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Abstract

Elastic metasurfaces are mostly conceived and designed based on gradient phase and thus suf-

fering from parasitic scattering. Inspired by the advances of surface impedance model in acoustics,

in this research, we establish an interface impedance model to realize scattering-free modulation of

elastic shear-horizontal (SH) waves. Anomalous refraction at large angle is successfully obtained

through interface impedance. Meanwhile, focusing and Airy beam generation are also investi-

gated, which are mostly achieved by phase-based structures. We provide lossless or lossy forms

of impedance to suppress parasitic waves. The establishment of boundaries with different shapes

has been discussed. Finally, the simulated results of elastic metasurfaces composed of optimized

units further validates the feasibility of impedance theory in achieving precise manipulation of SH

waves.
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1. INTRODUCTION

Metasurfaces with gradient phase[1] allows the modulation of wavefronts by compact and

simply fabricated structures. Their emergence also bring additional freedom of research

both academically and practically. Inspired by the developments of electromagnetism[1, 2]

and acoustics[3–5], elastic metasurafces further arise the interests of researchers. For the

rich modes of elastic waves[6–8] and wide applications, such as vibration control[9], non-

destructive testing[10], imaging[11], etc., there is broad space and immense value for the

related study on elastic metasurfaces.

Currently, most of elastic metasurfaces are designed according to the generalized Snell’s

law (GSL). The composed units are supposed to fulfill the desired phase distribution

for the corresponding functionality, such as anomalous refraction[12, 13]/reflection[9, 14],

focusing[15, 16], self-bending beam[12, 17–20] and illusion[12, 21–23]. Some units are reso-

nant type, including plate-based pillars[14, 24–26] and embedded microstructures[9, 13, 27–

29]. Others resemble beams and are designed by stacking materials[30–32] or extending

propagation path of elastic waves[33–38]. However, the phase gradient metasurfaces only

designate the desired order of waves[39]. The unspecified waves in higher orders can prop-

agate in scattered directions and affect the overall performance, which is unignorable with

the increasing requirement of precise manipulation.

Thereupon, metagratings are continuously designed to eliminate the scattered waves ac-

cording to diffraction theory[40]. Since the unwanted high-order scattering modes can be

theoretically identified and suppressed, functionalities are developed for more precise ma-

nipulation. Wave trapping[41] and retroreflection[42] can be attained by selecting the de-

sired order of diffraction. Through the enhancement and suppression of different orders of

diffracted waves, wave splitting[39] with the desired amplitudes and enhanced absorption[43]

have been successfully realized. It is also possible to achieve asymmetric transmission[44] by

utilizing the integer-parity feature of metasurfaces. Additionally, by defining the objective

function with diffraction orders[45], the unwanted modes can be suppressed directly by op-

timization. However, the above mentioned methods are only applied for periodic structures.

Recently, surface impedance model[46] was proposed in acoustics to fully avoid the gener-

ation of parasitic scattering. With the introduction of bianisotropic units[47], the theoretical

requirement of impedance can be fulfilled by structures and precise acoustic transmission is
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achievable practicably. As the impedance theory expands, no matter the functionalities rely

on periodic structures(refraction[47], splitting[48] and generation of angular momentum[49])

or not(focusing[50]), their performances can all be demonstrated more accurately. In spite

of the extensive research on acoustic metasurfaces based on impedance theory, the work

about elastic metasurfaces are rarely reported. Progress has been made recently that an

impedance-based elastic metasurface[51] can achieve efficient reflection of flexural waves.

However, there is still ample room for further exploration of transmissive elastic metasur-

face based on interface impedance theory.

In this work, we present transmissive metasurfaces based on interface impedance theory to

realize precise manipulation of elastic SH waves. Firstly, we establish an interface impedance

model for calculating SH waves, which can present an accurate wave field. Secondly, we

derive the expression of impedance matrix for achieving precise refraction, focusing and Airy

beam generation using lossless or lossy forms. The theoretical wave fields without parasitic

scattering can be obtained successfully. Curved interfaces are also considered, providing the

possibility of designing metasurfaces in multiple shapes. Finally, elastic metasurfaces are

constructed by lossless units optimized according to impedance requirements. The simulated

results of metasurfaces verify the correctness and effectiveness of the interface impedance

model.

2. INTERFACE IMPEDANCE MODEL FOR ELASTIC SH WAVES

Fig. 1 depicts the schematic diagram of an interface impedance model for precise manip-

ulation of SH waves. The impedance-described interface is determined by the extraodinary

functionalities exhibited in the transmitted field, including refraction, focusing and Airy

beam generation. By employing the appropriate impedance, the desired fields can be real-

ized without parasitic waves. The design of elastic metasurfaces is guided by the impedance

requirements and can then be accomplished through an optimization algorithm. It is worthy

to note that an interface impedance boundary condition is deduced and applied in the finite

element model (FEM) in COMSOL Multiphysics software to perform accurate wave fields

in this work. The details can be found in supplementary material.
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FIG. 1: Illustration of the desired wave fields formed through the interface impedance model.

The corresponding elastic metasurfaces can be designed according to the theoretically required

impedance.

2.1. Anomalous refraction

We first consider the precise realization of anomalous refraction according to the interface

impedance theory. Considering the wave equation of SH wave ∇[G∇w] = −ρω2w, the

displacement field of incident waves can be obtained, as well as the corresponding stress

vector and velocity. Here, ω is the angular frequency, the medium is chosen as steel with

Young’s modulus E = 194.02 GPa, Poisson’s ratio ν = 0.3 and density ρ = 7930kg/m2. The

shear modulus can be calculated as G = E
2(1+ν)

. Given the mechanical intensity vector[52]

as I⃗ = 1
2
Re(σij · vj∗) (i, j = x, y, z), its normal component can then be derived with the

normal unit vector n̂ = nx · x̂+ ny · ŷ. The expressions of the above fields can be described

as follows:

wi = Ae−ik sin θixeik cos θiy (1a)

σ⃗i = −iωZ0wi(sin θix̂− cos θiŷ) (1b)

vi = −iωwi (1c)

Ii =
1

2
Z0ω

2A2(sin θinx − cos θiny) (1d)
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FIG. 2: (a)The wave field of anomalous refraction at θt = 70◦ realized through the lossless form of

impedance. (b)The intensity vector distribution is presented by the arrows with scale factor 0.5.

where A is the amplitude of the incident wave at angle θi. The wave number is k = ω/c and

the characteristic impedance is Z0 = ρc, where c denotes the wave velocity c =
√

G
ρ
. The

part Ni = sin θinx − cos θiny is written for simplicity.

The transmitted wave field is set and other fields can then be obtained as

wt1 = B1e
−ik sin θtxeik cos θty

σ⃗t1 = −iωZ0wt1(sin θtx̂− cos θtŷ)

vt1 = −iωwt1

It1 =
1

2
Z0ω

2B1
2(sin θtnx − cos θiny)

(2)

where B1 is the amplitude of the refracted wave at angle θt. The mechanical impedance is

defined as the ratio between the excitation force and the velocity response[53]. We define it

as Z = n̂ · σ⃗/v to simplify the analysis. Then the interface impedance between incident and

transmitted field can be described as −n̂ · σ⃗i

n̂ · σ⃗t

 =

 Z11 Z12

Z21 Z22

 vi

vt

 =

 iX11 iX12

iX21 iX22

 vi

vt

 (3)

The constraint on the normal energy intensity is set as Ii = It to reach unitary efficiency
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and the ratio of amplitudes can be solved as tr1 = B1/A =
√
cos θi/ cos θt. Finally, the

components of impedance matrix can be expressed as

X11 = Z0 cotΦ cos θi

X12 = X21 = −Z0
cos θi

tr1 sinΦ

X22 = Z0 cotΦ cos θt

(4)

where φi = k(sin θix− cos θiy), φt = k(sin θtx− cos θty) and Φ = φi − φt. The components

are plotted in Fig. 8(a).

The simulated result of refraction at 70◦ over two periods is given in Fig. 2(a). Here, the

period isD = λ/| sin θt−sin θi| and the wavelength is λ = 0.3068m under the target frequency

10kHz. At this point, the energy distribution is uniform and power flow-conservation condi-

tion is satisfied. The lossless impedance solution allows the incident wave to pass through the

boundary smoothly without any scattering waves, which can be observed from the intensity

vector distribution plotted in Fig. 2(b).

2.2. Focusing

We consider the process of focusing as a conversion from a plane wave to a cylindrical

wave. Thus, the displacement field of focusing can be represented by the first-order Hankel

function of the first kind H1
1 (kr) with amplitude B2 as

wt2 = B2H
1
1 (kr)

σ⃗t2 =
1

2
ωZ0B2[H

1
0 (kr)−H1

2 (kr)](
x− xf

r
x̂+

y − yf
r

ŷ)

vt2 = −iωB2H
1
1 (kr)

It2 =
1

4
Z0ω

2B2
2γNf

(5)

where r =
√

(x− xf )2 + (y − yf )2 is the polar radius, (xf , yf ) is the focusing point set

as (0,-2.282λ). The Hankel function can also be expressed by the Bessel function of the

first kind as H1
1 (kr) = J1

1 (kr) + iY 1
1 (kr). Given the simplified forms γ = Y 1

1 (kr)[J
1
0 (kr) −

J1
2 (kr)]− J1

1 (kr)[Y
1
0 (kr)− Y 1

2 (kr)] and Nf =
x−xf

r
nx +

y−yf
r

ny, the ratio of amplitudes can
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FIG. 3: (a)The focusing wave field realized through the lossless form of impedance. (b)The intensity

vector distribution from the box-selected area in (a) is presented by the arrows with scale factor

0.5. (c)Curves of the impedance matrix with purely imaginary components are plotted.

be solved as tr2 = B2/A =
√

2Ni

γNf
. The matrix elements in Eq. (3) for focusing can then be

expressed as

X11 = Z0Ni
Y 1
1 (kr) sinφi − J1

1 (kr) cosφi

Y 1
1 (kr) cosφi + J1

1 (kr) sinφi

X12 = X21 =
Z0Ni

tr2

1

Y 1
1 (kr) cosφi + J1

1 (kr) sinφi

X22 =
Z0Nf

2

[J1
0 (kr)− J1

2 (kr)] sinφi + [Y 1
0 (kr)− Y 1

2 (kr)] cosφi

Y 1
1 (kr) cosφi + J1

1 (kr) sinφi

(6)

Fig. 3(a) shows the focusing wave field forming through the impedance boundary defined

above and the focal point is at (0,-2.282λ). It can be known that even if the focusing field

is strictly implemented according to the impedance requirement, the location of focus point

would differ from the theoretical value to some extent. The components of impedance matrix

are depicted in Fig. 3(c). In this case, the normal component of the transmitted energy It

varies on the boundary if the ratio of amplitudes is still a constant as the one for anomalous

refraction. Thus, tr2 is actually adjusting with the coordinate x. And the rapidly changing

amplitude causes small fluctuations near the boundary at the same time. To observe this
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FIG. 4: The focusing wave field for (a)parabolic boundary and (b)sinusoidal boundary realized

through the lossless form of impedance.

process clearly, the energy intensity vectors in the box-selected area from Fig. 3(a) are

plotted in Fig. 3(b).

The curve-shaped boundaries are also considered and the unit normal vector n̂

is changed accordingly. Here, the shape of the boundary is applied as parabolic

curve y = a0x
2 in Fig. 4(a) and sine curve y = a0 cosω0x in Fig. 4(b).

The unit normal vector is then adjusted as (−2a0x/
√
4a02x2 + 1, 1/

√
4a02x2 + 1) and

(ω0a0 sinω0x/
√
−ω0a0 sinω0x2 + 1, 1/

√
−ω0a0 sinω0x2 + 1) respectively. The focal points

in the simulations locate at (-0.013λ,-2.135λ) for parabolic boundary and (0,-2.155λ) for

sinusoidal boundary. The slight deviation of the focus position comes from the asymmetric

shape of the boundaries.

2.3. Airy beam generation

For refraction and focusing, the power flow-conservation condition can be fulfilled by des-

ignating amplitudes on the boundary, because the normal components of energy intensity in

the incident and transmitted fields point at the same direction. However, these components

can point at different directions for Airy beam, indicating that energy shouldn’t passing

through the boundary at specific positions. These impermissible energies can be tackled by

being redirected elsewhere[54] or being absorbed on site. Here, the energy is processed by
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the second way, which determines the existence of real components in impedance matrix, as

Eq. (7) denotes.

−n̂ · σ⃗i

n̂ · σ⃗t

 =

Z11 Z12

Z21 Z22

vi
vt

 =

 iX11 R + iX12

R + iX21 iX22

vi
vt

 (7)

Next, with the expression of the desired wavefield provided, further calculations can be

performed. The wave field of Airy beam can be represents by the Airy function Ai(s− ξ2

4
),

where s = x/x0 represents the transverse scale normalized by the Airy characteristic length,

ξ = y/kx0
2 denotes the normalized propagation distance. And different fields for Airy beam

generation can be expressed as

wt3 = B3Ai(g)e
ig

σ⃗t3 = B3Geig{ 1

x0

[
∂Ai(g)

∂x
+ Ai(g)

iξ

2
]x̂+

1

kx0
2
[−ξ

2

∂Ai(g)

∂y
+ i(

s

2
− ξ2

4
)Ai(g)]ŷ}

vt3 = −iωB3Ai(g)e
ig

It3 = −1

2
GωB3

2Ai(g)2Na

(8)

where we have concise forms as g(s, ξ) = sξ
2
− ξ3

12
, Na = 1

x0

ξ
2
nx + 1

kx0
2 (

s
2
− ξ2

4
)ny. The

relationship Z12 = Z21 still remains and the expressions of matrix components can be given

as

X11 = Z0
−4Nik

2x0
2 cos2 2ϕ+ tr3

2Ai(g)2[ny(2s− ξ2) + nx2kx0ξ]

4k2x0
2 sin 2ϕAi(g)

X12 = X21 = Z0
4Nik

2x0
2 − tr3

2Ai(g)2[ny (2s+ ξ2)− nx2kx0ξ]

8tr3k2x0
2 sinϕAi(g)

R = −Z0
4Nik

2x0
2 + tr3

2Ai(g)2[ny (2s− ξ2) + nx2kx0ξ]

8tr3k2x0
2 cosϕAi(g)

X22 = −Z0
4Nik

2x2
0 + tr3

2Ai(g)2 cosϕ[ny(2s− ξ2) + nx2kx0ξ]

4k2x0
2 sin 2ϕAi(g)2

+ Z0

tr3
2[∂Ai(g)

∂y
nyξ − ∂Ai(g)

∂x
nx2kx0]

2k2x0
2Ai(g)

(9)

where ϕ = g(s, ξ) + φi, x0 = 0.4.

Setting the boundary shape as a straight line will make the denominators of the impedance

matrix components be zero. Thus, we set the boundary into arc shape and its unit normal
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FIG. 5: (a)The normalized intensity field for arc-shaped boundary realized through the lossy form

of impedance. The theoretical trajectory is marked by dashed lines. (b)The intensity vector

distribution near the boundary is presented by the arrows with scale factor 1 for incident field

and 10 for transmitted field. (c)Curves of the impedance matrix with both real and imaginary

components along the arc boundary are plotted.

vector is (x−x0

R0
, y−y0

R0
), where (x0, y0) is the center of the arc and R0 is the radius. Though

there exist loss and gain inside the interface, corresponding to positive and negative R, the

system can be lossless by equating the overall power between the incident and transmitted

sides[50, 55]. The detailed process of calculating amplitudes ratio is provided in the supple-

mentary material. In this way, the ratio of amplitudes can be solved as tr3 = B3/A = 1.3356.

The normalized intensity field is shown in Fig. 5(a). It can be observed that the main lobe

falls on the theoretical trajectory. The energy distribution in the box-selected area is shown

in Fig. 5(b) for a clear observation. Portion of energy is absorbed after passing through

a section of boundary with loss, resulting in a low output of energy in the transmitted

field. This progress can be perceived from the change in size of the arrows. The curves of

impedance matrix are shown in Fig. 5(c), as long as a zoom-in plot of the area with the first

spike of R. Except from this spike, R remains positive in the regions along −x direction. It

only exhibits oscillations and negative values(gain) near x = 3m.

Similarly, Airy beam can be generated through boundaries in various shapes, and the

simulations for parabolic and cosine boundaries are presented in Fig. 6. Considering the

balanced power between incident and transmitted sides, the amplitudes ratio can obtained
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FIG. 6: The normalized intensity field of Airy beam for (a)parabolic boundary and (b)cosine

boundary realized through the lossy form of impedance. The theoretical trajectory is marked by

dashed lines.

correspondingly as 1.6485 and 1.2592. The main lobes all fall on the theoretical trajectories.

In Fig. 6(a), the main lobe of the Airy beam is formed as a more curved profile with higher

intensity than the ones in Fig. 5(a) and Fig. 6(b). This can be resulted from the continuous

positive slope on the left side of the parabolic curve, making the side lobes converge to the

center. On the contrary, side lobes in Fig. 6(b) can be observed to scatter away from the

center.

3. METASURFACE DESIGN

The aforementioned simulations presented the validity of achieving functionalities through

a single impedance boundary without parasitic scattering. To give a further proof of the

theoretical concepts, a metasurface implemented by lossless units is designed. Here, the

genetic algorithm is applied to optimize the units meeting the impedance requirements.

Considering that zigzag structure does not rely on resonant mechanism primarily, the

losses caused by unit resonance can be avoided as much as possible. Fig. 7 illustrates the

functional unit that is to be optimized, which is based on zigzag structure. The width H0

of a unit is D/N (N=12) for anomalous refraction and 6.52λ/N (N=32) for focusing. Slits

with width Hg = H0/25 on both sides of the unit are to avoid coupling. The thickness of
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FIG. 7: The functional unit with zigzag structure is to be optimized.

the metasurface is l0 = 2.4H0, approximately λ/4.7 for refraction and λ/2.1 for focusing,

fulfilling the subwavelength scale. 15 strips with length hi(i=1,2,...,15) and width l0/29 are

removed to form the zigzag structure.

Here, parameters hi are optimized by genetic algorithm to obtain units with required

impedance. The optimization can be regardeded as obtaining the minimum of objective

function F described as

F =
1

3
(f1 + f2 + f3) =

1

3

∑
(i,j)

∣∣∣∣∣Z
o
(i,j) − Zt

(i,j)

Zt
(i,j)

∣∣∣∣∣ , (i, j) = (1, 1), (1, 2), (2, 2)

q1 = 0.2, F < 0.5 and max(f)−min(f) > 0.7

q2 = max(f), if all the f < 0.3

(10)

where the superscripts “o” and “t” represent the obtained and target values of impedance.

The penalty term q mainly prevents excessive differences between matrix components during

the early stage of optimization. It also helps to preferentially suppress the component that

deviates the most from desired value when the matrix approaches the target.

To simply illustrate the correctness of the proposed method and the derived impedance

solutions, lossless units are optimized and constructed into metasurfaces for refraction and

focusing. The optimized parameters are all provided in supplementary material.

According to the impedance requirements of refraction formed by flat metasurface, the

theoretical and optimized results are plotted in Fig. 8(a). The elastic metasurface can

then be constructed and the wave field is realized as presented in Fig. 8(b). To evaluate

the quality of refraction, the normalized amplitudes in different directions is performed and
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FIG. 8: The comparison of impedance between theoretical and optimized results for (a)refraction

and (d)focusing. The displacement field realized by elastic metasurfaces composed of optimized

units for (b)refraction and (e)focusing. (c)The normalized amplitudes at different refraction orders.

(f)The intensities at the focal point.

illustrated in Fig. 8(c) by fast Fourier transformation. The refraction efficiency of the

first-order transmitted mode is calculated by ηt = |B1 1|2∑
i=−1,0,1|B1 i|2

, showing 99.94% for the

optimized result and is obviously higher than the limitation of conventional designs.

As for focusing, the theoretical and optimized results of impedance are presented in Fig.

8(d). The corresponding elastic metasurface in cosine shape realizes the desired wave field

successfully, as shown in Fig. 8(e). Slightly different from the theoretical one, the focal

point locates at (0,-2.138λ). The deviation is mainly caused by the units being placed at

positions with divergent impedance, which also results in the not fully suppressed -1 order

diffraction in anomalous refraction.

The units needed by Airy beam ask for delicate design to realize local loss/gain, con-

sidering it is not the point of this work and will not be discussed. Additionally, adaptive
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units composed of piezoelectric materials[18, 56] is believed to be capable of realizing such

responses, which is advantageous for both passive and active manipulation.

4. CONCLUSION

In this work, we have presented an interface impedance model theoretically and numeri-

cally to achieve scattering-free fields. The proposed model is firstly applied to realize perfect

anomalous refraction. Then, lossless or lossy form of impedance has been presented to an-

swer the functionalities which are generally obtained through phase modulation. SH plane

waves can pass through different-shaped boundaries and generate the desired wave fields

without parasitic scattering. After obtaining results consistent with the assumed theoretical

field, the design of elastic metasurfaces has been carried out based on lossless zigzag-shaped

units. Genetic algorithm is employed to determine the geometric parameters of the units to

meet the impedance requirements. The simulated results of the lossless metasurface have

shown a great agreement with the theoretical results, confirming further the validity of the

proposed interface impedance theory for elastic waves in this work.

The interface impedance model for transmission proposed here can assist in designing

elastic metasurfaces with different functionalities and shapes. Except for the SH wave stud-

ied, the ideas and methods provided in this work also bring posibilities for wave modes that

are more conducive to experimentation, such as in-plane waves and plate waves. We believe

that the potentials on precise manipulation based on impedance theory will be demonstrated

theoretically and practically with further research.
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