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Nielsen’s approach to quantum state complexity relates the minimal num-
ber of quantum gates required to prepare a state to the length of geodesics
computed with a certain norm on the manifold of unitary transformations. For
a bipartite system, we investigate binding complexity, which corresponds to
norms in which gates acting on a single subsystem are free of cost. We reduce
the problem to the study of geodesics on the manifold of Schmidt coefficients,
equipped with an appropriate metric. Binding complexity is closely related to
other quantities such as distributed computing and quantum communication
complexity, and has a proposed holographic dual in the context of AdS/CFT.
For finite dimensional systems with a Riemannian norm, we find an exact re-
lation between binding complexity and the minimal Rényi entropy. We also
find analytic results for the most commonly used non-Riemannian norm (the
so-called F1 norm) and provide lower bounds for the associated notion of state
complexity ubiquitous in quantum computation and holography. We argue that
our results are valid for a large class of penalty factors assigned to generators
acting across the subsystems. We demonstrate that our results can be bor-
rowed to study the usual complexity (not-binding) for a single spin for the case
of the F1 norm which was previously lacking from the literature. Finally, we de-
rive bounds for multi-partite binding complexities and the related (continuous)
circuit complexity where the circuit contains at most 2-local interactions.
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1 Introduction
Computational circuit complexity has been established as a useful tool of quantum com-
puting theory for some time, see e.g., [1, 2]. Heuristically, complexity estimates the number
of unitary gates (or time) required by an optimal circuit to produce a certain target state
(typically entangled) starting from a reference state (typically factorized). As such, it is
natural to ask whether there is a relation between the degree of entanglement and the
complexity in producing a certain state [3]. In this work, we will show that under certain
circumstances there is a relation between these two measures.

Circuit complexity. Circuit complexity plays a crucial role in classifying computational
problems and in establishing the advantages of quantum over classical computation. From
a practical point of view, finding the optimal circuit for a given task is an important goal
for the compiler of any quantum computer.

In concrete circuits built in laboratories, quantum operations are usually performed
using discrete elementary unitary operations (called gates) which act on one or two qubits
at the same time. While it is not possible to cover all the unitary group with a finite set of
gates, any unitary operator can be built with arbitrary precision by selecting a universal
set of gates [4]. The implementation of those gates in a quantum circuit can vary in terms
of difficulty, time, or errors. A proper definition of circuit complexity should take these
variations into account. For generic circuits, finding the complexity is a hard problem.

Nielsen showed that lower and upper bounds can be obtained by looking at a contin-
uous version of the problem [5–7]. The idea is to consider the unitary group, generate
a continuous trajectory by a time-dependent Hamiltonian, and define a norm F which
assigns different costs (called penalty factors) to the various directions along the tangent
space of the group manifold. The shortest circuit is given by a geodesic in the space of
unitaries, and the complexity will be the length of this geodesic, measured using the notion
of distance induced by the norm with penalty factors. A similar definition of complexity
can be introduced in the space of states by performing a quotient over the stabilizer at each
point along the trajectory. A closely related notion to Nielsen’s approach is the framework
of quantum optimal control, which studies the optimal manipulation of quantum dynamics
under certain constraints [8–10].

Complexity in holography. Quantum complexity has gained much attention in holog-
raphy after the observation that entanglement entropy in a conformal field theory (CFT)
is insufficient to probe certain regions behind the horizons of dual black holes in Anti-de
Sitter (AdS) space [11–14]. While entanglement entropy is unable to capture the long-
time linear growth of the interior volume of black holes, it was proposed that quantum
computational complexity could be the quantity dual to the volume of the Einstein-Rosen
bridge (this is the so-called complexity=volume conjecture) [15, 16].1 Later on, the volume
conjecture was supplemented by other holographic proposals for complexity [19–27], and
their properties were compared by investigating their behavior in various backgrounds, see
e.g., [28–53]. In parallel, efforts were made to put computational complexity on firmer
ground from a quantum mechanical perspective and develop tools for calculating it in var-
ious setups. This led to several investigations in quantum mechanics (QM), quantum field
theory (QFT), and CFT [26, 54–76]. For a comprehensive review, we refer the reader to
[77].

1See, however, [17, 18] for alternative boundary interpretations of the bulk volume of the Einstein-Rosen
bridge.
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Binding Complexity. In this work we will investigate Nielsen’s binding complexity (re-
ferred to, from now on, as binding complexity) [3], a specific version of Nielsen’s geometric
complexity. Given a partition of a system into multiple parts, binding complexity assigns
non-vanishing cost only to operations that are non-local, i.e., that act on multiple sub-
systems.2 Contrarily, it is free to act with operations that are local (i.e., act within a
single subsystem). While these requirements may seem unrealistic, we will find that the
geodesics minimizing binding complexity do not present abrupt fluctuations along the free
local directions during the time evolution. As a consequence, these geodesics would be a
good approximation to the geodesics of an implementable circuit where the local operations
have a small but non-zero cost.

There are several motivations to consider binding complexity. First of all, some of the
main challenges for large-scale quantum computers (with many qubits) are to maintain
coherence, i.e., minimize the noise throughout the computation, and implement efficiently
the necessary gates. Therefore, a prominent paradigm for future quantum computing
is distributed computing [78–80], where the task of computation is distributed between
multiple small quantum computers or nodes, and in each such computer, the processing is
coherent to a good degree. In such a model, it is necessary to minimize the amount of gates
between the different computers, which are often assumed to be less reliable or slower. This
minimization is precisely the notion of binding complexity. Distributed computing is also
related to quantum communication complexity, which measures the minimal information
that distant parties have to exchange to perform a computational task [81]. It was argued in
[3] that quantum communication complexity is upper bounded by the binding complexity.
Secondly, we will show that binding complexity for a bipartite system leads to a geometric
distance on the space of states which is fully determined by the entanglement spectrum.
This has an operational interpretation in terms of the minimal length of a circuit required
to turn a non-separable state into a separable one (see e.g., [82], which is related to the
case of the Riemannian norm discussed in section 4.3). Finally, binding complexity has
been proposed to be dual to the interior volume of multi-boundary wormholes [3]. Thus
one may hope to apply the methods developed in this work to unveil new features of the
wormhole interior in multi-boundary wormhole geometries [83].

In [3], binding complexity was explored for Gaussian unitaries and states of a bosonic
theory. Rough bounds for the binding complexity were also obtained in [84] using a discrete
set of gates. Bounds on the minimal number of non-local gates required to optimize a
quantum circuit were related in [85] to a sum (or maximum) of the entanglement entropy
over all partitions. We will discuss the relation of [85] to our results in section 6.

In the present work, we compute binding complexity for bipartite finite dimensional
systems and unveil its precise relation to the entanglement spectrum. One of the main
novelties of our approach is that we will study the geometry of binding complexity using
the so-called F1 norm, which heuristically counts the number of gates required to perform
a certain unitary operation, and find precise analytic results in this case. This quantity
has received less attention in the literature because it is not a Riemannian norm, therefore
certain analytic tools are not available in this case. In addition, we show that the bind-
ing complexity computed with the Riemannian F2 norm is related to the minimal Rényi
entropy of the reduced density matrix of the state. We argue that the F1 binding com-
plexity is, to some extent, independent of the penalty factors associated with the non-local
generators acting between the two parties, up to a proportionality factor coming from
the smallest of such penalty factors. We incidentally show that the methods developed
to study the binding complexity of two qutrits can also be used to compute the F1 (not

2Nonetheless, we will always require the gates to act at most on two subsystems at the same time.
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binding) complexity of a single qubit, which was missing from the previous Nielsen’s com-
plexity literature. Finally, we give lower bounds for multipartite binding complexity and
demonstrate further inequalities for some more traditional notions of complexity using at
most 2-local gates between different parts. The lower bounds are in terms of the bipartite
binding complexity of various bipartitions of the state. A detailed summary of our results
can be found at the beginning of section 7.

Outline. The paper is organized as follows. We begin in section 2 with a review of
Nielsen’s geometric approach to quantum computational complexity, and the definition of
binding complexity. In section 3, we show that the computation of binding state complexity
reduces to a problem defined on the manifold of Schmidt coefficients. In section 4, using
this general technique, we compute the norm and the binding complexity for bipartite
quantum-mechanical systems with generic dimensions. We apply the general method to
study the binding complexity for two qutrits in section 5 and show that our results can
be borrowed to study the usual notion of state complexity for a single qubit. In section
6 we derive bounds on some measures of complexity (and binding complexity) in the case
of multipartite systems. We summarize the main results and discuss future directions in
section 7. The appendices contain technical results. We derive a chain of inequalities for
the cost functions in appendix A, which are required for the derivation of section 3. In
appendix B, we consider the limit of a large number of Schmidt coefficients. In appendix C,
we derive one of the bounds on the F1 complexity in the Pauli basis mentioned in section
4.2. Appendix D contains an alternative derivation of certain results presented in section
4.3 by using the Euler-Arnold formalism.

2 Complexity geometry
We briefly review Nielsen’s geometric approach to complexity [5–7] and set up the relevant
notation. The idea of this approach is to replace circuits composed of discrete gates with
continuous paths in a Lie group manifold. Complexity is then defined as the length of the
shortest trajectory in a geometry defined over this manifold, once a notion of distance is
introduced. While most of the discussions could apply to a generic Lie group, we will focus
in the following on the special unitary group.

2.1 Unitary and state complexities
Given the special unitary group SU(N), we will be interested in finding the optimal way
to construct a target unitary UT starting from the identity by means of a time-dependent
Hamiltonian, which can be expanded in terms of a basis of Hermitian generators {TI} as
follows

H(t) =
∑
I

Y I(t)TI , (1)

where Y I are called velocities and describe the tangent vector to a trajectory in the group
manifold. Different ways to construct the target unitary are parameterized as curves in the
space of unitary transformations with a path parameter t ∈ [0, 1] such that U(t = 0) = 1
and U(t = 1) = UT . The unitary at a point on the curve is expressed as

U(t) = ⃗P exp
(

−i
∫ t

0
dt′H(t′)

)
, (2)

where ⃗P denotes the path ordering such that the circuit is built from right to left. The time
evolution of a generic curve is determined by the Schrödinger equation U̇(t) = −iH(t)U(t).
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We define unitary complexity as the minimization of a cost function F [Y⃗ ] introduced
on the tangent space:

CF [U ] = min
{Y I :U(0)=1, U(1)=UT }

∫ 1

0
dt F [Y I(t)] . (3)

The path in eq. (3) is subject to the boundary conditions imposing that it connects the
identity with the target unitary.3 The cost function should satisfy certain properties so
that it defines a notion of distance in the space of unitaries. A large class of cost functions
that we will study in this work is given by

Fp,q⃗[Y⃗ ] =
(∑

I

qI |Y I |p
) 1
p

, (4)

where qI ≥ 0 are called penalty factors. Roughly speaking, penalties parametrize the
difficulty of moving along the various directions of the group manifold and are supposed
to model systems in which certain gates are more difficult to realize than others.

When p = 2, the cost function (4) reduces to the distance induced by the Riemannian
metric

ds2 = MIJρ
IρJ , ρI = i

N
tr
(
dUU †T I

)
, MIJ = diag (q1, . . . , qN2−1) , (5)

where ρI are right-invariant forms, MIJ is the matrix containing the penalties and we
have assumed that the generators are normalized according to tr(T IT J) = N δIJ (that is
ρI = Y Idt). When MIJ = δIJ , the expression (5) corresponds to the Cartan-Killing metric
on the unitary group, which is bi-invariant and has positive curvature. In the presence
of non-trivial penalty factors, the metric is still right-invariant and therefore describes
a homogeneous space, but now the curvature can also be negative [62]. Indeed, negative
curvature is required to reproduce geodesic deviation [86] and the switchback effect [16, 87],
which are the standard features of complexity. When p = 1, the cost function (4) has the
physical interpretation of counting the number of infinitesimal gates being used. For these
reasons, the norms with p = 1, 2 received special attention in the literature, see, e.g.,
[26, 55, 56, 62, 63, 66, 70–76], and we shall also focus on them here. Another property
of the case p = 1 is that the cost function is not smooth, and so we are not able to use
the Euler Lagrange equations or calculus of variations to find geodesic trajectories. This
makes its analysis more complicated, see e.g., [5] for a discussion on this point. In this
paper, we develop efficient techniques to overcome this difficulty.

Let us now assume that the special unitary group SU(N) acts on an N -dimensional
Hilbert space H, where |ψR⟩ is a given reference state and |ψT ⟩ is a target state which
we wish to construct. The state complexity is defined as the minimum of the unitary
complexities computed for all the special unitary operators that connect the reference
state to the target state:

Cstate
F [|ψT ⟩ , |ψR⟩] = min

{U∈G: |ψT ⟩=U |ψR⟩}
CF [U ] . (6)

Recall that the space of quantum states is defined as the space of rays in the Hilbert state,
i.e., vectors differing by a phase are identified. Elements of the special unitary group that
leave a state invariant define an equivalence class

V |ψ⟩ = eiϕ |ψ⟩ ⇒ U ′ = UV ∼ U . (7)

3In general the trajectory in the space of unitaries will run along the time interval t ∈ [0, tf ]. If the cost
function F [Y⃗ ] is positive homogeneous of degree 1, we can always redefine the parameter t in such a way
that tf = 1.
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We call V the elements of the stabilizer of the state |ψ⟩, which corresponds to the maximal
subgroup SU(N − 1) × U(1) of SU(N).4 The equivalence class in eq. (7) defines a map
from the unitary space to the quotient

π : SU(N) → CPN−1 ≡ SU(N)
SU(N − 1) × U(1) . (8)

The procedure (6) induces a norm for the state complexity that depends only on the
coordinates of the projective space. While the concept of complexity on a state requires
the notion of unitary complexity, the opposite is not true: we can define the complexity of
a unitary without reference to a particular representation.

For a given trajectory in the Hilbert space, the minimization over the stabilizer group
can be done locally, and thus (4) induces a norm F state[|ψ(t)⟩ , |ψ̇(t)⟩] on the tangent space
of H. The Schrödinger equation |ψ̇(t)⟩ = −iH |ψ(t)⟩ constrains 2(N − 1) real degrees of
freedom out of the N2 − 1 degrees of freedom of H. Those are the degrees of freedom
that control the evolution in the Hilbert space. Minimizing over the remaining (N − 1)2

degrees of freedom, which belong to the tangent space of the stabilizer group with respect
to |ψ(t)⟩, gives the induced norm

F state[|ψ(t)⟩ , |ψ̇(t)⟩] ≡ min
stab |ψ(t)⟩

F [Y⃗ ] . (9)

With this definition, we can re-express the distance between states as

Cstate
F [|ψT ⟩ , |ψR⟩] = min

|ψ(t)⟩
|ψ(0)⟩ = |ψR⟩
|ψ(1)⟩ = |ψT ⟩

∫ 1

0
dt F state[|ψ(t)⟩ , |ψ̇(t)⟩] , (10)

where now we can study optimal trajectories directly in terms of a geometry on the space
of states. When state and unitary complexity are defined using the cost function (4) with
p = 2, the projection π in eq. (8) is a Riemannian submersion [66]. The induced metric
obtained on CPN−1 is only left-invariant for trivial penalty factors [62], in which case it is
proportional to the Fubini-Study metric.

2.2 Binding complexity
Let us now assume that the physical system is split into n subsystems, i.e., the Hilbert
space decomposes as

H = HA1 ⊗ · · · ⊗ HAn . (11)

This setting is relevant to compare complexity with multiparty entanglement. Heuristically,
in a discrete model we define binding complexity as the minimal number of gates, acting
on more than one subsystem at the same time, that are needed to build the target unitary
UT starting from the identity [3]. At the same time, we will require gates to be bi-local,
meaning that they can act at most on two subsystems at the same time. This is a special
case of the unitary complexity defined above with specific choices of penalties. Let us focus
on the case where the Hilbert space factorizes into two parts (we return to the general case
in section 6)

H = HA ⊗ HB , NA ≡ dim(HA) ≤ dim(HB) ≡ NB . (12)

4The stabilizer is defined as the subgroup of a group G that leaves invariant an element x ∈ X, where
X is a set on which the group acts.
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Each subspace admits a basis of Hermitian traceless generators {TAa , TBi } for the Lie sub-
algebras su(NA) and su(NB), respectively.5 We refer to those as the local generators since
they only act on one of the two sides of the system, and we will call local unitary (LU) the
transformations they span (in the sense of acting locally within each part). We choose a
set that is orthogonal with respect to the trace in the fundamental representation

Tr(TAa TAb ) = NA δab , Tr(TBi TBj ) = NB δij , (13)

where NA(B) are normalization constants. We do not assume that the generators are
normalized, since we will later want to use the Pauli and Gell-Mann bases for SU(NA(B))
which oftentimes appear in the literature unnormalized.

The unitary operators that act on the entire system belong to the group SU(NANB),
which also entails operations that can entangle the two parts. The latter are spanned by
generators of the form TAa ⊗ TBi , which we call non-local.6 The full Hamiltonian of the
system can be decomposed as

H(t) = Y a
A(t)TAa ⊗ 1B + Y i

B(t)1A ⊗ TBi + Y ai(t)TAa ⊗ TBi . (14)

The splitting of the velocities into the subsets Y I ≡ {Y a
A , Y

i
B, Y

ai} implies a similar de-
composition of the penalty factors into the corresponding subsets qI ≡ {qAa , qBi , qai}, re-
spectively. Explicitly, the cost function (4) becomes

Fp,q⃗[Y⃗ ] =

∑
a

qAa |Y a
A |p +

∑
i

qBi |Y i
B|p +

∑
a,i

qai|Y ai|p
 1

p

. (15)

We consider the case where it is free to act on each subsystem separately, and therefore
only the non-local generators contribute to the unitary complexity. The corresponding
penalty factors are7

qAa = qBi = ε → 0 , qai ≥ 1 . (16)

We have chosen qai ≥ 1 rather than any other finite value without loss of generality.
This choice of penalty factors describes a framework where the implementation of gates
that entangle two subsystems is much harder than performing operations on each of them
separately, as we have discussed in the introduction.

Nielsen’s binding complexity (BC) is defined as the unitary complexity (3) with penalty
factors (16), i.e., 8

BCF [U ] = lim
qAa =qBi →0

CF [U ] . (17)

We will focus on two norms of this kind:

5We will usually denote the generators of the special unitary group in subsystem A with indices a, b ∈
{1, . . . , N2

A−1} from the beginning of the alphabet, and the generators in B with indices i, j ∈ {1, . . . , N2
B−

1} from the middle part of the alphabet. Capital indices I, J ∈ {1, . . . , (NANB)2 −1} will collectively refer
to the special unitary group SU(NANB) of the full system. We will also denote with a sub(super)script
A,B the subsystem where the local generators act.

6In the nomenclature of [3, 84] these are the relevant or straddling gates.
7Choosing vanishing penalty factors along certain directions in the group manifold has other interesting

applications. For instance, in [88] such a choice was used to relate Nielsen complexity to Krylov complexity.
8In reference [3], Nielsen’s binding complexity corresponds to what we call the homogeneous norm

defined by the cost function (20a). In this work, we extend the definition of binding complexity to include
any choice of penalties for the non-local generators.
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• The homogeneous case assigns unit penalty factors to all the non-local generators

Fp,hom[Y⃗ ] =

∑
a,i

|Y ai|p
 1

p

. (18)

• The universal-set case is defined by the cost function

Fp,set[Y⃗ ] = |Y 11| , (19)

where the set Y⃗ does not include non-local gates other than Y 11. This corresponds to
the scenario where all the non-local generators are forbidden, except for a single one
(with velocity Y 11) which, together with the local generators, can be shown to form
a universal set of gates (the subscript set stands for universal set of gates). In this
way, it is still possible to reach all the unitary operators in the group SU(NANB).
We immediately see that Fp,set is independent of p; therefore, it is sufficient to study
one special case to get information about all the other values of p.

It is possible to recover these norms as formal limits of the cost function (15) as follows:

Fp,hom[Y⃗ ] = lim
ε→0

∑
a

ε|Y a
A |p +

∑
i

ε|Y i
B|p +

∑
a,i

|Y ai|p
 1

p

, (20a)

Fp>1,set[Y⃗ ] = lim
ε→0

qai→∞

∑
a

ε|Y a
A |p +

∑
i

ε|Y i
B|p +

∑
(a,i) ̸=(1,1)

qai|Y ai|p + |Y 11|p
 1

p

. (20b)

In the latter case, we relied on the results in [89], where it was shown that the formal
qai → ∞ limit forces the geodesics in the group manifold to live in the subspace of the
tangent bundle where the directions associated to the penalties qai are excluded.9

By applying the general definition of state complexity (6) to the case with penalty
factors (16), we get the binding complexity in the space of states

BCstate
F [|ψT ⟩ , |ψR⟩] = min

{U∈SU(N): |ψT ⟩=U |ψR⟩}
BCF [U ] . (21)

Although the space of states has fewer coordinates than the unitary group manifold, it
is not homogeneous and the minimization procedure quickly becomes difficult to perform
with the increase of the dimensionality [67]. However, a special feature of the current
setting is the decomposition of the Hilbert space into a product according to eq. (12).
This fact, combined with the assignment of vanishing cost to local operators, will reduce
the computation of binding state complexity to the evaluation of geodesics on the group
manifold SO(NA), as we will show in section 3.

9In reference [89], the authors performed the limit qai → ∞, while at the same time keeping qaiY
ai

finite (equivalently, they kept the Hamiltonian bounded in operator norm) in order to recover the quantum
brachistochrone equation by starting from the Euler-Arnold equations [90]. The application of this pre-
scription gives qai|Y ai|p → 0 in eq. (20b) for all p > 1. In this work, we will not make explicit use of this
limit, instead we will directly assume that certain directions in the tangent space of the group manifold
are forbidden.
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3 The orthogonal group picture
Our main task is to compute the binding state complexity (21) for a bipartite system (12)
and eventually relate this quantity to the entanglement spectrum. We will show that the
relevant group manifold for this analysis is the orthogonal group SO(NA), defined with
respect to the maximal number of Schmidt coefficients NA characterizing the size of the
smaller of the two subsystems. This section is the main core of the work since it contains
the general strategy that we will apply in order to study all the specific cases presented
later.

As we are interested in the state complexity, the norms expressed before should be
minimized over the stabilizer group of the state at any given point in the trajectory in
the manifold of unitaries and eventually expressed in terms of the degrees of freedom of
the state. Given the decomposition of the Hilbert space (12), a natural and convenient
parametrization for any state along a trajectory in the quotient space is given by the
Schmidt decomposition

|ψ(t)⟩ =
NA∑
m=1

λm(t) |ϕm(t)χm(t)⟩ , (22)

where λm(t) (called Schmidt coefficients) are real and positive numbers, and |ϕm(t)⟩ , |χm(t)⟩
form orthonormal linearly-independent sets for the Hilbert spaces HA and HB, respectively.
With some abuse of notation, we will later refer to (ϕm, χm) as basis parameters.10 Note
that for the state to be normalized, the Schmidt coefficients should lie on a sphere, i.e.,∑
m λ

2
m = 1, and thus only NA − 1 of them are independent. Any entanglement monotone

on a bipartite system, when evaluated on pure states, can be written as a function of the
Schmidt coefficients [91].

In the context of binding complexity, local operations (which act only on one subsystem)
play a special role. It is then convenient to introduce the following terminology: two states
|ψ⟩ , |ψ′⟩ belonging to the Hilbert space (12) are called local unitary equivalent (LUE),
denoted as |ψ⟩ ∼

LUE
|ψ′⟩, if there exists a local unitary transformation mapping one into

the other:
|ψ⟩ ∼

LUE

∣∣ψ′〉 ⇔
∣∣ψ′〉 = UA ⊗ UB |ψ⟩ . (23)

This relation defines an equivalence class whose representative is denoted with [|ψ⟩].
Starting from the unitary group manifold SU(NANB), we now argue that the evaluation

of binding state complexity reduces to a problem defined in the special orthogonal space
SO(NA). We refer to this setting as the SO(NA) picture. We will show in sections 3.1
and 3.2 that the problem eventually depends only on the Schmidt coefficients. Then we
summarize the main steps of the procedure in section 3.3 and concretely apply them to a
system composed of two qubits in section 3.4.

3.1 Reduction to a minimal set of parameters
We consider reference and target states defined by the Schmidt decompositions

|ψR⟩ =
NA∑
m=1

λm |ϕmχm⟩ , |ψT ⟩ =
NA∑
m=1

λ̄m
∣∣∣ϕ̄mχ̄m〉 , (24)

and we study the binding state complexity BCstate
F [|ψT ⟩ , |ψR⟩] induced by any F -norm of

the form (15) with penalty factors (16). A trivial consequence of the zero cost assigned to

10Since NA ≤ NB , generally the set |χm⟩ does not form a complete orthonormal basis for HB , but rather
an incomplete one.
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local generators is that the complexity of moving between LUE states vanishes

|ψR⟩ ∼
LUE

|ψT ⟩ ⇒ BCstate
F [|ψT ⟩ , |ψR⟩] = 0 , (25)

because we can connect the states using a path generated by local operators only, which
have zero cost. We depict a generic trajectory in the space of states given by eq. (22) in
fig. 1(a). In the figure, we represent classes of LUE states as horizontal red lines. Those
are null directions, along which the distance vanishes. It is important to remark that this
statement is not only valid infinitesimally, but even when the parameters (ϕm, χm) of the
basis undergo a finite change, see fig. 1(b).

(a) (b)

Figure 1: (a) Continuous path in the space of states B given by eq. (22). The vertical line represents
different values of the Schmidt coefficients λm which parametrize the equivalence classes of LUE
states, while the horizontal axis corresponds to variations of the parameters (ϕm, χm) of the basis.
(b) The red lines represent the set of LUE states defined in eq. (23). Those are regions where the
distance between two states vanishes, either when the trajectory is infinitesimal (path 1) or when
there is a finite variation of the parameters of the basis (path 2).

Consider now the induced norm F state on the Hilbert space, introduced in eq. (9).
Along a generic path in the space of states defined by the Schmidt decomposition (22), we
schematically denote the dependence of this norm on the parameters of the basis as11

F state[|ψ(t)⟩ , |ψ̇(t)⟩] = g(λm, ϕm, χm, λ̇m, ϕ̇m, χ̇m) . (26)

Let us focus on any F–norm with penalty factors (16). Since we assign vanishing penalty
factors to local generators, which control the change in (ϕm, χm), the norm (26) cannot
depend on the direction of the tangent vector in that subspace:

F state[|ψ(t)⟩ , |ψ̇(t)⟩] = g(λm, ϕm, χm, λ̇m) . (27)

However, notice that the line element depends on the parameters (ϕm, χm), implying that
there is no translation invariance along these directions. Pictorially, this corresponds to
the fact that the paths 2A and 2B in fig. 2 have different lengths, while the infinitesimally
close paths 1A, 1B have the same length.

Binding state complexity, as defined in eq. (21), requires minimizing the distance among
all the possible trajectories connecting the reference and target states. In particular, the
identity (27) implies that the parameters (ϕm, χm) in the Schmidt decomposition (22)
become non-dynamical degrees of freedom in the geodesic minimization. For this reason,
the norm we obtain over the space of states, as per (10), can be minimized locally in terms

11In writing the expression in this form (where it only depends on the parameters of the states) we have
already performed the minimization over the stabilizer in eq. (9).
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Figure 2: Label 1 refers to infinitesimal paths, while label 2 to trajectories with finite variations
of the parameters (ϕm, χm) of the basis. Consider reference and target states with infinitesimally
close Schmidt coefficients λm and λm + dλm. The length of the infinitesimally close trajectories
1A, 1B is the same. Instead, the length of the paths 2A, 2B is in general different. Therefore the
metric is not invariant under translations along (ϕm, χm).

of the parameters of the basis ϕm(t) and χm(t) to give a norm just in terms of the Schmidt
coefficients λm(t) and their differentials.12

We shall denote this norm as BF . More formally, for any F -norm with vanishing cost
associated with local generators, we define

BF [λ⃗, ˙⃗
λ] = min

|ϕn,χn⟩
F state[|ψ(t)⟩ , |ψ̇(t)⟩] = min

|ϕnχn⟩
stab |ψ(t)⟩

F [Y⃗ ] , (28)

where min|ϕnχn⟩ is a minimization over the non-dynamical degrees of freedom in the possible
bases in the Schmidt decomposition of the state |ψ(t)⟩. The combined minimization on the
right-hand side amounts, essentially, to minimizing over all control parameters Y⃗ and all
basis parameters with the constraint of a prescribed change ˙⃗

λ(t) of the Schmidt coefficients.
The last term in the definition (28) describes the procedure we are going to follow in the
next sections.

Using the definition (28), the complexity (21) (see also eq. (10)) can be expressed as

BCstate
F [|ψT ⟩ , |ψR⟩] = min

λ⃗(t)
λ⃗(0) = λ⃗R
λ⃗(1) = λ⃗T

∫ 1

0
dtBF [λ⃗, ˙⃗

λ] ,
(29)

where λ⃗R and λ⃗T are the vectors of Schmidt coefficients of the reference and target states.
We see that binding state complexity can be reduced to finding geodesics in the space
of Schmidt coefficients. The boundary conditions for the reference and target states are
given in terms of the equivalence classes introduced in eq. (23). In order to describe the
trajectory in the full Hilbert space that takes us from the exact reference state to the exact
target state, we will perform a finite LU transformation (of zero cost) at the beginning
and at the end of the trajectory selected by the parameters of the basis that minimize the
norm above. We discuss this further below.

3.2 Relation to the orthogonal group
Given the definition of BF in eq. (28), we study the dependence of the evolution of the
Schmidt coefficients on the parameters of the basis and on the Hamiltonian. First, we find

12This is similar to partially solving the equations of motion for certain non-dynamical fields in QFT,
whose momenta do not appear in the action, to obtain an on-shell action for the remaining fields.
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from the conservation of the norm under unitary time evolution that

⟨ϕm(t)χm(t)| ∂t (|ϕn(t)χn(t)⟩) + ∂t(⟨ϕn(t)χn(t)|) |ϕm(t)χm(t)⟩ =
= δmn (⟨ϕm(t)|∂tϕn(t)⟩ + ⟨∂tϕn(t)|ϕm(t)⟩ + ⟨χm(t)|∂tχn(t)⟩ + ⟨∂tχn(t)|χm(t)⟩) =
= ∂t (⟨ϕn(t)|ϕn(t)⟩ + ⟨χn(t)|χn(t)⟩) = 0 .

(30)

In terms of the state defined in eq. (22), the previous identity implies

2λ̇n(t) = ⟨ϕn(t)χn(t)|∂tψ(t)⟩ + ⟨∂tψ(t)|ϕn(t)χn(t)⟩ . (31)

Using the Schrödinger equation and the general decomposition (14) of the Hamiltonian,
we find

λ̇n(t) = Im(⟨ϕn(t)χn(t)|H(t) |ψ(t)⟩) =
∑
m

λm(t) Im(⟨ϕn(t)χn(t)|H(t) |ϕm(t)χm(t)⟩) =

=
∑
m

λm(t) Im(⟨ϕn(t)χn(t)|Y ai(t)TAa ⊗ TBi |ϕm(t)χm(t)⟩) .

(32)
Note that local generators do not contribute to the change of the Schmidt coefficients,
i.e., it is necessary to use operations involving both sides of the system (that create non-
trivial entanglement) to modify them.13 In summary, BF is computed by minimizing F [Y⃗ ]
over all the parameters of the basis and over all the degrees of freedom of H that respect
eq. (32).

We now proceed to show that the problem reduces from the group manifold SU(NANB)
to SO(NA). The previous manipulations naturally related the Schmidt coefficients to a
matrix R such that

λ̇m =
∑
m

Rmnλn , (33a)

Rmn(t) ≡ Im(⟨ϕm(t)χm(t)|Y ai(t)TAa ⊗ TBi |ϕn(t)χn(t)⟩) . (33b)

Since Rmn(t) is real and antisymmetric, it is a generator of rotations of the special orthog-
onal group SO(NA) on the sphere of Schmidt coefficients. In other words, the constraint
(33b) identifies a set of dim(SO(NA)) = 1

2NA(NA − 1) degrees of freedom, which are rele-
vant for the evolution of the Schmidt coefficients in eq. (33a). Note however that this is less
than the number of independent degrees of freedom in Yab(t), which is (N2

A − 1)(N2
B − 1),

as long as NA ≥ 2. This means that multiple different values of the velocity vectors are
associated with the same matrix Rmn.

As we mentioned earlier, around eq. (28), our final goal is to obtain a norm in terms
of the Schmidt parameters. We can simplify the minimizations in eq. (28) by taking an
intermediate step in which we minimize the norm F over the velocities Y⃗ (t) and basis
parameters ϕm(t), χm(t) subject to the constraint that these parameters yield a fixed ro-
tation generator Rmn(t) at any point along the trajectory according to eq. (33b). In this
way, we obtain a norm BF(R) in terms of the parameters of the matrix R. By having to
deal with BF(R), instead of a norm on the Hamiltonian of SU(NANB), we say that we
have reduced the problem to SO(NA).14

13This statement does not rely on the choice of penalty factors in the cost function, but it is simply a
consequence of the time evolution of the Schmidt decomposition.

14By referring to the reduction of the problem to SO(NA), we mean that the matrix Rmn defined in
eq. (32) and all the relevant degrees of freedom belong to are anti-symmetric and therefore belong to the
algebra of SO(NA). However, it is worth emphasizing that Rmn is defined through the velocities and the
generators of the full SU(NANB) group. The precise problem that we are solving will be summarized in
section 3.3 and the reduction to SO(NA) that we refer to is completed after step 3.
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We then perform an additional minimization over the set of matrices R which generate
a given change ˙⃗

λ in the Schmidt coefficients λ⃗ according to eq. (33a). This step amounts
to minimizing over the stabilizer group of λ⃗ within SO(NA).

To perform the minimization of the basis parameters as in (28), we can re-express
Rmn in terms of a specific Hilbert space basis |m⟩ , |m̃⟩ of our choice using |ϕmχm⟩ =
UA ⊗ UB |mm̃⟩, where UA, UB are unitary operators acting in the respective subsystems.
This implies

Rmn = Im(⟨mm̃|Y ai(t)(AdUA) ba (AdUB ) ji T
A
b ⊗ TBj |nñ⟩) , (AdU ) IJ TI = U †TJU . (34)

The adjoint operators implement the LU transformations and can be reabsorbed into the
velocities. In this way, the generator of rotations (33b) becomes

Ỹ bj = Y ai(AdUA) ba (AdUB ) ji , Rmn = Im(⟨mm̃| Ỹ ai(t)TAa ⊗ TBi |nñ⟩). (35)

In terms of the parameters in eq. (35), the cost function (18) becomes

Fp,hom[Y⃗ ] =

∑
b,j

∣∣∣Ỹ ai(AdUA) ba (AdUB ) ji
∣∣∣p
 1

p

. (36)

Minimizing the above equation over all adjoint operators and all the Ỹ ai that respect the
constraint (35) will give a norm in terms of the parameters of R, that is:

BFp,hom(Rmn) = min
Ỹ ,AdU

∑
b,j

(∣∣∣Ỹ ai(AdUA) ba (AdUB ) ji
∣∣∣p) 1

p
. (37)

The final result BFp,hom(λ⃗, ˙⃗
λ) is then obtained by minimizing (37) over all matrices R

satisfying (33a).
We conclude this section by stating an important matrix inequality which will be useful

for the evaluation of binding state complexity for the F1,hom norm:15

min
AdU

∑
b,j

∣∣∣Ỹ ai(AdUA) ba (AdUB ) ji
∣∣∣ ≥

∑
a

σa(Ỹ ) ≥
∑
a

|Ỹ aa| , (38)

where
∑
a σa(Ỹ ) is the nuclear norm, which sums the singular values of the matrix Ỹ . The

technical proof of this result is reported in Appendix A. When further minimized over
all Ỹ with the appropriate boundary conditions (35), the first term on the left-hand side
becomes the BF1,hom(Rmn) norm in terms of the matrix R and the inequality (38) provides
the following lower bound

BF1,hom(Rmn) ≥ min
Ỹ : Rmn is fixed

∑
a

|Ỹ aa|. (39)

We will find in section 4.1 that this inequality is actually saturated, at least when consid-
ering the Gell-Mann basis for the generators of the unitary group, see eq. (55). In this way,
we will be able to derive exact results for the binding state complexity with the F1,hom
norm.

15The index a goes from 1 to N2
A − 1, even if Ỹ is rectangular, see appendix A. Since the nuclear norm

is invariant under rotations, Ỹ can be replaced in the rightmost-hand side by any OAỸ OB , where O are
orthogonal matrices, yielding other equally valid inequalities.
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3.3 Summary of the procedure
Based on the previous analysis, we outline the steps that will be followed in the remainder
of the paper to compute binding state complexity for a bipartite system with Hilbert space
(12):

1. Specify a basis for the generators of SU(NA),SU(NB) and define the reference and
target states in the Hilbert space.

2. Impose that the rotation matrix Rmn is given by eq. (35), and solve for as many
velocities Ỹ ai as the degrees of freedom encoded by this orthogonal matrix.16

3. Plug the solution inside the desired cost function of the form (15) with penalties (16)
and minimize over the remaining velocities Ỹ ai and the adjoint of the local operators
UA, UB to obtain BF(Rmn).

4. Solve the evolution equation for the Schmidt coefficients (33a) and minimize over the
remaining degrees of freedom inside the stabilizer of SO(NA) to obtain BF(λ⃗, ˙⃗

λ).

5. Minimize
∫ 1

0 BF(λ⃗, ˙⃗
λ) dt with boundary conditions λ⃗(0) = λ⃗R, λ⃗(1) = λ⃗T to find the

complexity.

3.4 Example: two qubits
Before diving into the general analysis, we exemplify our method in a simple setting:
a system composed of two qubits, split into two subsystems of one qubit each. In the
following, we specify the step numbers according to the list outlined in section 3.3 above.
We will treat in turn the cases of the F1,hom and F2,hom norms. Steps 1 and 2 are actually
independent of the norm used, except for the fact that the norm F2,hom does not depend
on the choice of basis of generators of the unitary group.

Step 1. The basis of generators for the SU(2) group acting on each qubit separately is
given by the Pauli matrices, therefore the Hamiltonian of the full system reads

H(t) = Y a
A(t)σAa ⊗ 1B + Y i

B(t) 1A ⊗ σBi + Y ai(t)σAa ⊗ σBi . (40)

From now until the end of the section, we will omit the superscripts referring to the
subsystems {A,B}, since the generators for the two copies are the same. We denote the
eigenstates of the Pauli matrix σz by {|1⟩ ≡ |↑⟩ , |2⟩ ≡ |↓⟩},17 and define {

∣∣1̃〉 , ∣∣2̃〉} =
{|1⟩ , i |2⟩} which will serve as a convenient basis for the Hilbert space of the second qubit.
We fix the reference state and allow for a generic Schmidt decomposition of the target state
parametrized by a real angular coordinate θ

|ψR⟩ = |11⟩ , |ψT ⟩ = cos θ
∣∣∣ϕ̄1χ̄1

〉
+ sin θ

∣∣∣ϕ̄2χ̄2
〉
, (41)

where ϕ̄m, χ̄m (with m = 1, 2) denote a fixed basis determined by the Schmidt decompo-
sition, which is related to the computational basis |mm̃⟩ by LU transformations. These

16There always exists a solution to this equation if we allow a large enough set of non-local generators in
our control Hamiltonian. However, the procedure may fail when the set of generators is not large enough.
This will be the case for the universal-set of gates, which we discuss in detail in section 4.4. There, we will
use a different strategy than the one described here.

17The eigenstates of the matrix σz are more commonly denoted by {|0⟩ , |1⟩}, but here we have used
indices starting from 1 to maintain consistency with the range of indices in eq. (24).
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states fix the boundary conditions for any trajectory. At each instant in the time evolution,
the state can be expressed as

|ψ(t)⟩ = cos θ(t) |ϕ1(t)χ1(t)⟩ + sin θ(t) |ϕ2(t)χ2(t)⟩ , (42)

identifying the Schmidt coefficients λ1(t) = cos θ(t) and λ2(t) = sin θ(t) in terms of a single
parameter.

Step 2. As explained in section 3.2, we identify the relation between R, the generator
of rotations of the Schmidt coefficients, and the Hamiltonian. This determines the degrees
of freedom in the Hamiltonian which are relevant for the problem. The SO(2) rotation
generator has only one degree of freedom that we parametrize as R = v(t) iσy (here σy is
understood to act on the vector of Schmidt coefficients). The constraint on the control
parameters of the Hamiltonian in terms of R (35) reads

Rmn = v(t)i(σy)mn = Im
(
⟨ϕm(t)χm(t)|Y ai(t)σa ⊗ σi |ϕn(t)χn(t)⟩

)
=

= Im
(
⟨mm̃| Ỹ ai(t)σa ⊗ σi |nñ⟩

)
=

= (Ỹ11(t) − Ỹ22(t))(δm1δn2 − δm2δn1) =
= (Ỹ11(t) − Ỹ22(t))i(σy)mn .

(43)

In the first line, we used the definition in eq. (33b). In the second line, we redefined the
matrix of velocities using an LU transformation on the basis elements according to eq. (35),
and we computed in the third line the non-vanishing elements. Finally, in the last line, we
recognized the appearance of the Pauli generator σy.

Binding state complexity requires to minimize the F -norm under the constraint

Ỹ11(t) − Ỹ22(t) = v(t) . (44)

BF1,hom norm

Step 3. Using the inequality (39), we find

BF1,hom(Rmn) ≥ min
Ỹ

(
|Ỹ11| + |Ỹ22| + |Ỹ33|

)
= min

Ỹ11,Ỹ33

(
|Ỹ11| + | − v(t) + Ỹ11| + |Ỹ33|

)
= |v(t)| .

(45)
The lower bound, together with the constraint (43), can be attained, for instance, by the
following Hamiltonian

H(t) = −v(t)σx ⊗ σx , (46)

and by choosing UA and UB to be the identity in eq. (35). We will, of course, require
an additional LU transformation at t = 1 to reach the exact target state. This shows
that the minimization problem reduced from the group manifold SU(2) to SO(2), with
BF1,hom(Rmn) = |v(t)|.

Steps 4 and 5. Finally, we should minimize the norm over the directions of the stabilizer
of the Schmidt vector λ⃗(t) under the constraint (33a). Since in this case R and λ⃗(t) depend
on a single parameter, the minimization is trivial and we find |v(t)| = |θ̇(t)|, where θ(t)
was introduced in eq. (42). We then conclude that BF1,hom = |θ̇(t)|. One can argue that
the geodesic for this norm does not flip the sign of θ̇(t), since backtracking in θ will only
elongate the integrated trajectory. Therefore a direct integration gives

BC1,hom[|ψT ⟩ , |ψR⟩] = |θ| , with |θ| ≤ π

4 , (47)
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where the restriction on the angle comes from the fact that we can always use a free local
unitary transformation to rotate θ → θ + π

2 . We notice that the maximally entangled
state, precisely achieved when θ = π/4, is also maximally complex. Finally, we remark
that related results were obtained in [92] by evaluating the minimal time to entangle two
qubits under certain constraints.

Trajectory in the Hilbert space. Since the binding complexity (6) associated with
the norm (20a) is invariant under time reparametrizations (see footnote 3), we can actually
choose θ(t) = θt, such that the velocity is simply a constant along the trajectory v(t) = θ.
The trajectory of the state under the Hamiltonian evolution will first reach an intermediate
state in the Hilbert space

|ψ̃T ⟩ = P⃗ e−i
∫ 1

0 dt′H(t′) |ψR⟩ = e−iHt |ψR⟩
∣∣∣
t=1

, H = −θ σx ⊗ σx , (48)

where |ψ̃T ⟩ is related to the exact target state |ψT ⟩ in eq. (41) by a LU transformation.
Explicitly, the trajectory of the state generated by this Hamiltonian is given by

|ψ(t)⟩ = cos(θt) |11⟩ + i sin(θt) |22⟩ , |ψ(0)⟩ = |ψR⟩ , |ψ(1)⟩ = |ψ̃T ⟩ . (49)
To reach the exact target state, a final costless (instantaneous) LU transformation is needed
at t = 1 such that U ⊗ V |mm̃⟩ =

∣∣∣ϕ̄mχ̄m〉.
We observe that the Hamiltonian which generates the trajectories with minimal length

is not unique. For example, another choice would be H = a σx⊗σy+b σy⊗σx, where a and
b are positive and a + b = θ.18 The trajectories obtained with this class of Hamiltonians
will differ from the path in eq. (49) by the basis used for the Schmidt decomposition and
will require a different LU transformation at t = 1 to reach the exact target state.

BF2,hom norm

Step 3. To obtain the complexity according to the F2,hom norm, see eq. (20a), we use
the following chain of identities:

BF2,hom = min
Ỹ

√
ỸaiỸai = min

Ỹ11

√
Ỹ 2

11 + (Ỹ11 − v(t))2 = 1√
2

|v(t)| . (50)

The first step exploits the invariance of the norm under orthogonal transformations Y →
OAỸ OB. The second step uses the constraint (44) and involves a minimization over all the
velocities except Ỹ11, which is minimized in the last step. The minimum value is obtained
when Ỹ11 = −Ỹ22 = v(t)/2. Choosing the reference and target states in eq. (41), we find
that a unitary connecting them with cost (50) is given by

|ψ̃T ⟩ = e−iHt |ψR⟩
∣∣∣
t=1

, H = −θ

2 (σx ⊗ σx − σy ⊗ σy) . (51)

where again a final LU transformation is needed to go from |ψ̃T ⟩ to |ψT ⟩.

Steps 4 and 5. Steps 4 and 5 are trivial like in the previous case, because the problem
has only one degree of freedom. We can again identify v(t) = −θ and compute the binding
complexity

BCstate
2,hom[|ψT ⟩ , |ψR⟩] =

∫ 1

0
dt

1√
2

|θ| = 1√
2

|θ| . (52)

This result is smaller by a factor of
√

2 with respect to the complexity associated with the
F1,hom norm.

18At the price of being pedantic, let us comment that this Hamiltonian defines the values of Y ai(t), not
those of Ỹ ai(t) in eq. (43).
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4 Results for arbitrary qudits
We apply the strategy outlined in section 3.3 to study the general case of two subsystems
described by the unitary groups SU(NA) and SU(NB). One can interpret this setting as
composed of two qudits.19 Alternatively, whenNA(B) = 2nA(B) , we can interpret the system
as a spin chain split into two parts. We will be following the general discussion in section
3.1 and specifying the step numbers according to section 3.3. The results for the F1,hom
norm depend on the choice of basis of generators used in decomposing the Hamiltonian (1).
Therefore we conduct our analysis in the context of specific examples of bases. We first
study the Gell-Mann basis of SU(N) where we have better analytic control in section 4.1.
We discuss the Pauli basis in section 4.2 where, in several cases, we can present bounds
for the F1,hom complexity. Our results for the F2,hom norm, discussed in section 4.3, are
(up to an overall constant) independent of the basis of generators and are therefore valid
for any basis. In section 4.4, we demonstrate that our results for the binding complexity
using the F1 norm are, to some extent, insensitive to the assignment of penalty factors to
the non-local generators.

Step 1. The minimal set of parameters required to study binding state complexity is
given by the Schmidt coefficients and their differentials. We can then specify the reference
and target states by the set of Schmidt coefficients

λ⃗ref = (1, 0, . . . , 0) , λ⃗tar = (λ̄1, λ̄2, . . . , λ̄NA) , λ̄1 ≥ λ̄2 ≥ · · · ≥ λ̄NA . (53)

We will always take the reference state to be factorized, |ψref⟩ = |ψA⟩⊗|ψB⟩, so that it has
only one non-vanishing Schmidt coefficient equal to 1. For the target state, we can always
assume (modulo a local unitary operation) that the coefficients are positive real numbers
and ordered from largest to smallest as indicated in (53).

Choice of basis for the generators. Consider the bases {TAa } and {TBi } for the
algebras su(NA) and su(NB), containing N2

A − 1 and N2
B − 1 generators, respectively. The

basis for the unitary algebra su(NANB) of the full system is built by taking the set of
(NANB)2 − 1 generators

TAa ⊗ 1B , 1A ⊗ TBi , TAa ⊗ TBi . (54)

In the following, we will consider two possibilities for the basis TA(B)
a(i) of each subsystem:

(1) the basis of generalized Gell-Mann matrices or (2) tensor products of Pauli matrices.
These two possibilities coincide for the case of SU(2) discussed above when NA = NB = 2.
Let us start with the generalized Gell-Mann basis.

4.1 BF1,hom norm with the Gell-Mann basis
The so-called Gell-Mann basis of generators of the special unitary group SU(N) is a natural
generalization of the Pauli matrices to describe qudits, the information units of higher
dimensional quantum computing [93]. The basis is defined by

Tc(k,p) ≡


(T x)k,p ≡ |k⟩ ⟨p| + |p⟩ ⟨k| if 1 ≤ k < p ≤ N

(T y)k,p ≡ i (|k⟩ ⟨p| − |p⟩ ⟨k|) if 1 ≤ p < k ≤ N

(T z)k,p ≡
√

2
k(k+1)(−k |k + 1⟩ ⟨k + 1| +

∑k
i=1 |i⟩ ⟨i|) if 1 ≤ k = p < N ,

(55)

19Qudits are invariant under the SU(d) group and model atomic systems with d excited states. Qutrits
correspond to the case d = 3.
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where |p⟩ denotes a fixed basis in the Hilbert space, and the three cases in the previous
list generalize the Pauli matrices σx, σy, σz, respectively. The N2 − 1 generators are la-
belled using the indices k, p ∈ {1, 2, . . . , N}, with the only constraint that we cannot have
k = p = N. The generalized Gell-Mann matrices form an orthogonal basis normalized as
Tr(Tc(k,p)Tc(m,n)) = 2δkmδpn. It is sometimes convenient to label the basis using a single
index, defined by

c(k, p) = N(k − 1) + p . (56)

We build the basis for the algebra su(NANB) generating unitary transformations on the
full system by combining the generators according to eq. (54). The bases of the Hilbert
spaces of the systems A and B (12) will be denoted with |p⟩ , |p̃⟩, and the associated Gell-
Mann matrices will take the form (55) with or without tilde, respectively. Of course, as
implied by this notation, the bases |p⟩ , |p̃⟩, used here to define the Gell-Mann matrices will
be the same fixed bases used in eq. (34)-(35) to define Ỹ .

Step 2. We now set up the constraint equations in the SO(NA) picture (see section 3.2)
starting from the rotation matrix Rmn defined in eq. (35). Since Rmn is antisymmetric,
there is not any contribution of the diagonal generators (those with m = n), either in
the subsystem A or B or both. Furthermore, since the expression (35) involves just the
imaginary part, only non-local generators of the form T x ⊗ T y and T y ⊗ T x give rise to
non-vanishing contributions.20 Assuming m > n, we get21

Rmn = Im
(
⟨mm̃| Ỹc(a,b),c(i,j)TAc(a,b) ⊗ TBc(i,j) |nñ⟩

)
= Ỹc(m,n),c(n,m) + Ỹc(n,m),c(m,n) . (57)

In this notation, the velocities Ỹ form a matrix with collective indices c(a, b) and c(i, j).
Notice that (T ya,b)A form a subset of 1

2NA(NA − 1) Gell-Mann matrices that generate
the orthogonal subgroup SO(NA) (they are angular momentum operators in Cartesian
coordinates). Therefore, we can write

R = −i
NA∑

m>n=1
Rmn(T ym,n)A . (58)

We now perform for convenience an orthogonal transformation OB ∈ SO(N2
B −1) to define

a new matrix of velocities Y ′ = Ỹ OB, such that the constraints (57) are written only in
terms of diagonal elements of Y ′ as22

Y ′
c(m,n),c(m,n) + Y ′

c(n,m),c(n,m) = Rmn , (m > n) . (59)

The constraints (59) are the starting point to study binding state complexity in a system
composed of two qudits (or equivalently a spin chain when NA is a power of two) using
the Gell-Mann basis.

20Note that in the two qubits example in section 3.4, we had, unlike here, a relative phase between the
bases of the two systems, and therefore the generators that came into play were σx ⊗ σx and σy ⊗ σy.

21Assuming instead n > m will give the same result up to an overall minus sign, as it should from the
fact that Rmn is anti-symmetric

22Explicitly, the relevant matrix is OBc(i,j),c(k,l) = δi,lδj,k, where here the indices i, j, k, l run over the
range 1, . . . , NB .
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Step 3. Using the inequalities (38)-(39) and the observation that the nuclear norm is
invariant under an orthogonal transformation (applied separately on the left or right), i.e.,∑
a σa(Ỹ ) =

∑
a σa(Y ′), we find the following bound

BF1,hom(Rmn) ≥ min
Y ′: Rmn is fixed

∑
a

σa(Y ′) ≥ min
Y ′: Rmn is fixed

∑
m,n

|Y ′
c(m,n),c(m,n)|

≥ min
Y ′: Rmn is fixed

∑
m>n

|Y ′
c(m,n),c(m,n)| + |Y ′

c(n,m),c(n,m)| =
∑
m>n

|Rmn| ,
(60)

where the velocities Y ′ were defined below eq. (58) and the minimization is subject to the
constraint (59). In going from the first to the second line, we used a trivial bound based
on excluding m = n terms from the summation. In the last step, we performed the explicit
minimization over Y ′ using the constraints (59). One can check that the lower bound,
together with the constraint (57), can be achieved by using, for instance, the optimal
Hamiltonian23

H =
∑
m>n

RmnT
A
c(m,n) ⊗ TBc(n,m) , (61)

and by choosing UA and UB to be the identity in eq. (35). We will, of course, require an
additional LU transformation at the end of the trajectory to reach the exact target state.
Therefore the minimization yields

BF1,hom(Rmn) =
∑
m>n

|Rmn| . (62)

We note that Rmn rotates a point along the plane spanned by the m and n Cartesian
axes. This means that the problem now has the interpretation of the minimal sum of
(absolute values of) rotation angles needed to reach a given point starting from the pole on
a unit sphere, where the rotations are restricted to planes spanned by all pairs of Cartesian
axes. To illustrate this point further, for a unit sphere embedded in three dimensions, the
equivalent quantity is the minimal sum of absolute values of rotation angles, where only
rotations around the x, y and z axes are allowed.

Step 4. To perform the minimization over the stabilizer group and find the state com-
plexity, we need to solve eq. (33a), which in this setting reads∑

m<n

Rnmλm −
∑
m>n

Rmnλm = λ̇n . (63)

There are NA − 1 independent equations (recall that the Schmidt coefficients live on the
sphere) and a total of 1

2NA(NA − 1) independent velocities Rmn. Let us enumerate the
different velocity components in terms of a single index Rα with α ∈ {1, . . . , 1

2NA(NA−1)}.
We can, without loss of generality, solve the equations above for the first NA − 1 velocities
and express Rα for α ∈ {1, . . . , NA − 1} in terms of the velocities Rβ for β ≥ NA (if the
equations cannot be solved for the first NA−1 velocities, just enumerate them differently).
Inserting the solution back into the F1,hom norm from eq. (62) gives

BF1,hom(λ⃗, ˙⃗
λ) = min

stab

∑
m>n

|Rmn| = min
Rβ

NA−1∑
α=1

|Rα(λm, λ̇m, Rβ)| +
NA(NA−1)/2∑

β=NA

|Rβ|

 ,

(64)

23One can check that in the two-qubit case presented in section 3.4, the Hamiltonian (61) degenerates
to H = θσx ⊗ σy, which connects the reference state |ψR⟩ = |11⟩ to the generic target state |ψ̃T ⟩ =
cos θ |11⟩ + sin θ |22⟩ , where we have chosen the basis

∣∣1̃〉 = |1⟩ and
∣∣2̃〉 = |2⟩. In particular, this H is

optimal because it gives the same binding state complexity as evaluated in eq. (47). This is a Hamiltonian
in the class described below eq. (49).
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where the minimization “stab” refers to step 4 in section 3.3, and allows us to express the
norm in terms of the Schmidt coefficients. To minimize over a single Rβ , we notice that
the right-hand side of eq. (64) is a piece-wise linear positive function, so the minimum
must be at the points where one of the arguments of the absolute values vanish, i.e.,

Rβ = 0 ∨ Rα(λm, λ̇m, Rβ) = 0 . (65)

Reiterating this process for all the Rβ-s amounts to setting any selection of (NA−1)(NA−
2)/2 of the above absolute values to zero. Of course, we then have to take the absolute
minimum among all these choices. In other words, we should solve eq. (63) with only
NA − 1 non-vanishing velocities, when the rest of the velocities are set to zero. Then we
substitute the solution, in terms of λ⃗ and ˙⃗

λ, into the sum over the absolute values of all
velocities and we finally take the minimum over all choices of those NA − 1 non-vanishing
velocities out of the NA(NA − 1)/2 velocities.

Let us now show that the minimum of (62) is obtained by setting to zero all the
velocities other than Rm1 in eq. (58) subject to the constraint (63) with given λ⃗ and ˙⃗

λ.
In other words, the following matrix minimizes the norm, at least for points on the sphere
that are not too far from the reference state λ⃗ref in eq. (53):

Ropt = −i
NA∑
m>1

wm(T ym,1)A . (66)

The requirement to solve (63) fixes

wm ≡ Rm1 = λ̇m
λ1

, (m > 1) ,

Rmn = 0 , (m > n > 1) .
(67)

Let us first motivate this ansatz. At the start of the trajectory, all (T y)m,n with m,n > 1
are members of the stabilizer subgroup of rotations of the vector of Schmidt coefficients.
Therefore, the use of these generators in R will not influence the constraint (63), but they
will increase the norm and so there is no point in using those generators in R. When
we are slightly away from the start of the trajectory, these generators are still close to
the stabilizer, and so are less efficient than (T y)m,1 in modifying the Schmidt coefficients.
Intuitively, this suggests that the same velocities will also be set to zero for a region on
the Schmidt sphere that is close enough to the reference state. We will prove that this is
the optimal solution also away from the pole, as long as λ2 + λ3 ≤ λ1 (assuming that the
Schmidt coefficients are ordered in decreasing order).

Let us now prove that eq. (66) gives the optimal matrix R for the minimization of the
norm. We compare the norm computed using eq. (66) to any other choice of R subject to
the constraint (63). A generic option for R can be expressed as

Rgen = −i
NA∑

m>n=1
νm,n(T ym,n)A , (68)

where νm,n form another set of velocities. By comparing Roptλ⃗ = Rgenλ⃗ defined in eqs. (66)
and (68), we can express the velocities wm in terms of ν as

wm = 1
λ1

(∑
n<m

νm,nλn −
∑
n>m

νn,mλn

)
m > 1 . (69)
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The difference between the F1,hom norm using the two different rotation matrices reads

NA∑
m>n=1

|νm,n| −
NA∑
m>1

|wm| ≥
NA∑

m>n>1
|νm,n|

(
1 − λn + λm

λ1

)
, (70)

where we used the identity (69) and applied the triangle inequality to the second sum on the
left-hand side following this replacement. We see that for a region on the sphere in which
λn + λm ≤ λ1, for any m > n > 1, this expression is positive (since we take the Schmidt
coefficients in a decreasing order, this region amounts to λ2 + λ3 ≤ λ1). Therefore the
matrix Ropt proposed in eq. (66) indeed minimizes the norm for this region on the sphere.
The BF1,hom norm then takes the following form in terms of the Schmidt coefficients λm
and λ̇m:

BF1,hom dt =
NA∑
m>1

|wm|dt =
NA∑
m>1

|dλm|
λ1

=
NA∑
m>1

|dλm|√
1 −

∑NA
n>1 λ

2
n

, (71)

where λ1 is the maximal Schmidt coefficient, and in the third equality we used the solution
for the velocities wm given in eq. (67). This cost function defines an infinitesimal distance
in the space of Schmidt coefficients, and the length of its geodesics computes the binding
state complexity.

Step 5. Next, we compute the geodesics connecting the reference and target states (53)
in this geometry. Let us first show that for the shortest path, dλm ≥ 0 for m > 1 at all
points along the path. We will prove this by contradiction. Let us assume that, for a
trajectory parameterized by λ⃗(t) with λ⃗(0) = λ⃗ref defined in eq. (53), there exists some
range of time (t2, t4) during which λ̇m(t) < 0, while λ̇m > 0 for t < t2. Then there must
exist two times t1 and t3 such that t1 < t2 < t3, for which λm(t1) = λm(t3) ≤ λm(t) for
t ∈ (t1, t3). The factor of (1 −

∑NA
n>1 λ

2
n)−1/2 entering the norm (71) is a monotonically

increasing function of the Schmidt coefficients, thus there is a shorter trajectory such that
λm(t) = λm(t1) = λm(t3) for t ∈ [t1, t3], contradicting the assumption.

Since the Schmidt coefficients are arranged in decreasing order, the possible candidates
for the geodesics are trajectories in a region defined by λ1(t) ≥ λ2(t) ≥ · · · ≥ λNA(t), and
have, as shown above, λ̇m ≥ 0 for all m > 1. Consider the following piecewise smooth
trajectory λgm(t):

(1, 0, ..., 0) →
(√

1 − (NA − 1)λ̄2
NA
, λ̄NA , . . . , λ̄NA

)
→
(√

1 − λ̄2
NA

− (NA − 2)λ̄2
NA−1, λ̄NA−1, . . . , λ̄NA−1, λ̄NA

)
→ · · · → (λ̄1, λ̄2, . . . , λ̄NA) ,

(72)

where in the p-th step, the differentials satisfy dλm = dλn for m,n ∈ {2, 3, . . . , NA−p+1}
and dλm = 0 for m > NA − p+ 1.24,25 We will show that λgm(t) is the geodesic.

First of all, let us explain how the trajectory works. The first Schmidt coefficient is
always fixed by the normalization condition

∑
m λ

2
m = 1. In the first step, all the other non-

vanishing coefficients are increased at the same pace until the lowest coefficient reaches the
target value λ̄NA . After that, the last Schmidt coefficient stops evolving and we continue

24Note that for states where certain Schmidt coefficients do not appear in the final state, these Schmidt
coefficients will also be turned off along all the trajectory.

25The specification of the relation between the different differentials, rather than the precise time depen-
dence, is enough to find the complexity due to the reparametrization invariance of the integrated norm.
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to increase the other ones at an equal rate until they reach the next-to-minimal value
λ̄NA−1. Then also the second-to-last coefficient stops evolving, and we repeatedly apply
this method until the target state is reached.

We now prove that the trajectory (72) is the geodesic by showing that the difference
between the length of any other trajectory and λ⃗g(t) is positive. Let us consider another
trajectory λ⃗(t) which we parametrize using the time t = 1 − λg1 = 1 − λ1.26

With this parametrization, t ∈ [0, tf ≡ 1 − λ̄1] and λm>2(0) = 0. Let us compute the
difference in the length of the two trajectories, i.e., the cost of λm(t) minus the cost of
λgm(t). We use integration by parts to find

∫ tf

0
dt

[
BF1,hom(λ⃗, ˙⃗

λ) − BF1,hom(λ⃗g, ˙⃗
λg)
]

=
∫ tf

0
dt

 NA∑
m=2

λ̇m
1 − t

−
NA∑
m=2

λ̇gm
1 − t


=
∫ tf

0
dt

1
(1 − t)2

NA∑
m=2

(λgm(t) − λm(t)).

(73)

Because of the parametrization that we chose, the trajectories satisfy

• the normalization condition∑
m=2

λgm(t)λgm(t) =
∑
m=2

λm(t)λm(t) = 1 − (1 − t)2 . (74)

• the inequality
0 ≤ λgm(t), λm(t) ≤ λ̄m , (for m > 1) , (75)

where λ̄m is the endpoint of the trajectory.

• decreasing order
λgm(t) ≤ λgm−1(t), λm(t) ≤ λm−1(t) , (76)

chosen for convenience and without loss of generality.

Under these constraints, λ⃗g(t) maximizes the sum
∑NA
m=2 λ

g
m(t) and so the difference be-

tween the lengths in eq. (73) is always positive. To see why, consider the sum, with λ2
replaced by the sphere constraint in eq. (74),

NA∑
m=2

λm =
NA∑
m=3

λm +

√√√√√1 − (1 − t)2 −

 NA∑
m=3

λ2
m

. (77)

Taking the gradient with respect to λm≥3 gives

∂λm

 NA∑
m=2

λm

 = 1 − λm√
1 − (1 − t)2 −

(∑NA
m=3 λ

2
m

) = 1 − λm
λ2
. (78)

Since λm ≤ λ2, the gradient is non negative, and vanishes only when λm = λ2. This
shows that the maximum of the sum is when the Schmidt coefficients for m ≥ 3 are at
their extreme values λm(t) = min(λm−1(t), λ̄m), which is exactly how the geodesic λgm(t)
behaves.

26Note that since the start and endpoints of the trajectory are the same and λ1 is monotonic, see
argument above (72), we have the freedom to choose a parametrization such that λ1 = λg1.
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Computing the length of the geodesic using the norm (71), we obtain the binding state
complexity

BCstate
1,hom =

∫ λ̄NA

0

(NA − 1)dx√
1 − (NA − 1)x2 +

∫ λ̄NA−1

λ̄NA

(NA − 2)dx√
1 − λ̄2

NA
− (NA − 2)x2

+
∫ λ̄NA−2

λ̄NA−1

(NA − 3)dx√
1 − λ̄2

NA
− λ̄2

NA−1 − (NA − 3)x2
+ · · · =

=
NA−1∑
m=1

√
m

[
arcsin

 λ̄m+1
√
m√∑m+1

n=1 λ̄
2
n

− arcsin

 λ̄m+2
√
m√∑m+1

n=1 λ̄
2
n

] ,
(79)

where λ̄NA+1 ≡ 0. In the case of the maximally entangled state, the binding complexity
reduces to

√
NA − 1 arccos (1/

√
NA). For a generic state of a spin chain consisting of nA

spins, BCstate
1,hom scales exponentially as

√
NA = 2nA/2, as we have checked numerically by

considering random sequences of Schmidt coefficients sampled from a uniform distribution
and then normalized. Eq. (79) is our main result in the case of the F1,hom norm in the
Gell-Mann basis.

A Hamiltonian that builds a trajectory realizing the minimal cost can be constructed
as follows

H =
NA∑
m>1

wm(t)TAc(m,1) ⊗ TBc(1,m) , wm ≡ λ̇gm(t)
λg1(t) , (80)

where we used eqs. (61) and (67) with λ⃗g(t) the trajectory of the geodesic. This Hamil-
tonian preserves the basis for the Schmidt decomposition along the entire time evolution,
and the state along the trajectory reads

|ψ(t)⟩ =
NA∑
m=1

λgm(t) |mm⟩ . (81)

Finally, to move from the state |ψ(t = 1)⟩ to the exact target state, an additional costless
LU transformation is needed.

We notice that the trajectory built with the optimal Hamiltonian (80) does not have
large fluctuations along the null directions (i.e., the red lines containing LUE states in
fig. 1(a)), because a finite LU transformation is only performed as the final step at t = 1
to move from an LUE target state to the exact one. Therefore the results obtained in the
limit of vanishing cost for the local generators represent a good approximation for a more
realistic setting, where one has a small but non-vanishing cost for any local gate.27

The above results are valid for systems with a finite-dimensional Hilbert space such as
qubits and qudits. Recently, the study of complexity in continuous variable systems has
raised significant interest. These studies served to find definitions of complexity in quantum
field theory as a first attempt towards making the holographic complexity conjectures more
precise, see e.g., [55, 56, 94]. The study of binding complexity in quantum field theories is
outside the scope of this manuscript, but as a first step, we can consider the complexity
for a very large number of Schmidt coefficients. In that case, the complexity formula (79)
can be cast in the form of a continuous integral. We present a closed formula in this limit
in appendix B.

27See the discussion below eq. (110) regarding the F1,set norm, for which there are large fluctuations in
the null directions and approximating the optimal circuits with non-vanishing cost for local gates is more
involved.
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4.2 BF1,hom norm with the Pauli basis
The tools developed in section 3 can also be applied to the case in which the generators
of the unitary group are the generalized Pauli matrices. However, it turns out that the
implementation of the constraints (35) and the minimization to perform are technically
harder, making it difficult to determine the geodesics in the space of states for the F1,hom
norm. For these reasons, we leave an exhaustive analysis of the BCstate

1,hom with the Pauli
basis for future work, and instead derive bounds on the complexity and exact results for
special cases.

Generalized Pauli basis. The generalized Pauli matrices give a basis of generators of
the unitary group U(N) which is natural in the case of a spin chain N = 2n. They are
defined as

Tµ⃗ = σ1
µ1 ⊗ σ2

µ2 ⊗ . . .⊗ σnµn , (82)

where each factor of the tensor product is a covariant two-dimensional Pauli matrix σµ =
(σ0, σi), with σ0 = 1. The generalized Pauli matrices are orthogonal and normalized as
Tr(Tµ⃗Tν⃗) = 2nδµ⃗ν⃗ . Assuming that the chain is split into two parts as in eq. (12), the basis
for the full system is given by

TI = TAµ⃗ ⊗ TBν⃗ = σA,1µ1 ⊗ . . . σA,nAµnA
⊗ σB,1ν1 ⊗ . . .⊗ σB,nBνnB

, (83)

The superscript (A,α) refers to the α-th qubit in subsystem A, while (B, β) to the β-th
qubit in subsystem B. The index I runs over the Pauli matrices of the combined system,
cf. footnote 5. As we are interested in the generators of SU(NANB), we will exclude the
case where all the matrices in the product are the two-dimensional identity matrix. The
generators are normalized as Tr(TITJ) = 2nA+nBδIJ . In the case of the Pauli basis, the
constraints (35) will take a more complicated form than those for the Gell-Mann basis in
eq. (57) and they will involve, generically, a larger number of velocities. As a consequence,
we won’t be able to derive an exact result for BF1,hom except for the special case where
the smaller subsystem consists of a single qubit, NA = 2; in the general case we can only
prove bounds. Therefore we will not be specifying the step structure in this section.

Upper bounds. Consider the binding state complexity for a system composed of n
qubits, divided into two subregions with nA and nB qubits, respectively. We choose refer-
ence and target states described by the Schmidt coefficients in eq. (53) (i.e., the reference
state is a product state). We take the path built with the Hamiltonian (80) (which was
a geodesic for the geometry on the space of states defined by the choice of Gell-Mann
matrices as generators), but now we compute its length according to the BF state

1 norm for
the Pauli basis. In appendix C, we show that the cost is the same as with the Gell-Mann
basis norm, and as such, the result in eq. (79) gives an upper bound. However, as we show
next, this upper bound can be rather weak in certain circumstances, and we can improve
it in specific cases.

Let us now consider the special case in which the two systems are of equal size nA = nB
and focus on target states which are LUE to a product of entangled qubit pairs across the
two subregions, i.e., 28

UA ⊗ UB |ψT ⟩ = ⊗i(cos(θi) |↑Ai↑Bi⟩ + sin(θi) |↓Ai↓Bi⟩) . (84)

28The discussion can be extended to nA < nB by padding eq. (84) with, for example, tensor products
of spin up ⊗ |↑⟩ for the Hilbert spaces of the remaining unentangled qubits of the system B.
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The cost of a minimal circuit acting on two qubits (evaluated according to the F1,hom
norm) was given in eq. (47). Extrapolating this result to a circuit UP (t) composed by
the tensor product of the geodesics for each pair gives a total cost of

∑
i |θi|. Since the

generators acting on each pair of qubits form a subalgebra of su(NANB) = su(N2
A), and

since these subalgebras commute with each other, it is reasonable to expect that this cost
is the binding state complexity

BCstate
1,hom =

∑
i

|θi| , (85)

which would then be additive for factorized states.29 Let us compare this bound to the
previous one from the Gell-Mann basis expression for positive angles 0 < θi < π/4, where
eq. (79) can be applied. In a small angle expansion the two results coincide, while for
large angles they differ significantly. This can be seen by the scaling with nA of the
complexity bounds for the maximally entangled state, which is linear for the bound (85),
but exponential for the bound following from the Gell-Mann basis complexity (in this case
of course the above bound from additivity is much stronger). The bounds as a function of
the angle for the case of 6 entangled qubit pairs with equal angles are plotted in figure 3.
We can see that they coincide for small angles, but deviate significantly for larger angles.
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Figure 3: Comparison of the different bounds for the Pauli basis binding complexity of the state
(84) in the case of equal angles and 6 entangled qubit pairs, as a function of the angle θ. Red:
the bound coming from the Gell-Mann optimal trajectory. Blue: the bound from eq. (85) coming
from additivity. Orange: one-half the entanglement entropy of the state. The allowed region for
the binding complexity is between the blue and orange curves, according to the lower bound of
(90) when c = 2.

Exact Result. Let us consider yet another special case, in which the subsystem A
consists of a single qubit, and B of an arbitrary number. In this case, we can provide
an exact result for the BCstate

1,hom complexity with the Pauli basis. Here, the target state is
always LUE to a state in which there is non-vanishing entanglement only between A and a
single qubit in B. We can prove that all the other qubits (that we will call ancillary qubits)
in subregion B do not give any advantage in minimizing a trajectory for the evaluation
of binding state complexity according to the BF1,hom norm with the Pauli basis. Since
there is only one independent Schmidt coefficient (two in total), the equation of motion
(32) reduces to

λ̇(t) = R12

√
1 − λ(t)2 , (86a)

R12 = Im
(
⟨ϕ1(t)χ1(t)|Y µ1ν1...νnB (t)σµ1 ⊗ σν1 ⊗ · · · ⊗ σνnB |ϕ2(t)χ2(t)⟩

)
, (86b)

29See [5], section IIIB, for a discussion on the additivity of geodesics lengths for tensor product target
states in the context of Finsler metrics.
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where |ϕm(t)⟩ and |χm(t)⟩ are eigenstates for the subsystems A and B, respectively.
Eq. (86b) provides a linear relation that can be solved for one of the Y components in
terms of the others (and of R12). The norm

∑
|Y | can then be minimized (for a fixed

value of R12) using a similar procedure to the one explained around eq. (64). That is, since
the norm is a piecewise linear function, it will be minimized at points where the absolute
values change signs. Therefore, the minimum of the norm will occur when only one of the
Y µ1ν1...νnB (t) does not vanish. The norm will then be

BF1,hom = min
µ1ν1 . . . νnB

UA ⊗ UB

∣∣∣∣∣∣ λ̇(t)√
1 − λ(t)2 Im

(〈
11̃
∣∣UA ⊗ UB σµ1 ⊗ σν1 ⊗ · · · ⊗ σνnB

U†
A ⊗ U†

B

∣∣22̃
〉)
∣∣∣∣∣∣ =

= |λ̇(t)|√
1 − λ(t)2

,

(87)
where the minimization is done over all possible choices of the single non-vanishing
Y µ1ν1...νnB , and over all the possible LU transformations with respect to an arbi-
trary fixed orthonormal basis. We reach the final expression by observing that
Im
(〈

11̃
∣∣UA ⊗ UB · σµ1 ⊗ σν1 ⊗ · · · ⊗ σνnB · U †

A ⊗ U †
B

∣∣22̃
〉)

is upper bounded by the
largest eigenvalue of σµ1 ⊗ σν1 ⊗ · · · ⊗ σνnB , which equals 1. This shows that the norm is
the same as in the two-qubit case in section 3.4, and that the presence of ancillary qubits
did not improve the complexity.

Lower bound. We can use the maximal entanglement rate studied in [95–97] to give
lower bounds for the binding state complexity. Let us consider a trajectory in the space of
states generated by a Hamiltonian H(t) = HA(t)+HB(t)+HAB(t), where HA and HB are
composed by local generators in the subsystems A and B, whileHAB is the interaction term
between them. In such a case, an upper bound for the rate of change of the entanglement
entropy SA between the two systems is given by [97]

dSA
dt

≤ c log d||HAB(t)|| . (88)

Here || ∗ || is the operator norm (i.e., the maximal singular value), c is an O(1) constant
(its optimal value has been numerically argued to be 2 in reference [97]), d is the dimension
of the smaller subsystem out of A and B on which H has support.30 For instance, d = NA

if H contains interactions between any of the qubits, and d = 2 if it only contains an
interaction between a single pair of qubits. Since the operator norm of the generators,
both in the Pauli and Gell-Mann bases, is equal to 1, we can use the triangle inequality
to get ||HAB|| = ||

∑
a,i Y

aiTAa ⊗ TBi || ≤
∑
a,i |Y ai| ||TAa ⊗ TBi || =

∑
a,i |Y ai| = BF1,hom.

Integrating over time and remembering that the reference state is factorized, so it has zero
entanglement entropy, gives

SA
c log d ≤ BCstate

1 [|ψR⟩ , |ψT ⟩]. (89)

We note that this lower bound is valid for both choices of the basis for the unitary group
and for any kind of interactions we allow in H(t), as long as the value of d is changed
accordingly. The lower bound can be far from the binding complexity. For example, with
the Gell-Mann basis, the binding complexity for the maximally entangled state grows as√
NA, while the entanglement entropy is logNA and therefore for large NA the bound is

30If the Hilbert space of the systems A and B can be factorised as a ⊗ ā and b ⊗ b̄, and HAB has the
form of 1ā ⊗Hab ⊗ 1b̄, then d = min (dim(a),dim(b)).
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far from being saturated. On the other hand with the Pauli basis, the binding complexity
for this state is upper bounded by π

4 log(NA), where log(NA) is simply the number of spins,
as can be seen from eq. (85). For the Pauli basis, the value of d changes depending on
whether we consider the BCstate

1,hom or BCstate
1,set norms. For BCstate

1,hom, d = NA, while for BCstate
1,set ,

d = 2 if the allowed interaction has support only on one spin on each side. In section 4.4,
we will actually show that BCstate

1,hom = BCstate
1,set and therefore for the Pauli basis,

SA
c

≤ BCstate
1,Pauli[|ψT ⟩ , |ψR⟩]. (90)

We draw this lower bound in figure 3 and highlight in light blue the region between the
most restrictive upper and lower bounds.

4.3 BF2,hom norm in any basis
In this section, we compute the binding state complexity for a system of two qudits using
the cost function F2,hom in eq. (18). The F2,hom norm can be expressed as

F2,hom =
√∑

a,i

|Y ai|2 =
√

Tr(Q(H)2)
NANB

, (91)

where Q(H) =
∑
a,i Y

aiTAa ⊗ TBi is the non-local part of the Hamiltonian, while NA =
Tr(TAa TAb )δab and NB = Tr(TBi TBj )δij are the normalization factors for the subsystems A
and B, respectively. Note that the only dependence of the F2,hom norm on the basis of
generators comes from an overall normalization, as long as the generators are orthogonal.
Therefore we can use the convenient Gell-Mann basis to compute the norm, and then rescale
the result by an appropriate normalization in order to get a general expression valid for any
basis. The normalization of the Gell-Mann basis for arbitrary rank of the unitary group
is NA = NB = 2. Denoting the velocities of the Hamiltonian expanded in the Gell-Mann
basis as Y ai

G and performing a convenient rescaling in terms of the normalization of the
basis of generators, we find

F2,hom =
√√√√ 4

NANB

∑
a,i

|Y ai
G |2 . (92)

The reference and target states are specified by the Schmidt coefficients in eq. (53). We
consider, without loss of generality, the factorized reference state |ψR⟩ =

∣∣11̃
〉

defined in
the basis for the Hilbert space chosen in eq. (55). The constraint equations to get to the
SO(NA) picture were previously studied in eqs. (57)-(59). This concludes steps 1–2 of
our procedure outlined in section 3.3.

Step 3. Since this norm is invariant under orthogonal transformations applied to the
Y -s, we can use the velocities Y ′ introduced below eq. (58) to find

BF2,hom(Rmn) = 2√
NANB

min
Y ′

√∑
m,n

(
Y ′

c(m,n),c(m,n)
)2

=

= 2√
NANB

√√√√∑
m>n

R2
mn

2 = 1√
NANB

√
Tr(RTR) ,

(93)

where in the second equality we have explicitly performed the minimization over the re-
dundant Y ′ components.
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Step 4. We define the orthonormal vectors

r̂1 ≡ λ⃗(t) , r̂2 ≡
˙⃗
λ(t)∣∣∣∣ ˙⃗λ(t)

∣∣∣∣ . (94)

and complete them to an orthonormal basis of RNA . The frame associated with the new
basis is related to the previous one by an orthogonal matrix O. In the rotated frame the
constraint Rλ⃗ = ˙⃗

λ fixes the following components of the matrix R̃ = OROT

R̃m,1 = −R̃1,m = δm,2

√
˙⃗
λ(t)2 . (95)

while all the other components of R̃ belong to the stabilizer group over which we have to
minimize the norm to get the state complexity. The minimum is achieved when the latter
components are set to zero, giving

BF2,hom

(
λ⃗,

˙⃗
λ

)
= 1√

NANB
min
stab

√
Tr(RTR) = 1√

NANB
min
stab

√
Tr(R̃TR̃) =

= 1√
NANB

√
R̃1,2R̃1,2 + R̃2,1R̃2,1 =

√
2

NANB

√
˙⃗
λ(t)2 ,

(96)

where the “stab” minimization refers to step 4 in section 3.3, and the second step in the
first line is a consequence of the rotational invariance of the F2,hom norm. It is implicit
that the vector λ⃗ is normalized, and so this defines the Euclidean metric on a unit sphere.

Step 5. The geodesics are the arcs and the binding state complexity is the arc length
from the reference to the target state:

BCstate
2,hom =

√
2

NANB
arccos(λ̄1) =

√
2

NANB
arccos

(
e− 1

2S∞(|ψT ⟩)
)
. (97)

Here λ̄1 is the maximal Schmidt coefficient of the target state defined in eq. (53), while
S∞(|ψT ⟩) is the minimal Rényi entropy of the reduced density matrix of the target state
|ψT ⟩. Eq. (97) is our main result for the case of the F2 norm. We note that up to a constant
factor due to the normalization, this result is the Fubini-Study distance between the target
state and the closest product state, which can be associated with the geometric measure
of entanglement [98]. Here, in the context of complexity, this distance naturally receives
an operational meaning (see [82] for a related discussion). The geometry generated by the
BF2,hom norm and the corresponding geodesic are depicted in fig. 4.

For completeness, let us include the normalization constants for the different bases.
For the Gell-Mann basis, the result reads

BCstate
2,hom = 1√

2
arccos(λ̄1) = 1√

2
arccos

(
e− 1

2S∞(|ψT ⟩)
)
, (98)

while for the Pauli basis of a system with nA and nB spins the result is

BCstate
2,hom = 1√

2na+nb−1
arccos(λ̄1) = 1√

2na+nb−1
arccos

(
e− 1

2S∞(|ψT ⟩)
)
. (99)

The two results coincide when na = nb = 1, as the two bases become the same.
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Figure 4: Unit sphere spanned by the vector of Schmidt coefficients, with the vertical axis repre-
senting the first direction. The red trajectory is the geodesic connecting the reference and target
states in eq. (53).

The Schmidt coefficients follow a trajectory along the great circle connecting the
Schmidt vectors of the reference and target states. A particular Hamiltonian that realizes
this trajectory and has the cost BCstate

2,hom is

H = −i arccos (λ̄1)√
1 − λ̄2

1

 NA∑
m=1

λ̄m(|mm̃⟩
〈
11̃
∣∣− ∣∣11̃

〉
⟨mm̃|

 . (100)

With this Hamiltonian, the basis of the Schmidt decomposition will remain in the compu-
tational basis

∣∣∣ĩi〉 until t = 1, and the state will be related to the exact target state by a

final costless LU transformation |ψT ⟩ = e−iS0
∑NA
m=1 λ̄m |mm̃⟩ = e−iS0e−iH ∣∣11̃

〉
, where S0

is a time independent generator of LU transformations (i.e., take eq. (14) with Y ai = 0).
Since the geometry associated with binding complexity contains null directions de-

termined by LUE states (see the discussion in section 3.1), there is a degeneracy in the
unitaries that take the reference state to the target state with minimal cost. Specifically
for the case of the F2 norm, it is possible to find a continuous trajectory that does not
require a final LU transformation. We determine such geodesic in appendix D.1 by using
the Euler-Arnold equations, and we show an alternative way to compute its cost (97) in
appendix D.2.

A possible extension of the F2,hom norm to a multipartite system associates vanish-
ing cost to each local transformation, and equal cost to any non-local generator. Related
notions were considered in [82, 98]. We can speculate, extrapolating from the above bi-
partite case, that the state complexity of such generalization will be given in terms of the
Fubini-Study distance to the closest multipartite pure factorized state. Notice that the
above-mentioned extension will differ from the multipartite notion of complexity that will
be discussed in section 6 because there, we will only allow non-local generators to act on
a maximum of two subsystems at the same time.

4.4 Insensitivity of BF1 binding complexity to penalty factors of non-local gates
We have obtained two results that give the binding state complexity for the F1,hom and
F2,hom norms as two different functions of the Schmidt coefficients, see eqs. (79) and (97).
One may be tempted to conjecture that by a suitable assignment of penalty factors, it
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would be possible to obtain an arbitrary function of the Schmidt coefficients.31 We will
now show that this is not the case, at least for the BC1 complexity. On the contrary,
the binding complexity computed according to the BF1 norm is rather insensitive to the
precise choice of penalty factors for the non-local gates.32 More precisely, we will argue
that BC1 does not depend on the choice of penalties assigned to the non-local generators,
up to an overall normalization stemming from the value of the minimal penalty, as long
as the generators forming the optimal trajectory all lie on the same adjoint orbit of the
SU(NA) ⊗ SU(NB) action as the cheapest generator. This condition is satisfied for the
Gell-Mann and Pauli bases. The logic behind this is that if LU transformations are free,
one could use them together with the cheapest non-local gate to create any other non-local
gate.

To prove this statement, let us consider the norm

F1,int[Y⃗ ] = lim
ε→0
qai>1

∑
a

ε|Y a
A | +

∑
i

ε|Y i
B| +

∑
(a,i)̸=(1,1̃)

qai|Y ai| + |Y 11|

 , (101)

which represents an intermediate case between the homogeneous norm (20a) and the norm
for a universal set of gates (20b). All three norms assign a vanishing cost to local operations,
but the penalties qai associated with non-local generators are 1 for F1,hom, qai > 1 finite
for F1,int and qai = ∞ for F1,set. Since complexity increases with the penalties, we conclude
that the binding state complexities associated with the three cost functions satisfy

BCstate
1,hom ≤ BCstate

1,int ≤ BCstate
1,set . (102)

We are going to show that these bounds are saturated, i.e., that all these complexities are
the same as long as the conditions specified at the beginning of this subsection hold.

To make this argument formal, let us first notice that we can express a generic trajectory
in the SU(NANB) group manifold as a circuit of infinitesimal steps

U = ⃗P exp
(

−i
∫ 1

0
dt′H(t′)

)
= lim

M→∞

M∏
m=1

exp
(

− i

M
H

(
m

M

))
, (103)

where H(t) = Y a
A(t)TAa ⊗ 1B + Y i

B(t)1A ⊗ TBi + Y ai(t)TAa ⊗ TBi . Let us now consider a
different circuit that creates the same unitary, in which we break the gate exp

(
− i
MH

(
m
M

))
into (NANB)2 − 1 consecutive gates

U = lim
M→∞

M∏
m=1

∏
a

e− i
M
Y aA(mM )TAa ⊗1B∏

i

e− i
M
Y iB(mM )1A⊗TBi

∏
a,i

e− i
M
Y ai(mM )TAa ⊗TBi , (104)

where the product over a and i is from 1 to N2
A − 1 and N2

B − 1 respectively, and we used
the Baker-Campbell-Hausdorff formula in the limit M → ∞. Notice that the cost of the
circuits (103) and (104) is the same according to the F1,hom norm, but is a priori different
using the Fp>1,hom norm.33 This is because the cost of the circuit (104) is

∑
m,a,i |Y ai

(
m
M

)
|

regardless of p, as the Hamiltonian is composed out of a single generator at any given time
step.

We now assume that the circuit in (103) is the optimal trajectory obtained using the
F1,hom norm. Let us construct yet another circuit that creates the same unitary and has

31We thank Yaron Oz for raising this question.
32The insensitivity to penalty factors does not apply to other BCp>1 complexities, as we explain below.
33For this reason, the arguments presented in this subsection only apply to the BF1 norm.
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the same cost. This circuit will only use a single non-local generator TA1 ⊗ TB1 , thus its
cost will be the same whether the norm is F1,hom or F1,set. To begin with, let us assume
that for every non-local generator TAa ⊗ TBi , there is an LU transformation such that

UAa
†
TA1 U

A
a ⊗ UBb

†
TB1 U

B
b = TAa ⊗ TBi . (105)

Notice that this statement is about the individual systems, i.e., there exists an LU transfor-
mation that takes a TA/B1 to any other generator TA/BI . The construction is now straight-
forward: take the circuit in (104) and replace any occurrence of a non-local generator with
the preferred non-local generator TA1 ⊗ TB1

34

U = lim
M→∞

M∏
m=1

∏
a

e− i
M
Y aA(mM )TAa ∏

i

e− i
M
Y iB(mM )TBi

∏
a,i

UAa
†
UBi

†
e− i

M
Y ai(mM )TA1 TB1 UAa UBi ,

(106)
where we have omitted the tensor product notation for convenience. Since the cost of the
LU transformations is zero, the cost of this circuit will be the same regardless of whether
we used the F1,hom or F1,set norm. Due to the inequalities (102), we conclude that for
p = 1 all these binding complexities are the same, in particular this is true for BCstate

1,int ,
which assigns arbitrary penalties qai > 1 to the non-local generators.

We are left to discuss the validity of our assumption (105). For the Pauli basis, take,
without loss of generality, the single allowed generator to be σA,1x σB,1x . We show below
that we can create any generator out of the set of generalized Pauli basis with σA,1x σB,1x

and an LU transformation. Let us focus on a system of n spins and ask whether there is a
U ∈ SU(2n) such that U †σ1

xU = σ1
µ1σ

2
µ2 ...σ

na
µn , for any sequence of µis except for all zeros,

where the superscript marks the site, and the subscript marks which Pauli matrix is being
considered (cf. the text below eq. (82)). Since we have not made any assumption about
the number of spins, this argument will be valid for both systems A and B. Let us define
σ̄ = σ2

µ2 ...σ
n
µn . If µ1 = y or z, then

e−iπ4 σ
1
z σ̄σ1

xe
iπ4 σ

1
z σ̄ = σ1

y σ̄, ei
π
4 σ

1
yσ̄σ1

xe
−iπ4 σ

1
yσ̄ = σ1

z σ̄. (107)

To reach σ1
xσ̄, we can first perform the transformation to σ1

y σ̄ and then complement it with
an additional LU transformation ei

π
4 σ

1
zσ1

y σ̄e−iπ4 σ
1
z = σ1

xσ̄. To reach 11σ̄, we can use the
swap S = exp

(
−iπ4 (σ1

xσ
2
x + σ1

yσ
2
y + σ1

zσ
2
z)
)
, which gives S†σ1

xS = σ2
x, and then recursively

use similar transformations on the subset of n − 1 remaining spins to reach σ̄ from σ2
x.

This concludes the argument for the equivalence of BCstate
1,hom = BCstate

1,set in the Pauli basis.
For the Gell-Mann basis, one cannot hope to create from one generator and an LU

transformation any other generator, as the diagonal and off-diagonal generators have in
general different eigenvalues. If the single non-local generator is a tensor product of two
off-diagonal generators TAc(n,m) ⊗TBc(k,p) where n ̸= m, k ̸= p, then all the other off-diagonal
generators can be reached with an LU transformation. To demonstrate that, we note the
following relations for Tc(2,1), where p > k > 2:

e−iπ2 Tc(p,2)Tc(2,1)e
iπ2 Tc(p,2) = Tc(p,1) , e−iπ2 Tc(2,p)Tc(2,1)e

iπ2 Tc(2,p) = Tc(1,p) ,

ei
π
2 Tc(p,1)Tc(2,1)e

−iπ2 Tc(p,1) = Tc(p,2) , ei
π
2 Tc(1,p)Tc(2,1)e

−iπ2 Tc(n,p) = Tc(2,p) ,
(108a)

ei
π
2 Tc(2,p)ei

π
2 Tc(1,k)Tc(2,1)e

−iπ2 Tc(1,k)e−iπ2 Tc(2,p) = Tc(p,k) ,

ei
π
2 Tc(2,p)ei

π
2 Tc(k,1)Tc(2,1)e

−iπ2 Tc(k,1)e−iπ2 Tc(2,p) = Tc(k,p).
(108b)

34It would be sufficient to show this only for the generators forming the optimal trajectory, but since
we do not know the optimal trajectory in the Pauli basis, showing it for all generators will be the strategy
there.

Accepted in Quantum 2024-07-23, click title to verify. Published under CC-BY 4.0. 31



These relations show that any off-diagonal generator can be reached from Tc(2,1) by an LU
transformation. This is not special to Tc(2,1), since from the above identities we learn that
all the off-diagonal generators are on the same adjoint orbit.

Fortunately, the geodesic circuit with the Gell-Mann basis, which is generated by the
Hamiltonian in eq. (80), only uses off-diagonal generators. Thus, the previous argument is
still valid if we limit the generality of the allowed single non-local generator such that it is
off-diagonal. For the geodesic obtained using the Gell-Mann basis, the associated circuit
in eq. (104) will take the form

U = lim
M→∞

M∏
m=1

NA∏
p>1

exp
(

− i

M
Rp1

(
m

M

)
TAc(p,1) ⊗ TBc(1,p)

)
. (109)

For instance, if the allowed single non-local generator is TAc(2,1) ⊗ TBc(2,1), we can construct
the circuit as

U = lim
M→∞

M∏
m=1

NA∏
p>1

e
−iπ2

[
TA
c(p,2)⊗1B+1A⊗TB

c(2,p)

]
e

− i
M
Rp1(mM )TAc(2,1)⊗TB

c(2,1)e
iπ2

[
TA
c(p,2)⊗1B+1A⊗TB

c(2,p)

]
.

(110)
We still need to discuss an additional subtlety. The derivation given above applies when
the local generators have exactly zero cost. However, in any realistic experimental set-up,
the penalty assigned to local generators is ε ̸= 0, in which case the circuit (110) would
have divergent cost in the limit M → ∞. However, it is possible to remedy this issue
by considering the unitary (110), but with finite M . If the additional cost and the error
coming from the Trotterization of a Hamiltonian [99, 100] can be kept small, this will
describe an efficient approximation for the target unitary. To estimate the error and cost
of such a circuit, consider a simple case in which the Hamiltonian (103) is constant. This
is the form of the geodesic in the Gell-Mann basis if all but the largest Schmidt coefficients
are equal. The Trotterization error can be estimated as O(BC2

M ) (compare to eq. (16) in
[100]), and the extra cost to the binding complexity will be O(MNAε). Depending on the
engineer’s budget, states with small enough BC could be reached to a good approximation.
Furthermore, as long as ε is small enough, the cost of the above circuit will provide a good
estimate of the states’ complexity.

5 Binding complexity of two qutrits and complexity of a single qubit
The simplest system on which one can ask questions of Nielsen’s complexity is a single
qubit. However, much less is known for the single-qubit complexity with an F1 norm. It
turns out that the results we obtained earlier in this paper for the binding complexity can
be applied to this problem, too. More specifically, we will show that the binding complexity
for a system of two qutrits in the Gell-Mann basis is related to the F1 Nielsen’s complexity
for a single qubit.

In the case of two qutrits, we expand the SO(3) generator R introduced in eq. (33b) in
terms of the rotations around each axis

R(t) = v1(t)L1 + v2(t)L2 + v3(t)L3 , (111)

where (Li)jk = ϵijk with ϵ the Levi-Civita symbol. The relation to the Gell-Mann gener-
ators introduced in eq. (55) is L1 = i(T y)32, L2 = −i(T y)31, L3 = i(T y)21. According to
the result (62), in the Gell-Mann basis, the minimization yields the norm

BF1,hom(Rmn) = |v1(t)| + |v2(t)| + |v3(t)| . (112)
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When λ1 ≥ λ2 + λ3, as we have shown in eq. (71), the metric can be written in terms of
the Schmidt coefficients as

BF1,hom dt = |dλ2| + |dλ3|
|λ1|

, (113)

and the optimal trajectory from λ⃗(0) = (1, 0, 0) to λ⃗(1) = (λ̄1, λ̄2, λ̄3), depicted in fig. 5,
has the following cost determined according to eq. (79):

BCstate
1,hom =

√
2 arccos

(√
1 − 2λ̄2

3

)
+ arccos

 λ̄3λ̄2 + λ̄1

√
1 − 2λ̄2

3

1 − λ̄2
3

 . (114)

For the maximally entangled state, the complexity is
√

2 arccos (1/
√

3).

Figure 5: Piecewise trajectory (72) in the space of Schmidt coefficients for the case of two qutrits.
Binding complexity is given by the sum of the lengths of the red and blue curves in this geometry.

Since the so(3) and su(2) algebras are isomorphic, and since the nature of the com-
plexity problem is completely algebraic, eq. (112) can also be interpreted as the unitary
(not binding) complexity norm for a single qubit using the basis of Pauli matrices. This is
because a trajectory in SU(2) can be written as

U(t) = ⃗P exp
(

−i
∫ t

0
dt′H(t′)

)
, H(t′) = v1(t′)σ1 + v2(t′)σ2 + v3(t′)σ3 , (115)

for which the norm F1 =
∑
i |Tr(U̇dUσi)|/2 is equal to (112). The density matrix of a

single spin in a pure state can be written as

ρ = |ϕ⟩ ⟨ϕ| = 1
2(1 + x1σ1 + x2σ2 + x3σ3) , where |x⃗| = 1 . (116)

The vector x⃗ is real, while the condition |x⃗| = 1 defines the Bloch sphere and ensures
that the state is pure. The six points xi = ±1 correspond to the eigenstates of the Pauli
matrices σi. To some extent, as we discuss below, the complexity problems can be mapped
to each other by identifying the vector of Schmidt coefficients λ⃗ with the position on the
Bloch sphere x⃗. Starting from the equations of motion ρ̇ = −i[H, ρ], one can find the state
complexity norm by applying similar methods to those discussed in section 4.1 (see eq. (63)
with the map R32 = 2v1, R31 = −2v2, R21 = 2v3). The minimization over the stabilizer
group with respect to ρ implies that either v1, v2 or v3 vanish, giving

F1dt = 1
2min

( |dx2| + |dx3|
|x1|

,
|dx3| + |dx1|

|x2|
,
|dx1| + |dx2|

|x3|

)
. (117)
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Certain points on the sphere are related by LU transformations, which are free in the
framework of binding complexity. Therefore, any reference and target states can be mapped
to the region λ1 ≥ λ2 ≥ λ3 ≥ 0. For the complexity of a single qubit, we do not have this
freedom. Nevertheless, the norm in (117) is invariant under a sign flip of each coordinate,
and under permutations of the coordinates. Therefore, we can map any reference state
which is an eigenstate of one of the Pauli matrices to (x1 = 1, x2 = 0, x3 = 0), and any
target state to another state that has x̄2 ≥ x̄3 ≥ 0. It is then possible to map the single
qubit complexity to the binding complexity of two qutrits if the inequality x̄1 ≥ x̄2 is
also satisfied. Since we could only compute the binding complexity for two qutrits when
λ̄1 ≥ λ̄2 + λ̄3, then the result in eq. (114) corresponds to twice the complexity of a single
qubit in the regime x̄1 ≥ x̄2 + x̄3, provided that we identify λ̄i = x̄i, that is

Cstate
1,qubit = 1√

2
arccos

(√
1 − 2x̄2

3

)
+ 1

2arccos

 x̄3x̄2 + x̄1
√

1 − 2x̄2
3

1 − x̄2
3

 . (118)

This expression is directly applicable when the reference state is an eigenstate of the Pauli
matrix σ1. More generally, when the reference state is an eigenstate of σi for some given
i, the state complexity of the single qubit is given by half of eq. (114), with λ̄1 = |x̄i|,
λ̄2 = max(|x̄j |, |x̄k|) and λ̄3 = min(|x̄j |, |x̄k|), where j, k label the other two directions in
the Bloch sphere. This solution is valid as long as the inequality |x̄i| ≥ |x̄j | + |x̄k|, defining
two separate connected regions on the sphere (around the positive and negative i-th axis),
is satisfied, and as long as the reference and target states both belong to the same region
out of the two.

It is interesting to notice that the minimization over the stabilizer group, which yielded
the norm for the state complexity, amounts to setting one of the velocities vi to zero (see
eq. (65)). In the context of the complexity of a single qubit, this gives a trajectory in SU(2)
that does not use the σi Pauli matrix associated with the velocity vi. Thus, giving σi a
larger penalty will not change the results. It was argued in [62] that in certain experimental
two-level systems the σz gate is much harder to implement (see their discussion below
eq. (2.4)). In order to estimate the complexity, the authors therefore proposed to use a
Riemannian F2 norm with a very large penalty assigned to the σz direction. In our results
we see that we can alternatively use the F1 cost function with reference state |↑⟩ and the
same effect of suppressing the use of the σz gate will be achieved, even without the use of
penalty factors. We expect that a similar effect will come into play for larger systems and
intend to investigate this issue further in the future.

6 Geometrically local complexity and multipartite binding complexity
We now consider a multipartite system with a factorizable Hilbert space of the form (11).
As we mentioned below eq. (11), oftentimes one of the constraints imposed on complexity
(even outside the context of binding complexity) is that only generators between pairs of
qubits are allowed. This type of locality constraint plays an important role in circuit com-
plexity in realistic quantum computation scenarios, where many-qubit gates are typically
harder to implement. Motivated by these considerations, in this section, we study Nielsen’s
state complexity according to the F1 norm in eq. (4), using the following nomenclature
adopted in [85]:

• Local complexity Cstate
1,l allows gates acting on one part or any pair of parts of the

system.

• Geometrically-local complexity Cstate
1,g allows gates acting only on nearest-neighbour

parts or within each part.
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These notions of complexity are depicted in fig. 6. As a side comment, let us mention that
the authors of [101] have noted that the notion of geometrically-local complexity seems
incompatible with the holographic notions of complexity. On the other hand, many works
have taken locality (as opposed to geometrical-locality) as a guiding principle in looking
for a quantum mechanical dual of holographic complexity, see e.g., [3, 62, 63, 86].

In [85], the authors derived lower bounds on the notion of local and geometrically-local
complexity in terms of the entanglement entropies of different bipartitions of the target
state. We will now use the techniques developed in this work to derive new lower bounds,
in terms of binding complexity, which improve the lower bounds of [85].

(a) Local (b) Geometrically-local

Figure 6: Pictorial representation of a spin chain where the vertical purple lines represent a sepa-
ration between parts. (a) Circuit with gates acting on at most two parts of a system. (b) Circuit
with gates acting only on nearest-neighbour parts or within each part. Both circuits can be used to
study local complexity (120), but only case (b) is a circuit that can be used to study geometrically-
local complexity (121). When the penalties associated with operations within a subsystem vanish
(in this example, gate G3 for both circuits), the definitions reduce to multipartite binding com-
plexity, see eqs. (122a) and (122b), respectively.

Let us define the set-up. The system is split into n identical parts, each of them has an
N -dimensional Hilbert space on which the special unitary space SU(N) can act. Therefore,
the possible circuits in the composite system belong to SU(Nn).35 We denote the set of
generators for each part as TAi , where the subscript i runs over the list of generators
{1, . . . , N2 − 1} within each subsystem, while the superscript A refers to the site on which
they act (i.e., a generator TAi is the identity on all sites except for the A-th site).36 The full
set of generators for the system is made by taking products of these TAi for the different
parts. Suppose that we construct our control Hamiltonian and unitary circuits from gates
which act on at most two parties, that is

Hl(t) =
n∑

A=1

N2−1∑
i=1

Y A
i T

A
i +

n−1∑
A=1

n∑
B=A+1

N2−1∑
i,j=1

Y AB
ij TAi T

B
j , t ∈ [0, 1],

Hg(t) =
n∑

A=1

N2−1∑
i=1

Y A
i T

A
i +

n−1∑
A=1

N2−1∑
i,j=1

Y AA+1
ij TAi T

A+1
j , t ∈ [0, 1],

(119)

where the two Hamiltonians differ by the restriction of the non-local generators of Hg(t)
to nearest-neighbour-parts interactions. We will denote our reference and target states as
|ψR⟩ , |ψT ⟩. The notions of complexity introduced in this section correspond to

• The local complexity

Cstate
1,l,hom[|ψT ⟩ , |ψR⟩] = min

Hl(t)

∫ 1

0
dt

 n∑
A=1

N2−1∑
i=1

|Y A
i | +

n−1∑
A=1

n∑
B=A+1

N2−1∑
i,j=1

|Y AB
ij |

 . (120)

35This applies, for example, to a subdivision of a spin chain to n equal parties, where N = 2# spins.
36The notation has changed from the previous sections in which A denoted one of the two parties A and

B, and not a running index.
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• The geometrically-local complexity

Cstate
1,g,hom[|ψT ⟩ , |ψR⟩] = min

Hg(t)

∫ 1

0
dt

 n∑
A=1

N2−1∑
i=1

|Y A
i | +

n−1∑
A=1

N2−1∑
i,j=1

|Y A,A+1
ij |

 . (121)

In both cases, the minimization is performed over all the control Hamiltonians of the
form (119) which connect the reference and target states. We also added the subscript
“hom” referring to the homogeneous choice of penalties equal to unity for all the generators
(including the local ones).

It is useful for the following to introduce also a multipartite notion of binding complex-
ity MBC[|ψT ⟩ , |ψR⟩]. This can be defined as a special case of the (geometrically-) local
complexity, when the penalty factors assigned to local gates vanish:

MBCstate
1,l,hom[|ψT ⟩ , |ψR⟩] = min

Hl(t)

∫ 1

0
dt

n−1∑
A=1

n∑
B=A+1

N2−1∑
i,j=1

|Y AB
ij |, (122a)

MBCstate
1,g,hom[|ψT ⟩ , |ψR⟩] = min

Hg(t)

∫ 1

0
dt

n−1∑
A=1

N2−1∑
i,j=1

|Y A,A+1
ij | . (122b)

These notions of binding complexity are pictorially depicted in fig. 6. Since complexity
decreases when we decrease the penalties, we immediately get

MBCstate
1,l,hom[|ψT ⟩ , |ψR⟩] ≤ Cstate

1,l,hom[|ψT ⟩ , |ψR⟩] , MBCstate
1,g,hom[|ψT ⟩ , |ψR⟩] ≤ Cstate

1,g,hom[|ψT ⟩ , |ψR⟩] .
(123)

From now until the end of this section, we will omit the explicit dependence of the com-
plexity on the reference and target states. In order to derive bounds on the (geometrically-)
local complexity and the multipartite binding complexity, we introduce some useful defi-
nitions:

• The bipartite binding complexity BCstate
1,hom[Ā], computed using the norm (18) with

the two subsystems given by the union of the subsystems {1, . . . , Ā} in one part, and
{Ā + 1, . . . , N} in the other part. This is the kind of binding complexity that we
studied, e.g., in section 4.1.

• The bipartite binding complexity BCstate
1,g [Ā], where all the non-local gates which

have support on both sides of the partitioning, are not allowed, except from nearest-
neighbour interactions of the form T Āi T

Ā+1
j . This is similar to BCstate

1,set , except that
we allow several generators T Āi T

Ā+1
j with support on parties Ā and Ā + 1, instead

of just one.

The previous notions of bipartite binding complexity are pictorially represented in fig. 7.
We note that those quantities refer to the bipartite binding complexity and therefore, all
generators that have support on just one side of the partitioning are free. Of course, this
implies that

BCstate
1,g [Ā] ≥ BCstate

1,hom[Ā] , (124)

because for the circuit that minimizes BCstate
1,g the cost function is the same, but on the

right-hand side we can build circuits using a larger set of generators, which allows to find
in principle a better geodesic compared to the left-hand side.
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(a) Circuit contributing to BCstate
1,hom(P3) (b) Circuit contributing to BCstate

1,g (P3)

Figure 7: Pictorial representation of a spin chain where the vertical purple lines represent a separa-
tion between parts P1, . . . , P4. (a) Circuit with gates acting on at most two parts of a system. (b)
Circuit with gates acting only on nearest-neighbour parts or within each part. Consider a bipar-
tition of the system into A = {P1, P2, P3} and B = {P4}. Both circuits can be used to study the
bipartite binding complexity BCstate

1,hom(P3), but only case (b) is a circuit that can be used to study
BCstate

1,g (P3) because G1 in subfigure (a) does not act on nearest-neighbor-parts. The complexity is
evaluated according to a norm only assigning non-vanishing cost to gates connecting the parts A
and B among the allowed gates.

Consider now the following term involving nearest-neighbour parts in the expression
for the geometrically-local complexity (122b)

∫ 1

0
dt

N2−1∑
i,j=1

|Y Ā,Ā+1
ij | , (125)

where the value of the control functions Y in this expression are those determined by the
minimization done in eq. (122b). Intuitively, when local generators (with respect to the
bipartitioning) have no cost, the minimal circuit can be further optimized by using those
gates. In other words, BCstate

1,g [Ā] minimizes the cost of producing the target state with the
norm of (125). If we consider a sub-optimal trajectory given by the minimization done in
eq. (122b), we will certainly obtain a larger value for this norm. This formally corresponds
to the inequality ∫ 1

0
dt

N2−1∑
i,j=1

|Y Ā,Ā+1
ij | ≥ BCstate

1,g [Ā] . (126)

Summing over all parties gives on the left-hand side the definition (122b), and on the
right-hand side a bound involving the bipartite notion of binding complexity:

MBCstate
1,g ≥

n−1∑
A=1

BCstate
1,g [A] . (127)

If we now combine the inequalities (123), (124) and (127), we obtain a lower bound on
geometric complexity:

Cstate
1,g,hom ≥

n−1∑
A=1

BCstate
1,hom[A] . (128)

Similar arguments (applied to the subset of terms in the expression (122a) corresponding
to the binding complexity BCstate

1,hom[A]), lead to a lower bound on local complexity:

Cstate
1,l,hom ≥ max

A
BCstate

1,hom[A] . (129)

Accepted in Quantum 2024-07-23, click title to verify. Published under CC-BY 4.0. 37



The bounds above are an improvement of the results obtained by [85] using the notion of
entanglement power; the results of [85] are recovered by also using the inequality (89).

The bounds we derived in terms of bipartite binding complexity are tighter than the
ones of [85]. To illustrate this, consider a system consisting of a three-qubit chain, with
reference and target states

|ψR⟩ = |000⟩ , |ψT ⟩ = cosα |000⟩ + sinα |111⟩ , (130)

where we assume 0 ≤ α ≤ π/4. To use (128), when A = 1 we partition the system between
the first qubit and the rest, and when A = 2, the partition is between the third qubit
and the rest. In both partitions, the Schmidt decomposition is straightforward, and the
coefficients are λ⃗ = (cosα, sinα). In section 4.2 we argued that the binding complexity
for such partitions is given by the binding complexity between two qubits having the same
Schmidt coefficients. Using eq. (47), we find that the binding complexity for each partition
is given by α, therefore the bound in (128) becomes

Cstate
1,g,hom[|ψ⟩] ≥

n−1∑
A=1

BCstate
1,hom[A] = 2α ≥ − cos2 α log

(
cos2 α

)
− sin2 α log

(
sin2 α

)
. (131)

The rightmost term in this inequality is the bound derived in reference [85], which we then
proved to be less restrictive, in this case, than (128).

7 Discussion
7.1 Summary of results
In this paper, we studied binding state complexity, a notion of Nielsen’s geometric complex-
ity for a multipartite system (11) such that gates acting on each subsystem separately (we
refer to such gates as local) have zero cost. Here we focused, mainly, on the bipartite case
(12). The freedom to act with local generators implies that the norm F state induced on
the space of states can be reduced to a norm that only depends on the Schmidt coefficients
λ⃗ of the state and on their derivatives ˙⃗

λ along a trajectory connecting the reference and
target states:

F state
p [|ψ(t)⟩ , |ψ̇(t)⟩] → BFp[λ⃗,

˙⃗
λ] . (132)

To find this norm, we took an intermediate step in which we showed how the problem of
finding the geodesics in SU(NANB) reduces to the manifold SO(NA), which is the rotation
group of the Schmidt coefficients. The norm on SO(NA) is in terms of the parameters
of R, the generator of rotations, and the equations of motion for the Schmidt coefficients
read ˙⃗

λ(t) = Rλ⃗(t). An additional minimization over the stabilizer of λ⃗ inside SO(NA)
is required to find the norm in terms of the Schmidt coefficients. Finally, the optimal
trajectory whose length computes the binding state complexity is found by minimizing the
length according to this last norm.

The main results of the work are the exact analytic expressions for binding state
complexity using the homogeneous norm defined in eq. (20a). We summarize them in
table 1 and in the text below:

• The BF1 norm depends on the choice of a basis of generators of the unitary group.
In table 1 we report the results obtained using the generalized Gell-Mann generators
(55). The optimal trajectory corresponds to a set of rotations along planes spanned
by pairs of Cartesian axes to get from λ⃗(0) = (1, 0, ..., 0) to λ⃗(1), see eq. (72).
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• The BF2 norm is independent of the basis of generators in the unitary group, and
turns out to be the standard round metric of the unit sphere. The binding state
complexity is the arc length from the reference to the target state.

BFp,hom norm Binding state complexity

p = 1 (Gell-Mann basis)
∑NA
m>1

|λ̇m|
λ1

Eq. (79)

p = 2 (any basis)
(

2
NANB

˙⃗
λ(t)2

) 1
2 √

2
NANB

arccos
(
e− 1

2S∞(|ψT ⟩)
)

Table 1: Results for the homogeneous norm (20a). First row: based on eqs. (71), (79). NA

represents the dimension of the smaller Hilbert space in the decomposition (12), while λ1 is the
maximal Schmidt coefficient. Second row: based on eqs. (96), (97). NA(B) are overall factors
related to the normalization of the generators, see eq. (13), and it is understood that |λ⃗(t)|2 = 1.
S∞(|ψT ⟩) is the minimal Rényi entropy of the reduced density matrix of the target state |ψT ⟩.

For the BF1,hom with the Pauli basis of generators (83), we gave an exact result for a
system of any number of qubits which is bipartitioned to a single qubit and the rest, and
we found bounds in the general case.

We argued that the binding complexity computed by any F1 norm of the form (101)
is the same, up to an overall normalization, as long as the generators forming the opti-
mal trajectory all lie on the same adjoint orbit of the SU(NA) ⊗ SU(NB) action as the
cheapest generator. The latter condition is satisfied for the Gell-Mann and Pauli bases.
As a consequence, the binding state complexity is rather insensitive to the penalty factors
chosen for the non-local gates. This provides a huge class of systems that are accessible
analytically. The freedom to choose the penalty factors for non-local generators may help
in implementing these circuits in an experimental setting, with the caveat that local gates
can have a small but non-vanishing cost, as discussed at the end of section 4.4.

We have shown that the binding state complexity BCstate
1,hom applied to a system composed

of two qutrits is equivalent to the F1 state complexity (not binding) for a single qubit, for
target states that belong to a certain region around the reference state. This extends
previous studies in the literature that focused on the Riemannian F2 norm for a single spin
[62].

Finally, we inferred lower bounds for the multipartite binding complexity and the geo-
metrically local complexity [85], in terms of the bipartite binding complexity for different
bipartitions of a given system.

7.2 Future directions
The approach presented in this work allowed us to pursue various directions that were
previously hindered by the fact that the F1 norm is not a Riemannian metric. Several
questions remain open, which we intend to study in the future:

1. Generalized Pauli basis. The generalized Pauli basis is natural when considering
systems of spins on a lattice that entail a notion of spatial locality in which each spin
resides at a different point, and therefore it is commonly used in the literature on
Nielsen’s complexity. We showed in section 4.3 that the binding complexity using the
BF2 norm in the generalized Pauli-basis differs from the one obtained using the Gell-
Mann basis just by a normalization factor. The BF1 norm case, however, is more
involved. We derived several bounds in section 4.2 for the complexity associated
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with the BF1 norm in the Pauli-basis, but it would be desirable to find the optimal
trajectory and the exact complexity in the Pauli basis for an arbitrary number of
spins. A discrete version of this problem was considered in [84].

2. Extension of our results for other BF norms. We were able to calculate BC1,hom only
in a region of the group manifold close to the reference state, see section 4.1. We
would like to extend the analysis to the whole space. Furthermore, here we focused
on the BF1 and BF2 norms, finding that the binding complexity for the p = 2
case is a function of the Rényi min-entropy. All the other BFp norms will result
in binding complexities that depend on the Schmidt coefficients. It is reasonable
to assume that one can obtain all the Schmidt coefficients from the knowledge of
binding complexities for all the BFp norms, as one can obtain them from knowing
all the Rényi entropies. We plan to obtain explicit results for these relations.

3. Curvature properties of binding complexity geometry. The Gell-Mann basis for the
unitary group SU(N) has the advantage of clearly distinguishing between elements
of the stabilizer of the reference state, and elements of the coset space.37 In the
framework of Nielsen’s complexity, it was argued that geodesic deviation and the
switchback effect, which are essential features of complexity geometry, require regions
with negative sectional curvature [86, 87]. In the Riemannian case, a negatively
curved geometry can be obtained whenever the commutator structure of the algebra
satisfies a relation of the kind [easy, easy ] = hard, where easy and hard refer to a
smaller or bigger penalty factor inside the cost function, respectively. This statement
was argued to be a consequence of Pythagorean’s theorem in curved space in reference
[62], and it was later confirmed for the state complexity of a single qutrit in [66]. In
the case of the BFp,set norm, we assign penalties 0 to local generators, 1 to a single
non-local generator T11 ≡ TA1 ⊗ TB1 and the formal cost ∞ to all the other non-local
generators, which are not allowed. As a consequence, the algebra naturally admits a
subset of commutation relations of the form [local, T11] = non-local, which satisfies
the above-mentioned pattern [easy, easy ] = hard. We therefore expect that the
sectional curvature is negative along the planes generated by any local generator and
the single allowed gate T11. Since binding state complexity involves non-trivial limits
on the penalty factors, it would be interesting to check whether these statements
on the negative sectional curvature are still valid. Furthermore, it is interesting to
understand the implications of the above structure of commutators in the context
of the switchback effect. Let us further remind the reader that in the context of a
single qubit, we have shown in section 5 that the circuit (as opposed to binding)
complexity associated with the F1 norm provides a natural way of suppressing hard
gates which was achieved in previous works by the assignment of penalty factors.
It is interesting to study under which conditions the F1 norm can also provide an
alternative mechanism for geodesic deviation.

4. Characterizing multipartite entanglement. In reference [3], the authors suggested
that the multipartite version of binding complexity can distinguish whether a mul-
tipartite state will be entangled after tracing over one of the parts. The authors
use as an example the GHZ state which is separable after the tracing and has an
estimated binding complexity of O(n), while the W state which is not and has an
estimated binding complexity of O(n2), where n is the number of spins. We plan to

37The Gell-Mann matrices introduced in eq. (55) are proportional to the set of generators Eij , Fij defined
in eqs. (I.6.60)-(I.6.61) on page 208 of reference [102]. The latter form a basis that distinguishes between
the generators of the maximal subgroup SU(N − 1) × U(1) and the coset space.
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consider the multipartite version in spin systems and understand more generally the
relation between multipartite binding complexity and the robustness of multipartite
entanglement.

5. Generalized complexity measures. Binding state complexity can be interpreted as
an example of a larger class of complexity measures in which one does not require
to reach a specific target state, but only an equivalence class of states that satisfy
certain properties. In this case, the required property is based on the entanglement
structure encoded by the Schmidt coefficients. Other examples could require that
the equivalence class of target states has a fixed vacuum expectation value of certain
operators, i.e., ⟨ψT |Oi|ψT ⟩ = Qi. This seems natural because usually we cannot
distinguish states with absolute precision.

6. Holographic interpretation. It remains to be investigated if there is a holographic
dual to the quantities we considered. In [3], it was conjectured that the binding
complexity is dual to the volume of the interior of a multi-boundary wormhole (see
e.g., [103]), minimized over all the boundary times (see their discussion in sections
5 and 7). While in this work we mostly considered the bipartite case, which is
conjectured to be related to the two-boundary wormhole, we should still be able
to compare the binding complexity to the expected results from the gravity side in
that specific case. A holographic computation of the volume of a three-dimensional
wormhole with three boundaries has been performed in [83]. It would be interesting
to compare this case to the multipartite binding complexity, partially considered
in section 6 and which we hope to investigate further in the near future. Another
interesting candidate for the holographic dual may be deduced as follows. Given the
relation between the BF2 binding complexity and the minimal Rényi entropy, the
holographic dual in that case may be obtained along the lines of [104, 105]. It would
be interesting to compare the proposal obtained this way to the previous one.

7. Relation to kinematic space. For the vacuum state in a two-dimensional CFT, there is
a conjectured relation between volume complexity and entanglement via the Crofton
formula [106, 107]. Furthermore, reference [108] claims that the minimal Rényi en-
tropy of a quantum chain at the critical point is related to the entanglement entropy.
Combining these observations, one may argue that the volume complexity could be
expressed as an integral over the binding complexity of an appropriate trajectory in
kinematic space. We intend to investigate this link more deeply.

8. Subsystem complexity. Binding complexity is naturally defined when there is a par-
tition of the Hilbert space into subsystems. In this case, the state of each subsystem
separately is generically mixed. Other interesting notions of complexity have also
been defined in the context of mixed states, such as the purification or spectrum
complexity proposed in reference [109].38 It would be interesting to compare these
notions of complexity to the binding complexity of a state which is the purification of
such mixed states (where the bipartition is between the system and its purification).

9. Ancillary qubits. We would like to understand the role of ancillary qubits in binding
complexity. In the Gell-Mann basis the result (79) is unaffected by enlarging the
dimension of HB. Therefore there is no influence of ancillary qubits on the results
in the Gell-Mann basis. Furthermore, in section 4.2, we discussed an exact result for
the complexity in the Pauli basis for two systems, one of which (system A) contains

38These definitions were originally suggested in the context of holographic complexity for subregions
[106, 107, 109–116] and were further developed for Gaussian states, see e.g., [114, 117, 118].
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a single spin and the other (system B) an arbitrary number. In this case, we were
able to prove that when the single spin in system A was entangled with a single
spin in system B, the extra spins in system B, which we referred to as ancillary,
did not participate in the optimal trajectory and did not improve the result for the
complexity. It would be interesting to understand if this statement is generally valid
in the Pauli basis for the addition of spins which are unentangled both in the reference
and the target state for arbitrary numbers of spins in the systems A and B, and if a
similar statement can be made for binding complexity with more than two parties.
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A An inequality for the F1 cost function
This appendix is devoted to the proof of the inequality (38). We derive the following chain
of relations:

min
AdU

∑
b,j

∣∣∣Ỹ ai(AdUA) ba (AdUB ) ji
∣∣∣ ≥ min

O

∑
b,j

|Ỹ ai(OA) ba (OB) ji | =

=
∑
a

σa(Ỹ ) ≥
∑
a

|Ỹ aa| .
(133)

The first minimum in the first line is over all possible adjoint matrices. OA(B) denote
general orthogonal matrices and the second minimum in the first line is with respect to
these matrices. σa(Ỹ ) are the singular values of the matrix Ỹai and the first quantity in
the second line is the so-called nuclear or Schatten 1-norm [119]. Let us go through the
derivation of the previous steps:

• The inequality in the first line follows from the fact that the adjoints AdU are specific
orthogonal matrices, thus the complete set of orthogonal matrices is larger than those
in the adjoint. Note that here we are comparing the adjoint of SU(NA) to SO(N2

A−1)
(not to SO(NA)).
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• In going from the first to the second line, we used the inequality39 ∑
a σa(T ) ≤∑

a,b |Ta,b| with T = (OA)T Ỹ OB, together with the observation that the nuclear
norm is invariant under orthogonal transformations. The inequality is saturated
when performing the minimization over the orthogonal matrices, once we choose
OA, OB according to the singular value decomposition of Ỹ ai.

• The last inequality (see e.g., [121]) can be proven by applying von Neumann’s trace
inequality |Tr(Ỹ B)| ≤

∑
i σi(Ỹ )σi(B). This is done by choosing B as a diagonal

matrix with elements ±1, where the sign is chosen such that |Tr(Ỹ B)| =
∑
a |Ỹ aa|

recovers the last inequality in (133). The singular values of the matrix B are of course
σi(B) = 1. Notice that this argument can also be applied to rectangular Ỹ matrices.
In fact, one can pad Ỹ with zeroes to define a square matrix Ŷ , and then perform the
same steps outlined above to obtain the last inequality for Ŷ . The non-zero singular
values and the non-zero diagonal elements of Ŷ are equal to the ones of Ỹ .

Once we recognize that the first term in (133) is the definition of the homogeneous F -
norm in eq. (36) with p = 1, and upon an additional minimization over Ỹ subject to the
constraint (35), the chain of relations (133) can be written as (39).

B Complexity with a large number of Schmidt coefficients
In this appendix, we focus on a quantum-mechanical system with a large number of Schmidt
coefficients. In this case, we may recast the binding complexity (79) in the form of an
integral. The integral is generally easier to compute than the original discrete sum. Fur-
thermore, as mentioned at the end of section 4.1, this can be viewed as a first step towards
the study of binding complexity in QFT.

First, let us re-write eq. (79) in reverse order of summation,40

BCstate
1,hom = −

NA−1∑
k=1

∫ λ̄k+2

λ̄k+1

kdλ√
1 −

∑NA
j=k+2 λ̄

2
j − kλ2

. (134)

The index k counts the number of Schmidt coefficients larger than λ̄k+1. In the limit of an
infinite number of Schmidt coefficients NA → ∞, we obtain a distribution λ̃(k). We will
treat λ̄1 as a normalization that does not have to be a part of the continuous distribution.
This means that the distribution represents all the Schmidt coefficients apart from λ̄1 and
that λ̄2

1 +
∫∞

0 λ̃(k)2dk = λ̄2
1 +

∫ λ̃(0)
0 ρ(λ̃)λ̃2dλ̃ = 1, where ρ(λ̃) is the density of Schmidt

coefficients. This type of separation can be seen for the entanglement spectrum derived in
[122] for a one-dimensional system near the scale-invariant regime.

In the continuum, the index k becomes a continuous function of λ̃, such that k(λ̃) =∫ λ̃(0)
λ̃

ρ(λ)dλ, and the sum
∑∞
j=k+2 λ̄

2
j turns to

∫ λ̃(k)
0 ρ(λ)λ2dλ. With these replacements

the complexity reads

BCstate
1,hom =

∫ λ̃(0)

0
dλ

k(λ)√
λ̄2

1 +
∫ λ̃(0)
λ ρ(x)x2dx− λ2k(λ)

=
∫ λ̃(0)

0
dλ

k(λ)√
λ̄2

1 + 2
∫ λ̃(0)
λ xk(x)dx

.

(135)

39In turn, this inequality can be proven using the following property of the singular values
∑

a
σa(M +

N) ≤
∑

a
σa(M) + σa(N) [120] if we decompose the matrix T into matrix units of the form ta,bδa,b and

apply this inequality to the sum. In this case |ta,b| is the only non-zero singular value of each matrix unit.
40Note that we are using the form of eq. (79) before performing the integration. The reason is that we

will be expanding under the assumption that successive Schmidt coefficients are close to each other and
therefore the integrands themselves will appear naturally in our expressions.
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With an additional change of variables, the above formula can be rewritten as

BCstate
1,hom = −

∫ ∞

0
dk

kλ̃′(k)√
1 −

∫∞
k λ̃(x)2dx− kλ̃(k)2

= −
∫ ∞

0
dk

kλ̃′(k)√
λ̄2

1 +
∫ k

0 λ̃(x)2dx− kλ̃(k)2
.

(136)
We note that this result can be obtained by considering a continuous version of the norm
of (71) of the form BF1,homdt =

∫∞
0 dk |dλ̃(k,t)|

λ1(t) , and by then evaluating it on a trajectory
that is analogous to the discrete one. A caveat should be made regarding the range of
validity of (135) and (136). We remind the reader that the result in eq. (134) was derived
in the region λ̄1 ≥ λ̄2 + λ̄3, where we obtained the exact form of the norm BF1,hom. A
natural guess for the continuum version of the previous constraint is λ1 ≥ 2λ̃(0). When the
spectrum distribution does not have a separation between the largest Schmidt coefficient
and the continuous part, i.e.,

∫∞
0 λ̃(k)2dk = 1, the expected constraint reads λ̃(0) ≥ 2λ̃(0),

and is clearly violated. Nevertheless, we suspect that the result (71) may in fact be valid
even outside the range dictated by the inequality λ̄1 ≥ λ̄2 + λ̄3, even for the discrete case,
and in that case the continuum result could perhaps be used for distributions without a
spectrum separation.

The expressions above, besides being suitable for a continuous distribution, can help in
approximating the discrete BCstate

1,hom by a simpler integral expression. In this case, we have
to explain how to turn our discrete distribution into a continuous function over which we
can integrate. We do this as follows. Let λ̄n, where n is an integer that goes from 1 to ∞,
be a set of ordered Schmidt coefficients. Define a smooth monotonic function λ̃(x) that
interpolates the set starting from n ≥ 2, at points that differ by a unit interval, i.e.,

λ̃(x0 +m) = λ̄m+2 , m ≥ 0 . (137)

In addition, set x0 such that
∫∞

0 λ̃(x)2dx =
∑∞
n=2 λ̄

2
n = 1−λ̄2

1. Approximating the integrals
of (136) (or (135)) by a sum using the values of the integrands at integer values gives an
expression that is close to the one obtained by approximating the integrals of the exact
result in (134).

The error in approximating (134) by (136) (or (135)) can be determined by standard
numerical techniques, and will depend on the difference between adjacent Schmidt coeffi-
cients and the exact choice of the interpolating function λ̃(x). We note that if λ̄k − λ̄k+1
is not sufficiently small for some specific value of k, one could combine the continuous
approximation with the exact calculation. A particular case of interest would be if there
is a finite number NA Schmidt coefficients, where λ̄NA is of order 1√

NA
. In this case, the

boundaries of integration in (136) could be taken from 0 to NA− 2 and an additional term
of value

√
NA − 1 arcsin [λ̄NA

√
NA − 1] coming from the NA − 1 term of (134), should be

added.
Let us exemplify the above-mentioned continuous approximation in the case of the

thermofield double state of two harmonic oscillators. We start from a discrete system
whose Hilbert space decomposes according to eq. (12), with Schmidt coefficients41

λ̄n =
√
eβ − 1 e−βn

2 (n ≥ 1), such that
∞∑
n=1

λ̄2
n = 1 . (138)

41Notice that the Schmidt coefficients do not satisfy λ̄1 ≥ λ̄2 + λ̄3 when β is sufficiently small, and
therefore we are uncertain whether the binding complexity should indeed be computed using (134). Never-
theless, this serves as a good example for the continuous approximation (136). Our methods can be applied
to systems that have an entanglement gap in the thermodynamic limit, for instance, those discussed in
[93].
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In particular, λ̄1 is the largest among the previous Schmidt coefficients. According to the
discussion around eq. (137), in the continuum we define a new distribution related to the
discrete one by

λ̃(x) =
√
eβ − 1 e−β(x−x0)

2 , with x0 such that λ̄2
1 +

∫ ∞

0
dx λ̃(x)2 = 1 . (139)

We can now compare the exact result for the binding complexity in the discrete case (79)
using the Schmidt coefficients (138) with the continuous approximation (136) using the
distribution (139). In the regime β → 0, the binding complexity is of order 1/

√
β, while

the relative error found by this procedure can be verified numerically to be smaller than
β

√
β.

C Gell-Mann trajectory length in the Pauli basis
In this appendix, we prove the claim of section 4.2 that if we use the trajectory optimizing
the BF1,hom,Gell−Mann norm and evaluate its length according to the BF1,hom,Pauli norm, we
recover the same length. More explicitly, we claim that the BF1,hom,Pauli norm evaluated
on the Hamiltonian (80)

H =
NA=2nA∑
m>1

wm(t)TAc(m,1)T
B
c(1,m) , wm = λ̇gm(t)

λg1(t) , (140)

reads

BF1,hom,Pauli =
NA∑
m>1

|wm(t)| , (141)

which is the same as the result for the Gell-Mann basis (71).
To demonstrate this, let us use the definition (55) for the Gell-Mann basis, in particular

Tc(m,1) = i(|m⟩ ⟨1| − |1⟩ ⟨m|), Tc(1,m) = |m⟩ ⟨1| + |1⟩ ⟨m| . (142)

Here it is understood that the basis vectors used in this definition are

|m⟩A ≡ |m⃗⟩A = |m1m2 . . .mnA⟩ , |m⟩B = |m⃗⟩B = |m1m2 . . .mnA ↑ . . . ↑︸ ︷︷ ︸
nB−nA

⟩ , (143)

where mi ∈ {|↑⟩ , |↓⟩} represent spins up or down, and the basis vectors for the system
B have been padded with |↑⟩ to reach the correct length. The different generators in the
Pauli basis can be enumerated by vectors µ⃗, ν⃗ as in the right-hand side of eq. (83)

Tµ⃗ν⃗ = σµ1 ⊗ . . . σµnA ⊗ σν1 ⊗ . . .⊗ σνnB . (144)

To find the control functions, we should take the normalized trace of each generator against
the Hamiltonian for our trajectory, that is

Yµ⃗ν⃗ = 1
2nA+nB

tr[H · Tµ⃗ν⃗ ] . (145)

Using the following properties of the trace and tensor products tr(A⊗ B) = tr(A) · tr(B)
and (a1 ⊗ b1) · (a2 ⊗ b2) = (a1 · a2) ⊗ (b1 · b2), as well as the cyclic property of the trace,
we can rewrite the above control functions as

Yµ⃗ν⃗ = i

2nA+nB

∑
m⃗ ̸=1⃗

ṽm⃗,1(⟨⃗1|σµ⃗ |m⃗⟩ − c.c.)A (⟨⃗1|σν⃗ |m⃗⟩ + c.c.)B , (146)
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where we used 1⃗ to denote the state with all spins up, “c.c.” stands for complex conjugation
and σµ⃗, σν⃗ collectively denote the generalized Pauli matrices in the two subsystems A,B
separately. By splitting these generalized Pauli generators into tensor products of standard
Pauli matrices, we compute the matrix elements as follows:

⟨⃗1|σµ⃗ |m⃗⟩ =
nA∏
k=1

(δmk,↑(δµk,0 + δµk,3) + δmk,↓(δµk,1 − iδµk,2)). (147)

We now use the above machinery to evaluate

BF1,hom,Pauli =
∑
µ⃗ν⃗

|Yµ⃗ν⃗ | = 1
2nA+nB

∑
m⃗ ̸=1⃗

|wm|
∑
µ⃗ν⃗

|⟨⃗1|σµ⃗ |m⃗⟩−c.c|×|⟨⃗1|σν⃗ |m⃗⟩+c.c| . (148)

We see that for any given m⃗, we are left with a combinatorial exercise where we have to
sum products similar to those in eq. (147) over all values of µ⃗ and ν⃗. For the term in
the first absolute value not to vanish when subtracting the complex conjugate, we need an
odd number of µk = 2 components, in this case the “c.c.” simply doubles the contribution.
Similarly, for the second absolute value not to vanish, we need an even number of νk = 2
components. In this case, the contribution of “c.c.” is again a factor of 2. For specific
values of µ⃗, ν⃗, m⃗, we have at most one out of all the products of delta functions which
survives. Therefore, every single contribution to this sum is equal to 4 and we just need
to understand how many of those contributions do not vanish for a given value of m⃗.

What is the number of non-vanishing contributions? Assume to have a certain vector
m⃗ with m↓ number of spins down. Notice that the number of spins down is the same
for |m⟩A and |m⟩B. For every spin up, we have two options: either δµk,0 or δµk,3 will
contribute for this value of k, so in total this yields a factor of 2nA−m↓ × 2nB−m↓ possible
contributions. Then we have to choose the location of an odd (even) number of δµk,2
in order for the first (second) term not to vanish after subtracting (adding) the complex
conjugation. These are chosen out of the down arrows, resulting in a multiplicative factor∑m↓
k(odd/even)

(
m↓
k

)
= 2m↓−1 for each system. Multiplying everything together we obtain

4 · 2nA−m↓ · 2nB−m↓ · 2m↓−1 · 2m↓−1 = 2nA+nB , which precisely cancels the factor of 2nA+nB

in the denominator, and we get the same result (141) as advertised in the main text.

D BF2 homogeneous norm from the Euler-Arnold equations
In this appendix, we compute binding state complexity for a system of two qudits, whose
Hilbert space dimensions are NA and NB, see eq. (12). For convenience, we assume that
NA ≤ NB. The complexity is computed according to the F2,hom norm defined in eq. (20a)
using an arbitrary basis of the unitary algebra. The following calculation is based on the
Euler-Arnold equations and provides a cross-check of the result (97).

D.1 Geodesics from the Euler-Arnold equations
To compare more easily with the literature, we use the notation of [6]. Given the space
of unitary operators SU(N ≡ NANB) acting on the qudits, we define the length ℓ of a
trajectory U(t) (2) generated by a Hamiltonian H(t) as

ℓ ≡
∫ 1

0
dt
√

⟨H(t), H(t)⟩ , (149)

where ⟨·, ·⟩ is a suitable Riemannian metric independent of the group point U . Explicitly,
we define the norm at the origin as

⟨H,K⟩ ≡ 1
N

Tr (HG(K)) . (150)
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Here H and K are traceless Hermitian Hamiltonians, G is a positive-definite linear operator
acting on the algebra su(N) as G(TI) = qITI , where TI are the generators of the algebra
and qI the corresponding penalty factors, and N is a normalization constant chosen such
that Tr(T IT J) = N δIJ . Eq. (149) is equivalent to the definition of the F2 norm according
to eq. (4). Unitary complexity is given by the length (149) of the geodesic U(t) with
boundary conditions U(0) = 1 and U(t) = UT , the latter being a target unitary. This
corresponds to the definition (3).

We now consider a bipartition of the two-qudit system and decompose the Hamiltonian
as in (14). We define an F2 norm corresponding to the following choice of G

G2(H) = εS +Q , (151)

where S and Q represent respectively the local and non-local parts of H:

S ≡ Y a
AT

A
a ⊗ 1B + Y i

B1A ⊗ TBi , Q ≡ Y aiTAa ⊗ TBi , H(t) = S(t) +Q(t) . (152)

The geodesic equations in the space of unitaries with inner product (150) are the Euler-
Arnold equations [90]42

Ḣ = −iG−1([H,G(H)]) . (153)

When working with the operator G2, we can use the commutators [S, S] = [Q,Q] = 0 and
the fact that [S,Q] is non-local to show that the Euler-Arnold equations take the form

Ṡ = 0 , Q̇ = −i(1 − ε)[S,Q] . (154)

The F2,hom norm in eq. (20a) corresponds to (150) with the operator G2,hom ≡ limε→0 G2.
The solution for the Hamiltonian in this case reads

H(t) = lim
ε→0

(
S0 + e−i(1−ε)S0tQ0e

i(1−ε)S0t
)

= S0 + e−iS0tQ0e
iS0t , (155)

where S0 and Q0 are the values of the local and non-local parts of the Hamiltonian at
t = 0, respectively. By solving the Schrödinger equation U̇ = −iHU for the unitary along
the curve, we get

U(t) = lim
ε→0

e−i(1−ε)S0te−i(1−(1−ε))S0t−iQ0t = e−iS0te−iQ0t . (156)

The length of this geodesic in the space of unitaries is

ℓ2,hom =
∫ 1

0
dt lim

ε→0

√
ε

N
Tr(S(t)S(t)) + 1

N
Tr(Q(t)Q(t)) =

√
Tr
(
Q0Q0

N

)
, (157)

where we used the result (155) and the time-independence of Q0 to directly perform the
trivial integration. Binding unitary complexity BC2,hom is defined as the minimal length
(157) of the global geodesic connecting the identity with the target unitary UT . We imme-
diately observe that this corresponds to minimizing Tr(Q0Q0), independently of the initial
value S0 of the local part of the Hamiltonian.

42Euler-Arnold equations have been recently used to study complexity in the space of unitaries, see e.g.,
[63, 68, 69, 71, 73].
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D.2 Computation of binding state complexity
Let us now move to the computation of binding state complexity. First of all, we specify
the reference and target states in the Hilbert space (12) of the two qudits

|ψR⟩ =
∣∣11̃
〉
,

|ψT ⟩ =
NA∑
m=1

λ̄m
∣∣∣ϕ̄mχ̄m〉 = UA ⊗ UB

NA∑
m=1

λ̄m |mm̃⟩ , λ̄1 ≥ λ̄2 ≥ · · · ≥ λ̄NA ,
(158)

where |mm̃⟩ is a fixed basis in the full Hilbert space. The state at a generic time along a
geodesic trajectory is given by

|ψ(t)⟩ = e−iS0te−iQ0t
∣∣11̃
〉
. (159)

The globally minimal geodesic is obtained by minimizing eq. (157) over all the Q0 that
bring the reference state to a state with the same Schmidt coefficients λ̄m as specified in
eq. (158). Since S0 can be chosen without affecting the length of the trajectory, we are free
to act with LU operators (which modify the basis of the Schmidt decomposition) until we
precisely reach the target state.

Let us further comment that there are Hamiltonians relating the reference and the
target state continuously, i.e., without a final LU transformation. If the target state
|ψT ⟩ and the final state of the geodesic trajectory |ψ̃T ⟩ = e−iHt |ψR⟩ |t=1 are related by
|ψT ⟩ = e−iS0 |ψ̃T ⟩ where S0 is a time-independent generator of LU transformations, then
the unitary U(t) such that

U(t) = e−iS0te−iQ0t , (160)

will have the same binding complexity as e−iQ0t. In summary, we have shown by a different
method than the one used in section 3.1 that binding state complexity is defined in terms
of equivalence classes of LUE reference and target states, see eq. (23).

We are now going to show that the length of the geodesic in the space of states can
be expressed in terms of the Fubini-Study distance on the projective space CPN−1. The
Fubini-Study distance is proportional to the state complexity Cstate

IP , defined according
to eq. (6), and associated with the standard inner-product norm on the unitary group
G = U(N), which assigns penalties 1 to all the generators (either local or non-local), i.e.,

Cstate
IP (|ψT ⟩ , |ψR⟩) ≡ min

{U∈SU(N): |ψT ⟩=U |ψR⟩}
CFIP [U ],

FIP[Y⃗ ] =

√
Tr(H2)

N
=
√∑

a

|Y a
A |2 +

∑
i

|Y i
B|2 +

∑
a,i

|Y ai|2 ,
(161)

where IP stands for inner product. The norm on the projective space CPN−1 obtained
after the minimization over the stabilizer as in eq. (9) is (proportional to) the Fubini-
Study metric [123, 124]43

F state
IP dt =

√
2
N
ds2

FS (162)

where
ds2

FS = ⟨dψ|dψ⟩ − ⟨dψ|ψ⟩ ⟨ψ|dψ⟩ , (163)

43The minimization can be done by expressing the elements of H in a Hilbert space basis for which the
first and second basis vectors are |ψ1⟩ ≡ |ψ(t)⟩ and |ψ2⟩ ≡

[
|ψ̇(t)⟩ − ⟨ψ(t)|ψ̇(t)⟩ |ψ(t)⟩

]
/
√
ds2

FS. In this
basis, H1n and Hn1 for any n are fixed by the Schrödinger equation, and the rest of the elements belong
to the stabilizer over which we minimize. A further minimization over the time derivative of the global
phase of the state |ψ(t)⟩ will result in (162).
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and the associated distance reads

dFS(|ψT ⟩ , |ψR⟩) = arccos |⟨ψT |ψR⟩| . (164)

From this, we conclude that

Cstate
IP =

√
2
N
dFS. (165)

Now the main idea of this section is to define a metric over equivalence classes of states by
minimizing the above metric over LUE reference and target states:

Cstate
2,LUE({|ψT ⟩}, {|ψR⟩}) ≡ min

LUE
Cstate

IP (|ψT ⟩ , |ψR⟩) (166)

where the curly brackets denote equivalence classes of states. Let us now explain how all
this relates to the binding complexity defined in the main text, where zero cost is associated
with local generators. A trivial observation is that cost functions with bigger penalty
factors imply a bigger complexity, leading to BCstate

2,hom ≤ Cstate
IP . Next, by minimizing this

inequality over LUE states, we find that BCstate
2,hom ≤ Cstate

2,LUE, because the value of BCstate
2,hom

does not change within the LUE class of states. On the other hand, taking the Hamiltonian
of the optimal circuit for the BCstate

2,hom and setting S0 = 0 will result in a different circuit
connecting the reference state to a target state in the same LUE class. This circuit has
the same cost according to either the inner-product metric, or the distance defined by
eq. (157), therefore

BCstate
2,hom = Cstate

2,LUE . (167)

Let us now exploit this result to find the binding complexity by actually computing the
geodesic length using the norm (166). The state complexity Cstate

2,LUE is nothing but the
length of a global geodesic in the geometry (162), minimized over all LUE target states.
We then find

Cstate
2,LUE =

√
2
N

min
{|ψT ⟩},{|ψR⟩}

dFS(|ψT ⟩ , |ψR⟩) , (168)

where dFS denotes the Fubini-Study distance between a given representative of the equiv-
alence classes of the reference and target states. Recall that the Fubini-Study metric is
left-invariant, and that we are minimizing modulo LUE states. For these reasons, we can
perform arbitrary local unitary transformations on the reference state

UA ⊗ UB
∣∣11̃
〉

= |ϕχ⟩ , (169)

and equivalently express the complexity as

Cstate
2,LUE =

√
2
N

min
ϕ,χ

arccos

 NA∑
m=1

⟨ϕχ| λ̄m |mm̃⟩

 , (170)

where the definition (158) has been used. By performing a change of basis |χ⟩ =∑
m a

∗
m |m⟩, such that

∑
m |am|2 = 1, we find the chain of relations∣∣∣⟨ϕχ| λ̄m |mm̃⟩

∣∣∣ =
∣∣∣⟨ϕ| amλ̄m |m⟩

∣∣∣ ≤ | ⟨ϕ|ϕ⟩ | | ⟨n| ama∗
nλ̄mλ̄n |m⟩ | =

√
|amλ̄m|2 ≤ λ̄1 .

(171)
In the second step we used the Cauchy-Schwarz inequality, while in the last step we used
the fact that λ̄1 is the largest Schmidt coefficient. Since the arccos is a monotonically
decreasing function of its argument, we conclude that

arccos

 NA∑
m=1

⟨ϕχ| λ̄m |mm̃⟩

 ≥ arccos(λ̄1) . (172)
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The minimum is actually achieved by constructing a unitary (2) with a Hamiltonian which
has the following non-local part at t = 0

Q0 = −i arccos (λ̄1)√
1 − λ̄2

1

 NA∑
m=1

λ̄m(|mm̃⟩
〈
11̃
∣∣− ∣∣11̃

〉
⟨mm̃|

 . (173)

Plugging the explicit form of Q0 inside eq. (157), we obtain that the length of this geodesic
is indeed proportional to the Fubini-Study distance, with the proportionality factor deter-
mined by eq. (165). Using N = NANB,44 this implies that the binding state complexity
reads

BCstate
2,hom = Cstate

2,IP =
√

2
NANB

arccos(λ̄1) , (174)

which matches the result (97).
To conclude, we compare this procedure, which uses the Euler-Arnold equations, to the

SO(NA) method presented in section 3.
Advantages:

• The use of Euler-Arnold equations may be more familiar to the reader.

• The trajectory in the unitary space is simple and smooth, see eq. (159).

Disadvantages:

• The reduction of the problem to the space of Schmidt coefficients is not manifest
until the end of the computation.

• This method only applies to the F2 norm.
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