
experiment records the worst and the best precision observed over time. Be-
tween each experiment, the interfaces are reset to allow measurements with
different random combinations of asymmetry. Since no data traffic was trans-
mitted during the experiments we set Jfup = 0. To compute our upper and
lower mathematical bounds we use the free-running clock drift measured during
10 minutes before each run, relatively to the Grandmaster clock.

Figure 9 compares the upper and lower bounds obtained with our worst-case
model to the smallest and largest precision records made over the 20 experi-
ments at each hop. These results show that the bounds nicely frame the actual
measurements with little pessimism despite the small amount of measurements
made. Moreover, as for the simulation, we observe that when the number of
hops increases, it gets harder to measure worst-case events.

Figure 8: Comparison of simulated, exhaustive search and precision bound for
100Base-T physical layer on hop 1 and 2
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Figure 9: 100Base-T upper and lower bounds compared to measurements.

We did another campaign of 200 1-hour experiments for a 1-hop network.
Since the drift was negative, we focus on lower bound. The smallest precision
value recorded is -276ns while the lower bound is -332ns, leading to a difference
of 56ns, which exhibits the reduced pessimism of our model.

5.2 Comparing 1000Base-T to 100Base-T

Parameters for the 1000Base-T model instance are derived from our switches
by applying the method of [13] (Table 2).

Obtained results are similar to 100Base-T ones. For the upper bound, the
difference is 20.1% (resp. 20.5%) between the bound and the exhaustive search
at 1 hop (resp. 2 hops). For the lower bound it is 17.3% (resp. 19.8%) at
1 hop (resp. 2 hops). This greater difference is explained by the fact that the
combination of jitter and granularity obtained for our switches with 1000Base-T
does not allow us to meet the conditions described in Section 4 and reach the
worst case. For example, for the neighborRateRatio, the exhaustive search can’t
observe the condition that leads to the worst t′4 − t4 delay.

Figure 10 compares the upper and lower bounds obtained for 100Base-T
and 1000Base-T instances for our TSN switches. We observe that 1000Base-T
gives a more precise bound than 100Base-T: the 1000Base-T upper bound (resp.
lower bound) is 36% (resp. 33%) lower after 10 hops. This is due to the smaller
physical jitter and asymmetries in the physical layer, thus reducing the worst-
case error in the Pdelay mechanism (for the upper bound : δDU = 52.31ns for
1000Base-T compared to δDU = 121.06ns for 100Base-T). It does not guarantee
that 1000Base-T always offers better precision than 100Base-T with any time-
aware system. It is only valid for the hardware used in this study.

6 Conclusion

In this paper, we propose a refined analytical model to upper or lower bound
the precision of an IEEE802.1AS. These bounds rely on a generic communica-
tion model which captures link jitter and asymmetries. This communication
model can be implemented for different Ethernet physical layer technologies us-
ing appropriate parameters. For 100Base-T links, we have shown that the upper
bound on synchronization offers reduced pessimism with respect to the state-of-
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Figure 10: Comparison of 100Base-T and 1000Base-T precision bounds

the-art. The quality of our bounds comes as well from a refined characterization
of the clock inaccuracies and protocol operations.

In terms of future works, we will leverage these bounds to guarantee a de-
ployment of IEEE802.1AS where a given worst-case precision is ensured, even
if some network failures occur. This new model could also be extended to sup-
port the wireless physical layer, such as WiFi, to meet the needs of industrial
automation networks.
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