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Abstract. We propose two main contributions: first, we revisit the en-
cryption scheme Rank Quasi-Cyclic (RQC) [3] by introducing new ef-
ficient variations, in particular, a new class of codes, the Augmented
Gabidulin codes; second, we propose new attacks against the Rank Sup-
port Learning (RSL), the Non-Homogeneous Rank Decoding (NHRSD),
and the Non-Homogeneous Rank Support Learning (NHRSL) problems.
RSL is primordial for all recent rank-based cryptosystems such as Du-
randal [7] or LRPC with multiple syndromes [1], moreover, NHRSD and
NHRSL, together with RSL, are at the core of our new schemes.
The new attacks we propose are of both types: combinatorial and alge-
braic. For all these attacks, we provide a precise analysis of their com-
plexity.
Overall, when all of these new improvements for the RQC scheme are
put together, and their security evaluated with our different attacks, they
enable one to gain 50% in parameter sizes compared to the previous RQC
version. More precisely, we give very competitive parameters, around
11 KBytes, for RQC schemes with unstructured public key matrices. This
is currently the only scheme with such short parameters whose security
relies solely on pure random instances without any masking assumptions,
contrary to McEliece-like schemes. At last, when considering the case
of Non-Homogeneous errors, our scheme permits to reach even smaller
parameters.

Keywords: Rank Metric · Encryption · Code-Based Cryptography ·

Gabidulin Codes.

1 Introduction

Background on rank metric code-based cryptography. In the last decade,
rank metric code-based cryptography has evolved to become a real alternative to
traditional code-based cryptography based on the Hamming metric. The original
scheme based on rank metric was the GPT cryptosystem [18], an adaptation of

http://arxiv.org/abs/2207.01410v1
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the McEliece scheme in a rank metric context where Gabidulin codes [17], a rank
metric analogue of Reed-Solomon codes, were the masked codes. However, the
strong algebraic structure of these codes was successfully exploited for attacking
the original GPT cryptosystem and its variants with the Overbeck attack [34]
(see [32] for the latest developments). This situation is similar to the Hamming
metric where most of McEliece cryptosystems based on variants of Reed-Solomon
codes have been broken.

Besides the McEliece scheme where a secret code is masked through using
permutation, it is possible to generalize the approach by considering public key
matrices with trapdoor. Examples of such an approach are NTRU [26] or MDPC
[30] cryptosystems where the masking consists in knowing a very small weight
vector of the given public matrix. Such an approach was adapted for rank metric
through the introduction of LRPC codes [22], a rank metric analogue of MDPC.

The security of such type of cryptosystems relies on the general rank decoding
problem together with the computational indistinguishability of the public key (a
public matrix). The fact that the public matrix is used both for encryption and
decryption, permits to obtain very efficient schemes, at the cost of an inversion.
It is worth noticing that Loidreau’s scheme, which uses homogeneous LRPC
matrices in a McEliece context, seems to resist to structural attacks with an
homogeneous matrix of sufficiently high enough rank [29].

The RQC scheme. Another approach, proposed by Aleknovich in [5], permits
to rely solely on random instances of the Syndrome Decoding problem without
any masking of a public key. However, such an approach is strongly inefficient
in practice; a few years later a more optimized approach was proposed with
the HQC scheme [4], relying on Quasi-Cyclic codes. It has been generalized to
rank metric with the RQC scheme [3]. For these schemes, two type of codes are
used: a first random double circulant code permits to ensure the security of the
scheme when a second public code permits to decode/decrypt the ciphertext. In
RQC, Gabidulin codes are used as public decryption codes. Besides RQC, some
other variations were proposed in [21,37,20]. The main advantage of the RQC
cryptosystem compared to the LRPC cryptosystem is the fact that its security
reduction is done to random decoding instances whereas the LRPC approach
requires another indistinguishability assumption; however, this advantage comes
at a price since parameters are larger for RQC than for LRPC.

The RQC scheme was proposed to NIST Standardization Process with very
competitive parameters but algebraic attacks of [11,12], which were published
during the standardization process, had a dreadful impact on RQC parameters
so that, in order not to increase too much RQC parameters, the introduction
of non-homogeneous errors [3] permitted to limit the impact of these algebraic
attacks.

The idea of non-homogeneous errors is to consider errors in three parts of
length n such that the error weight is the same for the first two sets, but larger
for the third one. Such an approach permits to limit the impact of the security
reduction of RQC to decoding random [3n, n] codes rather than [2n, n] codes
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in LRPC cryptosystems. The notion of non-homogeneous error led to the in-
troduction of the Non Homogeneous RSD problem (NHRSD) and was a first
approach to decrease the size of RQC parameters. At this point, it is meaningful
to notice that for LRPC and RQC systems, the weight of the error to attack is
structurally O(

√
n) (where n is the length of the code), a type of parameters for

which algebraic attacks are very efficient.
Besides the RSD problem, the RSL problem which consists in having N syn-

dromes whose associated errors share the same support, was introduced in [21]
to construct the RankPKE scheme and later in [37]. This problem which gener-
alizes RSD is meaningful to give more margin in building cryptosystems; it has
been recently used to improve on the LRPC schemes [1]. It permits, in particu-
lar, to increase the weight of the error to decode from O(

√
n) to a weight closer

to the Rank Gilbert-Varshamov (RGV) bound; this is (of importance) since for
that type of parameters, i.e. close to the RGV bound, algebraic attacks become
relatively less efficient than combinatorial attacks.

Attacks and problems in rank metric. There are two types of attacks in
rank metric. Combinatorial attacks which were the first to be introduced in
the late 1990’s then algebraic attacks ten years later. At first combinatorial
attacks were the most efficient ones, but recently and especially for parameters
where the error has weight O(

√
n) the seminal approaches of [11,12] permitted

to have a strong impact on such parameters. Besides the RSD problem, the RSL

problem was studied in [21] and [16] and more recently algebraic attacks were
considered in [10]. In particular in the definition of the RSL problem in [21] it
was shown that giving more than nr syndromes led to a combinatorial attack on
the RSL problem. Moreover, the Non Homogeneous RSD (NHRSD) problem was
introduced in [3] in which a first approach for algebraic attack was proposed.

Contributions. We saw in previous paragraphs, how before the present paper
some new problem in rank metric had emerged (NHRSD, RSL) which permitted
to improve on parameters both for RQC and LRPC systems.

In this paper our contributions are twofold: first we propose new variations
on the RQC scheme in order to improve on parameters and second we study
in details the new problems on which are based these approaches. All these
problems NHRSD and RSL appear as natural variations on the RSD problems
and are bound to be the future problems on which will be relying systems in
rank metric.

New schemes. The new schemes we propose are based on three types of im-
provements:

Our first and main improvement, is the introduction of a new class decodable
code, denoted by Augmented Gabidulin codes. These codes exploit the concept of
support erasure in a rank-metric context. Compared to classical Gabidulin codes,
the introduction of known support erasure permits to decrease the value m down
to a value close to the weight of the error, whereas m had to be at least twice
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bigger with classical Gabidulin codes. This comes at the cost of a probabilistic
decoding; however the decryption failure rate (DFR) can be controlled very easily
as it is done with LRPC in [22,1].

Second, as for the recent LRPC improvement [1] we consider the use of
multiple syndromes in the RQC scheme. As for LRPC this approach permits
to greatly improve the decoding capacity of the RQC scheme by increasing the
information available for the decryption at a lower cost than directly increasing
all parameters. This variation implies that the scheme relied on the RSL [21,37,7]
rather than on the RSD problem. As for the new LRPC approach [22] this
approach permits in particular to increase the weight of the error to decode, so
that in practice reaching almost the RGV bound becomes possible (but with
larger parameters).

Third, like pioneered in [3], we use a variant of the RSD problem by con-
sidering an error with non-homogeneous weight (w1, w2) which is the Non-
Homogeneous Rank Syndrome Decoding problem (NHRSD). In short, this error
contains a part of weight w1 and a part of weight w1 + w2. This optimization
allows one extra degree of freedom while choosing the target error weights, and
this has a strong impact on the parameters.

In conclusion, we propose two types of scheme with very competitive sizes.
First, Multi-RQC-AG has parameters similar to MS-LRPC [1], around 4.5 KBytes
for the public key together with the ciphertext; its security relies on ideal-codes.
Second, Multi-UR-AG has parameters a little bit larger than MS-LRPC, around
11 KBytes total, this time without any structure; more precisely, it relies only
on pure random instances of the RSL problem. This is the most conservative
security one could expect. For both of the aforementioned schemes, one could
add a non-homogeneous structure in order to shorten the sizes down of 30%,
this corresponds to our scheme: NH-Multi-RQC-AG and NH-Multi-UR-AG .

The scheme we propose without any ideal structure with small parameters
of 11KBytes is meaningful, indeed since it is not proven that any ideal structure
cannot be used to get faster attack with a quantum computer, scheme without
any ideal structure may hence provide a better security. Of course in that case
the size of parameters increases a lot but for rank metric our scheme shows
that it remains small when for Hamming metric having no additional structure
implies very large public key (see McEliece scheme for instance). Moreover our
scheme does not necessitate any supplementary indistinguishability assumption.
Moreover, our schemes compare very well with other code-based schemes.

New attacks and analysis. We saw that our new improvements on RQC re-
lied on recent problems for rank metric, namely the NHRSD et RSL problems
(and also a combination of the two latter problems the NHRSL problem). Al-
though these schemes have begun to be considered we go deeper in their study
by proposing new attacks and adaptation of known attacks for the security eval-
uation of these problems. The motivation comes both from the general interest
of these problems for rank based cryptography and for the new schemes that we
introduce in this paper.



RQC revisited and more cryptanalysis for Rank-based Cryptography 5

More precisely, recall that an RSL (m,n, k, r,N) instance is like a rank syn-
drome decoding instance of parameters (m,n, k, r) where N instead of 1 syn-
dromes are given, and all their associated errors share the same support. The
security of RSL is inherent to the value of N , and it is known since [21] that the
problem can be solved in polynomial time as long as N > nr. Our contributions
are then the following:

– With our new combinatorial attack against RSL, first we improve on the most
recent algebraic attack for some instances; most importantly, we improve the
aforementioned bound, unchanged since 2017 [21], showing that RSL becomes
polynomial as long as N > kr m

m−r .
– We also propose the first combinatorial attack against NHRSD, together with

a precise complexity analysis of the algebraic attack, still against NHRSD,
described in [3].

– Finally, we propose an attack against NHRSL. That it is to say that we were
able to take advantage of two structure in the same attack: the fact that the
error is non-homogeneous and that one is given several syndromes.

2 Preliminaries

2.1 Coding theory and rank metric

Let q be a prime power, let m a positive integer, let Fqm an extension of degree
m of Fq and let β := (β1, . . . , βm) be an Fq-basis of Fqm . Any vector in F

n
qm can

naturally be viewed as a matrix in F
m×n
q by expressing its coordinates in β.

Definition 1 (Rank weight). Let x = (x1, . . . , xn) ∈ F
n
qm be a vector. The

rank weight of x denoted ‖x‖ is defined as the rank of the matrix Mat(x) :=
(xij)i,j ∈ F

m×n
q where xj = β1x1j + · · · + βmxmj for j ∈ {1..n}. The set of

vectors of weight w in F
n
qm is denoted Sn

w(Fqm).

Definition 2 (Support). The support of x ∈ F
n
qm is the Fq-linear space gen-

erated by the coordinates of x, i.e. Supp(x) := 〈x1, . . . , xn〉Fq
. It follows from the

definition that ‖x‖ = dimFq
(Supp(x)).

These notions can be extended to matrices. The support of a matrix M ∈
F
r×c
qm denoted Supp(M) is the Fq-vector space spanned by all its r × c entries,

and the rank weight ‖M‖ is defined as the dimension of this support. Note that
we always have ‖M‖ ≤ Rank (M), for example ‖In‖ = 1 while Rank (In) = n.

Definition 3 (Fqm-linear code). An Fqm -linear code C of length n and di-
mension k is an Fqm -linear subspace of Fn

qm of dimension k. We say that it has

parameters [n, k]qm . A generator matrix for C is a full-rank matrix G ∈ F
k×n
qm

such that C =
{
mG, m ∈ F

k
qm
}
. A parity-check matrix is a full-rank matrix

H ∈ F
(n−k)×n
qm such that C =

{
x ∈ F

n
qm , HxT = 0

}
. Finally, the rowspace of H

is a basis of the dual code C⊥.
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The use of Fqm-linear codes instead of standard Fq-linear codes permits to ob-
tain a more compact description for the public key in code-based cryptosystems.
Another classical way to reduce the keysize is to use some type of cyclic structure,
which leads to the notion of ideal codes. Let P ∈ Fq[X ] denote a polynomial

of degree n. The linear map u := (u0, . . . , un−1) 7→ u(X) :=
∑n−1

i=0 uiX
i is a

vector space isomorphism between F
n
qm and Fqm [X ]/〈P 〉, and we use it to define

a product between two elements u and v in F
n
qm via u ·P v := u(X)v(X) mod P .

Note that we have

u · v =

(
n−1∑

i=0

uiX
i

)
v(X) mod P =

n−1∑

i=0

ui

(
X iv(X) mod P

)
,

so that the product by v ∈ F
n
qm can be seen as a matrix-vector product by the

so-called ideal matrix generated by x and P .

Definition 4 (Ideal matrix). Let P ∈ Fq[X ] a polynomial of degree n and let
v ∈ F

n
qm . The ideal matrix generated by v and P , noted IMP (v), is the n × n

matrix, with entries in Fqm , and whose rows are the following: v(X) mod P ,
Xv(X) mod P , . . ., Xn−1v(X) mod P .

For conciseness, we use the notation IM(v) since there will be no ambiguity
in the choice of P in the paper.

One can see that u · v = uIM(v) = vIM(u) = v · u. An ideal code C of
parameters [sn, tn]qm is an Fqm-linear code which admits a generating matrix
made of s× t ideal matrix blocks in F

n×n
qm . A crucial point regarding the choice

of the modulus P (see [3, Lemma 1]) is that if P ∈ Fq[X ] is irreducible of degree
n and if n and m are prime, then such a code C always admits a systematic
generator matrix made of ideal blocks. Hereafter, we only consider t = 1.

Definition 5 (Ideal codes). Let P ∈ Fq[X ] a polynomial of degree n. An
[ns, n]qm-code C is an ideal code if it has a generator matrix of the form G =(
In IM(g1) . . . IM(gs−1)

)
∈ F

n×ns
qm , where gi ∈ F

n
qm for 1 ≤ i ≤ s − 1.

Similarly, C is an ideal code if it admits a parity-check matrix of the form

H =




IM(h1)
T

In(s−1)

...
IM(hs−1)

T


 ∈ F

n(s−1)×ns
qm .

2.2 Gabidulin codes

Gabidulin codes were introduced by Gabidulin in 1985 [17]. These codes can
be seen as the rank metric analogue of Reed-Solomon codes [36], where stan-
dard polynomials are replaced by q-polynomials (also called Ore polynomials or
linearized polynomials).
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Definition 6 (q-polynomials). The set of q-polynomials over Fqm is the set
of polynomials with the following shape:

{
P (X) =

r∑

i=0

piX
qi , with pi ∈ Fqm and pr 6= 0

}
.

The q-degree of a q-polynomial P is defined as degq(P ) = r.

Definition 7 (Ring structure). The set of q-polynomials over Fqm is a non-
commutative ring for (+, ◦), where ◦ is the composition of Fq-linear endomor-
phisms.

Due to their structure, the q-polynomials are inherently related to decoding
problems in the rank metric as stated by the following propositions.

Theorem 1 ([31]). Any Fq-subspace of Fqm of dimension r is the set of the
roots of a unique monic q-polynomial P such that degq(P ) = r.

Corollary 1. Let x = (x1, x2, . . . , xn) ∈ F
n
qm and V be the monic q-polynomial

of smallest q-degree such that V (xi) = 0 for 1 ≤ i ≤ n, then ‖x‖ = r if and only
if degq(V ) = r.

Finally, Gabidulin codes can be seen as the evaluation of q-polynomials of
bounded degree on the coordinates of a fixed vector over Fqm .

Definition 8 (Gabidulin codes). Let k, n,m ∈ N such that k 6 n 6 m and
let g = (g1, . . . , gn) be an-Fq linearly independent family of elements of Fqm . The
Gabidulin code Gg(n, k,m) is the code of parameters [n, k]qm defined by

Gg(n, k,m) :=
{
P (g), degq(P ) < k

}
,where P (g) := (P (g1), . . . , P (gv)).

2.3 Hard problems in rank-based cryptography

As in the Hamming metric, the main source of computational hardness for rank-
based cryptosystems is a decoding problem. More precisely, it is the decoding
problem in the rank metric setting restricted to Fqm-linear codes which is called
the Rank Syndrome Decoding Problem (RSD).

Problem 1 (RSD Problem, Search) Given H ∈ F
(n−k)×n
qm , a full rank parity-

check matrix for a random Fqm-linear code C, an integer w ∈ N and a syndrome
s ∈ F

n−k
qm , the Rank Syndrome Decoding problem RSD(m,n, k, w) asks to find

e ∈ F
n
qm such that ‖e‖ = w and HeT = sT.

The decision version is denoted by DRSD. Even if RSD is not known to be
NP-complete, there exists a randomized reduction from RSD to an NP-complete
problem, namely to decoding in the Hamming metric [25]. Also, the average num-
ber of solutions for a fixed weight w is given by the following Gilbert-Varshamov
bound for the rank metric:
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Definition 9 (Rank Gilbert-Varshamov bound). The Gilbert-Varshamov
bound wGV (q,m, n, k) for Fqm -linear codes of length n and dimension k in the
rank metric is defined as the smallest positive integer t such that qm(n−k) ≤ Bt,

where Bt :=
∑t

j=0

(∏j−1
ℓ=0(q

n − qℓ)
) (

m
j

)
q
is the size of the ball of radius t in the

rank metric.

In other words, it means that, with overwhelming probability, as long as
w ≤ wGV (q,m, n, k), a random RSD instance will have at most a unique solution.
In this paper, we also focus on a slightly less standard assumption which is the
NHRSD problem. This RSD variant was proposed in the Second Round update
of RQC [3] in order to mitigate the impact of the recent algebraic RSD attacks
[11,12] on the choice of the parameters. In NHRSD, the error e is no longer a
random low weight vector but instead a vector with a non-homogeneous weight:

Problem 2 (NHRSD Problem, Search) Given H ∈ F
(n+n1)×(2n+n1)
qm , a full

rank parity-check matrix of a random Fqm-linear code C of parameters [2n +
n1, n]qm , integers (w1, w2) ∈ N

2, and a syndrome s ∈ F
n+n1
qm , the Non-

Homogeneous Rank Syndrome Decoding problem NHRSD(m,n, n1, w1, w2) asks
to find a vector e = (e1, e2, e3) ∈ F

2n+n1
qm such that ‖(e1, e3)‖ = w1, ‖e2‖ =

w1 + w2, Supp(e1, e3) ⊂ Supp(e2), and such that HeT = sT.

We denote by DNHRSD the corresponding decisional version. Note that Defi-
nition 2 is slightly more general than the one of [3] where it is assumed that
n = n1. Finally, recall that one of our improvements on the RQC scheme uses
multiple syndromes which are correlated since they correspond to errors which
share the same support. This formulation exactly corresponds to the definition
of the Rank Support Learning problem (RSL and DRSL for the decision version).
This problem can be seen as the rank metric analogue of the Support-Learning
problem in the Hamming metric [27,33].

Problem 3 (RSL Problem, Search) Given (H ,HET), where H ∈ F
(n−k)×n
qm

is of full-rank, and E ∈ F
N×n
qm has all its entries lying in a subspace V ⊂ Fqm of

dimension w ∈ N, the Rank Support Learning problem RSL(m,n, k, w,N) asks
to find the secret subspace V.

RSL may enable the construction of more advanced cryptographic primitives
in the rank metric. It was introduced in [21], and is at the core of the Durandal
signature scheme [7], and the recent Multi-LRPC proposal [1]. Naturally, it is
possible to somehow combine the error distributions from Problems 2 and 3.

Problem 4 (NHRSL Problem, Search) Given (H ,HET), where H is a (n+

n1)× (2n+ n1) matrix of full rank, and E ∈ F
N×(2n+n1)
qm such that ei = Ei,∗ =

(ei,1, ei,2, ei,3) ∈ F
(2n+n1)
qm , ‖(ei,1, ei,3)‖ = w1, ‖ei,2‖ = w1 + w2, and such that

the supports V := Supp(ei,1, ei,3) ⊂ W := Supp(ei,2) are independent of i; the
Non-Homogeneous Rank Support Learning problem NHRSL(m,n, n1, w1, w2, N)
asks to find the secret subspaces V and W.
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Finally, both classic RQC and our Multi-RQC-AG proposal involve ideal
codes, so that we have to consider the ideal versions of Problems 1, 2, 3, and 4
(denoted by, respectively, IRSD, NHIRSD, IRSL, and NHIRSL). For the sake of
conciseness, we do not give a formal definition of these ideal variants.

2.4 RQC scheme

On Figure 1 we briefly recall the classical RQC scheme [3], for which one needs
the following notation:

Sn
w,1(Fqm) = {x ∈ F

n
qm : ‖x‖ = w, 1 ∈ Supp(x)},

S3n
(w1,w2)

(Fqm) = {x = (x1,x2,x3) ∈ F
3n
qm : ‖(x1,x3)‖ = w1, ‖x2‖ = w1 + w2,

Supp(x1,x3) ⊂ Supp(x2)}.

Setup(1λ): Generates and outputs param = (n, k, δ,w, w1, w2, P ) where P ∈ Fq[X]
is an irreducible polynomial of degree n.

KeyGen(param): Samples h
$
← F

n
qm , g

$
← Sn

n (Fqm) and (x,y)
$
← S2n

w,1(Fqm),

computes the generator matrix G ∈ F
k×n
qm of a code C, sets pk =

(g,h, s = x+ h · y mod P ) and sk = (x,y), returns (pk, sk).

Encrypt(pk,m, θ): Uses randomness θ to generate (r1, e, r2)
$
← S3n

(w1,w2)
(Fqm), sets

u = r1 + h · r2 mod P and v = mG+ s · r2 + e mod P , returns c = (u,v).

Decrypt(sk, c): Returns C.Decode(v − u · y mod P ).

Fig. 1. Description the RQC PKE scheme.

3 Augmented Gabidulin code: a new family of efficiently

decodable codes for cryptography

In what follows, we introduce a new family of efficiently decodable codes, namely
Augmented Gabidulin codes. The main idea behind these codes is to add a se-
quence of zeros at the end of the Gabidulin codes; by doing this, one directly
gets elements of the support of the error, which correspond to support erasure in
a rank metric context. The decoding of this code corresponds to the decoding of
a classical Gabidulin code to which support erasures are added. In practice, this
approach permits to decrease the size of m at the cost of having a probabilis-
tic decoding. The probability of decoding failure can then be easily controlled
at the cost of sacrifying only a few support erasures; indeed, for these codes,
the decoding failure probability decreases exponentially fast, with a quadratic
exponent, see Equation (1).

This approach is then especially suitable in the case where many errors have
to be corrected which exactly corresponds to our case where the code we want
to decode has a very low rate.
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In what follows, we give a definition of augmented Gabidulin codes, and for
didactic purpose, in Proposition 1, we recall a simple and natural way to decode
Gabidulin code with support erasures and we give their decoding failure rate.
For other or more efficient approaches, the reader may refer to [9,15,19].

Notice that this type of approach (adding zeros) is not relevant in Hamming
metric since the errors are independent in a classical noisy canal, whereas in
rank metric, errors located on different coordinates are linked since they share
the same support.

Definition 10 (Augmented Gabidulin codes). Let (k, n, n′,m) ∈ N
4 such

that k ≤ n′ < m < n. Let g = (g1, . . . , gn′) be an Fq- linearly independent family
of n′ elements of Fqm and let g be the vector of length n which is equal to g
padded with n − n′ extra zeros on the right. The Augmented Gabidulin code
G+
g (n, n′, k,m) is the code of parameters [n, k]qm defined by

G+
g (n, n′, k,m) :=

{
P (g), degq(P ) < k

}
,

where P (g) := (P (g1), . . . , P (gn′), 0, . . . , 0).

Proposition 1 (Decoding capacity of Augmented Gabidulin codes). Let
G+
g (n, n′, k,m) be an augmented Gabidulin code, and let

ε ∈ {1, 2, . . . ,min(n− n′, n′ − k)}

be the dimension of the vector space generated by the support erasures.
Then, G+

g (n, n′, k,m) can uniquely decode an error of rank weight up to

t :=

⌊
n′ − k + ε

2

⌋
.

Proof. The minimal distance of G+
g (n, n′, k,m) is clearly d = n′ − k + 1 since it

is made of a Gabiudlin code augmented with zeros.
Let x = c1 + e1 be a noisy codeword where c1 ∈ G+

g , and ‖e1‖ ≤ t.
Let us assume that x is not uniquely decodable to find a contradiction.
If x is not uniquely decodable, it means that there exists c2 in G+

g such that
c2 6= c1 and x = c2 + e2 where ‖e2‖ ≤ t.

Recall that we assume that one knows support erasures which span a vector
space of dimension ε. These support erasures come from the n − n′ last coor-
dinates of the code G+

g , thus these support elements are common to e1 and e2.
Since Supp(e1) and Supp(e2) share ε elements, one has that

d(e1, e2) ≤ 2(t− ε) + ε = 2t− ε ≤ n′ − k.

Since x = c1 + e1 = c2 + e2, one clearly has that d(c1, c2) = d(e1, e2), thus
d(c1, c2) ≤ n′ − k, which is a contradiction.

Thus, G+
g can uniquely decode errors of rank weight up to t :=

⌊
n′−k+ε

2

⌋
.

Finally, the condition 1 ≤ ε ≤ min(n − n′, n′ − k) comes from the fact that
the dimension of the vector space spanned by support erasures can not exceed
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the maximum rank weight of the error nor the number of zero coordinates of
the augmented Gabidulin code; in other words, on one hand ε is clearly smaller
than n− n′, and on the other hand

ε ≤
⌊
n′ − k + ε

2

⌋
=⇒ 2ε ≤ n′ − k + ε

=⇒ ε ≤ n′ − k.

⊓⊔

Proposition 2 (Decoding Algorithm for Augmented Gabidulin codes).
Let G+

g (n, n′, k,m) be an augmented Gabidulin code, and let

ε ∈ {1, 2, . . . ,min(n− n′, n′ − k)}

be the dimension of the vector space generated by the support erasures.
This code benefits from an efficient decoding algorithm correcting errors of

rank weight up to δ :=
⌊
n′−k+ε

2

⌋
with a decryption failure rate (DFR) of

1− 1

δ(n− n′)

δ∑

i=ε

ε−1∏

j=0

(qδ − qj)(qn−n′ − qj)

qε − qj
. (1)

Proof. The proof gives the decoding algorithm. One is given a noisy encoded
word y = c+ e ∈ F

n
qm where c := xG belongs to G+

g (n, n′, k,m) and ‖e‖ ≤ δ.

Step 1: recovering a part of the error support. By construction we have c =
(∗|0 . . . 0), so that the last n−n′ coordinates of y are exactly the last coefficients
of e. Thus, one may use these coefficients to recover ε elements in E := Supp(e).
This will be doable as long as these n−n′ coefficients contain at least ε linearly
independent ones. The converse probability is the probability that a random
δ × (n − n′) matrix with coefficients in Fq has rank less than ε. This yields to
the probability given by Equation (1).

Step 2: recovering c. Assume now that ε elements in the support of e are known
and let E2 be the vector space spanned by these elements. In what follows, we
focus on the first n′ coordinates of y, c, and e which are denoted by y, c and
e respectively. By definition of G+

g (n, n′, k,m), there exists a q-polynomial P of
q-degree at most k − 1 such that for 1 ≤ i ≤ n′:

yi = P (gi) + ei. (2)

Let also V and V2 be the unique monic q-polynomials of q-degree δ and ε which
vanish on the vector spaces E and E2 respectively. The ring of q-polynomials
being left Euclidean, there exists a unique monic q-polynomial W of degree δ−ε
such that V = W ◦ V2. As E2 is known, one can easily build the q-polynomial
V2, for instance using the iterative process described in [31,28]. Evaluating V at
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both sides of Equation (2), one gets V (yi) = (V ◦ P )(gi) + V (ei) = V ◦ P (gi).
This secret polynomial can be written symbolically using δ−ε unknowns in Fqm ,
and similarly we view R := V ◦ P as a q-polynomial of q-degree k − 1 + δ with
unknown coefficients. Thus, we can derive a linear equation containing k+2δ−ε
unknowns in Fqm from

V (yi) = R(gi), (3)

and the same goes for any i ∈ {1, 2, . . . n′}. Overall, this gives a linear system
with n′ equations in k+2δ− ε variables. This linear system has more equations

than unknowns as long as δ ≤
⌊
n′−k+ε

2

⌋
, which is the case by assumption.

Moreover, this system has a unique solution by Proposition 1. This means that
exactly k + 2δ − ε equations are linearly independent, thus one can solve the
system to recover V and R, so one finally gets P . ⊓⊔

4 New Rank-based Encryption Schemes

4.1 Multi-RQC-AG scheme

Our new encryption scheme denoted Multi-RQC-AG stands for RQC with mul-
tiple syndromes. Indeed, it uses several syndromes U and V which differ from
the original RQC proposal that relies on unique syndromes u and v. As a con-
sequence, our new scheme is based on the IRSL problem which can be seen as a
generalization of the IRSD problem used by RQC.

Notations.We start by introducing several sets and operators required to define
the Multi-RQC-AG scheme. Let S2n

w,1(Fqm) and Sn2×3n1

(w1,w2)
(Fqm) be defined as:

S2n
w,1(Fqm) = {x = (x1,x2) ∈ F

2n
qm

∣∣ ‖x‖ = w, 1 ∈ Supp(x)},
Sn2×3n1

(w1,w2)
(Fqm) = {X = (X1,X2,X3) ∈ F

n2×3n1
qm

∣∣ ‖(X1,X3)‖ = w1,

‖X2‖ = w1 + w2, Supp(X1,X3) ⊂ Supp(X2)}.

Let n1, n2 be positive integers such that n = n1 × n2, for a vector v ∈ F
n2
qm and

a matrix M ∈ F
n2×n1
qm whose columns are labelled M1, . . . ,Mn1 , we extend the

aforementioned dot product such that:

v · M =
(
(v ·M⊺

1 mod P )⊺, . . . , (v ·M⊺

n1
mod P )⊺

)
∈ F

n2×n1
qm ,

Let v = (v1, . . . ,vn1) ∈ F
n
qm with vi ∈ F

n2
qm ∀i ∈ {1, . . . , n1}, the Fold() proce-

dure turns the vector v into a n2×n1 matrix Fold(v) = (v⊺

1 , . . . ,v
⊺

n1
) ∈ F

n2×n1
qm .

The procedure Unfold() is naturally defined as the converse of Fold().

Protocol. The Multi-RQC-AG is described on Figure 2. It relies on two codes
namely an augmented Gabidulin code G+

g (n, n′, k,m) that can correct up to

δ :=
⌊
n′−k+ε

2

⌋
errors using the efficient decoding algorithm G+

g .Decode(.) as well
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as a random ideal [2n2, n2]Fqm
-code with parity check matrix (I IM(h)). The

correctness of the protocol follows from:

V − y ·U = Fold(mG) + (x+ h · y) ·R2 +E− y · (R1 + h ·R2)

= Fold(mG) + x ·R2 − y ·R1 +E.

As a consequence, Unfold (V − y ·U) = mG + Unfold (x ·R2 − y ·R1 +E) ∈
F
n
qm which means that Gg.Decode (Unfold (V − y ·U)) = m as long as:

‖Unfold (x ·R2 − y ·R1 +E) ‖ ≤ δ.

Setup(1λ)

Generate and output the parameters param = (n′, n1, n2, k, ǫ, δ, w,w1, w2, P ) where
P ∈ Fq[X] is an irreducible polynomial of degree n2.

KeyGen(param):

Sample g
$
← Sn′

n′ (Fqm), h
$
← F

n2
qm and (x,y)

$
← S2n2

w,1 (Fqm)

Compute s = x+ h · y mod P

Output pk = (g,h, s) and sk = (x,y)

Encrypt(pk,m, θ):

Compute g = (g | 0 . . . 0) ∈ F
n1n2
qm

Compute the generator matrix G ∈ F
k×(n1n2)
qm of G+

g
(n1n2, n

′, k,m)

Sample (R1,E,R2)
$
← Sn2×3n1

w1,w2
(Fqm) using randomness θ

Compute U = R1 + h ·R2 and V = Fold(mG) + s ·R2 +E

Output C = (U,V)

Decrypt(pk, sk,C):

Output m = G+
g
.Decode (Unfold (V − y ·U))

Fig. 2. Multi-RQC-AG encryption scheme

Theorem 2. The Multi-RQC-AG scheme depicted in Figure 2 is IND-CPA un-
der the DIRSD and the DNHIRSL assumptions.

Proof. The proof of the Multi-RQC-AG scheme is similar to the proof from
[3] with an IRSD(m, 2n2, n2, ω) instance defined from a [2n2, n2] code and an
NHIRSL(m,n2, n2, ω1, ω2, n1) instance defined from a [3n2, n2] code. These in-
stances are defined by the following products:

(
In2 IM(h)

)
× (x,y)

⊺
= s⊺,

(
In2 0 IM(h)
0 In2 IM(s)

)
× (R1,E,R2)

⊺
= (U,V − Fold(mG)) .
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4.2 Multi-UR-AG scheme

Our new encryption scheme denoted Multi-UR-AG stands for Multiple syn-
dromes Unstructured Rank with Augmented Gabidulin codes encryption scheme.
It is particularly interesting security wise as it does not use structured codes
contrarily to existing constructions such as ROLLO, RQC or our new proposal
Multi-RQC-AG . Indeed, it only relies on the security of the RSL problem. Multi-
UR-AG leverages multiple syndromes and augmented Gabidulin codes. In addi-
tion, it features two variants as it can be instantiated with either homogeneous
or non-homogeneous errors.

Notations. Hereafter, Fold and Unfold refer to the procedure introduced in

Section 4.1. Let Sn×2n1
w,1 (Fqm) and Sn2×(n+n1+n)

(w1,w2)
(Fqm) be defined as:

Sn×2n1
w,1 (Fqm) = {X = (X1,X2) ∈ F

n×2n1
qm

∣∣ ‖X‖ = w, 1 ∈ Supp(X)},
Sn2×(n+n1+n)
(w1,w2)

(Fqm) = {X = (X1,X2,X3) ∈ F
n2×(n+n1+n)
qm

∣∣ ‖(X1,X3)‖ = w1,

‖X2‖ = w1 + w2, Supp(X1,X3) ⊂ Supp(X2)}.

Protocol. The Multi-UR-AG is described on Figure 3. It relies on two codes
namely an augmented Gabidulin code G+

g (n, n′, k,m) that can can correct up to

δ :=
⌊
n′−k+ε

2

⌋
errors using the efficient decoding algorithm G+

g .Decode(.) as well

as a random [2n, n]Fqm
-code with parity check matrix (I H). The correctness of

the protocol follows from:

V −UY = Fold(mG) +R2(X+HY) +E− (R1 +R2H)Y

= Fold(mG) +R2X−R1Y +E.

As a consequence, Unfold (V −YU) = mG + Unfold (XR2 −YR1 +E) ∈ F
n
qm

which means that Gg.Decode (Unfold (V −YU)) = m as long as:

‖Unfold (XR2 −YR1 +E) ‖ ≤ δ.

Theorem 3. The Multi-UR-AG scheme is IND-CPA under the DRSL and the
DNHRSL assumptions.

Proof. The proof of the Multi-UR-AG scheme is similar to the proof from [3] with
an RSL(m, 2n, n, ω, n1) instance defined from a [2n, n] code and an NHRSL(m,n,
n1, ω1, ω2, n2) instance defined from a [2n + n1, n] code. These instances are
defined by the following products:

(
In H

)
× (X,Y)

⊺
= S,

(R1,E,R2)×
(
In 0 H
0 In1 S

)⊺

= (U,V − Fold(mG)) .
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Setup(1λ)

Generate and output param = (n, n′, n1, n2, k, ǫ, δ, w,w1, w2) where n = n1n2.

KeyGen(param):

Sample g
$
← Sn′

n′ (Fqm), H
$
← F

n×n
qm and (X,Y)

$
← Sn×2n1

w,1 (Fqm)

Compute S = X+HY

Output pk = (g,H,S) and sk = (X,Y)

Encrypt(pk,m, θ):

Compute g = (g | 0 . . . 0) ∈ F
n
qm

Compute the generator matrix G ∈ F
k×n
qm of G+

g
(n, n′, k,m)

Sample (R1,E,R2)
$
← S

n2×(n+n1+n)
w1,w2 (Fqm) using randomness θ

Compute U = R1 +R2H and V = Fold(mG) +R2S+E

Output C = (U,V)

Decrypt(pk, sk,C):

Output m = G+
g
.Decode (Unfold (V −UY))

Fig. 3. Multi-UR-AG (with non-homogeneous errors) encryption scheme

5 Security analysis

In this section, we provide the complexity to solve some hard problems in rank-
based cryptography.

5.1 Attacks on the RSD problem [23,8,12]

There are two general classes of attacks to RSD, based on combinatorial or
algebraic techniques. On the one hand, combinatorial attacks can be seen as the
equivalent of ISD-type attacks in the rank metric setting. Relying on [23,8], we
estimate that the complexity of the best combinatorial attack is in

min
(
2(w−1)⌊ (k+1)m

n ⌋, 2w⌈
(k+1)m

n ⌉−m
)

(4)

Fq-operations. On the other hand, algebraic attacks on the RSD problem are
by modeling the decoding instance into a system of polynomial equations, and
the overall cost is reduced to the one of solving this system. To design our
parameters, we take into account the most recent algebraic attack, namely the
MaxMinors attack [12]. Its complexity in Fq operations is estimated to be

O
(
qawm

(
n−k−1

w

)(
n−a
w

)ω−1
)
, (5)

where a ≥ 0 the smallest integer such that m
(
n−k−1

w

)
≥
(
n−a
w

)
− 1 and where ω

is a linear algebra constant.
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5.2 Attacks on the NHRSD problem

This section is dedicated to the first cryptanalysis of the NHRSD problem by
proposing two attacks which exploit the inhomogeneous structure of the error.

A new combinatorial attack. In this section, we may assume for clarity that
the n1 leftmost coordinates of e correspond to the part of weight w1+w2, namely
e = (e2, e1, e3), and we also adopt a systematic form for the parity-check matrix
He =

(
In+n1−1 ∗

)
of the public code Ce := C ⊕ 〈e〉. The parity-check equations

for this code which are traditionally used in this type of attack are as follows:

1. those associated to the n first rows of He provide n linear relations over Fqm

which can be mapped into nm relations over Fq between unknowns coming
from e2, e1 and e3.

2. those associated to the n1 − 1 last rows of He give (n1− 1)m equations over
Fq in unknowns coming from the components of e1 and e3 only.

Before describing our attack, let us recall how [23,8] would solve a non-
structured RSD(m, 2n, n, w1) instance to recover (e1, e3). The most enhanced
version of [8] consists in guessing a subspace V of dimension r1 ≥ w1 such that
αS1 ⊂ V for some element α ∈ F

∗
qm instead of simply S1 ⊂ V as it provides a

better success probability. Then, it aims at solving the linear system given by
the parity-check equations from 2. The largest value of r1 for which one may
expect a unique solution is given by

r1 :=
⌊
m(n−1)

2n

⌋
= m−

⌈
m(n+1)

2n

⌉
. (6)

The classical cost given in [8] is then roughly

Õ
(
qw1(m−r1)−m

)
= Õ

(
qw1⌈m(n+1)

2n ⌉−m
)
, (7)

where Õ hides a polynomial factor corresponding to solving this linear system.
To benefit from the inhomogeneous structure of e from NHRSD, our approach
follows the natural path of making a guess on a random subspace V of dimension
r ≥ w1 such that S1 ⊂ V and a random subspace Z ⊂ Fqm/V of dimension
ρ ∈ {w2..m− r} such that S2 ⊂ V ⊕ Z.

Theorem 4. Our proposed combinatorial algorithm runs in time

Õ
(
q(w1+w2)(m−r)−w2ρ−m

)
. (8)

The complexity given by Equation (8) is of the same shape as Equation (7)
since the rest of our attack is totally similar to [23,8]: expressing the coordinates
of (e1, e3) in a fixed basis of V yields 2nr variables over Fq, while we get n1(r+ρ)
variables over Fq by writing the coordinates of e2 in a fixed basis of V ⊕ Z. For
the linear algebra step, n1(r+ ρ) random equations from 1. are used in order to
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express all the variables from e2 in terms of the other variables, and we are left
with a linear system of (n+ n1 − 1)m− n1(r+ ρ) equations over Fq in only 2nr
variables. This leads to the condition

2nr ≤ m(n+ n1 − 1)− n1(r + ρ)

in order to expect at most one solution. Overall, the main task to prove Theorem
4 is to compute the success probability Π := PrV,Z [S1 ⊂ V, S2 ⊂ V ⊕ Z], see
Appendix A.1. Using [8], recall also that one may take advantage of Fqm-linearity
by considering a greater probability of the form

Pr
V,Z

[
∃α ∈ F

∗
qm , αS1 ⊂ V, αS2 ⊂ V ⊕ Z

]
≈ qm − 1

q − 1
Π, (9)

and in case of success decoding the word αe instead of e. For clarity Appendix
A.1 presents the plain version of the attack, but as this trick is compatible with
our analysis the corresponding q−m factor appears in Equation (8). Finally, one
has to consider the couple (r, ρ) which leads to the best exponent in Equation
(8). In other words, the goal will be to maximize the quantity (w1 +w2)r+w2ρ
under the constraints (2n + n1)r + n1ρ ≤ m(n + n1 − 1), w1 ≤ r, w2 ≤ ρ,
r + ρ ≤ m− 1, where r, ρ ∈ N.

This is an example of integer linear program (ILP), and to solve this instance
we have used dedicated tools.

Adaptation of the algebraic attack of [12] against NHRSD. A first ap-
proach of this attack was proposed in [3], we build upon this work and give a
thorough analysis of the complexity of this attack.

Theorem 5. Let a ≥ 0 the smallest integer such that

NFq
≥
(
2n+n1−a
w1+w2

)
−Ma − νFq

− 1,

where NFq
= m

∑w1+w2

i=w2

(
n1−1

i

)(
n

w1+w2−i

)
, νFq

= m
(
n1−1
w2−1

)(
n−1
w1

)
and Ma :=

∑ω2−1
i=0

(
n1

i

)(
2n−a

ω1+ω2−i

)
. The hybrid MaxMinors attack adapted to NHRSD costs

O
(
qaw1NFq

((
2n+n1−a
w1+w2

)
−Ma − νFq

)ω−1
)

operations in Fq, where ω is a linear algebra constant.

MaxMinors linear system [12]. The MaxMinors system is a system of
equations over Fqm which vanish on the solutions to the RSD instance. Let

y = c+e ∈ F
(2n+n1)
qm be the noisy codeword to be decoded in a random Fqm-linear

code C of length 2n+n1 and dimension n with generator matrix G ∈ F
n×(2n+n1)
qm .

The extended code Ce = Cy is generated by the matrix Gy :=

(
G

y

)
, and we also
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consider Hy ∈ F
(n+n1−1)×(2n+n1)
qm a full-rank parity-check matrix for this code.

We clearly have

0 = eHT

y = βMat(e)HT

y = βSCHT

y ,

so that the matrix CHT

y contains a non-zero vector βS in its left kernel and can-
not be full-rank. In particular, the MaxMinors system is the system of maximal
minors P := {PJ}J such that PJ :=

∣∣CHT

y

∣∣
∗,J

for each subset J ⊂ {1..n+n1−1},
#J = w1+w2. The crux is that these equations are actually linear in the minor
variables cT := |C|∗,T ∈ Fq by using the Cauchy-Binet formula for the determi-
nant of a product of rectangular matrices, see [11,12]. In this section, the cT ’s
will be sorted with respect to the following ordering on the T ’s: we consider that
T = {t1 < · · · < tr} < T ′ = {t′1 < · · · < t′r} if tj = t′j for j < j0 and tj0 < t′j0
assuming that 1 < 2 < · · · < n. We will further assume that Hy :=

(
∗ In+n1−1

)

and from that assumption [12] derive the fundamental Lemma 1 on the shape
of the MaxMinors equations:

Lemma 1 (Prop. 2, [12]).

PJ = cJ+n+1 +
∑

T−⊂{1..n+1},T+⊂(J+n+1)

T=T−∪T+, #T=w1+w2, T− 6=∅

cT |Hy|J,T . (10)

A direct consequence of Lemma 1 is that the equations of P are linearly
independent over Fqm as their leading terms are distinct.

Removing variables corresponding to zero minors. The very sameMaxMi-
nors system can be employed to attack NHRSD. A main difference in this case is
that if one wants to decrease the number of minor variables by relying on the spe-
cial structure of e as shown in [3,12], then linear relations between the equations
after removing these variables also occur and must be taken into account in the

analysis. Recall from [3, 6.2.2] that the row support of Mat(e) ∈ F
m×(n+n1+n)
q

can be written as

C =

(
C1 C2 C3

0 C ′
2 0

)
∈ F

(w1+w2)×(n+n1+n)
q , (11)

where C1, C3 ∈ F
w1×n
q , C2 ∈ F

w1×n1
q and C ′

2 ∈ F
w2×n1
q . From Equation (11), it

has been noted that the minors |C|∗,T such that T ∩ {n+ 1..n+ n1} ≤ w2 − 1
are always zero. This means that the

M :=

w2−1∑

i=0

(
n1

i

)(
2n

w1 + w2 − i

)
(12)

variables from the set

ζ := {cT , T ⊂ {1..(2n+ n1)}, #T = w1 + w2, T ∩ {n+ 1..n+ n1} ≤ w2 − 1}
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can be set to zero in the MaxMinors system. It is then relevant to separate the
initial PJ equations into several subsets in function of the presence or the absence
of these cT variables. We consider the partition P := Plost⊔Prest⊔Pindep, where

Plost := {PJ : #J = w1 + w2, #(J ∩ {1..(n1 − 1)}) ≤ w2 − 2}
Prest := {PJ : #J = w1 + w2, #(J ∩ {1..(n1 − 1)}) = w2 − 1}

Pindep := {PJ : #J = w1 + w2, #(J ∩ {1..(n1 − 1)}) ≥ w2} .

Using Lemma 1, it is easy to grasp the shape of the equations from Plost and
Pindep after removing the minor variables belonging to ζ:

Proposition 3. After setting the minor variables from ζ to zero in the MaxMi-
nors system P, we have the following properties:

1. The equations in Plost all become zero.
2. The equations in Pindep keep the same leading terms and therefore they are

still linearly independent. We have

dimFqm
〈Pindep〉 = #Pindep =

∑w1+w2

i=w2

(
n1−1

j

)(
n

w1+w2−j

)
.

Finally, the system Pindep contains at most
(
2n+n1

w1+w2

)
−M variables.

Proof. See Appendix A.3. ⊓⊔

Contrary to Pindep, the equations in Prest have their leading terms in ζ so
that these monomials are destroyed after setting the M minor variables to zero.
More precisely, by Lemma 1, an equation PJ ∈ Prest becomes

P̃J =
∑

T−⊂{1..n+1}, T+⊂(J+n+1)

T=T−∪T+, n+1∈T−, #(T+∩{n+2..n+n1})=w2−1

cT |Hy|J,T

=
∑

T−⊂{1..n+1}, T+⊂(J+n+1)

T=T−∪T+, n+1∈T−, T+∩{n+2..n+n1}=(J∩{1..(n1−1)})+n+1

cT |Hy|J,T .(13)

For clarity, we still denote the resulting system by Prest. We analyze it in the
following Proposition 4:

Proposition 4. After setting the minor variables from ζ to zero in Prest, one
obtains a system of rank

(
n1−1
w2−1

)(
n−1
w1

)
and whose equations are also independent

from Pindep. Finally, these equations contain at most
(
n1−1
w2−1

)(
2n
w1

)
variables.

The first part of Proposition 4 is obvious. Using Equation (13), the leading

term of P̃J ∈ Prest is a cT variable such that n+1 ∈ T , whereas the leading term
of any PJ′ ∈ Pindep is cJ′+n+1 and cJ′+n+1 > cT for any such T . Thus, what
is left to prove in Proposition 4 is that dimFqm

〈Prest〉 =
(
n1−1
w2−1

)(
n−1
w1

)
and that

the number of variables is
(
n1−1
w2−1

)(
2n
w1

)
. For this we rely on the following lemma,

whose proofs can be found in Appendix A.3:
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Lemma 2. For A ⊂ {n+ 2..n+ n1}, #A = w2 − 1, let

Prest,A := {PJ ∈ Prest : J ∩ {1..n1 − 1} = A− (n+ 1)} ,

so that {Prest,A}A is a partition of Prest. We have 〈Prest〉 = ⊕A 〈Prest,A〉.

Lemma 3. For A ⊂ {n + 2..n + n1}, #A = w2 − 1, let Prest,A as defined in
Lemma 2. With very high probability, we have dimFqm

〈Prest,A〉 =
(
n−1
w1

)
.

Finishing the attack by projecting over Fq. The last step of the initial
MaxMinors attack on RSD is by solving the “projected” linear system PFq

:=
{Pj,J}j,J obtained by expressing the coefficients of the PJ ’s in a fixed basis of
Fqm over Fq and taking each component, yielding m times more equations. We
proceed in a very similar way as in [12] and due to space constraints we do not
recall all the details of this step. Our final complexity estimate relies on

Assumption 1 Let Pindep,Fq
(resp. Prest,Fq

) be the system over Fq obtained by
projecting Pindep (resp. Prest) where the variables in ζ had already been removed,
let NFq

:= dimFq

〈
Pindep,Fq

〉
, let νFq

:= dimFq

〈
Prest,Fq

〉
and let M as defined in

Equation (12). We assume that

NFq
= m dimFqm

〈Pindep〉 = m
∑w1+w2

i=w2

(
n1−1

i

)(
n

w1+w2−i

)
(14)

when this value is ≤
(
2n+n1

w1+w2

)
−M and NFq

=
(
2n+n1

w1+w2

)
−M − 1 otherwise, and

νFq
= m dimFqm

〈Prest〉 = m
(
n1−1
w2−1

)(
n−1
w1

)
, (15)

provided that this value is ≤
(
n1−1
w2−1

)(
2n
w1

)
.

To solve the final system, one can start by performing linear algebra on
Prest,Fq

and then substitute νFq
variables corresponding to an echelonized basis

of
〈
Prest,Fq

〉
in the system Pindep,Fq

to get a new system P ′
indep,Fq

. The final step

is then to solve the linear system P ′
indep,Fq

in
(
2n+n1

w1+w2

)
−M − νFq

variables.

Corollary 1 (Same notations as in Assumption 1) Let Pindep,Fq
and let

Prest,Fq
denote the projected systems from Assumption 1. We consider P ′

indep,Fq

the linear system obtained from Pindep,Fq
after plugging νFq

equations from the
echelon form of Prest,Fq

to substitute variables. Assuming that the system P ′
indep,Fq

can be solved, namely NFq
≥
(
2n+n1

w1+w2

)
−M − νFq

− 1, the complexity of solving
the system is

O
(
NFq

((
2n+n1

w1+w2

)
−M − νFq

)ω−1
)

operations in Fq, where ω is a linear algebra constant.

However, the projected linear system cannot be solved directly when there
are not enough equations compared to the number of minor variables, i.e. NFq

<
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(
2n+n1

w1+w2

)
−M − νFq

− 1. In this case, a method suggested in [12] is an hybrid ap-
proach by adding linear constraints on these minor variables which are obtained
by fixing the entries of a ≥ 0 columns in the matrix C. Here, like it was done
in [3], it is possible to take advantage of the particular structure of C given in
Equation (11) by fixing columns containing only w1 non-zero coordinates, which
leads to a smaller exponential factor of qaw1 in the final cost instead of the naive
qa(w1+w2). The cost claimed in Theorem 5 follows.

5.3 Attacks on the RSL problem

In this section, we consider an RSL (m,n, k, r,N)-instance, say N distinct RSD
instances whose errors share the same support of dimension r. This number
N is a crucial parameter to estimate the hardness of RSL and in particular to
compare it to RSD. For instance, this problem can be solved in polynomial time
when N ≥ nr due to [21]. A more powerful attack was later found in [16] and it
suggests that secure RSL instances must satisfy a stronger condition: N < kr.

In what follows, we give a new combinatorial attack against RSL, it is more
efficient than the previous combinatorial attacks, plus it enables us to decrease
the threshold where the RSL problem starts to be solvable in polynomial time.
In addition to this, we give more explicit formulas to clarify the recent algebraic
attack of [10].

New combinatorial attack on RSL.

Theorem 6 (Combinatorial attack on RSL). There exists a combinatorial
attack on RSL (m,n, k, r,N) with complexity

Õ
(
qr(m−⌊m(n−k)−N

n−a ⌋))

operations in Fq, where a :=
⌊
N
r

⌋
.

Proof. Let si ∈ F
n−k
qm , 1 ≤ i ≤ N denote theN syndromes from the RSL instance.

By definition there exist ei ∈ F
n
qm , ‖ei‖ = r, HeTi = sTi , where H ∈ F

(n−k)×n
qm

is a parity-check matrix and where Supp(ei) does not depend on i. Similarly
to [24,10], this last property enables us to use the fact that there exists an Fq-
linear combination ( 0a | ẽ ) ∈ F

n
qm of the ei’s which is all-zero on its first

a :=
⌊
N
r

⌋
coordinates. This error corresponds to a secret linear combination of

the syndromes, more precisely

∃λ1, λ2, . . . , λN ∈ Fq, H( 0a | ẽ )T =
∑N

i=1 λis
T

i .

By setting H̃ := H∗,{a+1...n}, this is equivalent to

H̃ẽT =

N∑

i=1

λis
T

i . (16)
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Equation (16) can be seen as n − k parity-check equations which may be ex-
ploited by the classical combinatorial technique, see [23,8] or the discussion above
Equation (6). The main difference here is that the right hand this equation also
contains N unknowns λi ∈ Fq. Still, we can pick a vector space V of dimension
r1 ≥ r and hoping that Supp (ẽ) ⊂ V . If this is the case, one can derive from
(16) a linear system of (n − k)m equations over Fq in N + (n − a)r1 variables,
where the first N variables merely correspond to the λi’s. The final cost is then
obtained by looking at the optimal value of r1 which allows to solve this linear

system, namely r1 :=
⌊
m(n−k)−N

n−a

⌋
. ⊓⊔

Thanks to Theorem 6, we are able to derive a value of N so that an RSL

instance is solvable in polynomial time, this is the topic of Corollary 2.

Corollary 2 (New Bound for RSL). An RSL instance with parameters
(m,n, k, r,N) can be solved in polynomial time using the attack of Theorem 6 as
long as

N > kr
m

m− r
.

Proof. This is a straightforward application of the complexity given by Theorem
6 which states that the attack has a polynomial cost (hidden in the Õ) and an

exponential cost of qr(m−δ) where δ =
⌊
m(n−k)−N

n−a

⌋
. Since r 6= 0 by definition,

the only way for the exponential component to vanish is if δ = m. Without loss

of generality, we assume that N
r and m(n−k)−N

n−N/r are integers. By solving a simple

equation, one gets that δ = m ⇐⇒ N = kr m
m−r , hence the result. ⊓⊔

Note that, as long as m
m−r , which is often the case for cryptographic parameters,

our bound is lower than the previous one, given in [21], which was N > nr.

Algebraic attack of [10]. This attack consists in solving a bilinear system at
some bi-degree (b, 1) for b ≥ 1 by using an XL approach similar to [12]. The
two cases “δ = 0” and “δ > 0” presented below correspond to two different
specializations of this bilinear system which lead to different costs. Here, we
provide explicit formulas to compute these two complexities (for the binary field
F2). In particular, we also include the values of αR and αλ which correspond
to the hybrid approach mentioned in [10]. Finally, note that these formulas are
valid only when N > n− k − r.

First case: δ = 0. Let a be the unique integer such that ar < N ≤ (a + 1)r,
and let N ′ := ar+1. For 1 ≤ b ≤ r+1, the number of variables for linearization
is

MF2

≤b :=

b∑

i=1

(
n− a− αR

r

)(
N ′ − αλ

i

)
, (17)



RQC revisited and more cryptanalysis for Rank-based Cryptography 23

where 0 ≤ αR < n − a − r, and 0 ≤ αλ < N ′ − b, and the number of linearly
independent equations at hand is equal to mN F2

≤b where

N F2

≤b :=

b∑

i=1

i∑

d=1

n−k∑

j=1

(
j − 1

d− 1

)(
n− k − j

r − d+ 1

)(
N ′ − αλ − j

i− d

)
. (18)

The complexity is given by

O
(
min

(
2rαR+αλmN F2

≤b(MF2

≤b)
ω−1,

2rαR+αλ(N ′ − αλ)

(
k − a+ 1 + r

r

)
(MF2

≤b)
2

))
(19)

provided that mN F2

≤b ≥ MF2

≤b − 1, and where the values of b, αR, and αλ are
chosen to minimize the complexity.

δ > 0 case. Let δ be a positive integer such that N ≥ δ(n − r + δ), let a
be the greatest integer such that N > δ(n − r + δ) + a(r − δ) and let N ′ :=
δ(n− r + δ) + a(r − δ). To find the complexity of this attack, one replaces r by
r − δ in the expressions of MF2

≤b and N F2

≤b from Equations (17) and (18). The
complexity is finally obtained with Equation (19) and its minimal value now
depends on δ > 0 as well as b, αR, and αλ as above.

Visualization of the attacks against RSL. Last but not least, thanks to our
analysis of the complexity to solve RSL with different attacks, we were able to
draw a graph, see Figure 4, of the complexity to solve an RSD instance as a
function of the number of given syndromes N .

The instance parameters are [m,n, k, r] = [61, 100, 50, 7], this is precisely the
instance corresponding to attacking our scheme NH-Multi-RQC-AG-128 (see
Table 1). The complexity to solve this RSD instance using the algebraic attack
MaxMinors (see Section 5.1) is 196 bits; it corresponds to the horizontal black
thick line. Starting with 44 syndromes; recall that it is the thresold for the
algebraic attack against RSL (see Section 5.3), one sees that it beats the RSD

attack. It is worth noticing that with approximately 225 syndromes, our new
combinatorial attack against RSL (see Theorem 6), starts to beats the algebraic
attack of [10]. And finally, one notices that, with a lot of syndromes, all the
aforementioned RSL attacks complexities drops down, which is quite logical.

5.4 Combinatorial attack on NHRSL

In this section, we adapt the combinatorial attack against RSL, given in the proof
of Theorem 6, to the case of non-homogeneous error, i.e. to the NHRSL problem
(see Problem 4).

For the sake of simplicity, and since it is the case for all cryptographic pa-
rameters studied in this paper, we focus only on NHRSL instances where n1 < n.
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Fig. 4. Complexity C (in bits) of the best known attacks against an RSL instance
with parameters [m,n, k, r] = [61, 100, 50, 7] in terms of the number N > n− k − r of
syndromes. In the legend: C stands for our combinatorial attack (see Theorem 6), all
the other symbols correspond to the 2 cases of the algebraic attack [10] where the “*”
indicates the use of Wiedemann algorithm instead of Strassen’s.
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Theorem 7 (Combinatorial attack against NHRSL). There exists a com-
binatorial attack against an NHRSL instance with parameters (m,n, n1, w1, w2)
whose complexity, in terms of elementary operations in Fq, is given by

Õ
(
q(w1+w2)(m−r)−w2ρ

)
,

where r, ρ are integers chosen to maximize the quantity (w1 +w2)r+w2ρ under
the following constraints: N1, N2, r, ρ ∈ N, N1 + N2 = N , w1 ≤ r, w2 ≤ ρ,

r + ρ ≤ m− 1, a :=
⌊
N1

w1

⌋
≤ n1, b :=

⌊
N2

w1+w2

⌋
≤ 2n, m(n+ n1) ≥ (n1 − b)(r +

ρ) + (2n− a)r +N .

Proof. Straightforward adaptation of the attack in the proof of Theorem 6, com-
bined with the probability results given in Appendix A.1.

6 Security and parameters of our schemes

6.1 Security comparison for our schemes

According to Theorem 2, the security of Multi-RQC-AG relies on the Decisional
Ideal Rank Syndrome Decoding problem (DIRSD) and on the Decisional Ideal
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Non-Homogeneous Rank Support Learning problem (DNHIRSL). So far, there
is no known attack to solve the decisional versions of these problems without
solving the associated search instances. In addition to this, there is currently no
attack that takes advantage of the ideal structure; thus, studying the security of
Multi-RQC-AG comes down to evaluating the complexity of RSD and NHRSL.
Unlike Multi-RQC-AG, our new scheme Multi-UR-AG does not use ideal struc-
ture. Despite the aforementioned absence of attack that exploits ideal structure,
it might induce a weakness in a scheme. This is why Multi-RQC-AG, which does
not use any structure like its name suggests it, is more secure. To study its com-
plexity, according to Theorem 3, one has to study RSL and NHRSL. However, for
an even better security, one could use Multi-UR-AG with homogeneous weight,
making its security relying solely on RSL (see for instance the parameters sets
Multi-UR-AG -128 and Multi-UR-AG -192 in Section 6).

6.2 Examples of parameters

In this section, we propose parameters for our different schemes, see Table 1;
all parameters are chosen to resist to attacks described in Section 5. Among
the different codes that can be attacked for each of our schemes (see proofs of
Theorems 2 and 3), there is not a weaker one which enables us to fix all of
our parameters. More precisely, sometimes attacking the public key, i.e. a code
[2n, n], gives the lowest complexity, but for another set of parameters, it will be
the [2n+n1, n, w1, w2]-code instead. However, there seems to be an invariant: no
matter the length n of the code or the dimension m of the extension, it looks like
the closer to GV bound the target rank r is, the better the combinatorial attacks
are, and the worse are the algebraic attacks. In other words, for a given [m,n, k]-
code, there seems to always be a value of r such that all the combinatorial attacks
will beat the algebraic ones. This seems to be the case both for homogeneous and
non-homogeneous versions of the aforementioned problems, and with or without
multiple syndromes.

Instance Struct. m n′ n n1 n2 k ε w w1 w2 DFR
Sizes in KB

pk ct Total

Loong-128 [37] Random 191 182 35 13 14 6 0 8 11 0 0 10.9 16.0 26.9

Multi-RQC-AG-128 Ideal 83 82 - 5 38 2 74 7 11 0 -138 0.4 3.9 4.4

NH-Multi-RQC-AG-128 Ideal 61 60 - 3 50 3 51 7 7 5 -158 0.4 2.3 2.7

Multi-RQC-AG-192 Ideal 113 112 - 4 60 2 98 8 13 0 -215 0.9 6.8 7.7

NH-Multi-RQC-AG-192 Ideal 79 78 - 2 95 5 65 8 8 5 -238 0.9 3.8 4.7

Multi-UR-AG-128 Random 97 96 24 14 15 3 83 8 11 0 -190 4.1 6.9 11.0

NH-Multi-UR-AG-128 Random 73 72 22 13 14 2 66 8 8 4 -133 2.7 4.5 7.1

Multi-UR-AG-192 Random 127 126 35 15 16 3 93 9 12 0 -350 8.4 12.7 21.1

NH-Multi-UR-AG-192 Random 97 96 30 14 14 3 77 9 9 4 -214 5.1 7.5 12.6

Table 1. Parameters for our scheme

Similarly to [3], we use the fact that 1 ∈ Supp(x,y) to set δ := ww1 in
the homogeneous case and δ := ww1 + w2 in the non-homogeneous case. Recall
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Instance 128 bits 192 bits

NH-Multi-UR-AG 7,122 12,602

LRPC-MS [1] 7,205 14,270

Multi-UR-AG 11,026 21,075

FrodoKEM [6] 19,336 31,376

Loong-128 [37] 26,948 -

Loidreau [35] 36,300 -

Classic McEliece [13] 261,248 524,348

Instance 128 bits 192 bits

NH-Multi-RQC-AG 2,710 4,732

ILRPC-MS [1] 2,439 4,851

BIKE [2] 3,113 6,197

Multi-RQC-AG 4,378 7,668

HQC [4] 6,730 13,548

Table 2. Comparison of sizes for unstructured (random) and structured (ideal) KEMs.
The sizes represent the sum of the public key and the ciphertext, expressed in bytes.

that this quantity corresponds to the weight of the error decoded by the public
Augmented Gabidulin code. For all our protocols (where “NH” denote non-
homogeneous errors), both 128 and 192 bits security level are considered. As
a comparison, we also updated the parameters of the code-based KEM Loong
[37]. Note that this scheme does not use augmented Gabidulin codes nor non-
homogeneous error but it does uses multiple syndromes.

The parameters sets given in Table 1 come with the sizes of the associated
public key pk and ciphertext ct expressed in kilo-bytes (KB). For Multi-RQC-
AG , |pk| = 40 +

⌈
n2m
8

⌉
and |ct| =

⌈
2n1n2m

8

⌉
. For Multi-UR-AG , |pk| =

40 +
⌈
nn1m

8

⌉
and |ct| =

⌈
m(nn2+n1n2)

8

⌉
. The term 40 represents the length of a

seed used to generate (g,h), recall that the public key consists in (g,h, s) and
the ciphertext in the couple (u,v). Note that the size of the secret key is not
relevant since it is only a seed, thus it always has size 40 bytes.

To sum up, our most competitive set of parameters, in terms of sizes, is NH-
Multi-RQC-AG-128 which uses ideal structure and non-homogeneous error; on
the other side, the most secure set of parameters, whose security solely depends
on RSL, and which does not use ideal structure, is Multi-UR-AG-128. Table
2 enables one to compare the sizes of our most competitive scheme to other
KEMs using ideal or random (unstructured) matrices. Note that using non-
homogeneous errors, our schemes are the shortest.

Last but not least, the vertical green line at N = 150 on Figure 4 shows the
number of syndromes available for an adversary trying to attack a ciphertext
of our scheme NH-MRQC-AG-128. It is worth noticing that, even though the
blue squares are below the black line (complexity of the plain RSD attack), they
are still way above the security level of 128 bits, and even given 150 syndromes,
an attacker could not break our scheme. Note that it is far away from the area
where the complexities of the different RSL attacks start to drop. More generally,
we picked all our parameters that way, not only to resist to these attacks, but
to be sure not to be targeted by any minor improvements.
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7 Conclusion

In this paper, we introduce new variations on the RQC scheme, and more specif-
ically, we introduce the Augmented Gabidulin codes which are very well suited
to RQC. These new codes, together with the multiple syndrome and the non
homogeneous approaches, lead to very small parameters which compare very
well with other existing code-based schemes. In addition to this, we propose a
meaningful scheme only relying on pure random instances, without any ideal
structure and with small parameters, around 11KBytes.

We also study more deeply the security of the rank based problems used for
our new schemes. Because of their properties, problems like NHRSD or RSL, are
probably bound to be used in many future schemes based on rank metric.
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A Appendices

A.1 Computation of the success probability Π

To compute Π := PrV,Z [S1 ⊂ V, S2 ⊂ V ⊕ Z] we use

Lemma 4. Let Π := PrV,Z [S1 ⊂ V, S2 ⊂ V ⊕ Z], where the randomness comes
from the choice of a random subspace V ⊂ Fqm and a random complementary
subspace Z (hence isomorphic to a subspace of Fqm/V ). We have

Π = Pr [S1 ⊂ V, S2/S1 ⊂ (V ⊕ Z ⊕ S1)/S1]

= Pr
V

[S1 ⊂ V ] Pr
V,Z

[S2/S1 ⊂ (V ⊕ Z ⊕ S1)/S1 | S1 ⊂ V ]

= Pr
V

[S1 ⊂ V ]×Πcond,

where Πcond := PrV,Z [S2/S1 ⊂ (V ⊕ Z ⊕ S1)/S1 | S1 ⊂ V ].

Proof. The only non-trivial equality is the first one. For ≤, this is clear by taking
the quotient by S1. For ≥, let πS1 denote the quotient map Fqm → Fqm/S1.
The event at the right-hand side can be seen as S1 ⊂ V, πS1(S2) ⊂ πS1(V ⊕
Z ⊕ S1), and by considering the inverse image by πS1 , this event is included
in S1 ⊂ V, π−1

S1
(πS1(S2)) ⊂ π−1

S1
(πS1(V ⊕ Z ⊕ S1)). This gives S1 ⊂ V and

S2+ker (πS1) = S1+S2 = S2. This space is included in V ⊕Z⊕S1 + ker (πS1) =
V ⊕ Z ⊕ S1 + S1 = V ⊕ Z ⊕ S1, hence S1 ⊂ V and S2 ⊂ V ⊕ Z. ⊓⊔
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We now focus on the Πcond factor. Note that we have the decomposition

{S2/S1 ⊂ (V ⊕ Z ⊕ S1)/S1 | S1 ⊂ V } = {S2/S1 ⊂ (V ⊕ Z)/S1}

=

w2∐

ℓ=0

{
dimFq

(S2/S1 ∩ V/S1) = ℓ,
S2/S1

S2/S1 ∩ V/S1
⊂ (V ⊕ Z)/S1

V/S1

}

=

w2∐

ℓ=0

{Aℓ ∩B} ,

where Aℓ : “ dimFq
(S2/S1 ∩ V/S1) = ℓ” and B : “ S2/S1

S2/S1∩V/S1
⊂ (V⊕Z)/S1

V/S1
”.

For 0 ≤ ℓ ≤ w2, let pℓ := Pr [Aℓ ∩B], let sℓ := Pr [Aℓ] and let tℓ := Pr [B | Aℓ]
so that pℓ = sℓtℓ and Πcond =

∑w2

ℓ=0 pℓ. To compute sℓ, we rely on

Lemma 5 (§9.3.2 p. 269, [14]). Let F be an Fq-linear space of dimension n.

1. If X is a j-dimensional subspace of F , then there are qij
(
n−j
i

)
q
i-dimensional

subspaces Y such that X ∩ Y = 0.
2. If X is a j-dimensional subspace of F , then there are q(i−ℓ)(j−ℓ)

(
n−j
i−ℓ

)
q

(
j
ℓ

)
q

i-dimensional subspaces Y such that X ∩ Y has dimension ℓ.

More precisely, we use Lemma 5, 2. with F := Fqm/S1, fixed X := S2/S1 ⊂
Fqm/S1 of dimension j := w2 and random Y := V/S1 ⊂ Fqm/S1 of dimension
i := r − w1. We obtain

sℓ = q(r−w1−ℓ)(w2−ℓ)

(
m−w1−w2

r−w1−ℓ

)
q
×
(
w2

ℓ

)
q(

m−w1

r−w1

)
q

. (20)

To compute tℓ, note that conditioned on dimFq
(S2/S1 ∩ V/S1) = ℓ the proba-

bility that S2/S1

S2/S1∩V/S1
⊂ (V ⊕Z)/S1

V/S1
is the probability that a random subspace of

dimension ρ contains a fixed subspace of dimension w2 − ℓ in the ambient space

Fqm/S1

V/S1
≃ Fqm/V . From there we obtain tℓ =

( ρ
w2−ℓ)q
(m−r

w2−ℓ)q
, and finally by combining

this with Equation (20):

pℓ = q(r−w1−ℓ)(w2−ℓ)

(
m−w1−w2

r−w1−ℓ

)
q
×
(
w2

ℓ

)
q(

m−w1

r−w1

)
q

×
(

ρ
w2−ℓ

)
q(

m−r
w2−ℓ

)
q

.

A.2 Finishing the proof of Theorem 4

Obviously p0 < Πcond and one can also easily show that Πcond = Θ(p0). By
including the q−m factor from [8], the number of Fq-operations in the attack is

K = O
(
L×Π−1 × q−m

)
= Õ

(
Pr [C]

−1
p−1
0 q−m

)
,
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where Pr [C] := PrV [S1 ⊂ V ] and where L is the polynomial factor coming from
the linear algebra step whose exact formula is not relevant for the discussion.
Using the classical

(
a
b

)
q
= Θ(qb(a−b)) when max (a, b) → +∞ together with

p0 = q(r−w1)w2

(
m−w1−w2

r−w1

)
q(

m−w1

r−w1

)
q

(
ρ
w2

)
q(

m−r
w2

)
q

,

we obtain p0 = Θ
(
q(r−w1)w2 × q−(r−w1)w2 × q−w2(m−r−ρ)

)
= Θ(q−w2(m−r−ρ)),

and similarly Pr [C] = Θ
(
q−w1(m−r)

)
. Therefore K = Õ

(
q(w1+w2)(m−r)−w2ρ−m

)
,

which is the statement of Theorem 4.

A.3 Proofs for the MaxMinors attack on NHRSD

Proof of Proposition 3. For item 1., let J ⊂ {1..n+n1−1}, #J = w1+w2 such
that PJ ∈ Plost. By definition of Plost the set J +n+1 has intersection ≤ w2− 2
with {n+ 2..n+ n1}, hence any subset T = T− ∪ T+, T− ⊂ {1..n+ 1}, T+ ⊂
(J + n + 1) satisfies #(T ∩ {n + 1..n + n1}) ≤ w2 − 1 since T− might also
contain n+ 1. This means that the corresponding minor variable cT belongs to
ζ and can be set to zero in PJ . Using the shape depicted in Equation (10), this
implies that the whole PJ equation becomes zero. For item 2. , recall that the
leading term of PJ ∈ Pindep is cJ+n+1. Moreover we have #(J ∩ {1..n1 − 1}) =
#(J + n + 1 ∩ {n + 2..n + n1}) ≥ w2, which means cJ+n+1 /∈ ζ. In particular,
all the equations from Pindep keep the same leading terms after fixing the M
minor variables to zero and therefore they remain linearly independent. The last
statement on the number of variables in obvious.

Lemmata to prove Proposition 4.

Proof of Lemma 2. Using Equation (13), one has that the equations in Prest,A all
have their monomials in µA :=

{
cT , T ⊂ {1..2n+n1}, #T = w1+w2, n+1 ∈ T,

T ∩ {n+ 2..n+ n1} = A
}
, and this set has size

(
2n
w1

)
. Finally, note that µA and

µ′
A are disjoint when A 6= A′, which concludes the proof.

Proof of Lemma 3, under assumptions. Using Equation (13), it is readily verified
that the set of leading terms of all equations in Prest,A is

τA :=
{
c{n+1}∪A∪U , U ⊂ {(n+ n1 + 2)..(2n+ n1)}, #U = w1

}
,

and for instance note that the equation PJU
with JU+n+1 = A∪{n+n1+1}∪U

has leading term c{n+1}∪A∪U ∈ τA. This already shows that dimFqm
〈Prest,A〉 ≥

#τA =
(
n−1
w1

)
. For the converse inequality, we need to rely on some assumption

on the randomness of the entries of the PJ ’s in Fqm to argue that we cannot
construct an element in 〈Prest,A〉 whose leading term does not belong to τA
with very high probability. First, note that the variables from PJ ∈ Prest,A with
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J + n + 1 = A ∪ VJ where VJ =
{
v
(J)
1 < · · · < v

(J)
w1+1

}
which belong to τA are

the c
{n+1}∪A∪VJ\{v

(J)
j }

for 1 ≤ j ≤ w1 + 1. To kill the leading term of PJ , one

would then consider an equation with the same leading term, namely a P ′
J with

J ′ 6= J, J ′ + n + 1 = A ∪ VJ′ and such that V
J\{v

(J)
1 }

= V
J′\{v

(J′)
1 }

= B for

some B. In this case, one can check that the only monomial from τA present
in both PJ and PJ′ is c{n+1}∪A∪B, so that PJ + λJ′PJ′ contains at least 2w1

monomials from τA. Similarly, by using a third J ′′ one could kill at most one
extra monomial in PJ and in the worst case one in PJ′ as well. This means
that a linear combination of the form PJ + λJ′PJ′ + λJ′′PJ′′ contains at least
2(w1− 1)+ (w1+1− 2) = 3(w1− 1) monomials from τA, and the lower bound is
reached if and only if those monomials in PJ and P ′

J are killed at the same time by
λJ′′PJ′′ . This is extremely unlikely if the coefficients of the MaxMinors equations
are random elements in Fqm , so that we assume instead that PJ+λJ′PJ′+λJ′′PJ′′

contains at least (w1−1)+w1+(w1+1−1) = 3w1−1 monomials in τA. Relying
on the same type of assumption, one can proceed by induction on the numbers
of terms to show that a non-zero linear combination in 〈Prest,A〉 always has a
monomial in τA.
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