
HAL Id: hal-04276646
https://hal.science/hal-04276646

Submitted on 9 Nov 2023

HAL is a multi-disciplinary open access
archive for the deposit and dissemination of sci-
entific research documents, whether they are pub-
lished or not. The documents may come from
teaching and research institutions in France or
abroad, or from public or private research centers.

L’archive ouverte pluridisciplinaire HAL, est
destinée au dépôt et à la diffusion de documents
scientifiques de niveau recherche, publiés ou non,
émanant des établissements d’enseignement et de
recherche français ou étrangers, des laboratoires
publics ou privés.

Distributed under a Creative Commons Attribution 4.0 International License

New Design Techniques for Efficient
Arithmetization-Oriented Hash Functions: Anemoi

Permutations and Jive Compression Mode
Clémence Bouvier, Pierre Briaud, Pyrros Chaidos, Léo Perrin, Robin Salen,

Vesselin Velichkov, Danny Willems

To cite this version:
Clémence Bouvier, Pierre Briaud, Pyrros Chaidos, Léo Perrin, Robin Salen, et al.. New Design Tech-
niques for Efficient Arithmetization-Oriented Hash Functions: Anemoi Permutations and Jive Com-
pression Mode. Crypto 2023 - 43rd International Cryptology Conference, Aug 2023, Santa Barbara
(CA), United States. �10.1007/978-3-031-38548-3_17�. �hal-04276646�

https://hal.science/hal-04276646
http://creativecommons.org/licenses/by/4.0/
http://creativecommons.org/licenses/by/4.0/
https://hal.archives-ouvertes.fr

New Design Techniques for Efficient
Arithmetization-Oriented Hash Functions:

Anemoi Permutations and
Jive Compression Mode

Clémence Bouvier1,2, Pierre Briaud1,2, Pyrros Chaidos3,
Léo Perrin2, Robin Salen4, Vesselin Velichkov5,6, Danny Willems7,8

1Sorbonne University, France,
2Inria, France

3National & Kapodistrian University of Athens, Greece,
4Toposware, Inc., USA

5University of Edinburgh, Scotland
6Clearmatics, England

7Nomadic Labs, France
8LIX, France

anemoi@inria.fr

Abstract. Advanced cryptographic protocols such as Zero-knowledge (ZK) proofs
of knowledge, widely used in cryptocurrency applications such as Zcash, Monero,
Filecoin, Tezos, Topos, demand new cryptographic hash functions that are efficient
not only over the binary field F2, but also over large fields of prime characteristic
F𝑝. This need has been acknowledged by the wider community and new so-called
Arithmetization-Oriented (AO) hash functions have been proposed, e.g. MiMC-Hash,
Rescue–Prime, Poseidon, Reinforced Concrete and Griffin to name a few.
In this paper we propose Anemoi: a new family of ZK-friendly permutations, that
can be used to construct efficient hash functions and compression functions. The
main features of these algorithms are that 1) they are designed to be efficient within
multiple proof systems (e.g. Groth16, Plonk, etc.), 2) they contain dedicated functions
optimised for specific applications (namely Merkle tree hashing and general purpose
hashing), 3) they have highly competitive performance e.g. about a factor of 2
improvement over Poseidon and Rescue–Prime in terms of R1CS constraints, a 21%-
35% Plonk constraint reduction over a highly optimized Poseidon implementation,
as well as competitive native performance, running between two and three times
faster than Rescue–Prime, depending on the field size.
On the theoretical side, Anemoi pushes further the frontier in understanding the design
principles that are truly entailed by arithmetization-orientation. In particular, we
identify and exploit a previously unknown relationship between CCZ-equivalence and
arithmetization-orientation. In addition, we propose two new standalone components
that can be easily reused in new designs. One is a new S-box called Flystel, based on
the well-studied butterfly structure, and the second is Jive – a new mode of operation,
inspired by the “Latin dance” symmetric algorithms (Salsa, ChaCha and derivatives).
Our design is a conservative one: it uses a very classical Substitution-Permutation
Network structure, and our detailed analysis of algebraic attacks highlights can be of
independent interest.
Keywords: Anemoi · Flystel · Jive · Arithmetization-oriented · Hash functions ·
CCZ-equivalence · Plonk · R1CS · AIR · Merkle tree · Zero-knowledge · Arithmetic
circuits

mailto:anemoi@inria.fr

1 Introduction
In recent years we have seen a rapid surge of interest in the practical application of an
old cryptographic construction known as zero-knowledge (ZK) proofs of knowledge. Such
protocols allow a prover 𝑃 to convince a verifier 𝑉 that a certain statement 𝑥 is true
without revealing any additional information beyond the fact that it is verifiably correct.
Such a piece of information may, for example, be that the result of a specified complex
computation is 1. ZK proofs of knowledge, and more generally computational integrity
proofs, allow 𝑉 to verify that the result of the proven computation is correct without
having to perform the computation herself. In fact, to verify correctness, 𝑉 does not even
need to know some of the details of the computation e.g., its intermediate values or any
potentially secret inputs.

ZK proof systems have been introduced with the seminal work of Micali, Goldwasser
and Rackoff back in 1989 [GMR89]. Traditionally, ZK protocols were deployed to allow a
prover to keep some elements of a computation secret (e.g. a private key). More recently,
the blockchain ecosystem has witnessed a rise of a category of ZK protocols, namely
Succinct Non-Interactive Arguments of Knowledge (ZK-SNARKs), that leverages their
succinctness property to relieve the verifier from the necessity to perform an expensive
computation for which it may not have sufficient resources (in terms of space as well as
computational power). The increased interest in such protocols today is largely driven
by the latest advancements in digital currencies such as Bitcoin, Ethereum, Tezos, Topos,
etc. In particular, ZK proofs make it possible to add privacy on a public blockchain (e.g.
Zcash [BCG+14]) and to perform off-chain computation verifiable by network nodes with
significantly limited resources, improving scalability.

The computation performed by 𝑃 and verified by 𝑉 in a ZK proof is often expressed
as an arithmetic circuit composed of gates (algebraic operations e.g. multiplication or
addition) connected by wires. The quantities that pass over the wires and are operated on
by the gates are elements of a field F𝑞, where 𝑞 ≥ 2.

Cryptographic hash functions are fundamental to practical ZK applications. They are
often used for testing membership of some element(s) by means of Merkle trees. They can
also be used as part of the ZK protocol itself e.g. by compressing multiple public inputs
to a single hash. The modified protocol has a reduced input footprint, and the collision
resistance of the hash function implies that security is not impacted. This is relevant in
proof systems where the verifier’s costs are proportional to the number of public inputs
such as Groth16 [Gro16].

Modern cryptographic hash functions such as SHA2, SHA3 and BLAKE are designed
over vector spaces of the binary field F2 (i.e. they work over bits), while ZK protocols
often operate over F𝑞 for a large 𝑞 – usually a prime number. Therefore the efficient
execution of ZK protocols in applications such as Zcash or Filecoin, that aim to process
millions of transactions per day, imposes the need for new hash functions designed to
be natively efficient in F𝑞 – the so-called Arithmetization-Oriented (AO) designs. The
need for new arithmetization-oriented hash functions has been acknowledged by both
researchers and engineers. As a result, the past couple of years have seen a surge of new
proposals of hash functions that operate natively in F𝑞 for 𝑞 prime, enabling efficient veri-
fication: MiMC-Hash [AGR+16], Poseidon [GKR+21], Rescue–Prime [AAB+20, SAD20]
and Griffin [GHR+22] to name a few. Another line of work, including Reinforced
Concrete [GKL+22] and Tip5 [SLST23], aims at exploiting lookup tables for more efficient
native computations, while remaining practical inside proving systems. This additional
requirement for lookup tables however reduces the compatibility of these hash functions
within the space of proving systems, and hence limiting the chances of global adoption.

The Design Requirements of Arithmetization-Orientation. Building upon the works
mentioned above as well as on the study of practical use cases, we have identified several

2

properties and design requirements that are expected from arithmetization-oriented hash
functions.

Evaluation vs. Verification. The operation for which the efficiency of an AO primitive is
the most crucial is not its evaluation, but rather its verification. Concretely, while the
cost of evaluating 𝑦 = 𝐹 (𝑥) given 𝑥 remains important, the step with the harshest
constraints is a verification: given both 𝑥 and 𝑦, checking if 𝑦 is indeed equal to 𝐹 (𝑥)
should be “efficient”, where the exact meaning of “efficient” depends on the proof
system considered.

𝑏-to-1 compression. One of the main use cases for AO hash functions is in Merkle trees.
In this context, rather than a hash function taking arbitrarily long inputs, protocol
designers need a compression function mapping 𝑏𝑚 to 𝑚 finite field elements, meaning
a compression factor of 𝑏 (often, 𝑏 = 2).

Primitive Factories. Rather than a single primitive or a small family of primitives (such as
for instance AES-128/192/256), AO hash functions are defined for a vast number of
field sizes and security levels. In fact, we would argue that algorithms like Poseidon
are primitive factories1, and that the task of the cryptanalysts is not only to assess
whether specific instances are secure. Rather, it is to verify if such factories can return
weak algorithms. Furthermore, since the protocols and arithmetization techniques
vary, a factory should be able to output primitives optimized for each use case.

Performance constraints. The space and time complexities of proving systems depend
on the size (i.e. the number of gates) of the arithmetized program that is being
verified. Therefore, it is crucial for practical applications to minimize the number
of gates. Otherwise, the cost of a proof may be so high as to make it unusable, as
the computational cost of the prover is often the bottleneck of an entire system.
AIR-based systems additionally require keeping constraint degrees low for practical
applications. Furthermore, good conventional CPU architecture performance is still
required as real world applications tend to use the primitives both outside and inside
the circuit.

Outline of our Contributions. In this paper, we study each of the specific design re-
quirements of AO, and provide new tools to satisfy them. First, we present the necessary
theoretical background in Section 2.

We then present two building blocks. First, in Section 3 we introduce a new mode of
operation, Jive, which turns a public permutation into a 𝑡-to-1 compression function. Its
main advantage is that it compresses an input consisting of 𝑡𝑢 words using a permutation
operating on a state consisting of 𝑡𝑢 words, unlike the sponge structure which needs a
bigger state in order to accomodate a capacity. Then, in Section 4, we argue that the
asymmetry between the evaluation and the verification of a function is best framed in
terms of CCZ-equivalence. Using this insight, we propose a new family of non-linear
components (S-boxes) operating on F2

𝑞 which we call Flystel: they allow both a high
degree evaluation, and a low degree verification.

In a natural progression, we use the Flystel structure to construct a new permutation
factory: Anemoi. It uses the familiar Substitution-Permutation Network (SPN) structure,
which simplifies our security analysis. Its specification is given in Section 5, and our initial
cryptanalysis is presented in Section 6. We combine all these results together in Section 7,
where we show via detailed benchmarks that combining the Anemoi permutations with
the Jive mode of operation allows us to compete with the best AO hash functions in the
literature in terms of performance, and to substantially outclass them in some contexts.

1“Factory” is here used in the sense of the programming design pattern, i.e. it is an object returning
functions.

3

In particular, in the case of Plonk, we can compute more than twice as many hashes for
a fixed number of constraints as is possible with Poseidon, which to the best of our
knowledge was the best until now. We conclude the paper in Section 8.

2 Theoretical Background
In what follows, 𝑞 is an integer corresponding to the size of the field F𝑞, so that 𝑞 = 𝑝 for
some prime number 𝑝 or 𝑞 = 2𝑛. In particular, for binary fields F2𝑛 , we focus on the case
where 𝑛 is odd as it is harder to build low degree permutations otherwise. As usual, the
symbols “+” and “×” denote respectively the addition and multiplication operations over
F𝑞. We also let 𝑚 ≥ 1 be an integer corresponding to the number of field elements we are
operating on. We denote by ⟨𝑎, 𝑏⟩ the usual scalar product of 𝑎 ∈ F𝑚

𝑞 and 𝑏 ∈ F𝑚
𝑞 which is

such that ⟨𝑎, 𝑏⟩ =
∑︀𝑚−1

𝑖=0 𝑎𝑖𝑏𝑖.
Below, we consider a function 𝐹 : F𝑚

𝑞 → F𝑚
𝑞 , and recall some of the concepts behind the

use and analysis of functions to design symmetric cryptographic primitives. We first recall
the definitions of their differential and linear properties, and then that of CCZ-equivalence.
While the latter has seldom been used in practice so far, it plays a crucial role in our work.

Differential Properties. The Difference Distribution Table (DDT) of function 𝐹 is the
two dimensional array 𝛿𝐹 , where 𝛿𝐹 [𝑎, 𝑏] = #{𝑥 ∈ F𝑚

𝑞 |𝐹 (𝑥+𝑎)−𝐹 (𝑥) = 𝑏}. The maximum
value of 𝛿𝐹 [𝑎, 𝑏] for 𝑎 ̸= 0 is the differential uniformity [Nyb94] of 𝐹 .

Linear Properties. While a general formula that works both when 𝑞 is a power of two
and a prime can be given, it is simpler to treat the two cases separately, especially
given that the reader is probably familiar with the case of characteristic 2. If 𝑞 = 2𝑛,
then the Walsh transform of the component ⟨𝑏, 𝐹 ⟩ : F𝑞 → F2 for any 𝑏 ∈ F𝑞∖{0} is
𝒲⟨𝑏,𝐹 ⟩(𝑎) =

∑︀
𝑥∈F𝑚

2𝑛
(−1)⟨𝑎,𝑥⟩+⟨𝑏,𝐹 (𝑥)⟩.

Otherwise, when 𝑞 = 𝑝 the Fourier transform of a function 𝑓 : F𝑚
𝑝 → F𝑝 is the function

𝒲𝑓 : F𝑚
𝑝 → C such that

𝒲𝑓 (𝑎) =
∑︁

𝑥∈F𝑚
𝑝

exp
(︂

2𝜋𝑖 (⟨𝑎, 𝑥⟩ − 𝑓(𝑥))
𝑝

)︂
.

For a vectorial function 𝐹 : F𝑚
𝑞 → F𝑚

𝑞 , we consider the Fourier transform of each of its
components, i.e. of all the linear combinations ⟨𝑏, 𝐹 ⟩.

CCZ-Equivalence [CCZ98]. Let 𝐹 : F𝑚
𝑞 → F𝑚

𝑞 and 𝐺 : F𝑚
𝑞 → F𝑚

𝑞 be two functions. They
are affine-equivalent if there exist two affine permutations 𝜇 : F𝑚

𝑞 → F𝑚
𝑞 and 𝜂 : F𝑚

𝑞 → F𝑚
𝑞

such that 𝐹 = 𝜂 ∘ 𝐺 ∘ 𝜇. This can alternatively be written using the graphs of these
functions:

Γ𝐹 =
{︀

(𝑥, 𝐹 (𝑥)) | 𝑥 ∈ F𝑚
𝑞

}︀⏟ ⏞
graph of 𝐹

= ℒ(Γ𝐺) =
{︀
ℒ (𝑥, 𝐺(𝑥)) | 𝑥 ∈ F𝑚

𝑞

}︀
,

where ℒ is the affine permutation defined by ℒ(𝑥, 𝑦) =
(︀
𝜂(𝑥), 𝜇−1(𝑦)

)︀
. If we allow ℒ to be

any affine permutation,2 we obtain CCZ-equivalence.
2Starting from a given function 𝐹 , applying any affine permutation of F2

𝑞 to its graph is unlikely to
yield the graph of another function 𝐺. Indeed, this would require that the left hand side of ℒ(𝑥, 𝐹 (𝑥))
takes all the values in F𝑞 as 𝑥 goes through F𝑞 , which is a priori not the case. A mapping ℒ that does yield
the graph of another function is called “admissible”, a concept that was extensively studied in [CP19].

4

Definition 1 (CCZ-Equivalence). Let 𝐹 and 𝐺 be functions of F𝑚
𝑞 . We say that they

are CCZ-equivalent if there exists an affine permutation ℒ : (F𝑚
𝑞)2 → (F𝑚

𝑞)2 such that
Γ𝐹 = ℒ(Γ𝐺).

An important property of CCZ-equivalence that is instrumental in our work is that it
preserves the differential spectrum and the squared Walsh coefficients. In other words, all
functions within the same CCZ-equivalence class share the same differential and linear
properties and hence offer the same resilience against differential and linear attacks. It
also means that it is sufficient to investigate these properties for a single member of a
CCZ-equivalence class.

Another relevant property of CCZ-equivalence is that it does not preserve the degree of
the function. In fact, there are known cases where a low-degree function is CCZ-equivalent
to a higher-degree one. It is most notably the case of the so-called butterfly structure,
originally introduced in [PUB16], and then further generalized in two different ways
in [CDP17] and [LTYW18].

3 Modes of Operation
In advanced protocols, hash functions are used for two purposes. The first is to emulate a
random oracle, in particular to return the “fingerprint” or digest of a message of arbitrary
length. The idea is that this fixed length digest is simpler to sign than the full message.
The second use is as a compression function within a Merkle-tree: in this case, the hash
function 𝐻 is used to map two inputs of size 𝑛 to an output of size 𝑛, and the security
of the higher level scheme relies on its collision resistance. While a general purpose hash
function like SHA-3 [BDPA13, Dwo15] or an arithmetization-friendly one can safely be used
for both cases, for improved efficiency we chose a full hash function only for the random
oracle case (Section 3.1). Indeed, the specific constraints of the Merkle-tree case can be
satisfied more efficiently using a dedicated structure that remains permutation-based, and
which we introduce in Section 3.2. SAGE implementations of both modes are provided in
Appendix C.

3.1 Random Oracle: the Sponge Structure
A random oracle is essentially a theoretical function that picks each output uniformly at
random while keeping track of its previous outputs in order to remain a deterministic
function. The sponge construction is a convenient approach to try to emulate this behaviour.
First introduced by Bertoni et al. in [BDPVA07], this method was most notably used
to design SHA-3. It is also how most arithmetization-oriented hash functions have been
designed, e.g. Rescue–Prime, gMiMC-Hash, Poseidon [GKR+21], and Reinforced
Concrete. Such hash functions can easily be tweaked into eXtendable Output Functions
(XOF) [Dwo15] should the need arise.

The overall principle of the sponge construction is best explained by the diagram in
Figure 1. In this paper, we slightly modify the original approach to operate on elements of
F𝑞 instead of F2. The main component of the structure is a permutation 𝑃 operating on
F𝑟+𝑐

𝑞 , where both 𝑟 and 𝑐 are non-zero integers. The rate 𝑟 is the size of the outer part
of the state, while 𝑐 is the capacity and corresponds to the size of the inner part of the
state. The digest consists of ℎ elements of F𝑞. Then, to process a message 𝑚 consisting of
elements of F𝑞, we apply the following operations.

Padding. A basic padding works as follows: append 1 ∈ F𝑞 to the message followed by
enough zeroes so that the total length is a multiple of 𝑟, and then divide the result
into blocks 𝑚0,...,𝑚ℓ−1 of 𝑟 elements.

5

However, with this approach, we may end up using one more call to 𝑃 in the case
where the length of the message was already a multiple of 𝑟. A more efficient approach
is presented in [Hir16]: if the length of the message is already a multiple of 𝑟, then
we do not append further blocks to it. Instead, we add a constant to the capacity
before squeezing. This is summarized as the addition of 𝜎 which is equal to 0 if the
message length is not a multiple of 𝑟, and to 1 otherwise (see Figure 1). This variant
also has the advantage of gracefully handling the case where 𝑟 = 1.

Absorption. For each message block 𝑚𝑖, we add it into the outer part of the state, and
then apply 𝑃 on the full state.

Squeezing. We extract min(ℎ, 𝑟) elements from the outer part of the state to generate
the first elements of the digest. If ℎ > 𝑟, we apply 𝑃 and then extract additional
elements again from the rate registers, repeating this process until the desired digest
length is reached.

�

𝑚0

F𝑐
𝑞

F𝑟
𝑞

𝑃

�

𝑚1

𝑃

�

𝑚2

𝑃
. . .

. . .

�
𝜎

�

𝑚ℓ−1

𝑃

𝑧0

𝑃
. . .

. . .
𝑧1

𝑃

𝑧⌈ℎ/𝑟⌉−1

Figure 1: Sponge construction with the modification of [Hir16].

The security of a sponge rests on the properties of its permutation. Informally, the only
special property of the permutation should be the existence of an efficient implementation.
Its differential, linear, algebraic, etc. properties should be similar to those expected from a
permutation picked uniformly at random from the set of all permutations.

Following a flat sponge claim [BDPVA07], the designers of such an algorithm can
essentially claim that any attack against it will have a complexity equivalent to at least
𝑞𝑐/2 calls to the permutation (provided ℎ ≥ 𝑐, ℎ log2 𝑞 ≥ 2𝑠 and 𝑐 log2 𝑞 ≥ 2𝑠). Thus, a flat
sponge claim states that a sponge-based hash function provides 𝑐⌊log2 𝑞⌋/2 bits of security.

3.2 Merkle Compression Function: the Jive Mode
One of the main use cases for an arithmetization-oriented hash function is as a compression
function in a Merkle tree. This case could be easily handled using a regular hashing mode,
such as the sponge structure discussed above. However, due to the specifics of this use
case, it is possible to use a more efficient mode.

In a Merkle tree, the elements considered are in F𝑚
𝑞 , where 𝑚 is chosen so that

𝑚⌊log2 𝑞⌋ ≥ 𝑛, where 𝑛 is the intended security level. We then need to hash two such
elements to obtain a new one. As a consequence, unlike in the usual case, the input size is
fixed, and is equal to exactly twice the digest size. Given a permutation of (F𝑚

𝑞)2, we can
thus construct a suitable hash function by plugging it into the following mode.

Definition 2 (Jive). Consider a permutation 𝑃 defined as follows:

𝑃 :
{︃

(F𝑚
𝑞)𝑏 → (F𝑚

𝑞)𝑏

(𝑥0, ..., 𝑥𝑏−1) ↦→ (𝑃0(𝑥0, ..., 𝑥𝑏−1), ..., 𝑃𝑏−1(𝑥0, ..., 𝑥𝑏−1)) ,

so that it operates on 𝑏𝑚 elements of F𝑞, where 𝑃𝑖(𝑥0, . . . , 𝑥𝑏−1) : 0 ≤ 𝑖 < 𝑏 refers to the
𝑖-th element in F𝑚

𝑞 of the output 𝑃 (𝑥0, . . . , 𝑥𝑏−1) from 𝑃 . The Jive mode is built from 𝑃

6

𝑥 𝑦

Jive2(𝑥, 𝑦)

𝑃

𝑃0(𝑥, 𝑦) 𝑃1(𝑥, 𝑦)
�

�

(a) Jive2, which maps (F𝑚
𝑞)2 to F𝑚

𝑞 .

𝑥0 𝑥1 . . . 𝑥𝑏−1

Jive𝑏(𝑥0, ..., 𝑥𝑏−1)

𝑃

�

�
�

(b) Jive𝑏, which maps (F𝑚
𝑞)𝑏 to F𝑚

𝑞 .

Figure 2: The Jive mode turning a permutation into a compression function.

by defining the following one way function Jive𝑏(𝑃):

Jive𝑏(𝑃) :
{︃

(F𝑚
𝑞)𝑏 → F𝑚

𝑞

(𝑥0, ..., 𝑥𝑏−1) ↦→
∑︀𝑏−1

𝑖=0 (𝑥𝑖 + 𝑃𝑖(𝑥0, ..., 𝑥𝑏−1)) .

This approach can be seen as a permutation-based variant of the Davies-Meyer mode
which, like the latter, crucially relies on a feedforward to ensure one-wayness. Alternatively,
it can be interpreted as a truncated instance of the mode used in the “Latin dance” ciphers
ChaCha and Salsa [Ber08], which is also based on a public permutation combined with a
feedforward. Incidentally, we called it Jive after another Latin dance.

If used inside a Merkle tree, this mode can save some computations. For example, in
the case where the fan-in 𝑏 is equal to 2, a sponge would use a permutation operating
on (F𝑚

𝑞)3 in order to leave one vector of F𝑚
𝑞 free for the capacity. Using Jive2 instead, we

only need a permutation of (F𝑚
𝑞)2. The trade-off of course is that, unlike a sponge-based

approach, the relevance of Jive is restricted to some specific cases.

4 The Flystel Structure
The performance metrics for AO algorithms differ substantially from the usual ones in
symmetric cryptography. Neither the number of CPU cycles, nor the RAM consumption
or the code size are the dominant factors. Pin-pointing exactly what is needed for the
various protocols relying on arithmetization is a difficult task as each protocol has its own
subtleties. For example, Plonk offers custom gates, which add complexity and a small
overall overhead but can drastically decrease the cost of a particular operation, while other
proof systems might not. On the other hand, additions are essentially free for R1CS or
AIR, but not for Plonk. In addition, permutations of a sequence of elements are likely to
incur cost in Plonk or AIR (via copy-constraints), but are free in R1CS.

In this section, we present a family of non-linear components that provide both the
cryptographic properties that we need to ensure the security of our primitives, and
efficient implementations across proof systems, which we call open Flystel. It uses—and
highlights—the connection between arithmetization-orientation and CCZ-equivalence.

4.1 On CCZ-Equivalence and Arithmetization-Orientation
In order for a function 𝐹 to be arithmetization-oriented, it is necessary that verifying
whether 𝑦 = 𝐹 (𝑥) can be done using few multiplications in a specific field (whose size is
dictated by other parts of the protocol). A very straight-forward initial approach is to use
a function 𝐹 which, itself, can be evaluated using a small number of multiplications: both

7

MiMC-Hash [AGR+16] and Poseidon [GKR+21] work in this way. The downside is that
using a low degree round function may imply vulnerability to attacks based on polynomial
solving, known as algebraic attacks. As a consequence, these algorithms have to use a high
number of rounds.

A first breakthrough on this topic was made by the designers of Rescue–Prime [AAB+20].
They noticed that for a permutation 𝐹 , checking if 𝑦 = 𝐹 (𝑥) is equivalent to checking if
𝑥 = 𝐹 −1(𝑦). It allows them to use both 𝑥𝛼 and 𝑥1/𝛼 (where 𝑥 ↦→ 𝑥𝛼 is a permutation of
the field used) in their round function, with 𝛼 chosen so as to minimize the number of
multiplications. It means that both can be verified using a (cheap) evaluation of 𝑥𝛼, and at
the same time that the degree of the round function is very high as 1/𝛼 is a dense integer
of Z/(𝑞 − 1)Z. As a consequence, much fewer rounds are needed to prevent algebraic
attacks.

We go further and propose a generalization of this insight. So far, we have seen that
AO implies that a function or its inverse must have a particular implementation property
(low number of multiplications). In fact, we claim the following:

A subfunction is arithmetization-oriented if it is CCZ-equivalent to a function
that can be verified efficiently.

The above should come as no surprise since a permutation and its inverse are known to be
CCZ-equivalent [BCP06]. In that sense, this insight is a natural generalization of the one
of the Rescue–Prime designers.

Exploiting this idea is simple: suppose that 𝐹 and 𝐺 are such that Γ𝐹 = ℒ(Γ𝐺),
where ℒ : (𝑥, 𝑦) ↦→ (ℒ𝐿(𝑥, 𝑦),ℒ𝑅(𝑥, 𝑦)) is an affine permutation, and where 𝐺 can be
efficiently verified. Then we can use 𝐹 to construct an AO algorithm: checking if 𝑦 = 𝐹 (𝑥)
is equivalent to checking if ℒ𝑅(𝑥, 𝑦) = 𝐺 (ℒ𝐿(𝑥, 𝑦)), which only involves 𝐺 and linear
functions: it is efficient.

Below, we present a first component based on this idea: the Flystel. Nevertheless, we
hope that further research in discrete mathematics will lead to new non-linear components
that are even better suited to this use case: we need more permutations with good
cryptographic properties (including a high degree) that are CCZ-equivalent to functions
with a low number of multiplications.

4.2 High Level View of the Flystel Structure
Let 𝑄𝛾 : F𝑞 → F𝑞 and 𝑄𝛿 : F𝑞 → F𝑞 be two quadratic functions, and let 𝐸 : F𝑞 → F𝑞 be
a permutation. Then, the Flystel is a pair of functions relying on 𝑄𝛾 , 𝑄𝛿 and 𝐸. The
open Flystel is the permutation of (F𝑞)2 obtained using a 3-round Feistel network with
𝑄𝛾 , 𝐸−1, and 𝑄𝛿 as round functions, as depicted in Figure 3a. It is denoted ℋ, so that
ℋ(𝑥, 𝑦) = (𝑢, 𝑣) is evaluated as follows:

1. 𝑥← 𝑥−𝑄𝛾(𝑦),

2. 𝑦 ← 𝑦 − 𝐸−1(𝑥),

3. 𝑥← 𝑥 + 𝑄𝛿(𝑦),

4. 𝑢← 𝑥, 𝑣 ← 𝑦 .

We define by 𝒱 : (𝑦, 𝑣) ↦→ (𝑅𝛾(𝑦, 𝑣), 𝑅𝛿(𝑦, 𝑣)) the closed Flystel function over F2
𝑞,

where 𝑅𝛾 : (𝑦, 𝑣) ↦→ 𝐸(𝑦 − 𝑣) + 𝑄𝛾(𝑦) and 𝑅𝛿 : (𝑦, 𝑣) ↦→ 𝐸(𝑦 − 𝑣) + 𝑄𝛿(𝑣).
Our terminology of “open” for the permutation and “closed” for the function is based

on the relation between the Flystel and the butterfly structure, as detailed later. In
particular, the two Flystels are linked in the following way.

Proposition 1. For a given tuple (𝑄𝛾 , 𝐸, 𝑄𝛿), the corresponding closed and open Flystel
are CCZ-equivalent.

8

𝑥 𝑦

�

�

�

𝑢 𝑣

𝑄𝛾

𝐸−1

𝑄𝛿

(a) Open Flystel, ℋ.

𝑦 𝑣

�

� �

𝑦 − 𝑣

𝑥 𝑢

𝑄𝛾 𝐸 𝑄𝛿

(b) Closed Flystel, 𝒱.

Figure 3: The Flystel structure (both variants are CCZ-equivalent).

Proof. Let (𝑢, 𝑣) = ℋ(𝑥, 𝑦). Then it holds that 𝑣 = 𝑦 − 𝐸−1 (𝑥−𝑄𝛾(𝑦)), so that we can
write 𝑥 = 𝐸(𝑦 − 𝑣) + 𝑄𝛾(𝑦). Similarly, we have that 𝑢 = 𝑄𝛿(𝑣) + 𝐸(𝑦 − 𝑣). Consider now
the set Γℋ =

{︀
((𝑥, 𝑦),ℋ(𝑥, 𝑦)) , (𝑥, 𝑦) ∈ F2

𝑞

}︀
. By definition, we have

Γℋ =
{︀

((𝑥, 𝑦), (𝑢, 𝑣)) , (𝑥, 𝑦) ∈ F2
𝑞

}︀
= ℒ

(︀ {︀
((𝑦, 𝑣), (𝑥, 𝑢)) , (𝑥, 𝑦) ∈ F2

𝑞

}︀)︀
where ℒ is the permutation of (F2

𝑞)2 such that ℒ−1 ((𝑥, 𝑦), (𝑢, 𝑣)) = ((𝑦, 𝑣), (𝑥, 𝑢)), which
is linear. Using the equalities we established at the beginning of this proof, we can write:

ℒ−1(Γℋ) =
{︀

((𝑦, 𝑣), (𝑥, 𝑢)) , (𝑥, 𝑦) ∈ F2
𝑞

}︀
=

{︀(︀
(𝑦, 𝑣), (𝑄𝛾(𝑦) + 𝐸(𝑦 − 𝑣), 𝑄𝛿(𝑣) + 𝐸(𝑦 − 𝑣))

)︀
, (𝑦, 𝑣) ∈ F2

𝑞

}︀
= Γ𝒱 .

We deduce that Γℋ = ℒ(Γ𝒱), so the two functions are CCZ-equivalent.

This simple proposition has two crucial corollaries on which we will rely in the remainder
of the paper. The first is that it suffices to investigate the differential and linear properties
of the closed butterfly to obtain results on the open one.

Corollary 1. The open and closed Flystel structures have identical differential and
linear properties. More precisely, the set of the values in the DDT of both functions is the
same, and the set of the square of the Fourier coefficients of the components is also the
same.

The second corollary is the key reason behind the relevance of the Flystel structure
in the arithmetization-oriented setting and is stated below.

Corollary 2. Verifying that (𝑢, 𝑣) = ℋ(𝑥, 𝑦) is equivalent to verifying that (𝑥, 𝑢) = 𝒱(𝑦, 𝑣).

Indeed, Corollary 2 means that it is possible to encode the verification of the evaluation
of the high degree open Flystel using the polynomial representation of the low degree
closed Flystel.

In characteristic 2, quadratic mappings correspond to different exponents than in
the general case. As a consequence, when giving concrete instantiations of the Flystel
structure, we need to treat this case separately. To highlight the difference, we call
Flystel2 the instances used in characteristic 2, and Flystelp the instances used in odd
prime characteristic.

4.3 Characteristic 2
Let 𝑞 = 2𝑛, with 𝑛 odd. Furthermore, let 𝛼 = 2𝑖 + 1 be such that gcd(𝑖, 𝑛) = 1,
so that 𝑥 ↦→ 𝑥𝛼 is a permutation of F𝑞. In this case, the Flystel2 structure with
𝑄𝛾(𝑥) = 𝑄𝛿(𝑥) = 𝛽𝑥𝛼, with 𝛽 ̸= 0, and with 𝐸(𝑥) = 𝑥𝛼 is a degenerate generalized
butterfly structure. It was studied in [LTYW18] as a generalization of the structure

9

introduced in [PUB16], which was also refined in [CDP17]. We recall the following
particular case3 in Theorems 3, 4 and 5 of [LTYW18].

Proposition 2 ([LTYW18]). Let 𝑞 = 2𝑛 with 𝑛 odd, 𝐸 = 𝑥 ↦→ 𝑥𝛼, where 𝛼 = 2𝑖 + 1
is such that gcd(𝑖, 𝑛) = 1, and 𝑄𝛾 = 𝑄𝛿 = 𝑥 ↦→ 𝛽𝑥𝛼, where 𝛽 ̸= 0 Then the Flystel2

structures defined by the functions 𝑄𝛾 , 𝐸, and 𝑄𝛿 have differential uniformity equal to 4,
linearity equal to 2𝑛+1, and algebraic degree of 𝑛.

In practice, to prevent some attacks (see Section A.3), we instead use 𝑄𝛾(𝑥) = 𝛽𝑥3 + 𝛾
and 𝑄𝛿(𝑥) = 𝛽𝑥3 + 𝛿, where 𝛽, 𝛾, 𝛿 are constants in F𝑞 such that 𝛾 ̸= 𝛿 and 𝛽 ̸= 0. The
particular values of those constants are not essential to the properties of the construction
as long as the noted requirements are satisfied. For simplicity we set 𝛽 = 𝑔, 𝛾 = 𝑔−1 and
𝛿 = 0 with 𝑔 being a generator of the multiplicative subgroup of the field F𝑞. This results
in 𝑄𝛾 : 𝑥 ↦→ 𝑔𝑥3 + 𝑔−1 and 𝑄𝛿 : 𝑥 ↦→ 𝑔𝑥3 as depicted in Figure 4a.

𝑥 𝑦

𝑡

𝑢 𝑣

𝑔𝑥3 + 𝑔−1⊕

𝑥1/3 ⊕

𝑔𝑥3⊕

(a) Flystel2 in characteristic 2.

𝑥 𝑦

𝑡

𝑢 𝑣

𝑔𝑥2 + 𝑔−1�

𝑥1/𝛼 �

𝑔𝑥2�

(b) Flystelp in odd prime characteristic.

Figure 4: The two variants of the open Flystel, mapping (𝑥, 𝑦) to (𝑢, 𝑣).

4.4 Odd Characteristic
When 𝑞 = 𝑝, the three functions of the Flystelp structure are resp.: 𝑄𝛾 : 𝑥 ↦→ 𝑔𝑥2 + 𝑔−1,
𝐸 : 𝑥 ↦→ 𝑥𝛼, and 𝑄𝛿 : 𝑥 ↦→ 𝑔𝑥2, where 𝛼, 𝑔 ∈ F𝑞 and 𝑔 again is a generator of the
multiplicative subgroup of the field F𝑞.

Differential Properties. Such structures have a low differential uniformity.

Proposition 3. Let 𝑞 = 𝑝 be a prime number, 𝐸 = 𝑥 ↦→ 𝑥𝛼, where 𝛼 is such that
gcd(𝛼, 𝑝−1) = 1, and 𝑄𝛾 = 𝑥 ↦→ 𝑔𝑥2 +𝑔−1, 𝑄𝛿 = 𝑥 ↦→ 𝑔𝑥2. Then the Flystelp structures
defined by the functions 𝑄𝛾 , 𝐸, and 𝑄𝛿 has a differential uniformity equal to 𝛼− 1.

Proof. Let 𝑎, 𝑏, 𝑐, 𝑑 be elements of F𝑝 such that (𝑎, 𝑏) ̸= (0, 0). To investigate the differential
uniformity of 𝒱 : (𝑦, 𝑣) ↦→ (𝑅𝛾(𝑦, 𝑣), 𝑅𝛿(𝑦, 𝑣)), we look at the number of solutions (𝑦, 𝑣) of
(1). {︃

𝑅𝛾(𝑦 + 𝑎, 𝑣 + 𝑏)−𝑅𝛾(𝑦, 𝑣) = 𝑐

𝑅𝛿(𝑦 + 𝑎, 𝑣 + 𝑏)−𝑅𝛿(𝑦, 𝑣) = 𝑑 .
(1)

3The result of Li et al. covers all generalized butterflies, not just those corresponding to Flystel
structures. In a Flystel, the first parameter (which we will denote 𝑎) is set to 1. Their results for the
differential uniformity and the linearity hold only when 𝛽 ̸= (1 + 𝑎)𝛼, meaning that we simply need to
make sure that 𝛽 ̸= 0. For the algebraic degree, the condition they give in their Theorem 5 to have a
degree equal to 𝑛 + 1 degenerates into 𝛽2𝑖+1 = 𝛽2𝑖+1, which is never the case as 𝑖 > 0.

10

We have: {︂
(𝑦 + 𝑎 − (𝑣 + 𝑏))𝛼 + 𝑔−1 + 𝑔(𝑦 + 𝑎)2 − (𝑦 − 𝑣)𝛼 − 𝑔−1 − 𝑔𝑦2 = 𝑐

(𝑦 + 𝑎 − (𝑣 + 𝑏))𝛼 + 𝑔(𝑣 + 𝑏)2 − (𝑦 − 𝑣)𝛼 − 𝑔𝑣2 = 𝑑 .

We get:
𝑐− 𝑑 = 𝑔(𝑦 + 𝑎)2 − 𝑔𝑦2 + 𝑔𝑣2 − 𝑔(𝑣 + 𝑏)2 ,

which is equivalent to:

𝑣 = (2𝑏)−1 (︀
2𝑎𝑦 + 𝑎2 − 𝑏2 − 𝑔−1(𝑐− 𝑑)

)︀
.

As a consequence, we know that 𝑣 can be expressed as an affine polynomial in 𝑦. We
then have that the first equation is an equation in 𝑦 of degree 𝛼− 1 (since the terms 𝑦𝛼

cancel out), and thus has at most 𝛼− 1 solutions for 𝑦. In the end, we have at most 𝛼− 1
solutions (𝑦, 𝑣) for the system (since for each value of 𝑦, there is one 𝑣).

Linear Properties. We do not have a theoretical bound on the correlation for the Flystelp
structure, but we provide informal arguments supporting its security against linear crypt-
analysis attacks. Notice first that Flystelp is defined by the functions 𝑄𝛾 , 𝐸−1 and 𝑄𝛿,
where 𝑄𝛾 and 𝑄𝛿 are quadratic. Given that the function 𝑥2 is bent (i.e. its correlations
are the lowest possible), we argue that a linear trail which would activate just one of these
functions should be expected to have a very low correlation. In Appendix A, we give a
conjecture supported by experimental results, stating that the linearity of Flystelp is
lower than 𝑝 log 𝑝.

Invariant Subset. Regardless of the characteristic, it holds thatℋ (𝑄𝛾(𝑥), 𝑥) = (𝑄𝛿(𝑥), 𝑥).
Thus, setting 𝑄𝛾 = 𝑄𝛿 would mean that Flystel is the identity over a subset of size 𝑞,
which is why we use constant additions to ensure 𝑄𝛾 ̸= 𝑄𝛿. Nevertheless, this only ensures
that the open Flystel is a translation over the set {(𝑄𝛾(𝑥), 𝑥) , 𝑥 ∈ F𝑞}, which remains
cryptographically weak. While a priori undesirable, the impact of this property can be
mitigated. First, the subset over which it has a simple expression is not an affine space.
Second, as we show in Appendix A.3, the propagation of such patterns can be broken via
the linear layer.

Degree. Given the structure of the open Flystelp, its degree is lower bounded by the
inverse of 𝛼 modulo 𝑝− 1, a quantity which in practice corresponds to a dense integer of
Z/(𝑝−1)Z. We deduce that one call to the open Flystelp is likely to be of maximum degree
and is therefore sufficient to thwart attacks that exploit the low degree of a component,
such as higher order differentials.

4.5 Implementation Aspects
For direct computation, or witness calculation, one can simply implement the open Flystel.
For the verification however, we also have the option to use the closed Flystel structure,
since there is no requirement for the various verification steps to be performed in a particular
order as long as consistency is enforced. In this case, the cost is one multiplication for 𝑄𝛾

and 𝑄𝛿, and as many as are needed to compute 𝑥 ↦→ 𝑥𝛼. This can be implemented using a
technique slightly more subtle than basic fast exponentiation, instead relying on addition
chains as discussed for example in [BC90]. Good addition chains can be found using the
addChain tool [McL21]. They are also particularly useful for implementing 𝑥 ↦→ 𝑥1/𝛼.

5 Description of Anemoi

In this section, we present new primitives, and the way to deterministically construct all
of their variants. At their core are the Anemoi permutations, that operate on F2ℓ

𝑞 for any

11

field size 𝑞 that is either a prime number or a power of two, and for positive integer ℓ. The
round function of these permutations is presented in Section 5.1: for each value of ℓ, and
for each value of 𝑞, there is a unique round function.

In order to build the primitives themselves, we need also to consider the security
level required as it will influence the number of rounds of the permutation (note that the
security level will also influence the size of the internal state). The procedures to follow to
define higher level algorithms are described in Section 5.2. We then provide some specific
instances in Section 5.3.

5.1 Round Function
A round function is a permutation of F2ℓ

𝑞 , where ℓ > 0 is an integer, and where 𝑞 is either
a prime number or a power of 2 with a bitlength of at least 10.4

In order to define it, we organize its state into a rectangle of elements of F𝑞 of dimension
2 × ℓ. The elements in the first row are denoted (𝑥0, ..., 𝑥ℓ−1), and those in the second
row are (𝑦0, ..., 𝑦ℓ−1) (see Figure 5a). We refer to vectors of Fℓ

𝑞 using the same upper-case
letters, e.g. (𝑥0, ..., 𝑥ℓ−1) is denoted 𝑋. Subscripts correspond to indices within a vector
of Fℓ

𝑞, and superscripts to round indices, so 𝑋𝑖 is the top part of the state at the start of
round 𝑖. We let 𝑔 be a specific generator of the multiplicative subgroup of the field F𝑞. If 𝑞
is prime, then 𝑔 is the smallest such generator using the usual integer ordering. Otherwise,
we have that F𝑞 = F2𝑛 = F2[𝑥]/𝑝(𝑥), where 𝑝 is an irreducible polynomial of degree 𝑛, in
which case we let 𝑔 be one of its roots.

The function applied during round 𝑟 is denoted R𝑟. It has the structure of a classical
Substitution-Permutation Network, whose components are described below: first the linear
layer, then the S-box layer, and finally the constant addition. The overall action of each
of these operations on the state is summarized in Figure 5, and a complete round is
represented in Figure 6.

𝑥0 𝑥1 ... 𝑥ℓ−1

𝑦0 𝑦1 ... 𝑦ℓ−1

𝑋

𝑌

(a) Internal state

ℳ𝑥

ℳ𝑦

(b) The diffusion layer ℳ.

𝒫 𝒫 ... 𝒫

(c) The PHT 𝒫.

ℋ ℋ ... ℋ

(d) The S-box layer 𝒮.

𝑋𝑖

𝑌 𝑖

𝐶𝑖

𝐷𝑖+=
(e) The constant addition 𝒜.

Figure 5: The internal state of Anemoi and its basic operations.

Constant Additions 𝒜. We let 𝑥𝑗 ← 𝑥𝑗 +𝑐𝑖
𝑗 and 𝑦𝑗 ← 𝑦𝑗 +𝑑𝑖

𝑗 , where 𝑐𝑖
𝑗 ∈ F𝑞 and 𝑑𝑖

𝑗 ∈ F𝑞

are round constants that depend on both the position (index 𝑗) and the round (index 𝑖).
The aim is to increase the complexity of the algebraic expression of multiple rounds of the
primitive and to prevent the appearance of patterns that an attacker could leverage in
their attack.

They are derived using the digits of 𝜋 using the following procedure. We let

(𝜋0, 𝜋1) =

(1415926535897932384626433832795028841971693993751058209749445923078164062862089986280348253421170679,

8214808651328230664709384460955058223172535940812848111745028410270193852110555964462294895493038196)

4The field order must have a bitlength of at least 10 bits. The aim of this restriction is to ensure that
e.g. MDS matrices can be found as those might not be defined for small field sizes.

12

𝑥𝑟
0 𝑥𝑟

1 𝑥𝑟
2 ... 𝑥𝑟

ℓ−1

𝑐𝑟
0

𝑐𝑟
1

𝑐𝑟
2
.
.
.

𝑐𝑟
ℓ−1

�

�

�

�

𝑥
𝑟+1
0 𝑥

𝑟+1
1 𝑥

𝑟+1
2

... 𝑥
𝑟+1
ℓ−1

ℳ𝑥

𝑦𝑟
0 𝑦𝑟

1 𝑦𝑟
2 ... 𝑦𝑟

ℓ−1

𝑑𝑟
0

𝑑𝑟
1

𝑑𝑟
2
.
.
.

𝑑𝑟
ℓ−1

�

�

�

�

𝑦
𝑟+1
0 𝑦

𝑟+1
1 𝑦

𝑟+1
2

... 𝑦
𝑟+1
ℓ−1

ℳ𝑦

�

�

�

�

�

�

�

�

ℋ ℋ ℋ ℋ. . .

◁ Constant addition 𝒜
for 𝑖 ∈ {0, ..., ℓ− 1} do

𝑥𝑖 ← 𝑥𝑖 + 𝑐𝑟
𝑖

𝑦𝑖 ← 𝑦𝑖 + 𝑑𝑟
𝑖

end for
◁ Linear layer ℳ
𝑋 ←ℳ𝑥(𝑋)
𝑌 ←ℳ𝑥 ∘ 𝜌(𝑌)
◁ PHT 𝒫
𝑌 ← 𝑌 + 𝑋
𝑋 ← 𝑋 + 𝑌
◁ S-box layer ℋ
for 𝑖 ∈ {0, ..., ℓ− 1} do

𝑥𝑖 ← 𝑥𝑖 − 𝑔𝑄(𝑦𝑖)− 𝑔−1

𝑦𝑖 ← 𝑦𝑖 − 𝑥
1/𝛼
𝑖

𝑥𝑖 ← 𝑥𝑖 + 𝑔𝑄(𝑦𝑖)
end for
return (𝑋, 𝑌)

(a)

Figure 6: R𝑟, the 𝑟-th round of Anemoi, applied on the state (𝑋, 𝑌) ∈ Fℓ
𝑞 × Fℓ

𝑞, where
𝑋 = (𝑥0, ..., 𝑥ℓ−1) and 𝑌 = (𝑦0, ..., 𝑦ℓ−1).

be the first and second blocks of 100 digits of 𝜋. We derive the round constants 𝑐𝑖
𝑗 and 𝑑𝑖

𝑗

by applying an open Flystel with the same parameters as in the round function on the
pair (𝜋𝑖

0, 𝜋𝑗
1), where superscripts are exponents, so that⎧⎨⎩𝑐𝑖

𝑗 = 𝑔(𝜋𝑖
0)2 +

(︁
𝜋𝑖

0 + 𝜋𝑗
1

)︁𝛼

𝑑𝑖
𝑗 = 𝑔(𝜋𝑗

1)2 +
(︁

𝜋𝑖
0 + 𝜋𝑗

1

)︁𝛼

+ 𝑔−1 ,

where the computations are done in F𝑞. When 𝑞 = 2𝑛, 𝜋0 and 𝜋1 are cast to field elements
using the usual mapping sending

∑︀𝑛−1
𝑘=0 𝑥𝑖2𝑖 to

∑︀𝑛−1
𝑘=0 𝑥𝑖𝑔

𝑖, where (𝑥0, ..., 𝑥𝑛−1) is the
binary representation of 𝑥 modulo 2𝑛.

Diffusion Layer ℳ. If ℓ > 1, then the diffusion layerℳ operates on 𝑋 and 𝑌 separately,
so that

ℳ(𝑋, 𝑌) =
(︀
ℳ𝑥(𝑋),ℳ𝑦(𝑌)

)︀
,

as summarized in Figure 5b. The linear permutations ℳ𝑥 and ℳ𝑦 are closely related,
but differ in order to break the column structure imposed by the non-linear layer (see
below). More precisely, we impose that ℳ𝑥 is a matrix of size ℓ× ℓ of F𝑞 with maximum
diffusion, i.e. such that its branching number is equal to ℓ + 1.5 We then construct ℳ𝑦 as
ℳ𝑦 =ℳ𝑥 ∘ 𝜌, where 𝜌 is a simple word permutation: 𝜌(𝑥0, ..., 𝑥ℓ−1) = (𝑥1, ..., 𝑥ℓ−1, 𝑥0).

The specifics of the linear permutationℳ𝑥 then depend on the value of ℓ. Furthermore,
in order for our permutation to best satisfy different proof systems, we use different
techniques to construct them. At a high level, there are two different situations:

∙ if ℓ is small, then the field size is expected to be large in order for the permutation
to operate on a state large enough to offer security against generic attacks, meaning

5Recall that the branching number of a linear permutation 𝐿 is the minimum over 𝑥 ̸= 0 of hw(𝑥) +
hw (𝐿(𝑥)), where hw(𝑥) denotes the Hamming weight of 𝑥.

13

that this case is expected to happen when using pairing-based proof systems like
Groth16 or standard Plonk which require large scalar fields for security.

∙ if ℓ is large, then the situation is the opposite, meaning that we would expect the field
size to be smaller and thus to correspond to e.g. fields used in FRI-based proving
systems.

In the Plonk case, additions have a non-negligible cost during verification. As a consequence,
when ℓ is at most equal to 4, we use linear layers requiring a number of additions as small
as possible. To this end, we adapt results from [DL18] where Duval and Leurent present
generic matrix constructions with a minimal number of additions. Their goal was to limit
the number of XORs needed to implement a linear layer, which was especially welcome
in the context of lightweight cryptography. In fact, one of their matrices has been used
by the designers of Saturnin [CDL+20] precisely for this reason. More generally, we think
this surprising connection between lightweight and arithmetization-oriented symmetric
cryptography is interesting in itself: limiting the total number of additions can be important
in both cases. As the approach of [DL18] is general enough that their matrices can work
in most fields, we thus opt to use their matrices. In practice, when ℓ ∈ {2, 3, 4}, we use
the matrix ℳℓ

𝑥 where

ℳ2
𝑥 =

[︀ 1 𝑔

𝑔 𝑔2 + 1

]︀
, ℳ3

𝑥 =
[︁

𝑔 + 1 1 𝑔 + 1
1 1 𝑔
𝑔 1 1

]︁
, ℳ4

𝑥 =
[︂

1 𝑔2 𝑔2 1 + 𝑔

1 + 𝑔 𝑔 + 𝑔2 𝑔2 1 + 2𝑔
𝑔 1 + 𝑔 1 𝑔
𝑔 1 + 2𝑔 1 + 𝑔 1 + 𝑔

]︂
.

If ℓ = 1, then there is a unique column in the internal state, so ℳ1
𝑥 is the identity.

Low-addition implementations are shown in Appendix C, and the corresponding dia-
grams are given in Figure 7. As [DL18] contains several different matrices for each number
of inputs, we based our matrices on their candidates that have the lowest number of
additions, and the least symmetries.

𝑥0 𝑥1

�

�

𝑔

𝑔

(a) ℓ = 2.

𝑥0 𝑥1 𝑥2

�

�

�

�

�

𝑔

𝑔

(b) ℓ = 3.

𝑥0 𝑥1 𝑥2 𝑥3

� �
�

�

�
�

�
�

𝑔

𝑔 𝑔

(c) ℓ = 4.

Figure 7: Diagram representations of ℳ𝑥.

In the AIR (STARK) case, linear operations are essentially free. Thus, the dominating
constraint on a linear layer is its native implementation cost, i.e. the time it takes for a C
or Rust program to evaluate ℳ𝑥(𝑥). To minimize this cost, we need to minimize the value
of the coefficients appearing in the matrix. To this end, we use the circulant matrix where
the first row is the smallest in the lexicographic order, and such that the overall matrix is
MDS. A script implementing this generation method is provided in Appendix C.

Pseudo-Hadamard transform 𝒫. To destroy some undesirable involutive patterns at the
S-box level, we use a linear layer, namely the Pseudo-Hadamard transform (PHT), to have
diffusion on the rows. In particular, this means that we still have a linear layer when ℓ = 1.
The PHT has good properties since it can be easily implemented with: 𝑌 ← 𝑌 + 𝑋 and
𝑋 ← 𝑋 + 𝑌 and is also relevant against algebraic attacks (see Section 6.2).

14

S-box Layer 𝒮. Let ℋ be an open Flystel operating over F2
𝑞. Then we let

𝒮(𝑋, 𝑌) =
(︀
ℋ(𝑥0, 𝑦0), ...,ℋ(𝑥ℓ−1, 𝑦ℓ−1)

)︀
,

as summarized in Figure 5d. A Flystel instance is defined by 4 parameters, regardless
of whether it is a Flystelp or Flystel2: the exponent 𝛼, the multiplier 𝛽, and the two
added constants 𝛾 and 𝛿. First, as mentionned in Section 4.3, we let 𝛽 = 𝑔: setting 𝛽 = 1
would lead to the invariant space (Section A.3) having equation (𝑥2, 𝑥), which we deem
too simple; 𝑔 is then the most natural non-trivial constant. Furthermore, in order to break
the symmetry of the Flystel, we impose that 𝛾 ̸= 𝛿. We thus let 𝛾 = 0 and 𝛿 = 𝑔−1 as
this value is both different from 1 and 𝑔 while retaining a simple definition.

All that remains is to choose the exponent 𝛼. If 𝑞 = 2𝑛, then we let 𝛼 = 3: we have
to use a Gold exponent (i.e. of the shape 2𝑘 + 1), and 3 always works since 𝑛 is odd.
Otherwise, when 𝑞 is prime, the process is a bit more involved as a higher value allows
using fewer rounds to thwart Gröbner-basis-based attacks, but is also more expensive.
Users should use the value of 𝛼 that yields the most efficient algorithm according to their
metrics.

5.2 Higher Level Algorithms
Anemoi. The Anemoi permutation iterates 𝑛𝑟 rounds of the round function described in
Figure 6, followed by a call to the linear layer ℳ:

Anemoi𝑞,𝛼,ℓ = ℳ∘ R𝑛𝑟−1 ∘ ... ∘ R0 .

In symmetric cryptography, we usually remove outer linear layers, e.g. in the AES.
That is because they don’t contribute to the cryptographic strength of a block cipher (e.g.
can be removed “for free” by an adversary). In the case of a sponge construction however,
the adversary only controls a part of the state, namely the outer part (the rate). Thus,
starting/finishing with a diffusion layer ensures that this control is spread across the full
state in a way which is not aligned with the non-linear layer. A similar goal could be
achieved using indirect injection, as is done in Esch [BBC+20].

The number of rounds 𝑛𝑟 is computed using the following rule that is derived from our
security analysis in Section 6.

More precisely, we focus on algebraic attacks since it appears to be the bottleneck.
Indeed, we only need to activate few S-boxes to prevent statistical attacks. In prime
characteristic we have an upper bound that is (𝛼−1)/𝑝2 for the probability of a differential
transition for one S-box, and that is conjectured to be log 𝑝/𝑝 for a linear transition.
In the case where 𝑞 = 2𝑛, similar arguments hold: the best differential probability is
4/22𝑛, and the best linear probability is around 2−𝑛 (see Appendix A for more details).
Let 𝑠 be the required security level, and (𝑞, ℓ, 𝛼) be the parameters imposed by the use
case. As we believe that a construction with more branches gives more freedom to the
attacker, we choose a security margin that increases with the size of the internal state,
but setting a maximum of 5 additional rounds. In Section 6.2, we study two models for
algebraic attacks. We fix the number of rounds by considering the first model, which is
easier to study, and add a security margin of 2 rounds to take into account the second
model. Whilst it is not clear whether the second model actually outperforms the first,
its complexity is more difficult to estimate and we opt to increase the safety margin as a
conservative measure. Then the number of rounds 𝑛𝑟 is the smallest value satisfying both
of the following conditions:

𝑛𝑟 ≥ max

⎧⎪⎨⎪⎩8 , min(5, 1 + ℓ)⏟ ⏞
security margin

+ 2 + min
{︀

𝑟 ∈ N
⃒⃒
𝒞𝑎𝑙𝑔(𝑟) ≥ 2𝑠

}︀⏟ ⏞
to prevent algebraic attacks, see Sec. 6.2

⎫⎪⎬⎪⎭ , (2)

15

Table 1: Number of Rounds of Anemoi.
𝛼 3 5 7 11

ℓ = 1 21 21 20 19

ℓ = 2 14 14 13 13

ℓ = 3 12 12 12 11

ℓ = 4 12 12 11 11

ℓ = 6 10 10 10 10

ℓ = 8 10 10 9 9

(a) When 𝑠 = 128.

𝛼 3 5 7 11

ℓ = 1 37 37 36 35

ℓ = 2 22 22 21 21

ℓ = 3 17 17 17 17

ℓ = 4 16 16 15 15

ℓ = 6 13 13 13 13

ℓ = 8 12 12 11 11

(b) When 𝑠 = 256.

where 𝒞𝑎𝑙𝑔(𝑟) =
(︀4ℓ𝑟+𝜅𝛼

2ℓ𝑟

)︀2 when 𝑞 = 𝑝 and 𝒞𝑎𝑙𝑔(𝑟) = ℓ𝑟 · 92ℓ𝑟 when 𝑞 = 2𝑛.
We compute the number of rounds needed both for a security level of 128 bits (Table 1a),

and of 256 bits (Table 1b). Note that the values of the digest size ℎ and of the state size
2ℓ𝑛 = 2ℓ log2(𝑞) must be coherent with the desired security level.

AnemoiSponge. This function is a “regular” hash function, in the sense that it should be
able to process messages of arbitrary length. We therefore rely on the sponge construction
detailed in Section 3, where 𝑟 words are used as the rate, 𝑐 are used as the capacity, and
where the permutation is the Anemoi instance operating on F𝑟+𝑐

𝑞 . Note that the inner
workings of Anemoi imply that 𝑟 + 𝑐 must be even.

AnemoiJive. We can construct a compression function mapping 𝑏-to-1 vectors of F𝑚
𝑞

elements, using Jive𝑏 and an Anemoi instance operating on 𝑏𝑚 elements of F𝑞. The only
constraint is, again, that 𝑏𝑚 must be even.

Security Claims. All the Anemoi permutations generated as defined above can be used
safely to construct cryptographic primitives with the given security level. In particular,
we make a “hermetic sponge” claim about all the hash functions AnemoiSponge generated
as above, and we claim that all the AnemoiJive functions are secure 𝑏-to-1 compression
functions (provided of course that the state size is chosen correctly).

5.3 Specific Instances
In this section, we present some examples of functions in the Anemoi family that are
defined over different fields, aim for different APIs (both AnemoiSponge and AnemoiJive),
and for a security level of 127 bits.

We consider the case of the BLS12-381 curve, in which case (⌈log2(𝑞)⌉, 𝛼, 𝑔) = (255, 5, 7),
and the case of the BN-254 curve, in which case (⌈log2(𝑞)⌉, 𝛼, 𝑔) = (254, 5, 2). In both
cases, we aim for 127 bits of security. We decided to consider these two curves because
they have been historically used in SNARKs and have been deployed in production in
projects that use Arithmetization-Oriented hash functions like ZCash or Ethereum.

AnemoiJive. AnemoiJive-BLS12-381 and AnemoiJive-BN-254 are Merkle Compression
functions mapping two elements of F𝑞 to a unique one. In order to reach a security level of
127 bits, ℓ = 1 is sufficient in both cases. The underlying permutations of the compression
functions then use the following components.

S-box. ℋ uses the parameters 𝑔 and 𝛼 corresponding to the elliptic curve.

16

Linear layer. As ℓ = 1, we use the Pseudo-Hadamard transform:[︂
2 1
1 1

]︂
(3)

Round Constants. These are generated as described in Section 5.1.

Number of Rounds. Using Equation (2), we obtain that 19 rounds are needed for a
security level of 127 bits.

Round 𝑟 is then defined as R𝑟 : (𝑥, 𝑦) ↦→ ℋ ∘ ℳ(𝑥 + 𝑐𝑟, 𝑦 + 𝑑𝑟), and we define the
compression functions as follows. Let (𝑥, 𝑦) be the input, and 𝑃 be the Anemoi instance
defined by 𝑃 :=ℳ∘ R18 ∘ ... ∘ R0. Then AnemoiJive(𝑥, 𝑦) is evaluated as follows: first,
let (𝑢, 𝑣)← 𝑃 (𝑥, 𝑦), then, return 𝑥 + 𝑦 + 𝑢 + 𝑣.

Security Claims. The best way to find collisions in AnemoiJive-BLS12-381 (respectively
AnemoiJive-BN-254) is to rely on a generic collision search. Since the output is an element
of F𝑞 with log2(𝑞) ≥ 254, this is expected to require about 2127 function calls on average.

AnemoiSponge. AnemoiSponge-BLS12-381 and AnemoiSponge-BN-254 are hash functions
mapping a sequence {𝑥𝑖}0≤𝑖<𝑚 of elements of F𝑞 to an element of F𝑞, where 𝑚 is a positive
integer. It is constructed using a sponge which relies on Anemoi as the permutation.
We aim to provide about 127 bits of security, meaning that a capacity of 1 word of F𝑞

is enough in both cases. We then pick an identical rate, so that 𝑟 = 𝑐 = 1, and thus
ℓ = 1. The permutations used are then the same as for AnemoiJive-BLS12-381 and
AnemoiJive-BN-254.

Security Claims. We claim that AnemoiSponge-BLS12-381 and AnemoiSponge-BN-254
provide 127 bits of security against all known attacks.

6 Security Analysis
The security of AnemoiSponge and AnemoiJive is reduced to the security of their inner
permutation, namely the Anemoi family. In this section, we argue that the latter has
sufficient security level.

6.1 “Classical” Attacks
We call “classical” attacks those that have been used to target algorithms designed over
(F2)𝑛. As we argue below, we do not expect those to be a significant problem. More
detailed arguments are provided in Appendix A.

Statistical attacks like differential and linear cryptanalysis exploit patterns that exist at
the S-box level, and which are then propagated through the linear layers to form so-called
“trails”. As the Flystel has excellent differential and linear properties, we do not expect
those to pose a threat (especially given that our linear layers are MDS).

For integral attacks and invariant subspaces, we rely on the fact that our round
structure is not “aligned”, meaning that the non-linear and linear layers operate over
different alphabets (the columns and the rows). As a consequence, the propagation of
the patterns exploited by these attacks is hindered. Similarly, thanks to the MDS matrix,
truncated differentials, boomerang attacks and MitM attacks also do not pose a threat.

We refer the reader to Appendix A for a more detailed security analysis of the proposed
constructions with respect to classical attacks.

17

6.2 Algebraic Attacks
Gröbner basis attacks may constitute the main threat as is usually the case for this type
of primitives. Since we are mainly interested in a minimal condition on the number of
rounds to reach a security of 2𝑠 bits, we allow ourselves to underestimate complexity in
several places, out of caution. We focus on the following version of the CICO (Constrained
Input Constrained Output) problem, stated for ℓ = 1:

Definition 3. Let 𝑃 : F2
𝑞 → F2

𝑞 be a permutation. The CICO problem consists in finding
(𝑦in, 𝑦out) ∈ F2

𝑞 such that 𝑃 (0, 𝑦in) = (0, 𝑦out).

6.2.1 Intermediate variables.

There are plenty of ways to model CICO as an algebraic system. We start from the one
which consists in introducing equations and variables at each round. Such an approach was
already proposed to study similar arithmetization-oriented primitives [DGGK21, BSGL20,
GØSW23]. It applies to Anemoi for any ℓ ≥ 1 but for practical reasons a large part of our
experiments has been restricted to ℓ = 1. We now present our analysis of this particular
case but we will also indicate how to deal with several columns. For 0 ≤ 𝑗 ≤ 𝑛𝑟 − 1, let us
define 𝑓𝑗 and 𝑔𝑗 by

(𝑥𝑗+1, 𝑦𝑗+1) = R𝑗(𝑥𝑗 , 𝑦𝑗)⇔
{︂

𝑓𝑗 := 𝑓(𝑥𝑗 , 𝑦𝑗 , 𝑥𝑗+1, 𝑦𝑗+1) = 0
𝑔𝑗 := 𝑔(𝑥𝑗 , 𝑦𝑗 , 𝑥𝑗+1, 𝑦𝑗+1) = 0,

where R𝑗 is the round function and where 𝑓 and 𝑔 are closely related to the verification
equations.

Modeling 1. We consider the system ℱ ⊂ F𝑞[𝑥0, . . . , 𝑥𝑛𝑟
, 𝑦0, . . . , 𝑦𝑛𝑟

] containing the
round equations 𝑓𝑗 and 𝑔𝑗 for 0 ≤ 𝑗 ≤ 𝑛𝑟 − 1.

The CICO system ℱCICO is simply Modeling 1 in which we fix 𝑥0 = 0 and 𝑥𝑛𝑟
= 0. This

system can be seen as containing 2𝑛𝑟 equations and variables when ℓ = 1 and 2ℓ𝑛𝑟 in the
general case. To solve it, we apply the standard zero-dimensional strategy:

1. Compute a Gröbner basis 𝒢drl for a DRL ordering [Lou94, Definition 1.4.3],

2. Compute a new Gröbner basis 𝒢lex for the LEX ordering by using the FGLM algorithm
[FGLM93] on 𝒢drl.

For Step 1, the running time of Gröbner basis algorithms such as F4 [Fau99] or F5 [Fau02]
is usually estimated by evaluating the solving degree of the system denoted by 𝑑solv. This
degree can be informally defined as the maximal degree of a polynomial which occurs
during the Gröbner basis computation. Once 𝑑solv is known, a generic estimate for the
cost of F4/F5 is

𝒪
(︂(︂

𝑑solv + 𝑛𝑣

𝑛𝑣

)︂𝜔)︂
(4)

field operations, where 𝑛𝑣 is our number of variables and where 2 ≤ 𝜔 ≤ 3 is a linear
algebra constant. We stress that this estimation is heuristic and it is an upper bound that
does not take into account the structure or the sparsity of the given Macaulay matrices.
In particular, to use it as a guidance, we will adopt the conservative 𝜔 = 2 for the linear
algebra constant. Regarding Step 2, the complexity of FGLM is in 𝒪 (𝑛𝑣 · deg (𝐼CICO)𝜔),
where 𝐼CICO := ⟨ℱCICO⟩ is the ideal generated by the system and where deg (𝐼CICO) is the
degree of this ideal.

18

Characteristic 2.

In even characteristic, we derive the number of rounds from the following Estimate 1.

Estimate 1. We estimate the cost of solving ℱCICO in even characteristic by one of the
FGLM steps. This step has complexity

𝒪(ℓ𝑛𝑟 · 9𝜔ℓ𝑛𝑟),

where ℓ is the number of columns and 𝜔 is the linear algebra exponent from the FGLM
algorithm.

More details are provided in Appendix B.1 below, where we focus on the case ℓ = 1.
In short, Estimate 1 comes from the fact that the cost of the Gröbner basis computation
on ℱCICO is mostly independent from the number of rounds and that the cost of FGLM
can be approximated by the one on a generic system containing 2ℓ𝑛𝑟 cubic equations.

6.2.2 Odd characteristic.

The ℱCICO system behaves differently in odd characteristic since the dominant cost cor-
responds to the Gröbner basis computation. We derive the number of rounds from the
following Estimate 2, where 𝑑exp is the experimental solving degree of ℱCICO given in
Conjecture 1.

Conjecture 1 (From experiments for ℓ = 1). We have

𝑑exp ≥ 2𝑛𝑟 + 𝜅𝛼,

where 𝜅𝛼 is a constant depending only on 𝛼. We found 𝜅3 = 1, 𝜅5 = 2, 𝜅7 = 4, 𝜅9 = 7 and
𝜅𝛼 = 9 for6 𝛼 ≥ 11.

Estimate 2. In odd characteristic, we estimate the cost of solving ℱCICO for ℓ = 1 by one
of the Gröbner basis steps. By using Equation (4), it has complexity

𝒪
(︂(︂

𝑑exp + 2𝑛𝑟

2𝑛𝑟

)︂𝜔)︂
,

where 𝑑exp is given in Conjecture 1 and where 𝜔 is a linear algebra constant.

Appendix B.2 contains more details on Conjecture 1 and Estimate 2. There, we also
compare ℱCICO to another system denoted by 𝒫CICO which seems to take advantage of
the particularities of our design but which does not seem to bring an improvement, at
least asymptotically. Still, we add 2 extra rounds on top of Estimate 2 to ensure that
these equations will not jeopardize security if exploited in a more ingenious way. We find
it interesting that the complexities corresponding to the resolution of each system are
extremely similar, despite their a priori significantly different structures.

When ℓ > 1, the number of equations and variables in ℱCICO is naturally multiplied
by ℓ and thus experiments were extremely difficult to conduct. We generalize Conjecture
1 to ℓ > 1 by replacing 2𝑛𝑟 by 2ℓ𝑛𝑟 everywhere, which is natural when looking at the
expressions of the Macaulay bound. Similarly, we note that the bounds given for Rescue
in [BSGL20] exhibit this extra ℓ factor. We adjust the number of variables 𝑛𝑣 := 2ℓ𝑛𝑟

accordingly to obtain the final estimate.

6We would expect the value of 𝜅𝛼 to keep increasing with 𝛼 but the computations needed to estimate
it become too costly as 𝛼 increases.

19

7 Benchmarks
In this section, we compare various instances of Rescue–Prime, Poseidon, Griffin and
Anemoi with respect to SNARK metrics: R1CS (Section 7.1) and Plonk (Section 7.2), and
STARK: AIR (Section 7.3). For Plonk performance, we will also conduct a comparison
with Reinforced Concrete.

Due to the increasing number of projects revolving around zk-STARKs, which do not
require an algebraic group with large underlying fields, we also illustrate native performance
comparison of 2-to-1 compression functions based on Rescue–Prime, Poseidon and Anemoi
on a 64-bit field used in various projects ([add22], [Zer22]).

To do so, we need to set the parameters. Then, let F𝑞, where 𝑞 = 𝑝, be a prime field,
and let 𝑡 be the number of field elements we operate on (𝑡 = 2ℓ for Anemoi). Besides,
let 𝑠 denote the security level in bits, 𝑛𝑟 the number of rounds, and 𝒞𝛼 the cost of an
exponentiation 𝑥 ↦→ 𝑥𝛼.

Rescue–Prime requires 1.5·max{5, ⌈(𝑠+2)/4𝑡⌉} rounds when 𝛼 = 3 and 1.5·max{5, ⌈(𝑠+
3)/5.5𝑡⌉} rounds when 𝛼 = 5 (see [AAB+20, SAD20]). Poseidon has 𝑛𝑟 = RF + RP
rounds. While the bound is a complex expression, in our setting and for the safety
margin recommended by the authors, it holds that RF = 8, and that RP must be
higher than (or equal to) 1.075 · (⌈log𝛼(2) ·min{𝑠, log2(𝑝)}⌉+ ⌈log𝑎 𝑡⌉ − RF). Griffin
requires at least ⌈1.2 max{6, 1 + 𝑅GB}⌉ rounds where 𝑅GB is the smallest integer such that
min

{︁(︀
𝑅GB·(𝛼+𝑡)+1

1+𝑡·𝑅GB

)︀
,
(︀

𝛼𝑅GB +1+𝑅GB
1+𝑅GB

)︀}︁
≥ 2𝑠/2.

In the following, we use the 𝑛𝑟 values from Section 5.2.

7.1 R1CS Systems
We first estimate the number of constraints for R1CS. Using the closed Flystel of Figure 3b,
we obtain the following verification equations for the S-Box:{︃

(𝑦 − 𝑣)𝛼 + 𝛽𝑦2 + 𝛾 − 𝑥 = 0
(𝑦 − 𝑣)𝛼 + 𝛽𝑣2 + 𝛿 − 𝑢 = 0 .

(5)

Then, evaluating one S-Box costs 𝒞𝛼 constraints to obtain (𝑦 − 𝑣)𝛼, and 1 constraint
for each of the two quadratics. For Rescue–Prime and Poseidon, each S-Box costs 𝒞𝛼

constraints. For Griffin, each S-Box costs 2 · 𝒞𝛼 constraints for the first two words, and 1
constraint for each squaring of 𝐿 and each word of the remaining state. As a consequence,
when using Rescue–Prime, Poseidon, Griffin and Anemoi as hash functions in sponge
mode, the number of constraints is respectively 𝒞𝛼 ·2𝑡 ·𝑛𝑟, 𝒞𝛼 · (𝑡RF + RP), (𝒞𝛼 + 𝑡−2) ·2𝑛𝑟

and (𝒞𝛼 + 2) · (𝑡
2 · 𝑛𝑟).

We compare the number of constraints for those four schemes in Table 2. As we can
see, the Anemoi permutations are consistently much more efficient than both Poseidon
and Rescue–Prime by about a factor 2. Anemoi and Griffin are on par, and Anemoi takes
the advantage for 𝛼 = 3.

7.2 Plonk
For ease of exposition, we will consider rounds to be shifted so that constant additions and
linear operations come after the S-box. As for R1CS, we again investigate Equation (5). In
standard Plonk (i.e 3 wires and no custom gates), evaluating an S-Box costs 1 constraint
to derive 𝑤 = 𝑦 − 𝑣 and 𝒞𝛼 constraints to obtain 𝑤𝛼, 1 constraint for each of the two
quadratics, and 1 each for the sums on 𝑥, 𝑢. The total cost for the S-box layer with 3 wires
is (𝒞𝛼 + 5) 𝑡

2 .
The constant additions can be folded into the 𝑛𝑟 + 1 linear layers and can thus be

disregarded. For 𝑡 = 2, the linear layer consists of the PHT, which requires 2 constraints.

20

Table 2: Total R1CS, Plonk and AIR cost for several hash functions (𝑠 = 128).
𝑡 Rescue’ Poseidon Griffin Anemoi

R1CS

2 208 198 - 76
3 216 214 96 -
4 224 232 112 96
6 216 264 - 120
8 256 296 176 160

Plonk

2 312 380 - 189
3 432 594 197 -
4 560 824 260 308
6 756 1344 - 444
8 1152 1920 574 624

AIR

2 156 300 - 126
3 162 324 144 -
4 168 348 168 168
6 162 396 - 216
8 192 480 264 288

(a) when 𝛼 = 3.

𝑡 Rescue’ Poseidon Griffin Anemoi

R1CS

2 240 216 - 95
3 252 240 96 -
4 264 264 110 120
6 288 315 - 150
8 384 363 162 200

Plonk

2 320 344 - 210
3 420 512 173 -
4 528 696 222 336
6 768 1125 - 480
8 1280 1609 492 672

AIR

2 200 360 - 210
3 210 405 180 -
4 220 440 220 280
6 240 540 - 360
8 320 640 360 480

(b) when 𝛼 = 5.

For 𝑡 > 2, the linear layer itself consists of 2 separate matrix-vector multiplications, each
producing 𝑡

2 sums of 𝑡
2 terms, requiring 𝑡 · (𝑡

2 − 1) constraints, in addition to a cost of 𝑡
constraints for the PHT. However, the number of constraints per matrix multiplication can
be reduced by choosing MDS matrices lowering the number of additions. For the matrices
given for 𝑡 = 6 and 𝑡 = 8 in 5.1, we have respectively a cost of 10 and 16 per linear layer.

Poseidon uses simpler S-Boxes, each costing 𝒞𝛼 constraints. Full rounds use 𝑡 S-boxes
whereas partial ones use only one. Using the optimisation described in the Supplementary
Material of [GKR+21], the linear layer costs 𝑡 · (𝑡− 1) constraints for the full rounds and
2𝑡 − 2 constraints for the partial rounds. Rescue–Prime uses 𝑡 standard and 𝑡 inverted
S-Boxes, each costing 𝒞𝛼. Each round also utilizes 2 independent linear layers each costing
𝑡 · (𝑡− 1) constraints for all rounds.

For Griffin, the cost of the S-BOX is 2 · 𝐶𝛼 + 3 + 4 · (𝑡 − 3). Regarding the linear
layer, the matrix used for 𝑡 = 3 can be computed in 5 constraints. For 𝑡 = 4, the cost of
one multiplication by the matrix they chose is 8. By observing intermediate variables from
the S-BOX computation which can be reused in the linear layer computation, Griffin
gives 222 constraints for 𝑡 = 4 (resp. 492 for 𝑡 = 8).

We then compare the number of constraints for these four schemes in Table 2. Anemoi
is consistently ahead of Rescue–Prime and Poseidon with a significant margin, but for
larger 𝑡, our performances are slightly worse than Griffin, since our strategy to compute
the security margin is different: we try to take into account the greater freedom given by
the larger number of branches, which impacts our number of rounds.

7.2.1 Plonk Optimizations.

One of the more fruitful, but also challenging aspects of Plonk is its ability to extend
the expressive power of the constraints at a reasonable cost. In the analysis, the linear
layer cost dominates that of the S-Boxes. This is particularly impactful for Poseidon,
as the efficiency benefit of its partial rounds is negated. The recent work of Ambrona et
al. [ASTW22] presents a set of generic and tailored optimizations for Plonk applicable to
Poseidon.

While an exhaustive comparison of optimization options is beyond the scope of this
work, real-world usage implies that a reasonable set of optimizations have been applied
before deployment. For this reason, we perform a minimal comparison between: Poseidon
as optimized by Ambrona et al., and Reinforced Concrete [GKL+22] which was built
with Plonk optimizations in mind, and Anemoi. As Poseidon and Reinforced Concrete
are sponge based we use 𝑠 = 128, 𝛼 = 5 and 𝑡 = 3 to represent popular deployment choices,

21

Table 3: Constraints comparison of several hash functions for Plonk with an additional
custom gate to compute 𝑥5. We fix 𝑠 = 128, and prime field sizes of 256.

𝑡 Constraints

Poseidon 3 110
2 88

Reinforced Concrete 3 378
2 236

Griffin 3 125

AnemoiJive 2 86

(a) With 3 wires.

𝑡 Constraints

Poseidon 3 98
2 82

Reinforced Concrete 3 267
2 174

Griffin 3 111

AnemoiJive 2 64

(b) With 4 wires.

while we set 𝑡 = 2 for Anemoi, using the Jive2 mode For comparison we also extrapolate
a Jive2 version of Poseidon with the optimizations of [ASTW22], and Reinforced
Concrete.

We use one of the constraint systems used by Ambrona et al. [ASTW22]: a 3-wire
constraint system with a 𝑥5, as well as selectors for the next constraint wires:

𝑞𝐿.𝑎 + 𝑞𝑅.𝑏 + 𝑞𝑂.𝑐 + 𝑞𝑀 .𝑎.𝑏 + 𝑞5.𝑐5 + 𝑞𝐿′ .𝑎′ + 𝑞𝑅′ .𝑏′ + 𝑞𝑂′ .𝑐′ .

At a base level, the relations we need to express for one AnemoiJive2 round are

1. 𝑦 − 𝑣 − 𝑤 = 0

2. 𝑤5 + 𝛽𝑦𝑦 + 𝛾 − 𝑥 = 0

3. 𝑤5 + 𝛽𝑣𝑣 + 𝛿 − 𝑢 = 0

4. �̃�− 2𝑢− 𝑣 − 𝜌 = 0

5. 𝑣 − 𝑢− 𝑣 − 𝜅 = 0

where �̃�, 𝑣 are the values of 𝑢, 𝑣 after the linear layer and 𝜌, 𝜅 are derived from round
constants. We can save one constraint by calculating �̃� directly and eliminating 𝑢. We also
need to make sure that the relations fit into the available wires, and make sure that the
last constraint leaves the “next constraint” wires free, so that each set of round constraints
can be followed by any constraint without restriction. To accomplish this, we also need to
perform some reordering. Setting 𝜌′ = 𝜌 + 2𝛿 and 𝜅′ = 𝜅− 𝜌, the end result is:

1. 𝑤5 + 𝛽𝑦𝑦 + 𝛾 − 𝑥 = 0, for: (𝑎, 𝑏, 𝑐) = (𝑦, 𝑦, 𝑤) , (𝑎′, 𝑏,′ 𝑐′) = (𝑥, _, _) ,

2. 𝑦 − 𝑣 − 𝑤 = 0, for: (𝑎, 𝑏, 𝑐) = (𝑥, 𝑦, 𝑤) , (𝑎′, 𝑏,′ 𝑐′) = (𝑣, _, _) ,

3. 2𝑤5 + 2𝛽𝑣𝑣 + 𝜌′ + 𝑣 − �̃� = 0, for: (𝑎, 𝑏, 𝑐) = (𝑣, 𝑣, 𝑤) , (𝑎′, 𝑏,′ 𝑐′) = (�̃�, _, _) ,

4. 𝑣 − �̃� + 𝑢− 𝜅′ = 0, for: (𝑎, 𝑏, 𝑐) = (�̃�, 𝑣, 𝑢) , (𝑎′, 𝑏,′ 𝑐′) = (_, _, _) .

Thus, we are able to perform one AnemoiJive round in 4 constraints, and 2 additional
constraints to account for the initial linear layer. We can fold the final Jive2 addition into
the final constraint (using the “next” wires), and ensuring the initial layer constraints
are directly below it. With four wires, we can eliminate 𝑤, by having the 5th power gate
operate on 𝑦− 𝑣. Rounds are reduced to 3 constraints, and we need only 1 extra constraint
for the first linear layer as we handle 𝑥0 inline.

We summarize our findings in Table 3. We extrapolate the 𝑡 = 2 costs for Poseidon and
Reinforced Concrete by assuming a Jive2 mode of operation is feasible at no additional
overhead or increase in rounds. Against the next-best proposed system, Poseidon for
𝑡 = 3 as optimized by [ASTW22] we achieve a 21% reduction when using 3 wires and
35% when using 4.We note that while the costs between Poseidon, Anemoi and Griffin
are directly comparable as they use the same features (namely 𝑥5 and “next constraint”
selectors), Reinforced Concrete leverages lookup tables [GKL+22, GW20] instead. We
do note that by [ASTW22, Table 2], the additional overhead (compared to standard Plonk)
for the custom gates we describe is between 10% and 40%.

22

7.2.2 Plonk optimisations with an additional quadratic custom gate

We can go further in the optimisation given above by extending Plonk with a custom gate
to compute the square of a wire, which adds a negligeable overhead to the prover and the
verifier time. In the 3-wires setting, having the quadratic custom gate on the wire 𝑏 frees a
wire in the constraints given above and allow us to compute two rounds in 5 constraints as
described below 7, giving a total number of constraints of 56.

1. 𝑤2
0 + 𝑤0𝑦0 + 𝑤0 − 𝑥0 − 𝑦0 + 𝑦1 + 𝑞𝑐, where: (𝑎, 𝑏, 𝑐) = (𝑦0, 𝑤0, 𝑥0)

and (𝑎′, 𝑏,′ 𝑐′) = (𝑦1, _, _) ,

2. 𝑤2
1 + 𝑤1𝑦1 − 𝑤0 + 𝑤1 + 𝑥2 + 𝑦0 − 𝑦1 + 𝑞𝑐, where: (𝑎, 𝑏, 𝑐) = (𝑦1, 𝑤1, 𝑤0)

and (𝑎′, 𝑏,′ 𝑐′) = (𝑦0, 𝑥2, _) ,

3. 𝑤1 − 𝑥2 − 𝑦1 + 𝑦2 − 𝑞𝑐, where: (𝑎, 𝑏, 𝑐) = (𝑦0, 𝑥2, 𝑦2)
and (𝑎′, 𝑏,′ 𝑐′) = (𝑤1, 𝑦1, _) ,

4. 𝑤5
1 + 𝑦2

1 − 𝑤0 + 𝑦0 − 𝑦1 + 𝑞𝑐, where: (𝑎, 𝑏, 𝑐) = (𝑤1, 𝑦1, _)
and (𝑎′, 𝑏,′ 𝑐′) = (𝑤0, 𝑦0, _) .

5. 𝑤5
0 + 𝑦2

0 − 𝑥0 + 𝑞𝑐, where: (𝑎, 𝑏, 𝑐) = (𝑤0, 𝑦0, 𝑥0)
and (𝑎′, 𝑏,′ 𝑐′) = (_, _, _) .

7.3 AIR
Finally, we also study the performance of Anemoi in the Algebraic Intermediate Represen-
tation (AIR) arithmetization used in STARKs [BBHR18]. Here, the relevant quantities
are: the width of the computation state 𝑤, the number of computation steps 𝑇 , and the
maximum degree of the constraints 𝑑max. While there are several ways to estimate the
cost of a given AIR program given the above quantities, we will consider the total cost to
be expressed as 𝑤 · 𝑇 · 𝑑max, following [AAB+20].

For Rescue–Prime, Griffin and Anemoi, we have 𝑤 = 𝑡, 𝑇 = 𝑛𝑟 and 𝑑max = 𝛼. For
Poseidon, we have 𝑤 = 𝑡, 𝑇 = RF + ⌈RP/𝑡⌉ and 𝑑max = 𝛼.

We then compare the total cost for these four schemes in Table 2. Anemoi and Griffin
are quite similar, and close to Rescue–Prime.

7.4 Native performance
Outside of proving systems, Anemoi performance can challenge other algebraic hash
functions, especially in Merkle trees thanks to its Jive mode. In particular in STARKs
settings where one can use small cryptographic fields, Anemoi offers the best balance
in terms of native evaluation and number of constraints. In Table 4, we illustrate the
running time of a 2-to-1 compression method with AnemoiJive, Rescue–Prime, Poseidon
and Griffin over the 64 bits prime field F𝑝 with 𝑝 = 264 − 232 + 1. Each instantiation
has a 4 field elements (32 bytes) digest size to ensure 128 bits security8. Rescue–Prime,
Poseidon and Griffin have been evaluated with two instantiations: a regular of width
12 with rate 8, capable of compressing two digests with one permutation using the sponge
construction, and an instantiation of width 8 with rate 4 using Jive as compression mode.
All experiments were performed on an Intel(R) Core(TM) i7-9750H CPU @ 2.60GHz. We
present average times in microseconds of each experiment running for 5 seconds. Standard
deviations are negligible. All instantiations have been implemented in Rust.

7For readability, the selectors values have been omitted
8We refer here to original instantiations, in opposition to a common practice in the industry to tweak

parameters (typically the MDS matrix layer). All instantiations here are original, paper versions for fair
comparison.

23

Table 4: Native performance comparison of 2-to-1 compression functions for F𝑝 with
𝑝 = 264 − 232 + 1. We fix 𝑠 = 128. Times are given in 𝜇s. Rescue–Prime is
denoted by RP.

RP-12 RP-8 Poseidon-12 Poseidon-8 Griffin-12 Griffin-8 Anemoi-8
15.67 9.13 5.87 2.69 2.87 2.59 4.21

Table 5: Native performance comparison of a permutation for the scalar field of
𝐵𝐿𝑆12− 381. We fix 𝑠 = 128. Griffin is instantiated with a state size of 3
and Anemoi, Rescue–Prime and Poseidon with a state size of 2. Times are in
𝜇𝑠.

Rescue–Prime Poseidon Griffin Anemoi

206 9.2 74.18 128.29

In Table 5, we compare the native performance with Rescue–Prime, Poseidon and
Griffin with a state size useful for applications like Merkle tree over the scalar field of
BLS12-381. For small state size, the dominant computation for Anemoi (like Rescue–Prime
and Griffin) is 𝑥1/𝑑 and can be implemented using an appropriate addition chain. All
experiments were performed on an Intel(R) Core(TM) i7-8565U CPU @ 1.80GHz. We
present average times in microseconds of each experiment running for 2 seconds. Standard
deviations are in the order of tens of nanoseconds. Our implementation uses C via FFI
through an OCaml binding, but this introduces a negligible overhead.

8 Conclusion
We have made several contributions towards both the theoretical understanding and the
practical use of arithmetization-oriented hash functions. Our main contribution is of
course Anemoi, a family of permutations that are efficient across various arithmetization
methods, yielding gains from 10% up to more than 50% depending on the context, over
existing designs. Furthermore, in order to be able to design its main component, the
Flystel structure, we had to first identify the link between arithmetization-orientation
and CCZ-equivalence. We hope that functions such as the Flystel construction as well
as similar ones will be studied by mathematicians as we believe those to be of independent
interest.

Finally, we provided a new simple mode, Jive𝑏, which adds to the growing list of
permutation-based modes of operation providing a 𝑏-to-1 compression function, of particular
relevance in Merkle trees. It allows us to further improve upon the state-of-the-art, so that
AnemoiJive requires only 56 Plonk constraints in total (when 3 wires and 2 custom gates
are used), compared to the best sponge-based instance of Poseidon which requires 98
constraints with 4 wires (or 110 with 3) and 1 custom gate. With only one custom gate,
AnemoiJive requires 64 constraints for 4 wires (or 86 with 3).

Recent work by Liu et al. [LPP+22] has demonstrated the potential for further
optimizations leveraging our design: by using 4 custom gates they are able to reduce the
cost of a 4-to-1 Jive instance to just over 1 constraint per round (16 constraints for 14
rounds)9. This compares favorably to the highly optimized and customized version of
Poseidon specified in Mina [MRR+] which performs 2:1 compression using 15 wires and
11 constraints (at 55 rounds, 5 rounds per constraint).

9Liu et al. originally utilized an earlier version of this work specifying 12 rounds in this setting.

24

Acknowledgements
We thank the reviewers of CRYPTO 2023 for providing insightful comments which helped
improve the clarity of this paper. In particular, we would like to thank the shepherd
for their assistance in finalizing the paper. We are also grateful to Markulf Kohlweiss,
Antoine Rondelet and Duncan Tebbs for proofreading an earlier draft of this paper, and
for providing insightful comments and suggestions. Additionally, we extend our thanks
to Duncan Tebbs for providing an independent estimation of the Flystel circuit cost in
terms of R1CS constraints. The work of Léo Perrin is supported by the European Research
Council (ERC, grant agreement no. 101041545 “ReSCALE”). We thank Tomer Ashur
for pointing out a mistake in Figure 1 in a previous version of the paper. We also thank
Miguel Ambrona and Raphaël Toledo for the idea of the quadratic custom gate and their
contribution to the Plonk implementation.

References
[AAB+20] Abdelrahaman Aly, Tomer Ashur, Eli Ben-Sasson, Siemen Dhooghe, and Alan

Szepieniec. Design of symmetric-key primitives for advanced cryptographic
protocols. IACR Trans. Symm. Cryptol., 2020(3):1–45, 2020.

[add22] Polygon miden. Repository https://github.com/maticnetwork/miden,
September 2022.

[AGR+16] Martin R. Albrecht, Lorenzo Grassi, Christian Rechberger, Arnab Roy, and
Tyge Tiessen. MiMC: Efficient encryption and cryptographic hashing with
minimal multiplicative complexity. In Jung Hee Cheon and Tsuyoshi Takagi,
editors, ASIACRYPT 2016, Part I, volume 10031 of LNCS, pages 191–219.
Springer, Heidelberg, December 2016.

[ASTW22] Miguel Ambrona, Anne-Laure Schmitt, Raphael R. Toledo, and Danny
Willems. New optimization techniques for plonk’s arithmetization. Cryptology
ePrint Archive, Paper 2022/462, 2022. https://eprint.iacr.org/2022/
462.

[BBC+20] Christof Beierle, Alex Biryukov, Luan Cardoso dos Santos, Johann Großschädl,
Léo Perrin, Aleksei Udovenko, Vesselin Velichkov, and Qingju Wang.
Lightweight AEAD and hashing using the Sparkle permutation family. IACR
Trans. Symm. Cryptol., 2020(S1):208–261, 2020.

[BBHR18] Eli Ben-Sasson, Iddo Bentov, Yinon Horesh, and Michael Riabzev. Scalable,
transparent, and post-quantum secure computational integrity. Cryptology
ePrint Archive, Report 2018/046, 2018. https://eprint.iacr.org/2018/
046.

[BC90] Jurjen N. Bos and Matthijs J. Coster. Addition chain heuristics. In Gilles
Brassard, editor, CRYPTO’89, volume 435 of LNCS, pages 400–407. Springer,
Heidelberg, August 1990.

[BCD+20] Tim Beyne, Anne Canteaut, Itai Dinur, Maria Eichlseder, Gregor Leander,
Gaëtan Leurent, María Naya-Plasencia, Léo Perrin, Yu Sasaki, Yosuke Todo,
and Friedrich Wiemer. Out of oddity - new cryptanalytic techniques against
symmetric primitives optimized for integrity proof systems. In Daniele Mic-
ciancio and Thomas Ristenpart, editors, CRYPTO 2020, Part III, volume
12172 of LNCS, pages 299–328. Springer, Heidelberg, August 2020.

25

https://github.com/maticnetwork/miden
https://eprint.iacr.org/2022/462
https://eprint.iacr.org/2022/462
https://eprint.iacr.org/2018/046
https://eprint.iacr.org/2018/046

[BCG+14] Eli Ben-Sasson, Alessandro Chiesa, Christina Garman, Matthew Green, Ian
Miers, Eran Tromer, and Madars Virza. Zerocash: Decentralized anonymous
payments from bitcoin. In 2014 IEEE Symposium on Security and Privacy,
pages 459–474. IEEE Computer Society Press, May 2014.

[BCP06] Lilya Budaghyan, Claude Carlet, and Alexander Pott. New classes of al-
most bent and almost perfect nonlinear polynomials. IEEE Transactions on
Information Theory, 52(3):1141–1152, 2006.

[BDPA13] Guido Bertoni, Joan Daemen, Michaël Peeters, and Gilles Van Assche. Keccak.
In Thomas Johansson and Phong Q. Nguyen, editors, EUROCRYPT 2013,
volume 7881 of LNCS, pages 313–314. Springer, Heidelberg, May 2013.

[BDPVA07] Guido Bertoni, Joan Daemen, Michaël Peeters, and Gilles Van Assche. Sponge
functions. In ECRYPT hash workshop, number 9. Citeseer, 2007.

[Ber08] Daniel J Bernstein. The Salsa20 family of stream ciphers. In New stream
cipher designs, pages 84–97. Springer, 2008.

[BS01] Alex Biryukov and Adi Shamir. Structural cryptanalysis of SASAS. In Birgit
Pfitzmann, editor, EUROCRYPT 2001, volume 2045 of LNCS, pages 394–405.
Springer, Heidelberg, May 2001.

[BS10] Alex Biryukov and Adi Shamir. Structural cryptanalysis of SASAS. Journal
of Cryptology, 23(4):505–518, October 2010.

[BSGL20] Eli Ben-Sasson, Lior Goldberg, and David Levit. Stark friendly hash – survey
and recommendation. Cryptology ePrint Archive, Report 2020/948, 2020.
https://ia.cr/2020/948.

[BSV07] Thomas Baignères, Jacques Stern, and Serge Vaudenay. Linear cryptanalysis
of non binary ciphers. In Carlisle M. Adams, Ali Miri, and Michael J. Wiener,
editors, SAC 2007, volume 4876 of LNCS, pages 184–211. Springer, Heidelberg,
August 2007.

[CCZ98] Claude Carlet, Pascale Charpin, and Victor Zinoviev. Codes, bent functions
and permutations suitable for DES-like cryptosystems. Designs, Codes and
Cryptography, 15(2):125–156, 1998.

[CDL+20] Anne Canteaut, Sébastien Duval, Gaëtan Leurent, María Naya-Plasencia,
Léo Perrin, Thomas Pornin, and André Schrottenloher. Saturnin: a suite of
lightweight symmetric algorithms for post-quantum security. IACR Trans.
Symm. Cryptol., 2020(S1):160–207, 2020.

[CDP17] A. Canteaut, S. Duval, and L. Perrin. A generalisation of Dillon’s APN
permutation with the best known differential and nonlinear properties for all
fields of size 24𝑘+2. IEEE Transactions on Information Theory, 63(11):7575–
7591, Nov 2017.

[CLO15] David A. Cox, John Little, and Donal O’Shea. Ideals, Varieties, and Algo-
rithms. Springer International Publishing, 2015.

[CP19] Anne Canteaut and Léo Perrin. On CCZ-equivalence, extended-affine equiva-
lence, and function twisting. Finite Fields and Their Applications, 56:209–246,
2019.

26

https://ia.cr/2020/948

[DGGK21] Christoph Dobraunig, Lorenzo Grassi, Anna Guinet, and Daniël Kuijsters.
Ciminion: Symmetric encryption based on toffoli-gates over large finite fields.
Springer-Verlag, 2021.

[DL18] Sébastien Duval and Gaëtan Leurent. MDS matrices with lightweight circuits.
IACR Trans. Symm. Cryptol., 2018(2):48–78, 2018.

[Dwo15] Morris Dworkin. Sha-3 standard: Permutation-based hash and extendable-
output functions, 2015-08-04 2015.

[Fau99] Jean-Charles Faugére. A new efficient algorithm for computing gröbner bases
(f4). Journal of Pure and Applied Algebra, 139(1):61–88, 1999.

[Fau02] Jean Charles Faugère. A new efficient algorithm for computing gröbner bases
without reduction to zero (f5). In Proceedings of the 2002 International
Symposium on Symbolic and Algebraic Computation, ISSAC ’02, pages 75–83,
New York, NY, USA, 2002. Association for Computing Machinery.

[FGLM93] J.C. Faugère, P. Gianni, D. Lazard, and T. Mora. Efficient computation of
zero-dimensional gröbner bases by change of ordering. Journal of Symbolic
Computation, 16(4):329–344, 1993.

[GHR+22] Lorenzo Grassi, Yonglin Hao, Christian Rechberger, Markus Schofnegger,
Roman Walch, and Qingju Wang. A new feistel approach meets fluid-SPN:
Griffin for zero-knowledge applications. Cryptology ePrint Archive, Report
2022/403, 2022. https://eprint.iacr.org/2022/403.

[GKL+22] Lorenzo Grassi, Dmitry Khovratovich, Reinhard Lüftenegger, Christian Rech-
berger, Markus Schofnegger, and Roman Walch. Reinforced concrete: A fast
hash function for verifiable computation. In Proceedings of the 2022 ACM
SIGSAC Conference on Computer and Communications Security, CCS ’22,
pages 1323–1335. Association for Computing Machinery, 2022.

[GKR+21] Lorenzo Grassi, Dmitry Khovratovich, Christian Rechberger, Arnab Roy, and
Markus Schofnegger. Poseidon: A new hash function for zero-knowledge proof
systems. In Michael Bailey and Rachel Greenstadt, editors, USENIX Security
2021, pages 519–535. USENIX Association, August 2021.

[GMR89] Shafi Goldwasser, Silvio Micali, and Charles Rackoff. The knowledge complex-
ity of interactive proof systems. SIAM Journal on Computing, 18(1):186–208,
1989.

[GØSW23] Lorenzo Grassi, Morten Øygarden, Markus Schofnegger, and Roman Walch.
From farfalle to megafono via ciminion: The PRF hydra for MPC applications.
In Carmit Hazay and Martijn Stam, editors, EUROCRYPT 2023, Part IV,
volume 14007 of LNCS, pages 255–286. Springer, Heidelberg, April 2023.

[Gro16] Jens Groth. On the size of pairing-based non-interactive arguments. In Marc
Fischlin and Jean-Sébastien Coron, editors, EUROCRYPT 2016, Part II,
volume 9666 of LNCS, pages 305–326. Springer, Heidelberg, May 2016.

[GW20] Ariel Gabizon and Zachary J. Williamson. plookup: A simplified polynomial
protocol for lookup tables. Cryptology ePrint Archive, Report 2020/315, 2020.
https://eprint.iacr.org/2020/315.

[Hir16] Shoichi Hirose. Sequential hashing with minimum padding. In NIST Work-
shop on Lightweight Cryptography 2016. National Institute of Standards and
Technology (NIST), 2016.

27

https://eprint.iacr.org/2022/403
https://eprint.iacr.org/2020/315

[Knu95] Lars R. Knudsen. Truncated and higher order differentials. In Bart Preneel,
editor, FSE’94, volume 1008 of LNCS, pages 196–211. Springer, Heidelberg,
December 1995.

[Lou94] W.W.A.P. Loustaunau. An Introduction to Grobner Bases. American Mathe-
matical Soc., 1994.

[LPP+22] Jianwei Liu, Harshad Patil, Akhil Sai Peddireddy, Kevin Singh, Haifeng Sun,
Huachuang Sun, and Weikeng Chen. An efficient verifiable state for zk-evm
and beyond from the anemoi hash function. Cryptology ePrint Archive, Paper
2022/1487, 2022. https://eprint.iacr.org/2022/1487.

[LTYW18] Yongqiang Li, Shizhu Tian, Yuyin Yu, and Mingsheng Wang. On the general-
ization of butterfly structure. IACR Trans. Symm. Cryptol., 2018(1):160–179,
2018.

[McL21] Michael B. McLoughlin. addchain: Cryptographic addition chain generation
in go. Repository https://github.com/mmcloughlin/addchain, October
2021.

[MRR+] Izaak Meckler, Vanishree Rao, Matthew Ryan, Anaïs Querol, Joseph Spa-
davecchia, and David Wong. Mina book, kimchi specification. https:
//o1-labs.github.io/proof-systems/specs/kimchi.html#poseidon.

[Nyb94] Kaisa Nyberg. Differentially uniform mappings for cryptography. In Tor Helle-
seth, editor, EUROCRYPT’93, volume 765 of LNCS, pages 55–64. Springer,
Heidelberg, May 1994.

[PUB16] Léo Perrin, Aleksei Udovenko, and Alex Biryukov. Cryptanalysis of a theorem:
Decomposing the only known solution to the big APN problem. In Matthew
Robshaw and Jonathan Katz, editors, CRYPTO 2016, Part II, volume 9815
of LNCS, pages 93–122. Springer, Heidelberg, August 2016.

[SAD20] Alan Szepieniec, Tomer Ashur, and Siemen Dhooghe. Rescue-prime: a
standard specification (SoK). Cryptology ePrint Archive, Report 2020/1143,
2020. https://eprint.iacr.org/2020/1143.

[SLST23] Alan Szepieniec, Alexander Lemmens, Jan Ferdinand Sauer, and Bobbin
Threadbare. The tip5 hash function for recursive starks. Cryptology ePrint
Archive, Paper 2023/107, 2023. https://eprint.iacr.org/2023/107.

[Zer22] Polygon Zero. Plonky2. Repository https://github.com/mir-protocol/
plonky2, September 2022.

28

https://eprint.iacr.org/2022/1487
https://github.com/mmcloughlin/addchain
https://o1-labs.github.io/proof-systems/specs/kimchi.html#poseidon
https://o1-labs.github.io/proof-systems/specs/kimchi.html#poseidon
https://eprint.iacr.org/2020/1143
https://eprint.iacr.org/2023/107
https://github.com/mir-protocol/plonky2
https://github.com/mir-protocol/plonky2

Supporting Material

29

A Details of our Security Analysis

A.1 Differential and Linear Attacks
In this part, we argue that differential and linear attacks can be prevented by the Flystel
construction, thanks to the differential and linear properties of the scheme as presented in
Section 5.

Differential attacks exploit the probability distribution of a given non-zero input
difference leading to a given output difference after a certain number of rounds. As
established in Proposition 2 for the Flystel2 and in Proposition 3 for the Flystelp, the
differential uniformity of a Flystel is low (namely 4 in the former case and (𝛼 − 1) in
the latter). As a consequence, the probability of any transition of the form ℋ(𝑥 + 𝑎, 𝑦 +
𝑏)−ℋ(𝑥, 𝑦) = (𝑐, 𝑑) is small: it is upper bounded by (𝛼− 1)/𝑞2. Given that 𝑞 is typically
bigger than 263, we only need to activate 3 S-boxes to obtain more than 128 bits of security,
and 5 for 256 bits.

A similar argument holds for linear attacks. As for the differential uniformity, the
correlation increases slowly with 𝑞 according to Conjecture 1.

Conjecture 1. If 𝑞 = 𝑝 is a prime number, then the maximum module of the Walsh
transform of ℋ satisfies

max
𝑎∈F𝑚

𝑝 ,𝑏∈(F𝑚
𝑝)*
|𝒲⟨𝑏,ℋ⟩(𝑎)| ≤ 𝑝 log 𝑝 .

More precisely it appears that for any value of 𝛼, 4𝑝 + 6 might even be a better bound,
but for 𝛼 = 3, it seems that the most suitable bound is 2𝑝, and for 𝛼 = 5, 3.5𝑝. While the
most general case remains a conjecture at the time of writing, this result holds for small
values of 𝑝 (𝑝 ≤ 809), as can be seen in Figure 8.

(a) for different values of 𝛼. (b) for the smallest 𝛼.

Figure 8: The maximum value of the module of the Walsh transform of ℋ.

As a consequence, it is again sufficient to activate a few S-boxes to prevent the existence
of high correlation linear trails. Indeed, as established in [BSV07], a linear attack against
𝐹 becomes possible when the squared modulus of 𝒲⟨𝑏,𝐹 ⟩(𝑎) for some 𝑎, 𝑏 ∈ F𝑚

𝑞 is high
enough. Roughly speaking, the data complexity of a linear attack is around 1/|𝒲⟨𝑏,𝐹 ⟩(𝑎)|2,
so activating a few S-boxes will be sufficient for this quantity to drop below 2−𝑠, where 𝑠
is the intended security level.

For both attacks, the activation of many S-boxes is further helped by our use of MDS
diffusion matrices. The structure ℳ, based on two parallel MDS matrices ℳ𝑥 and ℳ𝑦,
ensures that at least ℓ + 1 S-boxes are active in every pair of rounds.

30

A.2 Integral Attacks
A classical integral attack tracks the evolution of simple patterns through the rounds.
Consider a function of Fℓ

𝑞. As explained in [BS01, BS10], a multiset of elements of Fℓ
𝑞 can

have a word be saturated (i.e. this word takes all possible values exactly once), be constant,
have a sum equal to zero, or not yield any specific pattern. These patterns are denoted “*”,
“𝐶”, “0”, and “?” respectively. For example, through an S-box layer, (*, 𝐶, ..., 𝐶) is mapped
to (*, 𝐶..., 𝐶), while the application of an MDS matrix maps (*, 𝐶, ..., 𝐶) to (*, *, ..., *).

In our case, such attacks do not pose a significant threat. First, the open Flystel is a
3-round Feistel network where the center round function is a permutation, so that the only
integral pattern is of the form (*, 𝐶) (?, *). As a consequence, patterns at the word level
cannot be propagated over two full rounds since we would need to consider open Flystel
instances where one of the inputs has the ? pattern. Patterns at the open Flystel level
are a bit more promising, i.e. saturating a full column using 𝑞2 queries would lead to
having fully saturated columns after one round, a pattern destroyed by the following linear
layer (see [BS01, BS10] for a more thorough treatment of such generic integral attacks
against SPNs).

As shown in [BCD+20], a new direction can be used in F𝑝: instead of saturating a
word of F𝑞, it is possible instead to saturate a multiplicative subgroup. Against some
algorithms like gMiMC-Hash, this approach is promising as the diffusion is slow and the
only non-linear operations are monomials—under which subgroups are stable. In our case,
subgroups will not be stable through an open Flystelp call because of its three internal
addition/subtractions and constant additions.

In binary fields, primitives with low algebraic degree are potentially vulnerable to
higher order differential cryptanalysis [Knu95], which are themselves closely related to
integral attacks. The open Flystel2 is an efficient counter-measure against such attacks
since open butterflies operating on (F2𝑛)2 are known to have an algebraic degree equal to
𝑛 (see Proposition 2). As shown in [BCD+20], a low degree can also be leveraged in the
case where 𝑞 is prime. Still, a similar argument will hold: the degree of 𝑥 ↦→ 𝑥1/𝛼 is too
high to allow any meaningful pattern to emerge.

A.3 Invariant Subspaces
Remember that, regardless of the characteristic, it always holds that ℋ (𝑄𝑖(𝑦), 𝑦) =
(𝑄𝑓 (𝑦), 𝑦). For each Flystel instance in the round function (i.e., for each column in
the state), the probability that an input is in this set is equal to 1/𝑞. As this pattern is
non-linear, we deem it unlikely that it is preserved by the combination of the constant
addition and the linear layer with a probability higher than chance, meaning that this
pattern will be activated in inner rounds with a negligible probability.

That being said, it is a pattern that can be used to simplify the equations modeling
a call to Anemoi during an algebraic attack: if an attacker has some degrees of freedom,
then forcing the emergence of such a pattern within some Flystel instances is the best
strategy to simplify these equations.

B Details on Algebraic Attacks
B.1 Algebraic Attacks in Characteristic 2
We now present the details on ℱCICO which motivate Estimate 1.

Gröbner basis step. We observe that the Gröbner basis computation on ℱCICO is cheap.
This is due to the following lemma, whose proof is by computation since we simply have 2
polynomials per round when ℓ = 1.

31

Lemma 1. We consider the polynomial ring F𝑞[𝑥0, 𝑦0, . . . , 𝑥𝑛𝑟
, 𝑦𝑛𝑟

] endowed with the
grevlex ordering. For 0 ≤ 𝑖 ≤ 𝑛𝑟 − 1, let {𝑓𝑖, 𝑔𝑖} denote the two cubic equations at round 𝑖
(which involve 𝑥𝑖, 𝑦𝑖, 𝑥𝑖+1 and 𝑦𝑖+1). Then, the set of leading monomials in the reduced
Gröbner basis of {𝑓𝑖, 𝑔𝑖} is {︀

𝑦5
𝑖+1, 𝑥𝑖𝑦

3
𝑖+1, 𝑥3

𝑖 , 𝑥𝑖𝑦𝑖+1
}︀

. (6)

Moreover, the set of leading monomials in the reduced Gröbner basis of {𝑥0, 𝑓0, 𝑔0} is{︀
𝑥0, 𝑦2

0𝑦1, 𝑦3
0 , 𝑦0𝑦3

1 , 𝑦5
1
}︀

. (7)

All these individual Gröbner bases are obtained in degree 5.

Indeed, the leading monomials in two distinct sets defined by Equation (6) for 1 ≤ 𝑖 ̸=
𝑗 ≤ 𝑛𝑟−1 are always coprime to each other and they are also coprime to those in Equation
(7) and to 𝑥𝑛𝑟

(which corresponds to the second CICO constraint). Using Buchberger’s
Second Criterion10, this shows that the Gröbner basis computation on ℱCICO terminates
in degree 5 since one only needs to compute the individual Gröbner bases of Lemma 1.

Note that this result is only valid for ℓ = 1. When ℓ > 1, one can expect a similar
behaviour for ℱCICO in the sense that the Gröbner basis computation could only depend
on the polynomials of a given round (e.g., on ℓ) or on the contrary an overlap between
the sets of leading terms. In this second case, the complexity will be higher as it will
depend on 𝑛𝑟. Our experiments for ℓ = 2 and 𝑛𝑟 ∈ {1..3} suggest the latter but we have
not been able to draw a more precise conclusion. For this reason and since this choice is
conservative, we only consider FGLM in Estimate 1 even when ℓ > 1.

FGLM step. Using the generic Bezout bound for a system of 2𝑛𝑟 cubic equations and
with 𝐼CICO := ⟨ℱCICO⟩, we obtain

deg (𝐼CICO) ≤ 32𝑛𝑟 .

Also, from experiments it seems that this bound is tight as we always have deg (𝐼CICO) =
32𝑛𝑟 . Therefore, we estimate the complexity of the FGLM step when ℓ = 1 to be 𝒪(𝑛𝑟 ·32𝑛𝑟).
Based on the expression of the Bezout bound for a system of 2ℓ𝑛𝑟 cubic polynomials, we
also propose 𝒪(ℓ𝑛𝑟 · 32ℓ𝑛𝑟) in the general case.

B.2 Algebraic Attacks in Odd Characteristic
Strategy with half less equations and variables. We now describe the system 𝒫CICO
mentioned in the main text. The inputs (𝑥0, 𝑦0) are still seen as variables. This time, there
is only one unknown 𝑣𝑖 and one equation 𝑝𝑖 in 𝑥0, 𝑦0, 𝑣0, . . . , 𝑣𝑖 per round instead of the
former {𝑓𝑖, 𝑔𝑖} in 𝑥𝑖, 𝑦𝑖, 𝑥𝑖+1 and 𝑦𝑖+1. Let us denote by (𝑥𝑖, 𝑦𝑖) the output after round
𝑖− 1. After adding the round constants and applying the linear layer, we obtain

(𝑥′
𝑖, 𝑦′

𝑖) := (ℳ𝑥(𝑥𝑖, 𝑦𝑖)[0] + 𝑐𝑖,ℳ𝑥(𝑥𝑖, 𝑦𝑖)[1] + 𝑑𝑖).

We then set a new variable
𝑣𝑖 := 𝑦′

𝑖 − 𝑦𝑖+1, (8)

and we consider the equation

𝑝𝑖 := 𝑣𝛼
𝑖 − (𝑥′

𝑖 − (𝛽𝑦′2
𝑖 + 𝛾)) = 0. (9)

Note that we also have
𝑥𝑖+1 = 𝑥′

𝑖 − 𝛽𝛾𝑦′2
𝑖 + 𝛽𝑦2

𝑖+1 + 𝛿. (10)
10see for instance [CLO15, §2, Proposition 4]

32

3 4 5 6 7 8

10−2

10−1

100

101

102

103

104

Number of Rounds

T
im

e
(s

)

ℱCICO
𝒫CICO

(a) 𝛼 = 3

3 3.5 4 4.5 5 5.5 6

10−1

100

101

102

103

Number of Rounds

T
im

e
(s

)

ℱCICO
𝒫CICO

(b) 𝛼 = 5

3 3.5 4 4.5 5
10−1

100

101

102

103

104

Number of Rounds

T
im

e
(s

)

ℱCICO
𝒫CICO

(c) 𝛼 = 7

Figure 9: Comparison in odd characteristic for ℓ = 1.

Modeling 2. We consider the system 𝒫 := {𝑝0, . . . , 𝑝𝑛𝑟−1} in the polynomial ring
F𝑞[𝑥0, 𝑦0, 𝑣0, . . . , 𝑣𝑛𝑟−1], where 𝑝𝑖 is given by Equation (9). It contains 𝑛𝑟 equations
in 𝑛𝑟 + 2 variables.

The CICO system 𝒫CICO is then obtained from 𝒫 by fixing the variable 𝑥0 = 0
and by adding the equation in 𝑥0, 𝑦0, 𝑣0, . . . , 𝑣𝑛𝑟−1 which corresponds to the constraint
𝑥𝑛𝑟 = 0 and which is not a linear equation anymore. Note that 𝑝𝑖 actually belongs to
F𝑞[𝑥0, 𝑦0, 𝑣0, . . . , 𝑣𝑖].

The rationale behind Modeling 2 is that it contains half less equations and variables
than Modeling 1. More importantly and perhaps surprisingly, the degree of the 𝑝𝑖’s only
increases linearly with the number of rounds11 while one could expect an exponential
increase. This is only due to the particular shape of the polynomials 𝑄𝛿 and 𝑄𝛾 . Note
however that these observations do not guarantee better performance for this second
strategy, in particular because the degrees of the polynomials in Modeling 1 are constant.
One can indeed imagine that the solving degree of 𝒫CICO will increase more quickly than
the one of ℱCICO. In particular, this very fact may prevail over the smaller system size
after a certain number of rounds.

Experiments for Gröbner bases. Practical results for both modelings are shown in Table
6 and Figure 9 below. Even if the strategy based on Modeling 2 seems more efficient for a
small number of rounds, the trends for 𝛼 = 3 suggest that both approaches should behave
similarly for more rounds.

Table 6: Gröbner Basis computation in odd characteristic for both strategies when ℓ = 1.
𝛼 𝑛𝑟 𝑑solv(ℱCICO) Total Time ℱCICO (s)
3 3 7 0.010

4 9 0.040
5 11 0.550
6 13 11.429
7 15 216.620
8 17 14450.530

5 3 8 0.040
4 10 2.599
5 12 226.330

7 3 10 0.240
4 12 55.420
5 14 23042.180

𝛼 𝑛𝑟 Degrees 𝑑solv(𝒫CICO) Total Time 𝒫CICO (s)
3 3 3,4,6 7 0.010

4 3,4,6,8 10 0.040
5 3,4,6,8,10 11 0.329
6 3,4,6,8,10,12 12 6.639
7 3,4,6,8,10,12,14 15 163.870
8 3,4,6,8,10,12,14,16 16 10575.610

5 3 5,5,6 11 0.049
4 5,5,6,8 15 0.879
5 5,5,6,8,10 19 19.129
6 5,5,6,8,10,12 23 875.379

7 3 7,7,7 12 0.190
4 7,7,7,8 17 16.870
5 7,7,7,8,10 22 3903.280

From these results and since Modeling 2 seems more complicated to analyze than
Modeling 1 from a theoretical perspective, we focus on the latter to derive Estimate 2 and
we conservatively add 2 extra rounds to this estimate. Actually, it might be possible to
view Equation (8) as a change of variables. From Modeling 1, one then obtains Modeling

11from round 𝑖 such that 𝑣𝛼
𝑖 is not the term of maximal degree in 𝑝𝑖.

33

Table 7: Solving degree of ℱCICO for higher values of 𝛼.
𝛼 Values of 𝑑solv(ℱCICO) for 2 ≤ 𝑛𝑟 ≤ 4
9 10, 13, 15
11 12, 15, 18

2 by using a particular monomial ordering which gets rid of the 𝑦𝑖 variables. Stating
that Modeling 2 performs better than Modeling 1 indicates that we have found a more
appropriate order than the DRL ordering on the same initial set of equations. This is not
a standard approach in algebraic cryptanalysis and overall we have not pursued further in
a formal comparison between these two strategies12.

Gröbner basis step for ℱCICO. From Table 6 and the following Table 7, we also deduce
the experimental degree bound 𝑑exp. Even for high values of 𝛼, theoretical considerations
lead us to think that the increase of this degree will be only by two after a few rounds,
which motivates Conjecture 1. Plugging this value into Equation (4) yields the final cost
of Estimate 2.

FGLM step. Contrary to the even characteristic case, this step is negligible. The Bezout
bound for 𝐼CICO := ⟨ℱCICO⟩ yields deg (𝐼CICO) ≤ 2𝑛𝑟 𝛼𝑛𝑟 but we observed a much smaller
degree:

Conjecture 2 (From experiments). We have deg (𝐼CICO) = (𝛼 + 2)𝑛𝑟 .

The proof of this result is left for future work and may require more insight on the
underlying ideal. Actually, even by adopting the Bezout bound instead of Conjecture 2
as well as 𝜔 = 2, a very rough upper-bound for Step 2 is 𝒪(𝑛2

𝑟 · 22𝑛𝑟 · 𝛼2𝑛𝑟) and this is
already below the cost given in Estimate 2. Finally, we want to mention that we obtained
the same result as in Conjecture 2 for the ideal 𝐽CICO := ⟨𝒫CICO⟩ in the polynomial ring
F𝑞[𝑥0, 𝑦0, 𝑣0, . . . , 𝑣𝑛𝑟−1]. Once again, this may suggest a stronger connection between
Modeling 1 and Modeling 2.

12for instance, we would probably need to work over the larger polynomial ring
F𝑞 [𝑥0, 𝑦0, . . . , 𝑥𝑛𝑟 , 𝑦𝑛𝑟 , 𝑣0, . . . , 𝑣𝑛𝑟−1] before selecting the relevant equations/variables.

34

C Reference Implementation
A full reference implementation of Anemoi, including AnemoiJive and AnemoiSponge,
is provided in our GitHub13 repository. It contains various routines to evaluate these
functions and to generate the corresponding systems of equations as well. Nevertheless, we
include some snippets from this implementation below. First, we provide the linear layers.

1 def M_2(x_input , b):
2 """ Adapted from a pseudo - Hadamard transform """
3 x = x_input [:]
4 x[0] += b*x[1]
5 x[1] += b*x[0]
6 return x
7
8 def M_3(x_input , b):
9 """ Adapted from figure 6 of [DL18]. """

10 x = x_input [:]
11 t = x[0] + b*x[2]
12 x[2] += x[1]
13 x[2] += b*x[0]
14 x[0] = t + x[2]
15 x[1] += t
16 return x
17
18
19 def M_4(x_input , b):
20 """ Adapted from figure 8 of [DL18]. """
21 x = x_input [:]
22 x[0] += x[1]
23 x[2] += x[3]
24 x[3] += b*x[0]
25 x[1] = b*(x[1] + x[2])
26 x[0] += x[1]
27 x[2] += b*x[3]
28 x[1] += x[2]
29 x[3] += x[0]
30 return x
31
32 def circulant_mds_matrix (field , l, coeff_upper_limit =None):
33 if coeff_upper_limit == None:
34 coeff_upper_limit = l+1
35 assert (coeff_upper_limit > l)
36 for v in itertools . combinations_with_replacement (range (1, coeff_upper_limit), l):
37 mat = matrix . circulant (list(v)). change_ring (field)
38 if is_mds (mat):
39 return (mat)
40 # For large cases , the method may not return any valid matrix ,
41 # hence the need to increase the limit further .
42 return circulant_mds_matrix (field , l, coeff_upper_limit +1)

13https://github.com/anemoi-hash/anemoi-hash

35

https://github.com/anemoi-hash/anemoi-hash

Then, the following function computes the number of rounds.
1 def get_n_rounds (s, l, alpha):
2 """ Returns the number of rounds needed in Anemoi (based on the
3 complexity of algebraic attacks).
4
5 """
6 r = 0
7 complexity = 0
8 kappa = {3:1 , 5:2 , 7:4 , 9:7 , 11:9}
9 assert alpha in kappa

10 while complexity < 2**s:
11 r += 1
12 complexity = binomial (
13 4*l*r + kappa [alpha],
14 2*l*r
15)**2
16 r += 2 # considering the second model
17 r += min (5,l+1) # security margin
18 return max (8, r)

Finally, the two modes in which Anemoi can be plugged are implemented by the
following functions. They both take an input P which must implement a permutation.
Concretely, it must be such that calling P(x) on a list x of elements of the relevant field
returns a list of elements of the same field of the same size.

1 def jive(P, b, _x):
2 """ Returns an output b times smaller than _x using the Jive mode of
3 operation and the permutation P.
4
5 """
6 if b < 2:
7 raise Exception ("b must be at least equal to 2")
8 if P. input_size () % b != 0:
9 raise Exception ("b must divide the input size!")

10 c = P. input_size ()/b # length of the compressed output
11 # Output size check : we allow the output size to be 3 bits shorter than
12 # the theoretical target , as commonly used finite fields usually have a
13 # characteristic size slightly under a power of two.
14 if c * P.F. cardinality (). nbits () < 2 * P. security_level - 3:
15 raise Exception (f" digest size is too small for the targeted security level !")
16
17 x = _x [:]
18 u = P(x)
19 compressed = []
20 for i in range (0, c):
21 compressed . append (sum(x[i+c*j] + u[i+c*j]
22 for j in range (0, b)))
23 return compressed
24
25 def sponge_hash (P, r, h, _x):
26 """ Uses Hirose ’s variant of the sponge construction to hash the
27 message x using the permutation P with rate r, outputting a digest
28 of size h.
29
30 """
31 x = _x [:]
32 if P. input_size () <= r:
33 raise Exception ("rate must be strictly smaller than state size!")
34
35 # Digest size and capacity check : we allow the digest size to be 3 bits
36 # shorter than the theoretical target , as commonly used finite fields
37 # usually have a characteristic size slightly under a power of two.
38 if h * P.F. cardinality (). nbits () < 2 * P. security_level - 3:
39 raise Exception (f" digest size is too small for the targeted security level !")
40 capacity = P. input_size () - r
41 if capacity * P.F. cardinality (). nbits () < 2 * P. security_level - 3:
42 raise Exception (f" capacity is too small for the targeted security level !")
43
44 # message padding (and domain separator computation)
45 if len(x) % r == 0 and len(x) != 0:
46 sigma = 1
47 else:
48 sigma = 0
49 x += [1]
50 x += (len(x) % r)*[0]
51 padded_x = [[x[pos+i] for i in range (0, r)]
52 for pos in range (0, len(x), r)]

36

53 # absorption phase
54 internal_state = [0] * P. input_size ()
55 for pos in range (0, len(padded_x)):
56 for i in range (0, r):
57 internal_state [i] += padded_x [pos][i]
58 internal_state = P(internal_state)
59 if pos == len(padded_x) -1:
60 # adding sigma if it is the last block
61 internal_state [-1] += sigma
62 # squeezing
63 digest = []
64 pos = 0
65 while len(digest) < h:
66 digest . append (internal_state [pos])
67 pos += 1
68 if pos == r:
69 pos = 0
70 internal_state = P(internal_state)
71 return digest

37

	Introduction
	Theoretical Background
	Modes of Operation
	Random Oracle: the Sponge Structure
	Merkle Compression Function: the Jive Mode

	The Flystel Structure
	On CCZ-Equivalence and Arithmetization-Orientation
	High Level View of the Flystel Structure
	Characteristic 2
	Odd Characteristic
	Implementation Aspects

	Description of Anemoi
	Round Function
	Higher Level Algorithms
	Specific Instances

	Security Analysis
	``Classical'' Attacks
	Algebraic Attacks

	Benchmarks
	R1CS Systems
	Plonk
	AIR
	Native performance

	Conclusion
	Details of our Security Analysis
	Differential and Linear Attacks
	Integral Attacks
	Invariant Subspaces

	Details on Algebraic Attacks
	Algebraic Attacks in Characteristic 2
	Algebraic Attacks in Odd Characteristic

	Reference Implementation

