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A unifying framework for differentially private quantum algorithms

Differential privacy is a widely used notion of security that enables the processing of sensitive information. In short, differentially private algorithms map "neighbouring" inputs to close output distributions. Prior work proposed several quantum extensions of differential privacy, each of them built on substantially different notions of neighbouring quantum states. In this paper, we propose a novel and general definition of neighbouring quantum states. We demonstrate that this definition captures the underlying structure of quantum encodings and can be used to provide exponentially tighter privacy guarantees for quantum measurements. Our approach combines the addition of classical and quantum noise and is motivated by the noisy nature of near-term quantum devices. Moreover, we also investigate an alternative setting where we are provided with multiple copies of the input state. In this case, differential privacy can be ensured with little loss in accuracy combining concentration of measure and noise-adding mechanisms. En route, we prove the advanced joint convexity of the quantum hockey-stick divergence and we demonstrate how this result can be applied to quantum differential privacy. Finally, we complement our theoretical findings with an empirical estimation of the certified adversarial robustness ensured by differentially private measurements.

Introduction

In recent years, the availability of large datasets and advanced computational tools has sparked progress across various fields, including natural sciences, medicine, finance, and social sciences. This advance came also with privacy concerns since even the release of aggregated data can compromise the sensitive information contained in the original dataset. This poses a significant challenge for the researcher, who must adopt privacy-preserving techniques to avoid the exposure of private data. Privacy-preserving data processing is a non-trivial task, and illdefined notions of privacy led to impressive privacy breaches [START_REF] Narayanan | How to break anonymity of the netflix prize dataset[END_REF]. This motivated the quest for a robust framework to assess privacy.

Over the last decade, differential privacy (DP) has become the de facto standard for ensuring privacy both in statistical data analysis and machine learning applications [START_REF] Dwork | Calibrating noise to sensitivity in private data analysis[END_REF][START_REF] Dwork | The algorithmic foundations of differential privacy[END_REF][START_REF] Cummings | Challenges towards the next frontier in privacy[END_REF][START_REF] Chaudhuri | Differentially private empirical risk minimization[END_REF][START_REF] Abadi | Deep learning with differential privacy[END_REF][START_REF] Papernot | Semi-supervised knowledge transfer for deep learning from private training data[END_REF][START_REF] Bassily | Model-agnostic private learning[END_REF]. Intuitively, a differentially private algorithm Ap¨q can learn a statistical property of a dataset consisting of n elements, yet it leaks almost nothing about each individual element. In other words, given two inputs x and x 1 which are very close according to some chosen metric, the output distributions Apxq and Apx 1 q should be almost indistinguishable. We call x and x 1 neighbouring inputs. If x and x 1 represent datatsets about n individuals, then it's customary to consider x and x 1 neighbouring if one of such individuals is present in x and absent in x 1 . Then, if Ap¨q is differentially private, the output alone doesn't allow for inferring whether the input contained a given individual. This goal is pursued by combining various techniques, that usually involve randomising the input or perturbing the output by adding noise. The challenge is then to achieve the desired level of privacy by adding less noise as possible, hence preserving accuracy.

Apart from privacy-preserving data analysis and machine learning, differential privacy has also found several applications in other fields of computer science such as statistical learning theory [START_REF] Prasad Kasiviswanathan | What can we learn privately?[END_REF][START_REF] Wang | Learning with differential privacy: Stability, learnability and the sufficiency and necessity of erm principle[END_REF][START_REF] Bun | An equivalence between private classification and online prediction[END_REF][START_REF] Arunachalam | Private learning implies quantum stability[END_REF], adaptive data analysis [START_REF] Dwork | Preserving statistical validity in adaptive data analysis[END_REF][START_REF] Bassily | Algorithmic stability for adaptive data analysis[END_REF][START_REF] Feldman | Generalization for adaptively-chosen estimators via stable median[END_REF] and mechanism design [START_REF] Mcsherry | Mechanism design via differential privacy[END_REF].

More recently, the major influence of quantum computing and quantum information has led to the exploration of differentially private quantum algorithms. Since many near-term quantum algorithms involve a classical optimiser as a subroutine, one possible approach consists in privatising such optimiser and leaving the rest of the algorithm unchanged. This strategy is adopted in [START_REF] Senekane | Privacypreserving quantum machine learning using differential privacy[END_REF][START_REF] Li | Quantum federated learning through blind quantum computing[END_REF][START_REF] Du | Quantum differentially private sparse regression learning[END_REF][START_REF] William M Watkins | Quantum machine learning with differential privacy[END_REF].

Alternatively, we can rely on several notions of quantum differential privacy. Quantum differential privacy allows the design of private measurements and channels combining classical and quantum noise. This is extremely relevant with the emergence of Noisy Intermediate Scale Quantum devices (NISQ) today [START_REF] Preskill | Quantum Computing in the NISQ era and beyond[END_REF]. The noisy nature of these devices on the one hand, and the potential capabilities of quantum algorithms, on the other hand, make such quantum or hybrid quantum-classical mechanisms, an interesting subject of study from the point of view of privacy. Several efforts has been made in this area of research, including [START_REF] Zhou | Differential privacy in quantum computation[END_REF][START_REF] Aaronson | Gentle measurement of quantum states and differential privacy[END_REF][START_REF] Hirche | Quantum differential privacy: An information theory perspective[END_REF][START_REF] Farokhi | Privacy against hypothesis-testing adversaries for quantum computing[END_REF][START_REF] Nuradha | Quantum pufferfish privacy: A flexible privacy framework for quantum systems[END_REF]. Furthermore, the connection between machine learning and differential privacy [START_REF] Feldman | Generalization for adaptively-chosen estimators via stable median[END_REF][START_REF] Lecuyer | Certified robustness to adversarial examples with differential privacy[END_REF] suggests that exploring quantum differential privacy can lead to intriguing insights into the capabilities of quantum machine learning.

One of the main challenges in translating the definition of DP in the quantum setting is to characterise the notion of neighbouring quantum states, i.e. choose the right metric to measure the similarity between the input states. The first notion of quantum differential privacy was proposed in [START_REF] Zhou | Differential privacy in quantum computation[END_REF] and it's based on bounded trace distance, whereas the definition introduced in [START_REF] Aaronson | Gentle measurement of quantum states and differential privacy[END_REF] is based on reachability by a single-qudit operation. Another possible definition is based on the quantum Wasserstein distance of order 1. This metric was introduced in [START_REF] De | The quantum wasserstein distance of order 1[END_REF] and the authors mention quantum differential privacy as one potential application of their work. Furthermore, quantum private PAC learning has been defined in [START_REF] Arunachalam | Quantum statistical query learning[END_REF] and a quantum analogue of the equivalence between private classification and online prediction has been shown in [START_REF] Arunachalam | Private learning implies quantum stability[END_REF]. Moreover, an equivalence between learning with quantum local differential privacy and quantum statistical query (QSQ) learning was provided in [START_REF] Angrisani | Quantum local differential privacy and quantum statistical query model[END_REF]. Other authors compared classical and quantum mechanisms in the context of local differential privacy [START_REF] Yoshida | Classical mechanism is optimal in classicalquantum differentially private mechanisms[END_REF][START_REF] Yoshida | Mathematical comparison of classical and quantum mechanisms in optimization under local differential privacy[END_REF]. Building upon these prior contributions, the present paper aims at establishing a general framework for differentially private quantum algorithms, providing a more general definition of neighbouring quantum states and attaining better privacy guarantees combining classical and quantum noisy channels.

Motivation: connecting neighbouring relationships with quantum encodings

Our work is motivated by a practical goal: we want to design quantum algorithms that satisfy differential privacy with respect to a classical input x. We assume that this input belongs to a set equipped with a neighbouring relationship. Moreover, we consider quantum algorithms that include a quantum encoding as a subroutine, where x is mapped to a quantum state ρpxq. Thus, we want to define a quantum neighbouring relationship that mimics the underlying classical neighbouring relationship. In particular, we require the following property:

x and x 1 are neighbouring ùñ ρpxq and ρpx 1 q are neighbouring.

It's easy to see why the above property is extremely useful. If an algorithm A is pε, δq-differentially private with respect to ρpxq, then A ˝ρ is pε, δq-differentially private with respect to x (this is stated more formally in Proposition 3.2). In the meantime, we want to avoid neighbouring relationships that are excessively loose, as this would make the output almost independent of the input. A paradigmatic example of a "pathological" relationship is the one based on constant trace distance: ρ and ρ 1 are neighbouring ðñ 1 2 }ρ ´ρ1 } 1 ď τ " Θp1q.

To fix the ideas, let τ " 0.1. It's easy to see that for any pair of states ρ, σ we can build a sequence ρ 0 , ρ 2 , . . . , ρ 10 , such that # ρ 0 " ρ ρ 10 " σ and for all i, ρ i " ρ i`1 .

By triangle inequality, the outputs of ρ and σ will be p10εq-close. This, significantly limits the capabilities of private algorithms, since, independently of the input states, the output distribution would be highly concentrated around the same value. We discuss this more formally in Section 7. Surprisingly, the current quantum neighbouring relationships fulfil these two natural requirements only for a limited number of specific quantum encodings. Given that this property is crucial for the framework of differential privacy and the need to handle various types of quantum and classical data in the quantum setting, it becomes necessary to develop an approach that can account for different encodings. Therefore, we present a generalised neighbouring relationship that enables the handling of a wide range of near-term and long-term algorithms.

Overview of main results

In this work, we tackle several technical problems arising in the field of quantum differential privacy and we try to address them within a broader framework using different tools and techniques from quantum information. The following is a summary of our main contributions.

• Improved privacy bounds for noisy channels. Our first contribution consists of tighter privacy guarantees for a general family of noisy channels, which includes local Pauli noise and particularly as a special case, the depolarising channel. To this end, we prove the advanced joint convexity of the quantum hockey-stick divergence. Moreover, we provide a tighter analysis of the privacy of quantum measurements post-processed with classical stochastic channels, such as the Laplace or Gaussian noise. This approach allows us to be able to study both classical and quantum noisy mechanisms for differential privacy, within a unified framework.

• Generalised neighbouring relationship. Our second contribution is a generalised neighbouring relationship, that allows us to recover the previous definition as special cases. We demonstrate how to design differentially private measurements according to this definition by introducing both classical and quantum noise into the computation. Notably, we show that local measurements can be made differentially private by adding a modest amount of noise. Our work is the first to incorporate the locality in the analysis of quantum differential privacy.

• Privacy-utility tradeoff for quantum differential privacy. There exists an unavoidable tradeoff between the desired level of privacy and the resulting loss in accuracy. Here, we make a crucial observation: different neighbouring relationships have different tradeoffs.

In particular, this limits the applicability of neighbouring relationships based solely on the bounded trace distance. We also show no-go results for pure quantum differential privacy under the Wasserstein distance of order 1.

• Private estimation with multiple copies. We provide differentially private mechanisms for estimating the expected values of observables given m copies of a quantum state. These mechanisms can find applications in privatising the results of experiments on physical devices where estimating the expectation value is the main figure of merit.

• Applications. Our results can be applied to variational quantum algorithms and other quantum machine learning models to enhance or certify privacy. We specifically focus on certified adversarial robustness through differential privacy and we perform numerical simulations to assess the robustness to adversarial attacks of private quantum classifiers.

Organisation of the paper

The paper is organised as follows. First, in Section 2 we give a brief background on the notion and definition of differential privacy in the classical world, as well as introduce the notations we are using throughout the paper. In Section 3, we discuss quantum differential privacy and the differences among different approaches to defining differential privacy in the quantum world, specifically the neighbouring relationship between quantum states, and we prove that classical differential privacy can be ensured through quantum differential privacy. In Section 4 
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Figure 1: High-level summary of the main concepts covered in the paper and their mutual dependencies. Our contributions spans includes tighter information-theoretic bounds, novel approaches to quantum differential privacy and applications to private quantum machine learning. We remark that the no-go results for W 1 distance holds for single-copy measurements under pure differential privacy with respect to mixed states with bounded W 1 distance. On the other hand, the W 1 distance can be conveniently used for the private estimation of expected values of observables with multiple copies.

we introduce our generalised framework for quantum differential privacy and we discuss its properties. Within this formal framework, we prove several results. Starting with Section 5, we provide several improved privacy bounds for the case where the neighbouring relationship is specified with a bounded trace distance between quantum states. Our results include classical post-processing and quantum-inspired sampling mechanisms. Our techniques hinge on a novel result information-theoretic result, namely the advanced joint-convexity of the quantum hockey-stick divergences, discussed in detail in Appendix B, along with a proof of the quantum Bretagnolle-Huber inequality. We then turn to the unique properties of our framework in Section 6 which allows us to study local measurements as quantum differentially private mechanisms, as well as addressing the question of how quantum and classical noise can be studied together in the context of differential privacy. In Section 7 we define the cost of differential privacy and benchmark different approaches and notions of neighbouring, under this lens, providing negative and positive results which clarify and justify the applicability of our framework. In Section 8 we introduce mechanisms for privately estimating expectation values. Finally, in Section 9, we discuss applications of some of our results in quantum machine learning, particularly for certified adversarial robustness, and we support our theoretical findings with numerical simulations.

Background

We start by introducing the notations we use in the paper as well as essential definitions of classical differential privacy. Other technical tools such as different norms and divergences are introduced in Appendix A.

Notation

We denote by logp¨q the natural logarithm. We denote by PpXq the power set of a set X, i.e. the set of all subsets of X. For a vector x " px 1 , . . . , x n q, we denote as }x} p its p-norm, where }x} p " p ř n i"1 |x i | p q 1{p for 1 ď p ă 8 and }x} 8 " max i }x i }. It's convenient to introduce also the 0-norm (which is technically not a norm): }x} 0 " |ti : x i ‰ 0u|, which is the number of the non-zero entries of x.

We consider a set V corresponding to a system of |V| " n qudits, and denote by H n " Â vPV C d the Hilbert space of n qudits. We denote by LpH n q the set of linear operators on H n . We denote by O n the set of self-adjoint linear operators on H n . By O ǹ we denote the subset of positive semidefinite linear operators on H n , and S n Ă O ǹ denotes the set of quantum states. Similarly, we denote by P n the set of probability measures on rds V . For any subset A Ď V, we use the standard notation O A , S A , . . . for the corresponding objects defined on subsystem A. Given a state ρ P S n , we denote by ρ A its marginal on subsystem A. For any X P O n , we denote by }X} p its Schatten p norm. For any subset A Ď V, the identity on O A is denoted by 1 A , or more simply 1. Given an observable O, we define xOy σ " TrrσOs. Moreover, given a number a P R, we define tO ě au to be the projector onto the subspace spanned by the eigenvectors of O corresponding to eigenvalues greater than or equal to a. We denote the probability of measuring an eigenvalue of O greater than a P R in state σ as Pr σ pO ě aq :" TrrσtO ě aus. For a subset F of the spectrum of O, we denote the probability of that the measurement outcome lies in F as Pr σ rO P Fs. For an observable O, we write its Pauli expansion as O " ř PPtX,Y,Z,1u n c P P. We say that a Pauli string P " P 1 P 2 . . . P n P tX, Y, Z, 1u n acts non trivially on I Ď rns if c P ‰ 0 and Di P I : P i ‰ 1. A quantum channel N : V Ñ W is a linear completely positive and trace-preserving map from the operators on H |V| to the operators on H |W| . Similarly, a classical channel can be defined as a randomised mapping from V to W. We'll refer to a channel as an algorithm when we want to emphasise the input-output relationship. For a channel Φ, either classical or quantum, we denote as rangepΦq the set of all the possible outputs of Φ. Given a quantum channel Φ acting on n qubits, we define its light-cone as follows: first, for any qubit i, we denote by I i the minimal subset of qubits such that Tr I i Φpρq " Tr I i Φpσq for any two n-qubit states ρ and σ such that Tr i pρq " Tr i pσq. Then, the light-cone of Φ is defined as |I| :" max iPrks |I i |.

Classical differential privacy

We concisely introduce the definition of differential privacy. For a comprehensive introduction to the topic, we refer to [START_REF] Dwork | The algorithmic foundations of differential privacy[END_REF], [START_REF] Vadhan | The Complexity of Differential Privacy[END_REF] and [START_REF] Cummings | Challenges towards the next frontier in privacy[END_REF]. Throughout this paper, we'll denote by " the neighbouring condition, i.e. a relationship between two inputs, consisting of either classical vectors or quantum states. We'll write Q " when we want to emphasise that the neighbouring relationship refers to quantum states. The choice of the relationship is problem-dependent. In many practical cases, it's convenient to say that two binary vectors x, x 1 P t0, 1u n are neighbouring if their Hamming distance is at most one, i.e.

x " x 1 ðñ d H px, x 1 q ď 1.

In alternative, we can select a p-norm and a threshold γ ě 0 and opt for the following neighbouring relationship:

x " x 1 ðñ }x ´x1 } p ď γ.

We say that a randomised algorithm Ap¨q is pε, δq-differentially private (DP) if for all x " x 1 and for all S Ď rangepAq, it satisfies PrrApxq P Ss ď e ε PrrApx 1 q P Ss `δ.

We say that Ap¨q is ε-DP when it is pε, 0q-DP. Equivalently, differential privacy can be defined in terms of hockey-stick divergence E γ and the smooth max-relative entropy (or smooth maxdivergence) D δ 8 :

A is pε, δq-DP ðñ @x " x 1 : E e ε pApxq}Apx 1 qq ď δ ðñ @x " x 1 :

D δ 8 pApxq}Apx 1 qq ď ε,
where the (classical) hockey-stick divergence E γ between two distributions P and Q is defined as follows [START_REF] Yury Polyanskiy | Channel coding rate in the finite blocklength regime[END_REF]:

E γ pP}Qq :" 1 2 ż |dP ´γdQ| ´1 2 pγ ´1q,
for γ ě 1. These information-theoretic divergences can be thought of as a measure of closeness between distributions, thus these reformulations are consistent with the intuition that private algorithms map neighbouring inputs to "close" output distributions. Differential privacy with δ " 0 is also referred to as pure differential privacy, whereas the case with δ ‰ 0 is referred to as approximate differential privacy. Roughly speaking, an pε, δq-DP algorithm can be thought of as an algorithm that is ε-DP with probability 1 ´δ. We remark that this intuition is slightly imprecise, and thus we refer to the following references for a more detailed explanation [START_REF] Bun | Concentrated differential privacy: Simplifications, extensions, and lower bounds[END_REF][START_REF] Meiser | Approximate and probabilistic differential privacy definitions[END_REF][START_REF] Vadhan | The Complexity of Differential Privacy[END_REF]. It's also worth noticing that the max-divergence corresponds to the Rényi divergence of order 8. Thus, it's possible to relax pure differential privacy by replacing the max-divergence with the Rényi divergence of order α, for α ě 1 [START_REF] Mironov | Rényi differential privacy[END_REF]. We say that A is pα, εq-RDP (Rényi differentially private) if for all x " x 1 , D α pApxq}Apx 1 qq ď ε.

As a consequence, for all S Ď rangepAq, we have PrrApxq P Ss ď e ε PrrApx 1 q P Ss pα´1q{α .

If A is pα, εq-RDP then it is also pε `logp1{δq α´1 , δq-DP for any 0 ă δ ă 1. Similarly, if A is pε, 0q-DP then it is also pα, 2αε 2 q-RDP for any α ě 1.

Privacy via classical noisy channels

Now we present two widely used mechanisms that ensure differential privacy by injecting noise into the output. To this end, we introduce two classical channels Λ L,b : R Ñ R and Λ G,σ : R Ñ R, that corresponds to an additive noise coming from either the Laplace distribution of scale b or the Gaussian distribution of variance σ 2 , both centred in zero. The channels are defined as follows:

Λ L,b pxq " x `η and Λ G,σ pxq " x `ζ, where η " 1 2b exp

´´|η| b ¯and ζ " 1 σ ? 2π exp ´´ζ 2 2σ 2 ¯.
Let f : X Ñ R be a scalar function. We define the sensitivity of f as

∆ f :" max x,x 1 PX x"x 1 | f pxq ´f px 1 q|. (1) 
Then

Λ L,b p f p¨qq is ε-DP if b ě ∆{ε. Similarly, Λ G,σ p f p¨qq is pε, δq-DP if σ 2 ě 2 lnp1.25{δq∆ 2 {ε 2 .
The addition of Laplace noise is referred to as Laplace mechanism [START_REF] Dwork | Calibrating noise to sensitivity in private data analysis[END_REF], whereas the addition of Gaussian noise is referred to as Gaussian mechanism [START_REF] Dwork | The algorithmic foundations of differential privacy[END_REF]. Both mechanisms can also be analysed within the relaxed framework of Rényi differential privacy [START_REF] Mironov | Rényi differential privacy[END_REF].

Quantum differential privacy

Let ρ, σ two neighbouring quantum states, i.e. ρ Q " σ. We'll discuss appropriate neighbouring conditions for quantum states in the next sections and for the moment we use the letter Q as a placeholder. We also say that ρ and σ are Q-neighbouring in order to emphasise that we selected a suitable relationship Q over quantum states. Following [START_REF] Zhou | Differential privacy in quantum computation[END_REF][START_REF] Hirche | Quantum differential privacy: An information theory perspective[END_REF], we say that a quantum channel Cp¨q is pε, δq-DP if for all ρ Q " σ, for all POVM M " tM m u and for all m, we have that TrrM m Cpρqs ď e ε TrrM m Cpσqs `δ.

As in the classical case, this can be equivalently expressed in terms of the quantum hockey-stick divergence or the quantum smooth max-relative entropy:

C is pε, δq-DP ðñ @ρ, σ : ρ Q " σ : E e ε pCpρq}Cpσqq ď δ ðñ @ρ, σ : ρ Q " σ : D δ 8 pCpρq}Cpσqq ď ε,
where the quantum hockey-stick divergence E γ is defined as follows:

E γ pρ}σq :" Trpρ ´γσq `,
for γ ě 1. Here X `denotes the positive part of the eigendecomposition of a Hermitian matrix X " X `´X ´. We refer to Lemma III.2 in [START_REF] Hirche | Quantum differential privacy: An information theory perspective[END_REF] for more details. A special case of particular interest is one of quantum-to-classical channels (i.e. POVM measurements), mapping states to probability distributions. For a measurement M, denote as Mpρq the probability distribution induced by measuring M on input ρ. Quantum differential privacy shares many useful properties with classical differential privacy. Notably, it is robust to parallel composition and post-processing (also referred to as sequential composition).

Proposition 3.1 (Adapted from Corollary III.3, [START_REF] Hirche | Quantum differential privacy: An information theory perspective[END_REF]). The following properties hold.

• (Post-processing) Let A be pε, δq-differentially private and N be an arbitrary quantum channel, then N ˝A is also pε, δq-differentially private.

• (Parallel composition) Let A 1 be pε 1 , δ 1 q-differentially private and A 2 be pε 2 , δq-differentially private. Define that

ρ 1 b ρ 2 Q " σ 1 b σ 2 if ρ 1 Q " σ 1 and ρ 2 Q " σ 2 . Then A 1 b A 2 is pε 1 `ε2
, δq- differentially private on such product states, with δ " mintδ 1

`eε 1 δ 1 , e ε 2 δ 1 `δ2 u.

Moreover, if A 1 and A 2 are quantum-classical channels (measurements), we have that A 1 b A 2 is pε 1 `ε2 , δ 1 `δ2 q-differentially private.

Proof. The proposition coincides with Corollary III.3 in [START_REF] Hirche | Quantum differential privacy: An information theory perspective[END_REF], except for the final statement about the parallel composition of differentially private measurements. Since the output of a measurement is a classical distribution, the proof of this part is identical to the one of Theorem 3.16 in [START_REF] Dwork | The algorithmic foundations of differential privacy[END_REF].

In short, the composition theorem ensures that performing k times an ε-DP algorithm is pεkq-differentially private, and then the privacy budget scales as the number of repetitions k. However, under mild assumptions, this scaling can be improved to Op ? kq. This result is called advanced composition (we refer to Theorem 3.20 in [START_REF] Dwork | The algorithmic foundations of differential privacy[END_REF] for the classical case). Moreover, advanced composition holds also for quantum measurements under suitable assumptions (Theorem 6, [START_REF] Zhou | Differential privacy in quantum computation[END_REF]).

Rényi quantum differential privacy has also been defined in [START_REF] Hirche | Quantum differential privacy: An information theory perspective[END_REF]. Due to the non-commutative nature of quantum mechanics, the quantum generalisation of the Rényi divergence is not unique. However, we don't need to fix a particular definition of the quantum Rényi divergence, since we can define Rényi quantum differential privacy in terms of an arbitrary family of Rényi divergences D α , as defined in [START_REF] Tomamichel | Quantum information processing with finite resources: mathematical foundations[END_REF]. Thus, a quantum channel C is pε, αq-Rényi differentially private if sup ρ"σ D α pCpρq}Cpσqq ď ε.

From quantum to classical differential privacy

Now we show how quantum differential privacy can be used as a proxy to ensure the privacy of a classical input encoded in a quantum state. First, we introduce a preliminary definition.

Definition 3.1 (Privacy-preserving quantum encodings). Let X a set equipped with a neighbouring relationship ". A quantum encoding ρp¨q is Q-neighbouring-preserving if

x " x 1 ùñ ρpxq

Q " ρpx 1 q.
The following proposition formalizes the intuitive fact that Q-neighbouring-preserving encodings can be used to transfer privacy guarantees and ensure the privacy of the underlying classical input.

Proposition 3.2 (Transferring privacy guarantees).

Let ρp¨q a quantum encoding, i.e. a function mapping a classical vector x P X to a quantum state ρpxq. Assume X is equipped with a neighbouring relationship " and S n is equipped with a neighbouring relationship Q ". Assume that ρp¨q is Q-neighbouring-preserving. Let M be a measurement. We have, M is pε, δq-DP with respect to Q " ùñ Mpρp¨qq is pε, δq-DP with respect to ".

Proof. The proposition follows from the definition of differential privacy. Assuming Mp¨q is pε, δq-DP, we have @σ, σ 1 : σ Q " σ 1 , @S Ď rangepMq : PrrMpσq P Ss ď e ε PrrMpσ 1 q P Ss `δ.

Since ρp¨q is Q-neighbouring-preserving, the above inequality still holds if we set σ :" ρpxq and σ 1 :" ρpx 1 q for x " x 1 . Moreover, we replace rangepMq with rangepM ˝ρp¨qq (we can do it since rangepM ˝ρp¨qq is a subset of rangepMq). The result readily follows. @x, x 1 : x"x 1 , @S Ď rangepM ˝ρp¨qq : PrrMpρpxqq P Ss ď e ε PrrMpρpx 1 qq P Ss `δ.

Generalised neighbouring relationship

In this section, we present the cornerstone of our work, which is a general definition of neighbouring quantum states. Definition 4.1. Let ρ, σ P S n and let Ξ Ă Pprnsq, i.e. let Ξ be a collection of subsets of rns. Let τ ą 0 be a parameter. We say that ρ and σ are pΞ, τq-neighbouring and we write ρ pΞ,τq

" σ if DI P Ξ : Tr I ρ " Tr I σ ^1 2 }ρ ´σ} 1 ď τ.
If Ξ " tI : I " ti, i `1, . . . , i `ℓu for some iu, i.e. each subset I is a collection of ℓ consecutive integers (modulo n), we say that ρ and σ are pℓ, τq-neighbouring and we write ρ pℓ,τq " σ . When Ξ " trnsu, we simply write ρ τ " σ and we say that ρ and σ are τ-neighbouring.

This definition extends one of the neighbouring states used in previous works. In [START_REF] Zhou | Differential privacy in quantum computation[END_REF][START_REF] Du | Quantum noise protects quantum classifiers against adversaries[END_REF][START_REF] Hirche | Quantum differential privacy: An information theory perspective[END_REF], two states are neighbouring if they have bounded trace distance τ, i.e. if they are τ-neighbouring. Moreover, setting ℓ " 1 and τ " 1 we recover the definition of quantum differential privacy based on convertibility by local measurements, used in [START_REF] Aaronson | Gentle measurement of quantum states and differential privacy[END_REF].

This notion is particularly suitable to handle local measurements, i.e. measurements expressible as sums of local terms, as we show in Section 6. We remark that local measurements are of particular interest since they can be considered practically feasible measurements for extracting classical information from quantum data (or quantum systems). They also play a major role in variational learning algorithms as they are provably resilient to barren plateaus [START_REF] Cerezo | Cost function dependent barren plateaus in shallow parametrized quantum circuits[END_REF].

On the other hand, several encodings widely used in quantum machine learning are pΞ, τqneighbouring-preserving, for appropriate choices of pΞ, τq. We include upper bounds for max IPΞ |I| and τ in Table [START_REF] Narayanan | How to break anonymity of the netflix prize dataset[END_REF]. We delay to Appendix C the definition of the various encodings and the proof of upper bounds.

We also show that the notion of pΞ, τq-neighbouring states degrades gently under quantum postprocessing, assuming that the post-processing channel has a bounded light-cone. Proposition 4.1 (Robustness to quantum post-processing). Let ρ and σ be two pΞ, τq-neighbouring states and consider a channel Φ with light-cone bounded by K. Then Φpρq and Φpσq are pΞ 1 , τqneighbouring, where max

IPΞ 1 |I| ď K max IPΞ |I|.
Table 1: As we discuss in details in Section C, the encodings above are pΞ, τq-neighbouringpreserving for appropriate Ξ and τ depending on the encodings. We assume that the initial vectors x and x 1 are neighbouring if }x ´x1 } 0 ď γ 0 , }x ´x1 } 1 ď γ 1 and }x ´x1 } 2 ď γ 2 . We also assumed that the Hamiltonian encoding is implemented by a 1D circuit of depth at most L. We refer to Section C for more details on the noise models.

ENCODING ρp¨q max IPΞ |I| τ

AMPLITUDE ENCODING n γ 2 ROTATION ENCODING γ 0 1 COHERENT STATE ENCODING γ 0 b 1 ´e´γ 2 2 1D-HAMILTONIAN ENCODING 2Lγ 0 Op1qγ 1 1D-HAMILTONIAN ENCODING (LOW NOISE) 2Lγ 0 Op1q ? n expp´Lq 1D-HAMILTONIAN ENCODING (HIGH NOISE) 2Lγ 0 Op1q expp´Lqγ 1
Proof. The proposition follows from the fact that the trace distance is non-increasing and from the definition of light-cone provided in Section 2. We have

1 2 }Φpρq ´Φpσq} 1 ď 1 2 }ρ ´σ} 1 ď τ Moreover, Tr J ρ " Tr J σ
for J P Ξ. Since the channel Φ has bounded light-cone K, there exists J 1 Ď rns

Tr J 1 ρ " Tr J 1 σ
where |J 1 | ď K|J |. This implies the desired result.

We conclude this section by observing that our definition can be easily related to the quantum Wasserstein distance of order 1. Combining Lemma A.2 and Eq. ( 24), we obtain

ρ pΞ,τq " σ ùñ W 1 pρ, σq ď min " max IPΞ |I| 3 2 τ, nτ * . ( 2 
)
It's natural to ask whether it would be convenient to define neighbouring quantum states in terms of the W 1 distance. The answer to this question is twofold. On the one hand, when we dispose of a single copy of the input state, the W 1 distance leads to a suboptimal tradeoff between privacy and accuracy, as we show in Theorem 7.2. On the other hand, when we dispose of multiple copies of the input state, neighbouring quantum states can be suitably defined in terms of the W 1 distance. We will discuss this alternative setting in Section 8.

to the definition previously explored in [START_REF] Zhou | Differential privacy in quantum computation[END_REF][START_REF] Hirche | Quantum differential privacy: An information theory perspective[END_REF]. In particular, we provide tighter guarantees for two private mechanisms, namely a generalised noisy channel and the addition of classical noise on the output of a quantum measurement. Following the convention used in [START_REF] Hirche | Quantum differential privacy: An information theory perspective[END_REF], we state the results of this section using the quantum hockey-stick divergence.

Let Mp¨q an arbitrary channel and let N p p¨q " p 1 2 n `p1 ´pqMp¨q. We briefly discuss how several noisy channels can be recovered as special cases of N p p¨q. For Mp¨q equal to the identity channel Idp¨q, N p is the depolarising channel. For n " 1 we can also recover the single qubit Pauli channel P as a special case. Following [START_REF] Wang | Noise-induced barren plateaus in variational quantum algorithms[END_REF], the action of P on a local Pauli operator σ P tX, Y, Zu can be expressed as

Ppσq " q σ σ, where ´1 ă q X , q Y , q Z ă 1. It's customary to characterize the noise strength with a single parameter q " a maxt|q

X |, |q Y |, |q Z |u. Then for a single qubit state ρ " 1 2 p1 `rX X `rY Y `RZ Zq we have Ppρq " 1 2 p1 `qX r X X `qY r Y Y `qZ r Z Zq " p1 ´q2 q 1 2 `q2 ˆ1 2 ˆ1 `qX q 2 r X X `qY q 2 r Y Y `qZ q 2 r Z Z :" p1 ´q2 q 1 2 `q2 M 1 pρq,
where we defined M 1 pρq :" 1 2 ´1 `qX q 2 r X X `qY q 2 r Y Y `qZ q 2 r Z Z ¯. We proceed by analysing the privacy guarantees of the channel N p . Lemma 5.1. Let N p p¨q " p 1 2 n `p1 ´pqMp¨q a channel. For 0 ď p ď 1 and γ ě 1 we have E γ 1 pN p pρq}N p pσqq ď p1 ´pqp1 ´βqE γ pρ}1{2 n q `p1 ´pqβE γ pρ}σq, where γ 1 " 1 `p1 ´pqpγ ´1q and β " γ 1 {γ.

Proof. The result follows from Lemma B.2 by plugging ρ 0 " 1{2 n , ρ 1 " ρ and ρ 2 " σ.

Recall that from Lemma IV.1 in [START_REF] Hirche | Quantum differential privacy: An information theory perspective[END_REF] we have that for the depolarising noise (hence for M " Idq and for any γ ě 1,

E γ pN p pρq}N p pσqq ď max ! 0, p1 ´γq p 2 n `p1 ´pqE γ pρ}σq
) .

In the following theorem, we extend this previous bound to an arbitrary channel M and we combine it with Lemma 5.1.

Theorem 5.1. Let N p p¨q " p 1 2 n `p1 ´pqMp¨q a channel. For 0 ď p ď 1 and γ 1 ě 1 we have

E γ 1 pN p pρq}N p pσqq ď min ! p1 ´pqp1 ´βqE γ pρ}1{2 n q `p1 ´pqβE γ pρ}σq, max ! 0, p1 ´γ1 q p 2 n `p1 ´pqE γ 1 pρ}σq
)) .

where γ " 1 `pγ 1 ´1q{p1 ´pq and β " γ 1 {γ.

Proof. Lemma 5.1 implies that E γ 1 pN p pρq}N p pσqq ď p1 ´pqp1 ´βqE γ pρ}1{2 n q `p1 ´pqβE γ pρ}σq,

Then it remains to show that

E γ 1 pN p pρq}N p pσqq ď max ! 0, p1 ´γ1 q p 2 n `p1 ´pqE γ 1 pρ}σq
) .

The proof closely follows the one of Lemma IV.1 and Lemma IV.4 in [START_REF] Hirche | Quantum differential privacy: An information theory perspective[END_REF]. We have

E γ 1 pN p pρq}N p pσqq " Trpp1 ´γ1 qp 1 2 n `p1 ´pqMppρ ´γ1 σqqq " TrP `pp1 ´γ1 qp 1 2 n `p1 ´pqMppρ ´γ1 σqqq,
where P `is the projector onto the positive subspace of pp1 ´γ1 qp 1 2 n `p1 ´pqMppρ ´γ1 σqqq. Observe that

E γ 1 pN p pρq}N p pσqq ą 0 ñ TrP `ě 1.
Considering this case we get E γ 1 pN p pρq}N p pσqq " p1 ´γ1 q p 2 n TrP ``p1 ´pqpTrP `pMpρ ´γ1 σqqq ď p1 ´γ1 q p 2 n `p1 ´pqE γ 1 pMpρq}Mpσqq ď p1 ´γ1 q p 2 n `p1 ´pqE γ 1 pρ}σq ď p1 ´γ1 q p 2 n `p1 ´pq.

Note that for sufficiently large γ 1 the upper bound could become negative, but one can easily check that in this case E γ 1 pN p pρq}N p pσqq " 0 implying that we are in the other case.

For single-qubit product channels, we give the following bound:

Theorem 5.2. Let N p p¨q " p 1 2 `p1 ´pqMp¨q a single-qubit channel. For 0 ď p ď 1 and γ 1 ě 1 we have

E γ 1 pN bk p pρq}N bk p pσqq ď min " p1 ´pk qp1 ´βqE γ pρ}1{2 k q `p1 ´pk qβE γ pρ}σq, max " 0, p1 ´γ1 q p k 2 k `p1 ´pk qE γ 1 pρ}σq ** .
where γ " 1 `pγ 1 ´1q{p1 ´pq and β " γ 1 {γ.

Proof. It suffices to note that N bk p can be rearranged as:

N bk p p¨q " p k 1 2 k `p1 ´pk qM 1 p¨q,
where M 1 is a quantum channel. Then the result follows from Theorem 5.1.

These first two technical results show that several quantum noisy channels contract the quantum hockey-stick divergence. This can be used to prove that those channels ensure quantum differential privacy for τ-neighbouring states. In particular, we derive the following corollaries, that improve Lemma IV.2 and Lemma IV.5 in [START_REF] Hirche | Quantum differential privacy: An information theory perspective[END_REF].

Corollary 5.1. Let N p p¨q " p 1 2 n `p1 ´pqMp¨q a channel. N p is pε, δq-DP with respect to τneighbouring states with

δ ď max ! 0, p1 ´eε q p 2 n `p1 ´pqτ ) . ( 3 
)
Let γ " 1 `pe ε ´1q{p1 ´pq and β " e ε {γ. Under the additional assumption that the input state ρ satisfies E γ pρ} ρ 1{2 n q ď η, we also have

δ ď p1 ´pqp1 ´βqη `p1 ´pqβτ. (4) 
It's not straightforward whether Eq. ( 4) provides any advantage over Eq. ( 3). Thus, in Fig. 2 we plot both bounds of δ as a function of ε, for a specific set of parameters, and we observe that no bound is always tighter, and thus the choice of the bound will depend on the value of ε. An upper bound of δ as a function of ε is also referred to as privacy profile, a concept introduced in [START_REF] Balle | Privacy amplification by subsampling: Tight analyses via couplings and divergences[END_REF].

Corollary 5.2. Let N p p¨q " p 1 2 `p1 ´pqMp¨q single-qubit a channel. N bk p is pε, δq-DP with respect to τ-neighbouring states with

δ ď max " 0, p1 ´eε q p k 2 k `p1 ´pk qτ * .
Let γ " 1 `pe ε ´1q{p1 ´pk q and β " e ε {γ. Under the additional assumption that the input state ρ satisfies E γ pρ} ρ 1{2 k q ď η, we also have δ ď p1 ´pk qp1 ´βqη `p1 ´pk qβτ.

Bounding privacy with the purity

Our results improve the prior bounds under the additional assumption that the divergence E γ pρ}1{2 n q is relatively small. The value of E γ pρ}1{2 n q can be thought as a "distance" between the state ρ and the maximally mixed state, thus small values of E γ pρ}1{2 n q are associated to high levels of noise. Hence, we can connect it to the purity Trrρ 2 s of the state ρ, or the related D 2 divergence. By definition, we have

Trrρ 2 s " 2 ´n`D 2 pρ}1{2 n q .
The hockey stick divergence and the Rényi divergence satisfy the following relationship ( [START_REF] Tomamichel | Quantum information processing with finite resources: mathematical foundations[END_REF], Proposition 6.22) E e ε pρ}1{2 n q ď δ, [START_REF] Chaudhuri | Differentially private empirical risk minimization[END_REF] where ε " D 2 pρ}1{2 n q ´logp1 ´?1 ´δ2 q ď D 2 pρ}1{2 n q `logp2{δ 2 q. We also note that two states with low purity are also close in hockey-stick divergence:

E γ pρ}σq ď E 1 pρ}σq ď E 1 pρ}1{2 n q `E1 pσ}1{2 n q.
And then E 1 pρ}1{2 n q " 1 2 }ρ ´1{2 n } 1 can be bounded either with the quantum Bretagnolle Huber inequality (Lemma B.1) or the Pinsker's inequality. Now, we show how Corollary 5.1 and Corollary 5.2 can be rephrased in terms of the purity of the input state. 3)) with the novel upper bound provided in this section (Eq. ( 4)). We emphasise that each bound outperforms the other for some values of ε. We assumed that the input state satisfy D 2 pρ}1{2 n q ď 0.5, n " 15 and p " 0.5. The upper bound on τ is derived from }ρ ´σ}

1 ď }ρ ´1{2 n } 1 `}ρ ´1{2 n } 1 ď 2 a
2D 2 pρ}1{2 n q, i.e. combining the triangle inequality and the Pinsker's inequality. Proof. The proof follows by plugging the relation between purity and hockey-stick divergence into Corollary 5.1. We have D 2 pρ}1{2 n q ď log 2 pζq `n, and hence, by Eq. ( 5),

E γ pρ}1{2 n q ď b 2nζ 1 log 2 γ ´1 :" η,
which satisfies the hypothesis of Corollary 5.1.

Proceeding in a similar way can also prove a purity-based bound for local channels.

Corollary 5.4. Let N p p¨q " p 1 2 n `p1 ´pqMp¨q a single-qubit channel and assume that N bk p acts on state ρ with bounded purity Trrρ 2 s ď ζ ă 1. Let γ " 1 `pe ε ´1q{p1 ´pk q, β " e ε {γ and

η " b 2nζ 1 log 2 γ ´1.
Then N p is pε, δq-DP with respect to τ-neighbouring states with δ ď p1 ´pk qp1 ´βqη `p1 ´pk qβτ.

Privacy via classical post-processing

Now, we show that the output of a quantum measurement can be privatised by adding classical noise. This result is particularly interesting since firstly, it provides a practical approach for using the existing tools and techniques from classical differential privacy to privatize the outputs of our quantum systems and algorithms, and secondly allows us to be able to combine classical noise with the output distributions resulting from a quantum measurement. In particular, we can account for quantum and classical noise in the analysis by noting that quantum noisy channels contract the trace distance between any two quantum states, and, moreover, the privacy guarantees obtained by adding classical noise are inversely proportional to the trace distance between two neighbouring states.

Lemma 5.2. Let ρ, σ such that 1 2 }ρ ´σ} 1 ď τ. Let M be a POVM measurement and Λ a classical channel such that @x, x 1 P rangepMq : E e ε pΛpxq}Λpx 1 qq ď δ. Then we have that E e ε 1 pΛpMpρqq}ΛpMpσqqq ď τδ, where ε 1 " logp1 `τpe ε ´1qq, which for small ε gives ε 1 » τε.

Proof. Let ν :" Mpρq and ν 1 :" Mpσq. We have that d TV pν, ν 1 q :" η ď τ, which follows from the data processing inequality. Moreover, there always exists some distributions ν 0 , ν 1 , ν 1 1 such that ν " p1 ´ηqν 0 `ην 1 , ν 1 " p1 ´ηqν 0 `ην 1 1 .

The above identities are discussed in detail in ( [START_REF] Balle | Privacy amplification by subsampling: Tight analyses via couplings and divergences[END_REF], Section 3). We also have,

maxtE e ε pΛpν 1 q}Λpν 0 qq, E e ε pΛpν 1 q}Λpν 1 1 qqu ď δ
This follows by noting that ν 0 , ν 1 , ν 1 1 are supported in rangepMq and applying the (standard) joint-convexity of the hockey-stick divergence. By advanced joint convexity (Lemma B.2), we have that for all states ρ 0 , ρ 1 , ρ 2 and γ 1 " 1 `p1 ´pqpγ ´1q, E γ 1 ppρ 0 `p1 ´pqρ 1 }pρ 0 `p1 ´pqρ 2 q ď p1 ´pqp1 ´βqE γ pρ 1 }ρ 0 q `p1 ´pqβE γ pρ 1 }ρ 2 q, Then, E e ε 1 pΛpMpρqq}ΛpMpσqqq ď τδ.

Lemma 5.2 is stated in terms of a general classical noisy channel. In the following theorem we consider the special cases of the Laplace and Gaussian mechanisms, two noisy channels widely used in many differentially private classical algorithms and defined in Section 2.2. Theorem 5.3. Let M a measurement with range ra, a `∆s for a P R.

• (Laplace mechanism) Let Λ L,b the Laplace noise of scale b. Then Λ L,b pMp¨qq is ε 1 -DP with respect to τ-neighbouring states, where ε 1 " logp1 `τpe ∆{b ´1qq.

• (Gaussian mechanism) Let Λ G,σ the Gaussian noise of variance σ 2 ě 2 lnp1.25{δq∆ 2 {ε 2 . Then Λ G,σ pMp¨qq is pε 1 , δ 1 q-DP with respect to τ-neighbouring states, where ε 1 " logp1 `τpe ε ´1qq and δ 1 " τδ.

Proof. The theorem follows by replacing the channel Λ in Lemma 5.2 with the Laplace and Gaussian noise, respectively.

Implications for quantum-inspired sampling

As the trace distance generalizes the total variation distance, the range of applicability of Theorem 5.3 includes also classical algorithms. In particular, we show here an application for private quantum-inspired sampling. In quantum-inspired algorithms [START_REF] Tang | A quantum-inspired classical algorithm for recommendation systems[END_REF][START_REF] Tang | Quantum principal component analysis only achieves an exponential speedup because of its state preparation assumptions[END_REF][START_REF] Gilyén | Quantum-inspired low-rank stochastic regression with logarithmic dependence on the dimension[END_REF][START_REF] Chia | Quantum-inspired sublinear classical algorithms for solving low-rank linear systems[END_REF][START_REF] Chia | Sampling-Based Sublinear Low-Rank Matrix Arithmetic Framework for Dequantizing Quantum Machine Learning[END_REF], a classical vector u P C N is accessed through quantum-inspired sampling: i.e. an entry u i is sampled with probability proportional to |u i | 2 . This is equivalent to encoding u into the state

|uy " 1 }u} 2 N ÿ i"1 u i |iy ,
and performing a computational-basis measurement. Let p u be the distribution induced by such measurements. Say that u " u 1 if u and u 1 differ in only one entry. In particular, let u i " u 1 i for all i ‰ j.

|}u} 2 2 ´}u 1 } 2 2 | " ˇˇˇˇÿ i |u i | 2 ´ÿ i |u 1 i | 2 ˇˇˇď ˇˇˇˇˇÿ i‰j |u i | 2 ´ÿ i‰j |u 1 i | 2 `|u j | 2 ´|u 1 j | 2 ˇˇˇˇˇď maxt|u j | 2 , |u 1 j | 2 u
It's easy to see that p u and p u 1 are close in total variation distance.

|p u ´pu 1 | tv " 1 2 ÿ i ˇˇˇ| u i | 2 }u} 2 2 ´|u 1 i | 2 }u 1 } 2 2 ˇˇď 1 2 ¨ÿ i‰j |u i | 2 ˇˇˇ1 }u} 2 2 ´1 }u 1 } 2 2 ˇˇˇ`ˇˇˇˇˇ| u j | 2 }u} 2 2 ´|u 1 j | 2 }u 1 } 2 2 ˇˇˇˇ' ď 1 2 ˜mint}u} 2 2 , }u 1 } 2 2 u maxt|u j | 2 , |u 1 j | 2 u }u} 2 2 }u 1 } 2 2 `|u j | 2 }u} 2 2 `|u 1 j | 2 }u 1 } 2 2 ḑ 3 2 max # |u j | 2 }u} 2 2 , |u 1 j | 2 }u 1 } 2 2 + :" α.
Then, by subadditivity of the total variation distance,

|p bm u ´pbm u 1 | tv ď mα.
We will show the intuitive fact that quantum-inspired subsampling amplifies DP. First, we can consider the encoding u Þ Ñ p bm u and derive the following special case of Theorem 5.3. • (Gaussian mechanism) Let Λ G,σ the Gaussian noise of variance σ 2 ě 2 lnp1.25{δq∆ 2 {ε 2 . Then Λ G,σ pSp¨qq is pε 1 , δ 1 q-DP, where ε 1 " logp1 `αmpe ε ´1qq and δ 1 " αmδ.

The approach described above is tailored to noise-adding mechanisms. In Appendix D we provide a more general result that applies to any private mechanism and it builds upon prior work on privacy amplification by subsampling [START_REF] Balle | Privacy amplification by subsampling: Tight analyses via couplings and divergences[END_REF][START_REF] Ullman | Cs7880: Rigorous approaches to data privacy[END_REF].

Differential privacy for pΞ, τq-neighbouring states

While in Section 5 we provided tighter bounds for quantum differential privacy with respect to states with bounded trace distance, here we add two additional ingredients: the locality of the measurements and the generalised neighbouring relationship defined in Section 4. Under these stronger assumptions, we can improve the privacy guarantees of local noisy channels and classical post-processing. First, we need to introduce the following quantity. Let Ξ Ď Pprnsq, i.e. Ξ is a collection of subsets of rns. The worst-case quantum sensitivity of O with respect to Ξ is defined as ∆ Ξ pOq :" max IPΞ ∆pO; Iq.

We will omit the index Ξ and simply write ∆pOq when there is no ambiguity.

So, if O " ř n i"1 Z i and Ξ " tt1u, t2u, . . . , tnuu, the worst-case quantum sensitivity equals ∆pOq " 2. This is consistent with the fact that, if ρ and σ satisfy Tr j ρ " Tr j σ, then all the terms but Z j induce the same distributions when measured on either ρ or σ. Moreover, the outcome of term Z j will be either 1 or ´1, then it belongs to an interval of length 2. We can also consider the more general case where O ℓ "

ř n i"1 Â i`ℓ´1
j"i Z j and Ξ " tti, i `1, . . . , i ku| for i " 1, 2, . . . , n ´ku. It's easy to see that ∆pO ℓ q " 2k `4ℓ ´4. We can now state the first result of this section, concerning a class of local noisy channels, which includes the local Pauli noise. Theorem 6.1 (Generalised private measurement via local noisy channels). Let O " ř P c P P be an observable consisting of a weighted sum of commuting Pauli operators. Let M an arbitrary single qubit channel and let N p¨q " p1{2 `p1 ´pqMp¨q. Let k " max IPΞ |I|. Then O ˝N bn satisfies pε, δ k q-DP with respect to pΞ, τq-neighbouring states, where

δ k ď max " 0, p1 ´eε q p k 2 k `p1 ´pk qτ * .
Let γ " 1 `pe ε ´1q{p1 ´pq and β " e ε {γ. Under the additional assumption the the input state ρ satisfies E γ pρ}1{2 n q ď η, the following inequality also holds δ k ď p1 ´pk qp1 ´βqη `p1 ´pk qβτ.

Proof. Since ρ pΞ,τq " σ, there exists I P Ξ such that

Tr I ρ " Tr I σ and |I| ď k. (6) 
We also have

N bn pρq " p |I| ˆTr I Mpρq b 1 2 |I| ˙`p1 ´p|I| qMpρq.
The measurement O can be implemented by measuring each qubit in a different Pauli basis and then performing classical postprocessing. As quantum differential privacy is robust to postprocessing, we only need to prove that Pauli measurements preserve pε, δ k q-DP. We can assume without loss of generality that the qubits in the subsystem I c are measured first, since we assumed that O is a weighted sum of commuting Pauli operators, and hence the measurement order doesn't alter the overall statistics. Assume that measuring the subsystem I c produces the outcome y P t˘1u n´|I| . Eq. ( 6) implies that ppyq :" Prry is obtained on input ρs " Prry is obtained on input σs.

Denote by ρ y the post-measurement state produced by measuring the system I c and obtaining outcome y. Let T y be the quantum channel mapping ρ to ρ y . 

In order to prove that measuring O on N bn pρq preserves pε, δ k q-DP, it's sufficient consider the outcome y and the partial post-measurement state Tr I c T y pN bn pρqq. Thus we need to ensure that 

where the second line follows from the convexity of the hockey-stick divergence Eq. ( 22) and the third line follows from the stability of the hockey-stick divergence Eq. ( 23). Combining Eq. ( 7) with Eq. ( 8) gives the desired result:

E e ε pOpN bn pρqq}OpN bn pσqqq ď δ k .
We emphasise that the number of qubits n appearing in the guarantees of Corollary 5.2 is now replaced by k " max IPΞ |I|. Thus if k " polylogpnq, this new bound is exponentially tighter than the previous one. In a similar fashion, we can adapt Theorem 5.3 to the generalised neighbouring relationship. • (Gaussian mechanism) Let Λ G,σ the Gaussian noise of variance σ 2 ě 2 logp1.25{δq∆pOq 2 {ε 2 . Then Λ G,σ pOp¨qq is pε 1 , δ 1 q-DP with respect to pΞ, τq-neighbouring states, where ε 1 " logp1 `τpe ε ´1qq and δ 1 " τδ.

Proof. Proceeding as in the proof of Theorem 6.1, consider I P Ξ such that Tr I ρ " Tr I σ and let S I be the subset of all the Pauli strings that act non trivially on I. where σ 2 ě 2 logp1.25{δq∆pOq 2 {ε 2 , ε 1 " logp1 `τpe ε ´1qq and δ 1 " τδ.

We observe that similar results can be derived for multiple sources of noise, beyond the Laplace or the Gaussian channels, along the lines of Lemma 5.2. We leave it to the reader to extend Theorem 6.2 to alternative stochastic channels.

The cost of quantum differential privacy

Differential privacy, both in the classical and in the quantum setting, can be achieved by introducing noise into the computation, thus reducing the final accuracy. Intuitively, large values of ε can be attained with little loss in accuracy, while for ε " 0 the output is totally independent of the input. In particular, if an algorithm is ε-DP with respect to Hamming distance, we have that @x, x 1 : D 8 pApxq}Apx 1 qq ď εn, (

thus if ε " Op1{nq, any pair of inputs (not necessarily neighbouring) are mapped to outputs Op1q-close in max-divergence. This result follows from the fact that the max-relative entropy satisfies the triangle inequality (both in the classical and in the quantum cases), i.e. @ρ 1 , ρ 2 , σ : D 8 pρ 1 }ρ 2 q ď D 8 pρ 1 }σq `D8 pσ}ρ 2 q. We can pick a sequence of n `1 inputs x 0 , x 1 , . . . , x n such that x " x 0 , x 1 " x n and x i " x i`1 . Then iterating the triangle inequality yields Eq. ( 9). However, for most applications ε can be chosen as a constant independent of n, avoiding this undesired concentration of the output around a unique value.

A vast portion of the literature about differential privacy is devoted to optimising the tradeoff between the value of ε and the loss in utility. In this section we make a crucial observation: the privacy-utility tradeoff doesn't depend solely on the value of ε, but also on the notion of neighbouring inputs. Thus, the privacy-utility tradeoff is an important figure of merit for the comparison of different approaches to quantum differential privacy.

In particular, we argue that some prior definitions of neighbouring quantum states suffer from a poor tradeoff between privacy and accuracy, leading to a suboptimal scaling with respect to the number of qubits n. This is the case, for instance, if we require two neighbouring states to have bounded trace distance τ " Θp1q. We also provide a similar result for the Wasserstein distance of order 1.

Concentration inequalities for private measurements

It's well known that noisy quantum algorithms suffer from severe limitations, that often hinder quantum advantage. Prior works [START_REF] Stilck | Limitations of optimization algorithms on noisy quantum devices[END_REF][START_REF] De | Limitations of variational quantum algorithms: a quantum optimal transport approach[END_REF] showed that, if the noise exceeds a given threshold, the output of noisy devices is concentrated around the maximally mixed state, and then it can be efficiently approximated with a classical computer. Since quantum differential privacy involves the injection of noise, it's not surprising that similar concentration inequalities hold for quantum private algorithms. In the remainder of this section, we will show how this concentration affects the accuracy of private measurements. For the sake of simplicity, we will state our results in terms of simple, local observables such as O " ř n i"1 Z i . Similar results can be obtained for any observable with bounded Lipschitz constant, as also discussed in [START_REF] De | Limitations of variational quantum algorithms: a quantum optimal transport approach[END_REF], but our choice is sufficient to display the shortcomings of a poor choice of the neighbouring relationship. If we measure O on the maximally mixed state 1{2 n , the outcome satisfies a Gaussian concentration inequality [START_REF] De | Limitations of variational quantum algorithms: a quantum optimal transport approach[END_REF]:

Pr 1{2 n p|O| ě anq ď Ke ´a2 n , (10) 
for K " 1. So, if a state ρ satisfies D 8 pρ}1{2 n q ď ε, the definition of the quantum max-relative entropy yields, Pr

ρ p|O| ě anq ď e ε Pr 1{2 n p|O| ě anq ď K 1 e ´a2 n , (11) 
where K 1 " e ε . For the sake of simplicity, throughout this section, we consider the special case of pure differential privacy, i.e. pε, 0q-DP, but our results can be suitably extended to the more general approximate differential privacy, i.e. pε, δq-DP, under the assumption that δ ! 1. Consider a quantum channel Ap¨q and assume for the sake of simplicity that A is unital, i.e.

Ap1q " 1. We show that different neighbouring relationships Q " have a disparate impact on the accuracy. The first result is devoted to states with bounded trace distances.

Theorem 7.1 (Concentration inequality for bounded trace distance). Consider the observable O " ř n

i"1 Z i and let A be a unital quantum channel satisfying ε-DP with respect to τ-neighbouring states, i.e. D 8 pApρq}Apσqq ď ε if 1 2 }ρ ´σ} 1 ď τ. Assume τ " Θp1q. Then, for any input state ρ, the output Apρq satisfies the following concentration inequality:

Pr Apρq p|O| ě anq ď K 1 e ´a2 n ,
where K 1 " e Opεq .

Proof. For two arbitrary quantum states, we have

@ρ, σ : D 8 pApρq}Apσqq ď ε{τ. ( 12 
)
This can be seen by building the following chain :

ρ i " ρ maxp0, 1 ´iτq `σ minp1, iτq
We note that 1 2 }ρ i ´ρi`1 } 1 ď τ which implies D 8 pApρ i q}Apρ i`1 qq ď ε. Then Eq. ( 12) can be deduced by iterating the triangle inequality. Combining it with Eq. ( 11), we obtain @ρ : Pr Apρq p|O| ě anq ď Ke ´a2 n , where K " e ε{τ " e Opεq .

To showcase the implications of the Theorem 7.1, we set τ " 0.1 and we consider ρ :" |1 n y x1 n |. We remark that ρ is an eigenvector of O, with eigenvalue n. However, instead of measuring O directly, we can post-process ρ with a ε-DP channel A as defined in the statement of the theorem. Set ε " 1. In order to achieve an error smaller than, say, 0.5n, we need to ensure that the outcome is larger than 0.9n. Then Theorem 7.1 implies that the error is larger than 0.5n with high probability: Now, we provide a similar result for another neighbouring definition. In [START_REF] De | The quantum wasserstein distance of order 1[END_REF], the authors extend the Wasserstein distance of order 1 (or W 1 distance) to quantum states and suggest quantum differential privacy as a potential application of their work. Recall that the W 1 distance between the quantum states ρ and σ of H n is defined as

W 1 pρ, σq " min ˆn ÿ i"1 c i : c i ě 0, ρ ´σ " n ÿ i"1 c i ´ρpiq ´σpiq ¯, ρ piq , σ piq P S n , Tr i ρ piq " Tr i σ piq ˙.
The following theorem shows that the W 1 distance leads to the following undesired concentration inequality.

Theorem 7.2 (Concentration inequality for bounded W 1 distance). Consider the observable O " ř n i"1 Z i and let A be a unital quantum channel satisfying ε-DP with respect stated with W 1 distance bounded by 1, i.e. D 8 pApρ 1 q}Apρ 2 qq ď ε if W 1 pρ 1 , ρ 2 q ď 1. Then, for any input state ρ, the output Apρq satisfies the following concentration inequality:

Pr Apρq p|O| ě anq ď K 1 e ´a2 n ,
where K 1 " e ε pn ´e´ε pn ´1qq.

Proof. Quantum differential privacy with respect to bounded Wasserstein distance of order 1 can be expressed as:

W 1 pρ 1 , ρ 2 q ď 1 ùñ D 8 pApρ 1 q}Apρ 2 qq ď ε.
We show that even this definition causes the output state to be highly concentrated around zero, independent of the input state. In particular, we show that for two arbitrary quantum states ρ and σ, we have @ρ, σ :

D 8 pApρq}Apσqq ď ε 1 , ( 13 
)
where ε 1 " ε `logpn ´ne ´ε `e´ε q. This can be seen considering the mixture ρ 1 :" `1 ´1 n ˘ρ `σ n and noting that W 1 pρ, ρ 1 q ď 1. Then, by the definition of ε-differential privacy, Then the above example can be considered as a no-go result concerning pε, 0q-DP under Wasserstein distance of order 1. We emphasise that the main argument of Theorem 7.2 is based on the construction of a classical mixed state, and then it holds both for the classical and the quantum W 1 distance. On the other hand, one could define the neighbouring relationship solely on pure states and hence overcome our no-go result. However, it is not obvious whether this definition can lead to a good privacy-utility tradeoff. We leave this possibility as an open problem for future explorations.

ˆ1
We also remark that p0, δq-DP under the W 1 distance is equivalent to p0, δq-DP with respect to p1, 1q-neighbouring quantum states. Assume that a channel A is p0, δq-DP with respect to p1, 1q-neighbouring quantum states and let M " pM 1 , . . . , M k q be a POVM measurement

@ρ 1 p1,1q " ρ 2 @S Ď rks ÿ jPS Tr " M j pApρ 1 q ´Apρ 2 qq ‰ ď δ.
Then,

ÿ jPS Tr " M j pApρq ´Apσqq ‰ ď ÿ jPS n ÿ i"1 c i Tr " M j pApρ piq q ´Apσ piq qq ı " n ÿ i"1 c i ÿ jPS Tr " M j pApρ piqq ´Apσ piq qq ı ď n ÿ i"1 c i δ " W 1 pρ, σqδ,
where the last inequality follows from ρ piq p1,1q " σ piq . Since p1, 1q-neighbouring states satisfies W 1 pρ, σq ď 1, the equivalence follows.

A positive result for pℓ, τq-neighbouring states

We conclude this section with a positive result: adopting the definition introduced in Section 6, we can privately sample from an observable that approximates O " ř n i"1 Z i , with a small loss in accuracy. We remark that the special case ℓ " τ " 1 has already been studied in [START_REF] Aaronson | Gentle measurement of quantum states and differential privacy[END_REF]. Finally, we plot the upper bounds derived in this section in Fig. 3 and Fig. 4.

Privacy-preserving estimation of expected values

In this section, we provide differentially private mechanisms for estimating the expected values of observables given m copies of a quantum state. Despite their similarities, performing private measurements on a single state and privately estimating the expected value of these measurements given many copies are inherently different tasks. In principle, we could perform an ε-DP measurement on each copy and then average the results. Then the overall algorithm satisfies pε 1 , δ 1 q-DP with ε 1 « ε a m logp1{δ 1 q by advanced composition (Theorem 6 in [START_REF] Zhou | Differential privacy in quantum computation[END_REF]). However, this approach is highly suboptimal as the privacy loss (i.e. the parameter ε) grows as ? m. We present here a simpler and more efficient approach based on the concentration of measure, whose privacy loss decreases as m increases. Given an observable O and set of quantum states equipped with a relationship denoted as Q ", we'll define the average quantum sensitivity of O as follows:

∆pOq " max ρ Q "σ TrtOpρ ´σqu.
Notably, we will present a simple technique whose privacy loss is proportional to ∆pOq à1{m. This newly defined quantity is closely related to other notions introduced in prior work. Remark that the Lipschitz constant [START_REF] De | The quantum wasserstein distance of order 1[END_REF] can be recovered as a special case by considering as Qneighbouring the states with W 1 distance at most one, i.e. ρ Q " σ ðñ W 1 pρ, σq " 1. Moreover, if a quantum encoding ρp¨q is Q-neighbouring-preserving, then the above can be related to the classical definition of sensitivity introduced in Eq. ( 1). Consider the function f pxq " TrtOρpxqu, then

∆ f " max x"x 1 | f pxq ´f px 1 q| ď max ρpxq Q "ρpx 1 q |TrpOpρpxq ´ρpx 1 qq| ď max ρ Q "σ
|TrpOpρ ´σqq| :" ∆pOq

We now prove that there exists a simple differentially private algorithm consisting of measurements and classical post-processing that gives a suitable tradeoff between sensitivity and privacy. We first consider a general post-processing channel and then we provide more concrete bounds for the Laplace and Gaussian noises. Theorem 8.1. Consider a neighbouring relationship Q " over the set of quantum states S n . Let ρ bm be a collection of m copies of a quantum state ρ P S n and O an observable. Let Λp¨q be a classical channel with the following property. For δ 1 P p0, 1s and x, x 1 P R, |x ´x1 | ď ∆pOq `bm ´1 logp4{δ 1 q ùñ E e ε pΛpxq}Λpx 1 qq ď δ.

Consider the following algorithm A:

1. Measure O on each copy of ρ and collect the outcomes y 1 , . . . , y m .

2. Compute the average μ " 1 m ř m i"1 y i and output Λp μq.

Then the algorithm A is pε, δ `δ1 q-DP.

Proof. Consider two neighbouring quantum states ρ Q " σ. For X P tρ, σu, let μX the average obtained on input X bm . By Chernoff-Hoeffding's bound,

Pr " | μX ´TrrOXs| ě t 2 ȷ ď 2e ´mt 2 .
Hence, by union bound, PrrEs ď δ 1 :" 4e ´mt 2 , where E is the following event:

E :" "ˆˇˇμ ρ ´TrrOρs ˇˇě t 2 ˙_ ˆ| μσ ´TrrOσs| ě t 2 ˙* .
Conditioning on the complementary event E and observing that t " a m ´1 logp4{δ 1 q, we have,

| μρ ´μ σ | ď | μρ ´TrrOρs| `|TrrOρs ´TrrOσs| `|TrrOσs ´μ σ | ď ∆ `t " ∆ `bm ´1 logp4{δ 1 q.
This implies that, conditioning on E, E e ε pΛp μρ q}Λp μσ qq ď δ, equivalently, we have @S : PrrΛp μρ q P S|Es ď e ε PrrΛp μσ q P S|Es `δ.

Then we also have that, for all S PrrΛp μρ q P Ss " PrrΛp μρ q P S|Es PrrEs `PrrΛp μρ q P S|Es PrrEs ď PrrΛp μρ q P S|Es `δ1 ď e ε PrrΛp μσ q P S|Es `δ `δ1 ď e ε PrrΛp μσ q P Ss `δ `δ1 .

Finally, plugging the Laplace and the Gaussian channels in Theorem 8.1, we obtain the following corollary. Corollary 8.1. Let A, ρ bm and O as in Theorem 8.1 and let ∆ :" ∆pOq. The following privacy guar- antees hold.

• (Laplace noise) Let Λ L,b the Laplace channel of scale b :" p∆ `am ´1 logp4{δ 1 qq{ε. Then the algorithm A is pε, δ 1 q-DP.

• (Gaussian noise) Let Λ G,σ the Gaussian channel of variance

σ 2 ě 2 logp1.25{δqp∆ `bm ´1 logp4{δ 1 q 2 {ε 2 .
Then the algorithm A is pε, δ `δ1 q-DP.

Bounding the average quantum sensitivity

Here we provide several bounds for the quantum sensitivity based on different neighbouring relationships. The first bound is based on H ölder's inequality, i.e. |TrpLRq| ď }L} p }R} q for p ´1 `q´1 " 1, where } ¨}p is the Schatten p-norm. Say that ρ Q " σ if }ρ ´σ} p ď τ. Then applying H ölder's inequality yields

∆pOq ď }O} q τ.
For the special case of p " 1 (which corresponds to the trace distance) a stronger bound holds:

∆pOq " max ρ,σ:}ρ´σ} 1 ďτ TrrOpρ ´σqs ď 1 2 }O} 8 }ρ ´σ} 1 ď τ 2 }O} 8 .
Table 2: Here we summarize the results of Section 8.1. For each neighbouring relationship over quantum states, we list the corresponding average quantum sensitivity ∆pOq of an observable O.

ρ Q " σ ∆pOq }ρ ´σ} p ď τ τ}O} q 1 2 }ρ ´σ} 1 ď τ τ}O} 1 W 1 pρ, σq ď τ }O} Lip τ ρ pΞ,τq " σ mint 3 2 }O} Lip max IPΞ |I|τ, }O} Lip nτu
We can also consider a neighbouring relationship based on the Wasserstein distance of order

1, i.e. ρ Q " σ if W 1 pρ, σq ď τ.
Then the quantum sensitivity is proportional to the Lipschitz constant.

∆pOq " max ρ,σ:W 1 pρ,σqďτ

TrtOpρ ´σqu ď }O} Lip τ.

By Lemma A.2, we also have that if

ρ pΞ,τq " σ, then W 1 pρ, σq ď 3 2 max IPΞ |I|τ. This implies ∆pOq " max ρ,σ:ρ pΞ,τq " σ TrtOpρ ´σqu ď 3 2 }O} Lip max IPΞ |I|τ.
The above bounds for ∆pOq are listed concisely in Table [START_REF] Dwork | Calibrating noise to sensitivity in private data analysis[END_REF].

Private quantum machine learning

In this section, we demonstrate the applications of the results and tools we derived so far to variational quantum algorithms for machine learning. Let ρpθ; xq be the output of a variational quantum circuit. We will assume that the parameters θ are trained using a suitable (classical) dataset S " ps p1q , . . . , s pmq q. Given a test set X , we're asked to approximate a function f : R d Ñ R. Thus, we can use variational quantum algorithms to find a set of parameters θ that satisfy

@x P X : f pxq » TrpOρpθ; xqq,
where O is a suitable observable. Given this simple scenario, differential privacy can come in different flavours.

• Let x " px 1 , . . . , x d q P X be the input vector. Given a neighbouring relationship x " x 1 , we can ensure differential privacy with respect to the input x. This is particularly useful when x contains the sensitive information of multiple individuals or when x might be corrupted by an adversarial attack.

• In the alternative, we can require differential privacy with respect to the training set S " ps p1q , . . . , s pmq q, where S " S 1 if they differ only in a single entry s pjq . This notion of privacy is meant to protect the sensitive information of the individuals who compose the training set. Furthermore, it also enhances generalisation, i.e. it allows to upper bound of the discrepancy between the error on the training set and the generalisation error.

Private evaluation with respect to the input x

Given a suitable notion of neighbouring inputs x " x 1 , we want to find a neighbouring relationship over quantum states Q " such that ρp¨, θq is Q-neighbouring-preserving. In other terms, we need to ensure that

x " x 1 ùñ ρpx, θq

Q " ρpx 1 , θq.
First, we select the relationship Q according to Table [START_REF] Narayanan | How to break anonymity of the netflix prize dataset[END_REF]. If a single copy of ρpx, θq is available, we can make the measurement differentially private either by adding a final quantum noisy channel (Theorem 6.1) or by classical post-processing (Theorem 6.2). If, instead, we're able to prepare multiple copies of ρpx, θq, it's convenient to post-process the average outcome with classical noise. Then differential privacy is guaranteed by Corollary 8.1.

Certified adversarial robustness

Now, we outline the connection between differential privacy and adversarial robustness, which has been previously established in [START_REF] Lecuyer | Certified robustness to adversarial examples with differential privacy[END_REF] and extended to the quantum setting in [START_REF] Du | Quantum noise protects quantum classifiers against adversaries[END_REF][START_REF] Hirche | Benefits and detriments of noise in quantum classification[END_REF][START_REF] Huang | Certified robustness of quantum classifiers against adversarial examples through quantum noise[END_REF]. We consider a slightly different setting, known as k-class classification, where a classification algorithm A outputs a label y P rks on input x. For instance, for k " 2, we can consider an algorithm that outputs label 1 if x represents a dog and 2 if x represents a cat. Consider k observables O 1 , . . . , O k , and assume, for simplicity, that their spectrum lies in r0, 1s. The algorithm A works as follows.

1. On input x, for each i P rks, the algorithm measures the observable O i on the state ρpx, θq m times and stores the outcomes in y piq 1 , . . . , y piq m .

2. For each i P rks, let y piq " ř m j"1 y piq j .

3. A returns the index i ˚P rks such that i ˚" arg max y piq .

We adopt Proposition 1 in [START_REF] Lecuyer | Certified robustness to adversarial examples with differential privacy[END_REF] to the quantum setting.

Proposition 9.1 (Robustness condition). Let β P p0, 1s. Let ρp¨, θq be Q-neighbouring-preserving and assume that each of the m measurements in step (1) satisfies pε, δq-DP with respect to Q-neighbouring quantum states. For any input x, if for some i P rks,

y piq ą e 2ε max j‰i y pjq `p1 `eε qδ `d 2 m log ˆ4k β ˙, (14) 
then the algorithm A satisfies, for all x " x 1

PrrApxq " Apx 1 qs ě 1 ´β.

In this case, we say that the classifier A is β-robust to adversarial attacks.

Proof. Let x " x 1 . Since ρp¨, θq is Q-neighbouring-preserving, ρpx, θq

Q " ρpx 1 , θq.
The assumption that each measurement satisfies pε, δq-DP implies @i P rks, @F Ď rangepO i q : Pr ρpx,θq rO i P Fs ď e ε Pr ρpx 1 ,θq rO i P Fs `δ.

We first need to prove the following inequality. For all i, TrrO i ρpx, θqs ď e ε TrrO i ρpx 1 , θqs `δ. [START_REF] Feldman | Generalization for adaptively-chosen estimators via stable median[END_REF] Recall that the expectation of a non-negative random variable X can be expressed as 

EpXq

Assume, by contradiction, that Apxq ‰ Apx 1 q and Eq. ( 16) hold simultaneously Since Apxq ‰ Apx 1 q, there exists i ‰ i 1 such that y piq ą max j‰i y pjq and r y pi 1 q ą max j‰i r y pjq .

Putting them all together, we have Thus we obtained r y piq ą r y pi 1 q contradicting the assumptions Apxq ‰ Apx 1 q. This proves that Apxq " Apx 1 q with probability at least 1 ´β.

It's easy to see how the above proposition is related to adversarial attacks. Assume that an adversary has the capabilities of tampering with the input x by replacing it with x 1 such that x " x 1 . We remark that there's no unique way of choosing the neighbouring relationship in this context, as it is closely related to the capabilities of the adversary. Under the same assumptions of Proposition 9.1, the adversarial attack doesn't alter the output with high probability. The condition expressed in Eq. ( 14) can be interpreted as the classifier being "fairly confident" about its prediction. We also remark that Proposition 9.1 can be applied to virtually any algorithm A, even in the absence of an explicit private mechanism, since all algorithms are by default p0, τq-DP with respect to τ-neighbouring states. This can be easily checked from the properties of the trace distance.

Following [START_REF] Lecuyer | Certified robustness to adversarial examples with differential privacy[END_REF], given a distribution D over labeled inputs of the form px, f pxqq, we can define the certified accuracy RpAq of an pε, δq-DP algorithm A as follows

RpAq :" Pr px, f pxqq"D « pi ˚" f pxqq ^˜δ ă y pi ˚q ´e2ε max j‰i ˚ypjq ´gpk, β, mq 1 `eε ¸ff ,
where gpk, β, mq :" a 2m ´1 log p4k{βq and i ˚" arg max y piq . In other terms, R is a lower bound on the probability that an instance is classified correctly and the classification is β-robust to adversarial attacks. We remark that R can be easily estimated by computing the fraction of the test set that is classified correctly and, simultaneously, satisfies Eq. ( 14).

Numerical results. Finally, we complement our theoretical analysis with a numerical simulation implemented in PennyLane. We consider a classification task based on the first two classes of the famous IRIS dataset and each input x " px 1 , x 2 , x 3 , x 4 q is susceptible to be perturbed by an adversarial attack. We assume that the adversary can select a single entry x i and map it to x 1 i with |x i ´x1 i | ď τ, for some threshold 0 ď τ ď 1. We trained a simple 4-qubit binary classifier, based on the variational circuit depicted in Fig. 5, whose gates are parametrised by a trainable vector θ and the input vector x. Hence, the output is measured according to O " 1 8 ř 4

i"1 pZ i `1q and the classifier outputs 0 if the outcome is larger than 0.5 and 1 otherwise. It's easy to see that this encoding is p1, τq-privacy-preserving with respect to the neighbouring definition induced by the adversarial attack. The circuit is ended by a final layer of local depolarising noise N bn p , which ensures pε, δ 1 q-differential privacy with respect to p1, τq-neighbouring states, with δ 1 defined as in Theorem 6.1. We trained the model with the Adam optimiser [START_REF] Diederik | Adam: A method for stochastic optimization[END_REF] with several noise levels p and then we used the test set to estimate the certified accuracy for each p, and we plotted it against the threshold τ in Fig. 6. The results show that the noise level should be set according to attack threshold τ, as for τ ď 0.2 the circuit with p " 0.1 outperforms the others, while for τ ě 0.2 the circuit with p " 0.3 achieves the best certified accuracy.

Our simulation differs from previous experiments in multiple ways. First, we remark that our simulation combines local noisy channels with the novel neighbouring relationship we introduced in the present paper. In contrast to this, the simulation in [START_REF] Du | Quantum noise protects quantum classifiers against adversaries[END_REF] is based on τneighbouring states and ensures privacy via multiple layers of global depolarizing noise. On the other hand, [START_REF] Huang | Certified robustness of quantum classifiers against adversarial examples through quantum noise[END_REF] combines local noisy channels with τ-neighbouring states, resulting in privacy guarantees that degrade exponentially fast as the number of qubits increases. This stems from the fact that in Lemma 3 in [START_REF] Huang | Certified robustness of quantum classifiers against adversarial examples through quantum noise[END_REF], the authors show quantum differential privacy with ε " logp1 `τ{p n q » τ{p n . In addition, both [START_REF] Du | Quantum noise protects quantum classifiers against adversaries[END_REF] and [START_REF] Huang | Certified robustness of quantum classifiers against adversarial examples through quantum noise[END_REF] are based on ε-differential privacy while Proposition 9.1 is stated in terms of pε, δq-differential privacy. This is particularly useful to assess the certified accuracy of various noise regimes, including the case with no noise at all (p " 0). 
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Private prediction with respect to the training set S

Training a variational quantum algorithm involves finding a set of parameters θ ˚that minimizes a loss function Lpθ, Sq " 1 m ř m i"1 TrtOpy i qρpθ; x i qu " 1 m ř m i"1 ℓpθ, s i q with respect to a given training set S " ps 1 , . . . , s m q where s i " px i , y i q. In this setting, we let S and S 1 be neighbouring if Di P rms, @j ‰ i : s j " s j , i.e. if they differ in at most one element. Despite the existence of quantum algorithms for optimising a loss function, they're often not suitable for near-term devices. In most near-term applications, a variational quantum circuit is paired with a classical optimiser. Thus, standard techniques for differentially private (classical) optimisation can be adapted [START_REF] Bassily | Private empirical risk minimization: Efficient algorithms and tight error bounds[END_REF][START_REF] Abadi | Deep learning with differential privacy[END_REF]. For instance, Watkins et al. [START_REF] William M Watkins | Quantum machine learning with differential privacy[END_REF] implements the algorithm for private stochastic gradient descent (SGD) provided in [START_REF] Abadi | Deep learning with differential privacy[END_REF] to optimize the parameters of a variational quantum circuit, achieving good empirical performance. The technique provided in [START_REF] Abadi | Deep learning with differential privacy[END_REF] involves a procedure known as gradient clipping, which consists in rescaling the gradient ∇ θ ℓpθ, s i q to ensure that its ℓ 2 norm is bounded by a suitable constant C, i.e. }∇ θ ℓpθ, s i q} 2 ď C. Then, privacy is ensured by the addition of Gaussian noise with variance proportional to C 2 on each estimate of the gradient. Instead of clipping the gradient, alternative techniques such as [START_REF] Bassily | Private empirical risk minimization: Efficient algorithms and tight error bounds[END_REF], estimates an upper bounds UB, where @θ : }∇ θ ℓpθ, s i q} 2 ď UB. and add Gaussian noise proportional to UB 2 on each estimate of the gradient.

Here we show that UB can be easily estimated for some classes of variational quantum circuits. Assuming ℓ is differentiable with respect to θ we have |ℓpθ, s i q ´ℓpθ 1 , s i q| ď UB}θ ´θ1 } ℓ 2 ùñ }∇ θ ℓpθ, s i q} 2 ď UB.

For θ " pθ 1 , . . . , θ d q, assume that each coordinate θ j is encoded via a single gate Hamiltonian encoding, i.e. e ´iθ j H j with }H i } 2 ď 1 . Moreover, assume that the output state is produced by a 1D circuit with bounded depth L (and thus the light-cone of each single qubit gate is upper bounded by 2L). As shown in Appendix C, the Hamiltonian encoding ρp¨, s i q is pΞ, τqneighbouring-preserving, where

τ ď c d 2 }θ ´θ1 } 2 and max IPΞ |I| ď 2L.
Hence, we have |ℓpθ, s i q ´ℓpθ 1 , s i q| ď |TrtOpy i qρpθ; x i q ´TrtOpy i qρpθ 1 ; x i qu| ď }Opy i q} Lip W 1 pρpθ; x i q, ρpθ 1 ;

x i qq ď 3L c d 2 }Opy i q} Lip }θ ´θ1 } 2 .
And then

@θ : }∇ θ ℓpθ, s i q} 2 ď 3L c d 2 }Opy i q} Lip .

Generalisation

We conclude by recalling the connection between differential privacy and generalisation. Given a randomised algorithm M : X m ˆX Ñ r0, Bs and two datasets S, S 1 P X m we define the following quantity:

E S rMpSqs :" 1 m ÿ zPS E M rMpS, zqs, E S 1 rMpSqs :" 1 m ÿ z 1 PS 1 E M rMpS, z 1 qs.
Lemma 9.1 (Lemma 6.4, [START_REF] Feldman | Generalization for adaptively-chosen estimators via stable median[END_REF]). Let S P X m and x P X . Let M be an algorithm that on input pS, xq outputs a value y P r0, Bs. Assume that M is pε, δq-differentially private with respect to S, where S " S 1 if they differ in at most one entry. Let P be an arbitrary distribution over X . Then: E S,S 1 "P m rpE S 1 rMpSqsq k s ď e k 2 ε E S"P m rpE S 1 rMpSqs `kδBq k s.

We also define E P rMpSqs :" E z"P, M rMpS, zqs. Clearly, E S 1 "P n rE S 1 rMpSqss " E P rMpSqs.

Moreover, as noted in [START_REF] Feldman | Generalization for adaptively-chosen estimators via stable median[END_REF], standard concentration inequalities implies that E S 1 rMpSqs is strongly concentrated around E P rMpSqs. Note that for MpS, px, yqq " ℓpM 1 pS, xq, yq, E S rMpSqs " E S rℓpM 1 pSqqs and E P rMpSqs " E P rℓpM 1 pSqqs, in other words these are exactly the empirical and the expected loss of the predictor given by M 1 .

In case the support of ρ is not contained in that of σ, all the divergences above are defined to be `8. In the limit α Ñ 1, the quantum Petz-Rényi divergence reduces to the quantum relative entropy, i.e., lim αÑ1 D α pρ}σq " Dpρ}σq " Trrρplog ρ ´log σqs. We also consider the divergence obtained by taking the limit α Ñ 8, known as quantum max-divergence, D 8 pρ}σq " inftλ : ρ ď e λ σu, and the related quantum smooth max-divergence [START_REF] Hirche | Quantum differential privacy: An information theory perspective[END_REF],

D δ 8 pρ}σq " inf ρPB δ pρq D 8 pρ}σq,
where B δ pρq " tρ : ρ : " ρ ě 0 ^}ρ ´ρ} 1 ă 2δu. Similarly to its classical counterpart, the quantum (smooth) max-divergence is at the heart of our work as it occurs in the definition of differentially private quantum channels.

Rényi divergences also play a key role in the analysis of quantum algorithms on noisy devices, as shown by the following result, which follows from Corollary 5.6 in [START_REF] Hirche | On contraction coefficients, partial orders and approximation of capacities for quantum channels[END_REF].

Lemma A.1 (Supplementary Lemma 6, [START_REF] Wang | Noise-induced barren plateaus in variational quantum algorithms[END_REF]). Consider a single instance of the noise channel N " N 1 b ¨¨¨b N n where each local noise channel N j is a Pauli noise channel that satisfies N j pσq " q σ σ for σ P tX, Y, Zu and

|q σ | ă 1. Let q " a maxt|q X |, |q Y |, |q Z |u. Then, we have D 2 pN pρq}1{2 n q ď q 2 D 2 pρ}1{2 n q. (18) 
The (standard) joint convexity of the Rényi divergence for α P r0, 8s is proven in [START_REF] Van Erven | Ré nyi divergence and kullback-leibler divergence[END_REF] (Theorem 13). For the max divergence have

D 8 p ÿ i λ i P i } ÿ i λ i Q i q ď max i D 8 pP i }Q i q.
For the smooth max divergence, we can easily prove the statement from scratch. Assume P i pxq ď e ε Q i pxq `δ:

ÿ i λ i P i pxq ď ÿ i λ i pe ε Q i pxq `δq " e ε ˜ÿ i λ i Q i pxq ¸`δ.

A.3 The quantum hockey-stick divergence

The quantum hockey-stick divergence was first introduced in [START_REF] Sharma | On the strong converses for the quantum channel capacity theorems[END_REF], in the context of exploring strong converse bounds for the quantum capacity, and further investigate in [START_REF] Hirche | Quantum differential privacy: An information theory perspective[END_REF][START_REF] Hirche | Quantum rz'enyi and f -divergences from integral representations[END_REF] in the context of quantum differential privacy. It is defined as

E γ pρ}σq :" Trpρ ´γσq `, (19) 
for γ ě 1. Here X `denotes the positive part of the eigendecomposition of a Hermitian matrix X " X `´X ´. In [START_REF] Sharma | On the strong converses for the quantum channel capacity theorems[END_REF] it was noted that this quantity is closely related to the trace norm via

E γ pρ}σq " 1 2 }ρ ´γσ} 1 `1 2 pTrpρq ´γTrpσqq, (20) 
so for ρ, σ quantum states, E 1 pρ}σq " 1 2 }ρ ´σ} 1 equals the trace distance. We also state some useful properties of the hockey-stick divergence proven in ( [START_REF] Hirche | Quantum differential privacy: An information theory perspective[END_REF], Proposition II.5).

• (Triangle inequality) For γ 1 , γ 2 ě 1 and ρ, σ P S n , we have

E γ 1 γ 2 pρ}σq ď E γ 1 pρ}τq `γ1 E γ 2 pτ}σq. (21) 
• (Convexity) Let γ 1 , γ 2 ě 1, ρ " ř x ppxqρ x and σ " ř x qpxqσ x with ρ x , σ x P S n , we have

E γ 1 γ 2 pρ}σq ď ÿ x ppxqE γ 1 pρ x }σ x q `γ1 E γ 2 p p} qq, (22) 
where p and q are non-normalised distributions ppxq " ppxqtrσ x and qpxq " qpxqtrσ x , respectively. This also implies convexity and joint convexity.

• (Stability) For γ ě 1 and ρ, σ, τ P S n , we have

E γ pρ b τ}σ b τq " tr rτs E γ pρ}σq. (23) 

A.4 The Wasserstein distance of order 1

We adopt the definition of quantum Wasserstein distance of order 1 proposed in [START_REF] De | The quantum wasserstein distance of order 1[END_REF]. This is based on the following notion of neighbouring quantum states, which also arises in the context of differentially private measurements [START_REF] Aaronson | Gentle measurement of quantum states and differential privacy[END_REF]. We say that ρ and σ P S n are neighbouring if they coincide after discarding one qudit, i.e., if Tr i ρ " Tr i σ for some i P rns. The quantum W 1 distance between the quantum states ρ and σ of H n is defined as The Wasserstein distance of order 1 and the trace distance are within a multiplicative factor n,

1 2 }ρ ´σ} 1 ď W 1 pρ, σq ď n 2 }ρ ´σ} 1 . (24) 
We also define the quantum Lipschitz constant of a self-adjoint linear operator H P O n :

}H} L " max iPrns pmaxpTrrHpρ ´σqs : ρ, σ P S n , Tr i ρ " Tr i σqq.

From the definition of Wasserstein distance, we can readily derive that TrrHpρ ´σqs ď }H} L W 1 pρ, σq.

We also need the following technical lemma that can be used to upper bound the quantum W 1 distance under the action of a local evolution. Lemma A.3 (Proposition IV.8, [START_REF] Hirche | Quantum differential privacy: An information theory perspective[END_REF]). Given a noisy circuit A over n qubits, consisting in L layers interspersed by local depolarising noise of parameter 0 ď p ď 1, we assume that each layer of the circuit is a quantum channel of light-cone I. Then, we have that for any two input states ρ, σ we have W 1 pApρq, Apσqq ď p2|I|p1 ´pqq L W 1 pρ, σq, and hence, 1 2 }Apρq ´Apσq} 1 ď n 2 p2|I|p1 ´pqq L }ρ ´σ} 1 ,

In other words, the trace distance between any two output states vanishes in logarithmic depth as soon as p satisfies 2|I|p1 ´pq ă 1.

B Improved bounds for quantum divergences

We present two technical contributions that establish tighter bounds for quantum divergences. First, we prove here a quantum version of the Bretagnolle-Huber (BH) inequality [START_REF] Bretagnolle | Estimation des densités: risque minimax[END_REF][START_REF] Clément | A short note on an inequality between kl and tv[END_REF]. The proof closely follows the one of the classical BH inequality, and for this reason the quantum BH can be regarded as a folklore result. However, we include here the complete proof since, to the best of our knowledge, it doesn't appear in any previous reference. We remark that a different quantum generalisation of the BH inequality result was provided in [START_REF] Park | Correlations in local measurements and entanglement in many-body systems[END_REF] in the context of local measurements.

Lemma B.1 (Quantum Bretagnolle-Huber inequality). For every ρ, σ we have

1 2
}ρ ´σ} 1 ď a 1 ´e´Dpρ}σq

Proof. We define the following quantity U :" ρ ´1σ,

V :" pU ´1q `, W :" 1 `V ´U " pU ´1q

´.

It's well known that

TrpρVq " Trpσ ´ρq `" 1 2 }ρ ´σ} 1 ,

TrpρWq " Trpσ ´ρq

´" 1 2 }ρ ´σ} 1 .

Moreover, remark that p1 `Vqp1 ´Wq " U and hence log U " logp1 `Vq `logp1 ´Wq. Applying the Jensen's inequality, we obtain Exponentiating both sides, rearranging and taking the square root, proves the lemma.

Following [START_REF] Balle | Privacy amplification by subsampling: Tight analyses via couplings and divergences[END_REF], we prove a quantum version of the advanced joint convexity of the hockeystick divergence. Lemma B.2 (Advanced joint convexity of the quantum hockey-stick divergence). For all states ρ 0 , ρ 1 , ρ 2 and γ 1 " 1 `p1 ´pqpγ ´1q, we have E γ 1 ppρ 0 `p1 ´pqρ 1 }pρ 0 `p1 ´pqρ 2 q ď p1 ´pqp1 ´βqE γ pρ 1 }ρ 0 q `p1 ´pqβE γ pρ 1 }ρ 2 q, where β " γ 1 {γ.

Proof. Recall that E γ pρ}σq :" Trpρ ´γσq `" 1 2 }ρ ´γσ} 1 `1 2 p1 ´γq.

We have E γ 1 ppρ 0 `p1 ´pqρ 1 }pρ 0 `p1 ´pqρ 2 q " Trrpρ 0 `p1 ´pqρ 1 ´γ1 ppρ 0 `p1 ´pqρ 2 qs " Trrpρ 0 `p1 ´pqρ 1 ´p1 `p1 ´pqpγ ´1qqppρ 0 `p1 ´pqρ 2 qs " p1 ´pqTrrρ 1 ´γpρ 0 p1 ´βq `βρ 2 qs `" p1 ´pqE γ pρ 1 }ρ 0 p1 ´βq `βρ 2 q ď p1 ´pqp1 ´βqE γ pρ 1 }ρ 0 q `p1 ´pqβE γ pρ 1 }ρ 2 q, where the inequality follows from the (standard) joint-convexity of the quantum hockey-stick divergence.

C Quantum encodings

Quantum encodings, also known as quantum feature maps or quantum embedding, are classicalto-quantum functions mapping vectors to quantum states. In this section, we review some popular encodings and highlight their connection with various quantum distances and neighbouring relationships. We refer to [START_REF] Schuld | Supervised quantum machine learning models are kernel methods[END_REF] for more details about the encodings and their corresponding kernel (i.e. the value of |xψ x |ψ x 1 y|2 for two vectors x, x 1 ). Throughout this section, we will show that encoding vectors close in various p-distance leads to states that are either close in trace distance or that can be mapped one into the other by a local operation. The results of this section are summarised in Table [START_REF] Narayanan | How to break anonymity of the netflix prize dataset[END_REF].

Amplitude encoding. A normalised vector x " px 1 , . . . , x 2 n q P C 2 n , }x} 2 " 1 can be represented by the amplitudes of a quantum state |ψ x y via x Þ Ñ |ψ x y " 

D Private quantum-inspired sampling

Our argument is similar to the one of (Problem 1.b, [START_REF] Ullman | Cs7880: Rigorous approaches to data privacy[END_REF]) for uniform subsampling, but we include the complete proof here for clarity. Given a normalised vector x " px 1 , . . . , x n q P C n , let |xy :" ř n i"1 x i |iy be the amplitude encoding defined in the previous section. Theorem D.1 (DP amplification by quantum-inspired sampling). For any x P C n , let s " ps 1 , . . . , s m q be the measurement outcomes in the computational basis of |xy bm . Denote S as the sampling mechanism that maps x into s. Let A be a pε, δq-DP algorithm that takes only s as input. Then A 1 " A ˝S is pε 1 , δ 1 q-DP, with ε 1 " logp1 `pe ε ´1qmpα `βqq and δ 1 " δmpα `βq.

Proof. We will use T Ď t1, . . . , nu to denote the identities of the m-subsampled elements s 1 , . . . , s m (i.e. their index, not their actual value). Note that T is a random variable and that the randomness of A 1 :" A ˝S includes both the randomness of the sample T and the random coins of A. Let x " x 1 be adjacent datasets and assume that x and x 1 differ only on some row t. Let s (or s 1 ) be a subsample from x (or x 1 ) containing the rows in T . Let F be an arbitrary subset of the range of A). For convenience, define p " pα `βqm. Note that, by definition of quantum amplitude encoding and by union bound, Prri P Ts ď m ˆPrr|xy collapses to state |iys ď mpα `βq :" p To show plogp1 `ppe ε ´1qq, pδq-DP, we have to bound the ratio PrrA 1 pxq P Fs ´pδ PrrA 1 px 1 q P Fs ď p PrrApsq P F|i P Ts `p1 ´pq PrrApsq P F|i R Ts ´pδ p PrrAps 1 q P F|i P Ts `p1 ´pq PrrAps 1 q P F|i R Ts by pp1 `pe ε ´1qq. For simplicity, define the quantities C " PrrApsq P F|i P Ts C 1 " PrrAps 1 q P F|i P Ts D " PrrApsq P F|i R Ts " PrrAps 1 q P F|i R Ts.

We can rewrite the ratio as PrrA 1 pxq P Fs ´pδ PrrA 1 px 1 q P Fs " pC `p1 ´pqD ´pδ pC 1 `p1 ´pqD .

Figure 2 :

 2 Figure 2: In this figure we compare the former upper bound from [24] (Eq. (3)) with the novel upper bound provided in this section (Eq. (4)). We emphasise that each bound outperforms the other for some values of ε. We assumed that the input state satisfy D 2 pρ}1{2 n q ď 0.5, n " 15 and p " 0.5. The upper bound on τ is derived from }ρ ´σ}1 ď }ρ ´1{2 n } 1 `}ρ ´1{2 n } 1 ď 2 a2D 2 pρ}1{2 n q, i.e. combining the triangle inequality and the Pinsker's inequality.

Corollary 5 . 3 . 1 log 2 γ

 5312 Let N p p¨q " p 1 2 n `p1 ´pqMp¨q a channel that acts on state ρ with bounded purity Trrρ 2 s ď ζ ă 1. Let γ " 1 `pe ε ´1q{p1 ´pq, β " e ε {γ and η " b 2nζ ´1. Then N p is pε, δq-DP with respect to τ-neighbouring states with δ ď p1 ´pqp1 ´βqη `p1 ´pqβτ.

Corollary 5 . 5 . 2 }u} 2 2. 2 |u j | 2 }u} 2 2

 552222 Let u, u 1 be neighbouring if they differ in at most one entry. Consider the oracle O u that returns a u i with probability |u i | For a P R and ∆ ě 0, let S a randomised algorithm with range ra, a `∆s that makes m queries to O u and assume that 3 ď α.• (Laplace mechanism) Let Λ L,b the Laplace noise of scale b. Then Λ L,b pSp¨qq is ε 1 -DP, where ε 1 " logp1 `αmpe ∆{b ´1qq.

Definition 6 . 1 (

 61 Worst-case quantum sensitivity). Let O be an observable expressed as a weighted sum of Pauli operators, O " ř PPtX,Y,Z,1u n c P P. Let I Ď rns and consider the subset S I of all the Pauli strings that act non trivially on I. The worst-case quantum sensitivity of O with respect to I is defined as ∆pO; Iq :" 2 ÿ PPS I |c P |.

  Tr I c T y pN bn pρqq " p |I| Tr I c T y ˆTr I Mpρq b 1 2 |I| ˙`p1 ´p|I| qTr I c T y pMpρqq " p |I| 1 2 |I| `p1 ´p|I| qTr I c T y pMpρqq :" p |I| 1 2 |I| `p1 ´p|I| qM 1 pρq. where the second equality follows from T y ´Tr I Mpρq b 1 2 |I| ¯" Tr I T pMpρqq b 1 2 |I| and we defined M 1 :" Tr I c ˝Ty ˝M. By Corollary 5.2, E e ε pTr I c T y pN bn pρqq}Tr I c T y pN bn pσqqq ď δ k .

p

  E e ε ˜ÿ y p y pTr I c T y pN bn pρqq b |yy xy|q › › › › ÿ y p y pTr I c T y pN bn pσqq b |yy xy|q ¸ď δpε, kq We also have, for all γ ě 1, E γ ˜ÿ y p y pTr I c T y pN bn pρqq b |yy xy|q y pTr I c T y pN bn pσqq b |yy xy|q ḑ ÿ y p y E γ `Tr I c T y pN bn pρqq b |yy xy| }Tr I c T y pN bn pσqq b |yy xy| ď ÿ y p y E γ `Tr I c T y pN bn pρqq}Tr I c T y pN bn pσqq ď max y E γ `Tr I c T y pN bn pρqq}Tr I c T y pN bn pσqq ˘,

Theorem 6 . 2 (

 62 Generalised private measurement via classical post-processing). Let ρ and σ two pΞ, τq-neighbouring quantum states, i.e. ρ pΞ,τq " σ. Let O be an observable, and denote O as a quantumto-classical channel implementing a measurement of O. • (Laplace mechanism) Let Λ L,b the Laplace noise of scale b. Then Λ L,b pOp¨qq is ε 1 -DP with respect to pΞ, τq-neighbouring states, where ε 1 " logp1 `τpe ∆pOq{b ´1qq.

  Pr Apρq p|n ´O| ď 0.5nq " Pr Apρq pO ě 0.5nq ď Pr Apρq p|O| ě 0.5nq ď e 10´0.25n and hence setting n " 100 we obtain Pr Apρq p|n ´O| ď 0.5nq ď 3 ˆ10 ´7.

Theorem 7 . 3 (

 73 Efficient private measurement for pℓ, τq-neighbouring states). Let O be the quantum to classical channel implementing a measurement of the observable O " ř n i"1 Z i . Assume that a state ρ satisfies Pr ρ r|O ´xOy ρ | ą as ď b. and let α :" 2ℓ logppe ε ´1qτ ´1`1q « 2ℓτε ´1. Then there exits a a quantum-to-classical channel O ε such that: 1. O ε is ε-DP with respect to pℓ, τq-neighbouring states. 2. The following concentration inequality holds: Prr|O ε pρq ´xOy ρ | ą a `tαs ď b `e´t . Proof. Let Λ L be the Laplace noise of magnitude α. The first part of the theorem follows directly from Theorem 5.3, by choosing O ε " Λ L ˝O. Moreover, if Y " Lappαq, then Prr|Y| ą t ¨αs " e ´t. Define the event E " t|Y| ď tαu. Then we have Prr|O ε pρq ´xOy ρ | ą a `tαs ď Prr|O ε pρq ´xOy ρ | ą a `tα|Es PrrEs `Prr|O ε pρq ´xOy ρ | ą a `tα|Es PrrEs ď Pr ρ r|O ´xOy ρ | ą as `Prr|Y| ą t ¨αs ď b `e´t . So, in particular, ρ " |1 n y x1 n |, we have that Pr ρ rO " xOy ρ s " 1 since ρ is an eigenvector of O. Then Theorem 7.3 yields Prr|O L pρq ´n| ă t ¨αs ě 1 ´e´t .

Figure 3 :

 3 Figure 3: Upper bounds on the quantum max-relative entropy between any two states under 1-DP for several neighbouring relationships and various values of n.

Figure 4 :

 4 Figure 4: Upper bounds on the probability of achieving error lower than 0.5n for a measurement of 1 n ř n i"1 Z i on the state |1 n y, for several neighbouring relationships and various values of n. We assumed the input state undergoes a 1-DP channel.

r y piq ě TrrO i ρpx 1 ,ě e ´εpy piq ´2tq ´e´ε δ ą max j‰i e ε y pjq `δ ě max j‰i r y pjq ě r y pi 1 q

 1 θqs ´t ě e ´εpTrrO i ρpx, θqs ´tq ´e´ε δ

Figure 5 :

 5 Figure5: The parametric quantum circuit used in the simulation. We placed the encoding gates after the trainable gates in order to produce a p1, τq-neighbouring-preserving encoding. The output state is measured according to the observable O " 1 8 ř 4i"1 pZ i `1q.

Figure 6 :

 6 Figure 6: This plot contains the values of the certified accuracy estimated for various noise levels p and various attack thresholds τ.

W 1 pρ, σq " min ˆn ÿ i" 1 cρ

 1 i : c i ě 0, ρ ´σ " piq , σ piq P S n , Tr i ρ piq " Tr i σ piq ˙.

Lemma A. 2 (

 2 Proposition 5,[START_REF] De | The quantum wasserstein distance of order 1[END_REF]). Let I Ď rns, and let ρ, σ P S n such that Tr I ρ " Tr I σ,W 1 pρ, σq ď |I| d 2 ´1 d 2 }ρ ´σ} 1 .

´Dpρ}σq ď

  Trrρ logpρ ´1σqs " Trrρ log Us " Trrρ logp1 `Vqs `Trrρ logp1 ´Wqs ď log Trrρp1 `Vqs `log Trrρp1 ´Wqs " logp1 ´TrrρVsq `logp1 ´TrrρWsq " log ˆ1 ´1 2 }ρ ´σ} 2 1 ˙.

  Thus, we can decompose O as O " O 1 `O2 , where O 1 " ř PRS I c P P and O 2 " O ´O1 " ř PPS I c P P. Assume without loss of generality that O 1 is measured first. Since Tr I ρ " Tr I σ and O 1 acts non trivially only on I c " rnszI, then this measurement produces no loss of privacy, i.e.Observe that O 2 is a measurement whose output is comprised into r´∆pOq{2, ∆pOq{2s. Moreover, let ρ y be the post-measurement state obtained when O 1 returns outcome y. As the trace distance is non-increasing, we have, Conditioning on input y, the output of O " O 1 `O2 lies in ry ´∆{2, y `∆{2s. Then Theorem 5.3 yields `ΛL,b pOpρ y qq}Λ L,b pOpρ y qq ˘ď 0.for ε 1 " logp1 `τpe ∆pOq{b ´1qq. Similarly, replacing the Laplace noise with the Gaussian noise and applying again Theorem 5.3,

	E e ε 1	˜ÿ y	ppyqΛ L,b pOpρ y qq	› › › ›	ÿ y	ppyqΛ L,b pOpρ y qq ḑ
	max y E e ε 1 E e ε ppyqΛ G,σ pOpρ y qq ˜ÿ y	› › › ›	ÿ y	ppyqΛ G,σ pOpρ y qq	ḑ
		max			
		@y : ppyq :" Pr		
			1 2	}ρ y ´σy } ď	1 2	}ρ ´σ} ď τ,

ρ rO 1 " ys " Pr σ rO 1 " ys. y E e ε `ΛG,σ pOpρ y qq}Λ G,σ pOpρ y qq ˘ď δ 1 ,

  Apσqs ď e ε pn ´e´ε pn ´1qqTrrM m Apρqs " e ε 1 TrrM m Apρqs, which implies Eq. (13). Then, for any input ρ, Apρq is ε-close to the maximally mixed state in quantum max-relative entropy, up to additive logarithmic factors. Applying Eq. (11) yields

	And thus			
			TrrM m Pr Apρq	p|O| ě anq ď K 1 e	´a2 n ,
	where where K " e ε 1	" e ε pn ´e´ε pn ´1qq.
	Proceeding similarly as for the trace distance, set ρ :" |1 n y x1 n | and ε " 1. Theorem 7.2
	implies that		
	Pr Apρq	p|n ´O| ď 0.5nq " Pr Apρq	pO ě 0.5nq ď Pr Apρq p|O| ě 0.5nq ď pen ´pn ´1qqe ´0.25n
	and hence setting n " 100 we obtain
			Pr Apρq p|n ´O| ď 0.5nq ď 2.4 ˆ10 ´9.
			´1 n	˙TrrM m Apρqs	`1 n	TrrM m Apσqs

" TrrM m Apρ 1 qs ď e ε TrrM m Apρqs

  TrrO i ρpx, θqs `δ, which proves Eq.[START_REF] Feldman | Generalization for adaptively-chosen estimators via stable median[END_REF]. It remains to show that the discrepancy between y piq " 1 TrrO i ρpx, θqs is small enough with high probability. To this end, we can use concentration of measure. By Chernoff-Hoeffding's bound, TrrO i ρpx, θqs ˘t with probability at least 1 ´2e ´2mt 2 . Denote by r y p1q , . . . , r y pkq the average of the measurements on the state ρpx 1 , θq. By union bound, with probability at least 1 ´4ke ´2mt 2 " 1 ´β we have that @i P rks : ˆypiq " TrrO i ρpx, θqs ˘t˙^ˆr y piq " TrrO i ρpx 1 , θqs ˘t˙.

						ż		
						"	PrrX ą tsdt.
						tě0		
	Combining this with differential privacy, we obtain	
							ż	
						TrrO i ρpx, θqs "		Pr	rO i ą tsdt
							tě0	ρpx,θq
		ż						
	ď e ε	tě0	Pr ρpx 1 ,θq rO i ą tsdt `δ " e ε m	ř m j"1 y	piq j and
	of Pr	» -	ˇˇˇˇˇ1 m	j"1 m ÿ	y	ˇˇˇˇˇě j ´TrrO i ρpx, θqs piq	t	fi fl ď 2e ´2mt 2 .
	and thus y piq "							

  High noise regime Now, assume that ρp¨q is an encoding post-processed by a channel A, consisting in L layers such that each of them has light-cone I and its followed by local depolarising noise with noise parameter p. If p satisfies 2|I|p1 ´pq ă 1, we have from Lemma A.3,1 2}Apρpxqq ´Apρpx 1 qq} 1 ď p2|I|p1 ´pqq L W 1 pρpxq, ρpx 1 qq q} 1 ď W 1 pρpxq, ρpx 1 qq ď min

	2 n ÿ j"1 }ρpxq ´ρpx 1 " x j |jy . For two normalised vectors x, x 1 we have pΞ,τq " ρpx 1 q we have |xψ For ρpxq 1 2 max IPΞ	|I|	3 2	τ, nτ

x |ψ x 1 y| " |x : x 1 | " ˇˇˇ1 ´1 2 }x ´x1 } 2 * .

Before dealing with the general case of pΞ, τq-neighbouring states, we provide several new results for τ-neighbouring states, i.e. states with trace distance bounded by τ. This corresponds

ˇˇˇ,
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A Preliminaries

We present here several technical tools that are used throughout the paper.

A.1 Schatten p-norms

Schatten p-norm can be used to define distances between linear operators. The Schatten p-norm of an operator A P LpH n q is given by }A} p :" rTrt|A| p us 1{p , where |A| :" ? A : A and p ě 1. For each p P r1, 8s, we consider the dual index q such that 1 p `1 q " 1. The H ölder inequality gives:

A.2 Rényi divergences

Differential privacy, both in the classical and the quantum settings, can be expressed in terms of information-theoretic divergences. For two probability measures P, Q the Rényi divergences of order α P p1, 8q are defined as

where we adopt the conventions that 0{0 " 0 and z{0 " 8 for z ą 0. In the limit α Ñ 1, the Rényi divergence reduces to the relative entropy, also known as the Kullback-Leibler divergence, i.e. lim αÑ1 D α pP}Qq " DpP}Qq " E x"P log Ppxq Qpxq . Moreover, by taking the limit α Ñ 8, we obtain the max-divergence

We will also need the related smooth max-divergence,

We emphasise that D δ 8 pP}Qq ď ε if and only if for every subset S,

PpSq ď e ε QpSq `δ.

Notably, the (smooth) max-divergence occurs in the definition of differential privacy. Now we introduce divergences for quantum states. We make use of the quantum Petz-Rényi divergences [START_REF] Mosonyi | On the quantum rényi relative entropies and related capacity formulas[END_REF][START_REF] Martin M Üller-Lennert | On quantum rényi entropies: A new generalization and some properties[END_REF] of order α P p1, 8q. For two states ρ, σ such that the support of ρ is included in the support of σ, they are defined as

where the second identity holds for any pair of normalised vectors. Hence,

Rotation encoding. Rotation encoding is a qubit-based embedding without any normalisation condition. Given a vector x in the hypercube r0, 2πs bn , the i th feature x i is encoded into the i th qubit via a Pauli rotation. For example, a Pauli-Y rotation puts the qubit into state |q i px i qy " cospx i q |0y `sinpx i q |1y. The data-encoding feature map is therefore given by ϕ : x Ñ ρpxq :" |ϕpxqy xϕpxq| with |ϕpxqy "

cospx k q q k sinpx k q 1´q k |q 1 , . . . , q n y .

Let I " ti : We can encode a real vector x " px 1 , ..., x n q into n joint coherent states,

Following [START_REF] Schuld | Supervised quantum machine learning models are kernel methods[END_REF][START_REF] Chatterjee | Generalized coherent states, reproducing kernels, and quantum support vector machines[END_REF], we have:

and hence,

Moreover, let I " ti : x i ‰ x 1 i u, where |I| " }x ´x1 } 0 . Hence, Tr I ρpxq " Tr I ρpx 1 q.

Hamiltonian encoding. Let x " px 1 , . . . , x N q P R N be a vector. Following Berberich et al. [START_REF] Berberich | Robustness of quantum algorithms against coherent control errors[END_REF], consider the following parameterised quantum circuit

consisting of N parametric unitary operators U i px i q P U n acting on the initial state |ψ 0 y. Let ρpxq :" |ψpxqy xψpxq|. These unitaries can also be written as U j px j q " e ´ix j H j , where the Hamiltonian H i " H : i generates the gate U i . The following result shows that quantum circuits are robust to slight perturbation of the classical parameters.

Lemma C.1 (Adapted from Theorem 2.2, [START_REF] Berberich | Robustness of quantum algorithms against coherent control errors[END_REF]). Let x, x 1 P R N . Upθq " e ´iθH . For any initial state |ψ 0 y we have

Remark also that for ρ, σ pure states we have }ρ ´σ} 1 " ? 2}ρ ´σ} 2 and for any vectors x, x 1 P R N we have }x ´x1 } 1 ď ? N}x ´x1 } 2 . Then we have:

It's easy to see that the circuits Upxq and Upx 1 q coincides excepts for }x ´x1 } 0 gates. In order to investigate the local structure of the output, we need to introduce some assumptions on the circuit architecture. For instance, assuming that the circuit has 1-dimensional connectivity and depth L, there exists I Ď rns, |I| ď 2L}x ´x1 } 0 , such that Tr I ρpxq " Tr I ρpx 1 q.

C.1 Noisy encodings

A case of interest is when the circuit Upxq is interspersed of L layers of local Pauli noise P q . Let C x be the channel describing the composition of unitaries and noise:

C x pρ 0 q " P bn q ˝UN px N qp¨qU N px N q : ˝Pbn q ˝¨¨¨˝P bn q ˝U1 px 1 qpρ 0 qU : 1 px 1 q Then by Lemma A.1, we get: D 2 pC x pρ 0 q}1{2 n q ď q 2L n.

and by Pinsker's inequality, 1 2

Alternatively, by the quantum Bretagnolle-Huber inequality (Lemma B.1),

And by the triangle inequality

Now we use the fact that, by pε, δq-DP, C ď mintC 1 , Du `δ. Plugging all together, we get pC `p1 ´pqD ´pδ ď ppe ε mintC 1 , Duq `p1 ´pqD ď ppmintC 1 , Du `pe ε ´1q mintC 1 , Duq `p1 ´pqD ď ppC 1 `pe ε ´1qppC 1 `p1 ´pqDqq `p1 ´pqD ď ppC 1 `p1 ´pqDq `ppe ε ´1qqppC 1 `p1 ´pqDq ď p1 `ppe ε ´1qqppC 1 `p1 ´pqDq,

where the third-to-last line follow from mintx, yu ď αx `p1 ´αqy for every 0 ď α ď 1. To conclude the proof, we rewrite the ratio and get the desired bound.

PrrA 1 pxq P Fs ´pδ PrrA 1 px 1 q P Fs ď 1 `ppe ε ´1q.