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Nielsen’s approach to quantum state complexity relates the minimal num-
ber of quantum gates required to prepare a state to the length of geodesics
computed with a certain norm on the manifold of unitary transformations. For
a bipartite system, we investigate binding complexity, which corresponds to
norms in which gates acting on a single subsystem are free of cost. We reduce
the problem to the study of geodesics on the manifold of Schmidt coefficients,
equipped with an appropriate metric. Binding complexity is closely related to
other quantities such as distributed computing and quantum communication
complexity, and has a proposed holographic dual in the context of AdS/CFT.
For finite dimensional systems with a Riemannian norm, we find an exact re-
lation between binding complexity and the minimal Rényi entropy. We also
find analytic results for the most commonly used non-Riemannian norm (the
so-called F} norm) and provide lower bounds for the associated notion of state
complexity ubiquitous in quantum computation and holography. We argue that
our results are valid for a large class of penalty factors assigned to generators
acting across the subsystems. We demonstrate that our results can be bor-
rowed to study the usual complexity (not-binding) for a single spin for the case
of the F1 norm which was previously lacking from the literature. Finally, we de-
rive bounds for multi-partite binding complexities and the related (continuous)
circuit complexity where the circuit contains at most 2-local interactions.
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1 Introduction

Computational circuit complexity has been established as a useful tool of quantum com-
puting theory for some time, see e.g., [1, 2]. Heuristically, complexity estimates the number
of unitary gates (or time) required by an optimal circuit to produce a certain target state
(typically entangled) starting from a reference state (typically factorized). As such, it is
natural to ask whether there is a relation between the degree of entanglement and the
complexity in producing a certain state [3]. In this work, we will show that under certain
circumstances there is a relation between these two measures.

Circuit complexity. Circuit complexity plays a crucial role in classifying computational
problems and in establishing the advantages of quantum over classical computation. From
a practical point of view, finding the optimal circuit for a given task is an important goal
for the compiler of any quantum computer.

In concrete circuits built in laboratories, quantum operations are usually performed
using discrete elementary unitary operations (called gates) which act on one or two qubits
at the same time. While it is not possible to cover all the unitary group with a finite set of
gates, any unitary operator can be built with arbitrary precision by selecting a universal
set of gates [4]. The implementation of those gates in a quantum circuit can vary in terms
of difficulty, time, or errors. A proper definition of circuit complexity should take these
variations into account. For generic circuits, finding the complexity is a hard problem.

Nielsen showed that lower and upper bounds can be obtained by looking at a contin-
uous version of the problem [5-7|. The idea is to consider the unitary group, generate
a continuous trajectory by a time-dependent Hamiltonian, and define a norm F which
assigns different costs (called penalty factors) to the various directions along the tangent
space of the group manifold. The shortest circuit is given by a geodesic in the space of
unitaries, and the complexity will be the length of this geodesic, measured using the notion
of distance induced by the norm with penalty factors. A similar definition of complexity
can be introduced in the space of states by performing a quotient over the stabilizer at each
point along the trajectory. A closely related notion to Nielsen’s approach is the framework
of quantum optimal control, which studies the optimal manipulation of quantum dynamics
under certain constraints [8-10].

Complexity in holography. Quantum complexity has gained much attention in holog-
raphy after the observation that entanglement entropy in a conformal field theory (CFT)
is insufficient to probe certain regions behind the horizons of dual black holes in Anti-de
Sitter (AdS) space [11-14]. While entanglement entropy is unable to capture the long-
time linear growth of the interior volume of black holes, it was proposed that quantum
computational complexity could be the quantity dual to the volume of the Einstein-Rosen
bridge (this is the so-called complexity=volume conjecture) [15, 16]." Later on, the volume
conjecture was supplemented by other holographic proposals for complexity [19-27], and
their properties were compared by investigating their behavior in various backgrounds, see
e.g., [28-53]. In parallel, efforts were made to put computational complexity on firmer
ground from a quantum mechanical perspective and develop tools for calculating it in var-
ious setups. This led to several investigations in quantum mechanics (QM), quantum field
theory (QFT), and CFT |26, 54-76|. For a comprehensive review, we refer the reader to
[77].

!See, however, [17, 18] for alternative boundary interpretations of the bulk volume of the Einstein-Rosen
bridge.
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Binding Complexity. In this work we will investigate Nielsen’s binding complexity (re-
ferred to, from now on, as binding complexity) [3], a specific version of Nielsen’s geometric
complexity. Given a partition of a system into multiple parts, binding complexity assigns
non-vanishing cost only to operations that are non-local, i.e., that act on multiple sub-
systems.? Contrarily, it is free to act with operations that are local (i.e., act within a
single subsystem). While these requirements may seem unrealistic, we will find that the
geodesics minimizing binding complexity do not present abrupt fluctuations along the free
local directions during the time evolution. As a consequence, these geodesics would be a
good approximation to the geodesics of an implementable circuit where the local operations
have a small but non-zero cost.

There are several motivations to consider binding complexity. First of all, some of the
main challenges for large-scale quantum computers (with many qubits) are to maintain
coherence, i.e., minimize the noise throughout the computation, and implement efficiently
the necessary gates. Therefore, a prominent paradigm for future quantum computing
is distributed computing [78-80|, where the task of computation is distributed between
multiple small quantum computers or nodes, and in each such computer, the processing is
coherent to a good degree. In such a model, it is necessary to minimize the amount of gates
between the different computers, which are often assumed to be less reliable or slower. This
minimization is precisely the notion of binding complexity. Distributed computing is also
related to quantum communication complexity, which measures the minimal information
that distant parties have to exchange to perform a computational task [81]. It was argued in
[3] that quantum communication complexity is upper bounded by the binding complexity.
Secondly, we will show that binding complexity for a bipartite system leads to a geometric
distance on the space of states which is fully determined by the entanglement spectrum.
This has an operational interpretation in terms of the minimal length of a circuit required
to turn a non-separable state into a separable one (see e.g., [82], which is related to the
case of the Riemannian norm discussed in section 4.3). Finally, binding complexity has
been proposed to be dual to the interior volume of multi-boundary wormholes [3]. Thus
one may hope to apply the methods developed in this work to unveil new features of the
wormbhole interior in multi-boundary wormhole geometries [83].

In [3], binding complexity was explored for Gaussian unitaries and states of a bosonic
theory. Rough bounds for the binding complexity were also obtained in [84] using a discrete
set of gates. Bounds on the minimal number of non-local gates required to optimize a
quantum circuit were related in [85] to a sum (or maximum) of the entanglement entropy
over all partitions. We will discuss the relation of [85] to our results in section 6.

In the present work, we compute binding complexity for bipartite finite dimensional
systems and unveil its precise relation to the entanglement spectrum. One of the main
novelties of our approach is that we will study the geometry of binding complexity using
the so-called F} norm, which heuristically counts the number of gates required to perform
a certain unitary operation, and find precise analytic results in this case. This quantity
has received less attention in the literature because it is not a Riemannian norm, therefore
certain analytic tools are not available in this case. In addition, we show that the bind-
ing complexity computed with the Riemannian F5 norm is related to the minimal Rényi
entropy of the reduced density matrix of the state. We argue that the F; binding com-
plexity is, to some extent, independent of the penalty factors associated with the non-local
generators acting between the two parties, up to a proportionality factor coming from
the smallest of such penalty factors. We incidentally show that the methods developed
to study the binding complexity of two qutrits can also be used to compute the Fy (not

2Nonetheless, we will always require the gates to act at most on two subsystems at the same time.
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binding) complexity of a single qubit, which was missing from the previous Nielsen’s com-
plexity literature. Finally, we give lower bounds for multipartite binding complexity and
demonstrate further inequalities for some more traditional notions of complexity using at
most 2-local gates between different parts. The lower bounds are in terms of the bipartite
binding complexity of various bipartitions of the state. A detailed summary of our results
can be found at the beginning of section 7.

Outline. The paper is organized as follows. We begin in section 2 with a review of
Nielsen’s geometric approach to quantum computational complexity, and the definition of
binding complexity. In section 3, we show that the computation of binding state complexity
reduces to a problem defined on the manifold of Schmidt coefficients. In section 4, using
this general technique, we compute the norm and the binding complexity for bipartite
quantum-mechanical systems with generic dimensions. We apply the general method to
study the binding complexity for two qutrits in section 5 and show that our results can
be borrowed to study the usual notion of state complexity for a single qubit. In section
6 we derive bounds on some measures of complexity (and binding complexity) in the case
of multipartite systems. We summarize the main results and discuss future directions in
section 7. The appendices contain technical results. We derive a chain of inequalities for
the cost functions in appendix A, which are required for the derivation of section 3. In
appendix B, we consider the limit of a large number of Schmidt coefficients. In appendix C,
we derive one of the bounds on the F} complexity in the Pauli basis mentioned in section
4.2. Appendix D contains an alternative derivation of certain results presented in section
4.3 by using the Euler-Arnold formalism.

2 Complexity geometry

We briefly review Nielsen’s geometric approach to complexity [5-7] and set up the relevant
notation. The idea of this approach is to replace circuits composed of discrete gates with
continuous paths in a Lie group manifold. Complexity is then defined as the length of the
shortest trajectory in a geometry defined over this manifold, once a notion of distance is
introduced. While most of the discussions could apply to a generic Lie group, we will focus
in the following on the special unitary group.

2.1 Unitary and state complexities

Given the special unitary group SU(N), we will be interested in finding the optimal way
to construct a target unitary Ur starting from the identity by means of a time-dependent
Hamiltonian, which can be expanded in terms of a basis of Hermitian generators {17} as
follows

H(t)=) Y'(O)T1, (1)
1

where Y/ are called velocities and describe the tangent vector to a trajectory in the group
manifold. Different ways to construct the target unitary are parameterized as curves in the
space of unitary transformations with a path parameter ¢ € [0,1] such that U(t = 0) = 1
and U(t = 1) = Up. The unitary at a point on the curve is expressed as

U(t) = Pexp (—i /0 t dt’H(t/)) , (2)

where P denotes the path ordering such that the circuit is built from right to left. The time
evolution of a generic curve is determined by the Schrédinger equation U(t) = —iH (t)U (t).
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We define unitary complexity as the minimization of a cost function F[?] introduced
on the tangent space:

1
CrlU] = min /thth : 3

A= oo™ vy Jo EEE O )
The path in eq. (3) is subject to the boundary conditions imposing that it connects the
identity with the target unitary.®> The cost function should satisfy certain properties so
that it defines a notion of distance in the space of unitaries. A large class of cost functions
that we will study in this work is given by

Fp@‘[}_}] = (Z qI|YI|p> P ’ (4)
I

where qr > 0 are called penalty factors. Roughly speaking, penalties parametrize the
difficulty of moving along the various directions of the group manifold and are supposed
to model systems in which certain gates are more difficult to realize than others.

When p = 2, the cost function (4) reduces to the distance induced by the Riemannian
metric

d32 = MIJpIpJ ’ p[ - % tr (dUUTTI) ) My = dlag (QI7 s 7QN2—1) ) (5)
where p! are right-invariant forms, My is the matrix containing the penalties and we
have assumed that the generators are normalized according to tr(T!T7) = N§!7/ (that is
p! =Y!dt). When M;; = 617, the expression (5) corresponds to the Cartan-Killing metric
on the unitary group, which is bi-invariant and has positive curvature. In the presence
of non-trivial penalty factors, the metric is still right-invariant and therefore describes
a homogeneous space, but now the curvature can also be negative [62|. Indeed, negative
curvature is required to reproduce geodesic deviation [86] and the switchback effect [16, 87],
which are the standard features of complexity. When p = 1, the cost function (4) has the
physical interpretation of counting the number of infinitesimal gates being used. For these
reasons, the norms with p = 1,2 received special attention in the literature, see, e.g.,
[26, 55, 56, 62, 63, 66, 70-76], and we shall also focus on them here. Another property
of the case p = 1 is that the cost function is not smooth, and so we are not able to use
the Euler Lagrange equations or calculus of variations to find geodesic trajectories. This
makes its analysis more complicated, see e.g., [5] for a discussion on this point. In this
paper, we develop efficient techniques to overcome this difficulty.

Let us now assume that the special unitary group SU(N) acts on an N-dimensional
Hilbert space H, where |ir) is a given reference state and [i7) is a target state which
we wish to construct. The state complexity is defined as the minimum of the unitary
complexities computed for all the special unitary operators that connect the reference
state to the target state:

Crellvr) . lvr)] = Cr[U]. (6)

min
{UeG: |¢7)=UlYr)}

Recall that the space of quantum states is defined as the space of rays in the Hilbert state,
i.e., vectors differing by a phase are identified. Elements of the special unitary group that
leave a state invariant define an equivalence class

VIp) =€) = U =UV~U. (7)

3In general the trajectory in the space of unitaries will run along the time interval ¢t € [0, ¢s]. If the cost
function F[Y] is positive homogeneous of degree 1, we can always redefine the parameter ¢ in such a way
that t; = 1.
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We call V' the elements of the stabilizer of the state |t), which corresponds to the maximal
subgroup SU(N — 1) x U(1) of SU(N).* The equivalence class in eq. (7) defines a map
from the unitary space to the quotient

7:SU(N) — CPN~! =

SU(N)
SUN — 1) x U(1) " )

The procedure (6) induces a norm for the state complexity that depends only on the
coordinates of the projective space. While the concept of complexity on a state requires
the notion of unitary complexity, the opposite is not true: we can define the complexity of
a unitary without reference to a particular representation.

For a given trajectory in the Hilbert space, the minimization over the stabilizer group
can be done locally, and thus (4) induces a norm F5%%[|4)(t)) , [4)(t))] on the tangent space
of . The Schrodinger equation |¢)(t)) = —iH |1)(t)) constrains 2(N — 1) real degrees of
freedom out of the N? — 1 degrees of freedom of H. Those are the degrees of freedom
that control the evolution in the Hilbert space. Minimizing over the remaining (N — 1)2
degrees of freedom, which belong to the tangent space of the stabilizer group with respect
to |1(t)), gives the induced norm

FStateHﬂ)(t» ’ W)(t))] = sta{ﬂ%ﬁt)) F[Y] . (9)

With this definition, we can re-express the distance between states as

1
el loml) = min [ de ), 1), (10
(1)) 0
1(0)) = |¢r)
[v(1)) = [¢r)

where now we can study optimal trajectories directly in terms of a geometry on the space
of states. When state and unitary complexity are defined using the cost function (4) with
p = 2, the projection 7 in eq. (8) is a Riemannian submersion [66]. The induced metric
obtained on CPN ™! is only left-invariant for trivial penalty factors [62], in which case it is
proportional to the Fubini-Study metric.

2.2 Binding complexity

Let us now assume that the physical system is split into n subsystems, i.e., the Hilbert
space decomposes as

H=Ha @ - @Ha,. (11)

This setting is relevant to compare complexity with multiparty entanglement. Heuristically,
in a discrete model we define binding complezity as the minimal number of gates, acting
on more than one subsystem at the same time, that are needed to build the target unitary
Ur starting from the identity [3]. At the same time, we will require gates to be bi-local,
meaning that they can act at most on two subsystems at the same time. This is a special
case of the unitary complexity defined above with specific choices of penalties. Let us focus
on the case where the Hilbert space factorizes into two parts (we return to the general case
in section 6)

H=Ha®@HB, Ny =dim(Ha) < dim(Hp) = Np. (12)

4The stabilizer is defined as the subgroup of a group G that leaves invariant an element x € X, where
X is a set on which the group acts.
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Each subspace admits a basis of Hermitian traceless generators {T}, T/?} for the Lie sub-
algebras su(IN4) and su(Np), respectively.” We refer to those as the local generators since
they only act on one of the two sides of the system, and we will call local unitary (LU) the
transformations they span (in the sense of acting locally within each part). We choose a
set that is orthogonal with respect to the trace in the fundamental representation

Tr(T T = Naday,  Te(TPTP) = Npéij (13)

where N A(B) are normalization constants. We do not assume that the generators are
normalized, since we will later want to use the Pauli and Gell-Mann bases for SU(N4(p))
which oftentimes appear in the literature unnormalized.

The unitary operators that act on the entire system belong to the group SU(N4Np),
which also entails operations that can entangle the two parts. The latter are spanned by
generators of the form T4 ® TB, which we call non-local.’ The full Hamiltonian of the
system can be decomposed as

Ht) =YiOTA @18 + V()14 @ TP + YHW)TA o TP . (14)

The splitting of the velocities into the subsets Y/ = {Y4, Yé, Y%} implies a similar de-
composition of the penalty factors into the corresponding subsets q; = {qj;‘, q?, qai}, re-
spectively. Explicitly, the cost function (4) becomes

Fpdl1= | D 1Yalr + 3" aPIVEP + > qulY P | . (15)
a 1

a,

We consider the case where it is free to act on each subsystem separately, and therefore
only the non-local generators contribute to the unitary complexity. The corresponding
penalty factors are’

@=aP=c=0, qu>1l. (16)

We have chosen ¢,; > 1 rather than any other finite value without loss of generality.
This choice of penalty factors describes a framework where the implementation of gates
that entangle two subsystems is much harder than performing operations on each of them
separately, as we have discussed in the introduction.
Nielsen’s binding complexity (BC) is defined as the unitary complexity (3) with penalty
factors (16), i.e., ®
BCF[U] = lim CF[U] (17)

4 =q—0

We will focus on two norms of this kind:

SWe will usually denote the generators of the special unitary group in subsystem A with indices a,b €
{1,..., N3 —1} from the beginning of the alphabet, and the generators in B with indices i, € {1,..., N —
1} from the middle part of the alphabet. Capital indices I, J € {1,...,(NaNg)*—1} will collectively refer
to the special unitary group SU(N4Ng) of the full system. We will also denote with a sub(super)script
A, B the subsystem where the local generators act.

5In the nomenclature of [3, 84] these are the relevant or straddling gates.

"Choosing vanishing penalty factors along certain directions in the group manifold has other interesting
applications. For instance, in [88] such a choice was used to relate Nielsen complexity to Krylov complexity.

8In reference [3], Nielsen’s binding complexity corresponds to what we call the homogeneous norm
defined by the cost function (20a). In this work, we extend the definition of binding complexity to include
any choice of penalties for the non-local generators.
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e The homogeneous case assigns unit penalty factors to all the non-local generators

3=

Fppom[Y] = [ Y IYUP| (18)

a,i
e The universal-set case is defined by the cost function
FpsatlY] =Y, (19)

where the set Y does not include non-local gates other than Y1 This corresponds to
the scenario where all the non-local generators are forbidden, except for a single one
(with velocity Y1) which, together with the local generators, can be shown to form
a universal set of gates (the subscript set stands for universal set of gates). In this
way, it is still possible to reach all the unitary operators in the group SU(NsNp).
We immediately see that F), st is independent of p; therefore, it is sufficient to study
one special case to get information about all the other values of p.

It is possible to recover these norms as formal limits of the cost function (15) as follows:

1
P
Fpnom[Y] = lim | > e[VAP + 3 elVEP 4+ V| (20a)
a i a,
1
Fpsrsa[Y]= lim | 3 elVAP+ ) elVplP+ 3 qulY™P+ Y| . (20b)
Gai—00 a i (a7i)7£(171)

In the latter case, we relied on the results in [89], where it was shown that the formal
Qui — oo limit forces the geodesics in the group manifold to live in the subspace of the
tangent bundle where the directions associated to the penalties g4; are excluded.’

By applying the general definition of state complexity (6) to the case with penalty
factors (16), we get the binding complexity in the space of states

BC[|ypr) | [r)] = BCr|U]. (21)

min

{UeSU(N): [r)=Ulyr)}
Although the space of states has fewer coordinates than the unitary group manifold, it
is not homogeneous and the minimization procedure quickly becomes difficult to perform
with the increase of the dimensionality [67]. However, a special feature of the current
setting is the decomposition of the Hilbert space into a product according to eq. (12).
This fact, combined with the assignment of vanishing cost to local operators, will reduce
the computation of binding state complexity to the evaluation of geodesics on the group
manifold SO(Ny4), as we will show in section 3.

In reference [89], the authors performed the limit g,; — oo, while at the same time keeping qaiY®
finite (equivalently, they kept the Hamiltonian bounded in operator norm) in order to recover the quantum
brachistochrone equation by starting from the Euler-Arnold equations [90]. The application of this pre-
scription gives ga:|Y**|P — 0 in eq. (20b) for all p > 1. In this work, we will not make explicit use of this
limit, instead we will directly assume that certain directions in the tangent space of the group manifold
are forbidden.
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3 The orthogonal group picture

Our main task is to compute the binding state complexity (21) for a bipartite system (12)
and eventually relate this quantity to the entanglement spectrum. We will show that the
relevant group manifold for this analysis is the orthogonal group SO(N4), defined with
respect to the maximal number of Schmidt coefficients N4 characterizing the size of the
smaller of the two subsystems. This section is the main core of the work since it contains
the general strategy that we will apply in order to study all the specific cases presented
later.

As we are interested in the state complexity, the norms expressed before should be
minimized over the stabilizer group of the state at any given point in the trajectory in
the manifold of unitaries and eventually expressed in terms of the degrees of freedom of
the state. Given the decomposition of the Hilbert space (12), a natural and convenient
parametrization for any state along a trajectory in the quotient space is given by the
Schmidt decomposition

Na
W) = > Am(t) [om(D)xm (1)) (22)
m=1

where A\, (t) (called Schmidt coefficients) are real and positive numbers, and |, (t)) , | xm (t))
form orthonormal linearly-independent sets for the Hilbert spaces H 4 and H g, respectively.
With some abuse of notation, we will later refer to (¢, xm) as basis parameters.'’ Note
that for the state to be normalized, the Schmidt coefficients should lie on a sphere, i.e.,
S A2, =1, and thus only N4 — 1 of them are independent. Any entanglement monotone
on a bipartite system, when evaluated on pure states, can be written as a function of the
Schmidt coefficients [91].

In the context of binding complexity, local operations (which act only on one subsystem)
play a special role. It is then convenient to introduce the following terminology: two states
1), [') belonging to the Hilbert space (12) are called local unitary equivalent (LUE),
denoted as |1)) e |t'), if there exists a local unitary transformation mapping one into

the other:
) ~ [¢) & [)=Us0Uply). (23)

LUE

This relation defines an equivalence class whose representative is denoted with [|¢)].

Starting from the unitary group manifold SU(N4Np), we now argue that the evaluation
of binding state complexity reduces to a problem defined in the special orthogonal space
SO(Ng4). We refer to this setting as the SO(N4) picture. We will show in sections 3.1
and 3.2 that the problem eventually depends only on the Schmidt coefficients. Then we
summarize the main steps of the procedure in section 3.3 and concretely apply them to a
system composed of two qubits in section 3.4.

3.1 Reduction to a minimal set of parameters

We consider reference and target states defined by the Schmidt decompositions
Na Na B B
Wr) = > Amldmxm) 1) =3 A [mm ) (24)
m=1 m=1

and we study the binding state complexity BCS2*[|s7) , [1r)] induced by any F-norm of
the form (15) with penalty factors (16). A trivial consequence of the zero cost assigned to

10Gince N4 < Np, generally the set ‘Xm> does not form a complete orthonormal basis for H g, but rather
an incomplete one.
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local generators is that the complexity of moving between LUE states vanishes

[Yr) ~ lor) = BCE[lyr), [¥m)] =0, (25)
because we can connect the states using a path generated by local operators only, which
have zero cost. We depict a generic trajectory in the space of states given by eq. (22) in
fig. 1(a). In the figure, we represent classes of LUE states as horizontal red lines. Those
are null directions, along which the distance vanishes. It is important to remark that this
statement is not only valid infinitesimally, but even when the parameters (¢, xm) of the
basis undergo a finite change, see fig. 1(b).

A > B A > \p+ddd> B

t A 3
/
/ 1> . [~e>

2
{ LVE LVE
Ne> XA XY

(a) (b)

Figure 1: (a) Continuous path in the space of states B given by eq. (22). The vertical line represents
different values of the Schmidt coefficients A,, which parametrize the equivalence classes of LUE
states, while the horizontal axis corresponds to variations of the parameters (¢, xm) of the basis.
(b) The red lines represent the set of LUE states defined in eq. (23). Those are regions where the
distance between two states vanishes, either when the trajectory is infinitesimal (path 1) or when
there is a finite variation of the parameters of the basis (path 2).

Consider now the induced norm F®%*¢ on the Hilbert space, introduced in eq. (9).
Along a generic path in the space of states defined by the Schmidt decomposition (22), we
schematically denote the dependence of this norm on the parameters of the basis as'!

FStateH¢(t)> ’ ‘w(t))] = g(Ams Py Xms )'\ma Q‘sma Xm) - (26)

Let us focus on any F-norm with penalty factors (16). Since we assign vanishing penalty
factors to local generators, which control the change in (¢, Xm), the norm (26) cannot
depend on the direction of the tangent vector in that subspace:

F2[gp(t)) , [9(£))) = g (A, by Xoms Am) - (27)

However, notice that the line element depends on the parameters (¢, Xm), implying that
there is no translation invariance along these directions. Pictorially, this corresponds to
the fact that the paths 24 and 2B in fig. 2 have different lengths, while the infinitesimally
close paths 1A, 1B have the same length.

Binding state complexity, as defined in eq. (21), requires minimizing the distance among
all the possible trajectories connecting the reference and target states. In particular, the
identity (27) implies that the parameters (¢, xm) in the Schmidt decomposition (22)
become non-dynamical degrees of freedom in the geodesic minimization. For this reason,
the norm we obtain over the space of states, as per (10), can be minimized locally in terms

"1n writing the expression in this form (where it only depends on the parameters of the states) we have
already performed the minimization over the stabilizer in eq. (9).
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Figure 2: Label 1 refers to infinitesimal paths, while label 2 to trajectories with finite variations
of the parameters (¢, xm) of the basis. Consider reference and target states with infinitesimally
close Schmidt coefficients A, and A, + d\,,. The length of the infinitesimally close trajectories
1A, 1B is the same. Instead, the length of the paths 24,2B is in general different. Therefore the
metric is not invariant under translations along (dm, Xm)-

of the parameters of the basis ¢y, (t) and x,,, () to give a norm just in terms of the Schmidt
coefficients A, (t) and their differentials.'?

We shall denote this norm as BF. More formally, for any F-norm with vanishing cost
associated with local generators, we define

—.

BFX,X| = Wmin)FStateW(t))7\1/}(t)>] = min F[Y], (28)
mXn stab. [1(t))

where miny, .y is a minimization over the non-dynamical degrees of freedom in the possible
bases in the Schmidt decomposition of the state [¢(¢)). The combined minimization on the
right-hand side amounts, essentially, to minimizing over all control parameters Y and all

basis parameters with the constraint of a prescribed change X(t) of the Schmidt coefficients.
The last term in the definition (28) describes the procedure we are going to follow in the
next sections.

Using the definition (28), the complexity (21) (see also eq. (10)) can be expressed as

Belvr) Wl = min [ atBFIS

© (29)
(0) =
(1

NS yiE

Xr
=7

>l >’l

where X r and XT are the vectors of Schmidt coefficients of the reference and target states.
We see that binding state complexity can be reduced to finding geodesics in the space
of Schmidt coefficients. The boundary conditions for the reference and target states are
given in terms of the equivalence classes introduced in eq. (23). In order to describe the
trajectory in the full Hilbert space that takes us from the exact reference state to the exact
target state, we will perform a finite LU transformation (of zero cost) at the beginning
and at the end of the trajectory selected by the parameters of the basis that minimize the
norm above. We discuss this further below.

3.2 Relation to the orthogonal group

Given the definition of BF in eq. (28), we study the dependence of the evolution of the
Schmidt coefficients on the parameters of the basis and on the Hamiltonian. First, we find

12This is similar to partially solving the equations of motion for certain non-dynamical fields in QFT,
whose momenta do not appear in the action, to obtain an on-shell action for the remaining fields.
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from the conservation of the norm under unitary time evolution that

<¢m(t)Xm(t)| at (|¢n(t)Xn(t)>) + 8t(<¢n(t)Xn(t)|) |¢m(t) (t)>
= Omn (<¢m(t)’at¢n(t)> + <8t¢n(t)’¢m(t)> + <Xm(t)|8tXn( )) + <atXn( )’Xm(t») = (30)
=0 (<¢n(t)|¢n(t)> + <Xn(t)‘Xn(t)>) =0.

In terms of the state defined in eq. (22), the previous identity implies

)\n(t) = <¢n(t)Xn(t)|8tw(t)> + <8t¢(t)’¢n(t)><n(t)> . (31)

Using the Schrodinger equation and the general decomposition (14) of the Hamiltonian,
we find

Aa(t) = Tm((¢n () xn (1) H (2) Z/\ £) T ((@n (E) xn ()| H (£) [P (£)xm (1)) =

= ZA £) T ({n () xn ()| V' (2 )Tf®T¢B |m (£)xm (1)) -

(32)
Note that local generators do not contribute to the change of the Schmidt coefficients,
i.e., it is necessary to use operations involving both sides of the system (that create non-
trivial entanglement) to modify them.'® In summary, BF is computed by minimizing F [?]
over all the parameters of the basis and over all the degrees of freedom of H that respect
eq. (32).

We now proceed to show that the problem reduces from the group manifold SU(N4Np)
to SO(N4). The previous manipulations naturally related the Schmidt coefficients to a
matrix R such that

}\m = Z Rmn)\n ) (338‘)

R (t) = In((@m(O)xm (O Y (DT © T |60 (t)xn(1))) - (33b)

Since Ry, (t) is real and antisymmetric, it is a generator of rotations of the special orthog-
onal group SO(N4) on the sphere of Schmidt coefficients. In other words, the constraint
(33b) identifies a set of dim(SO(N4)) = $Na(Na — 1) degrees of freedom, which are rele-
vant for the evolution of the Schmidt coefficients in eq. (33a). Note however that this is less
than the number of independent degrees of freedom in Y, (¢), which is (N3 — 1)(N3 — 1),
as long as N4 > 2. This means that multiple different values of the velocity vectors are
associated with the same matrix R,,,.

As we mentioned earlier, around eq. (28), our final goal is to obtain a norm in terms
of the Schmidt parameters. We can simplify the minimizations in eq. (28) by taking an
intermediate step in which we minimize the norm F over the velocities Y (¢) and basis
parameters ¢, (t), xm(t) subject to the constraint that these parameters yield a fixed ro-
tation generator Ry, (t) at any point along the trajectory according to eq. (33b). In this
way, we obtain a norm BF(R) in terms of the parameters of the matrix R. By having to
deal with BF(R), instead of a norm on the Hamiltonian of SU(N4Np), we say that we
have reduced the problem to SO(N4).'

13This statement does not rely on the choice of penalty factors in the cost function, but it is simply a
consequence of the time evolution of the Schmidt decomposition.

1By referring to the reduction of the problem to SO(N4), we mean that the matrix R, defined in
eq. (32) and all the relevant degrees of freedom belong to are anti-symmetric and therefore belong to the
algebra of SO(N4). However, it is worth emphasizing that Ry, is defined through the velocities and the
generators of the full SU(NsNg) group. The precise problem that we are solving will be summarized in
section 3.3 and the reduction to SO(N4) that we refer to is completed after step 3.
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We then perform an additional minimization over the set of matrices R which generate

a given change X in the Schmidt coefficients A according to eq. (33a). This step amounts
to minimizing over the stabilizer group of X within SO(N4).

To perform the minimization of the basis parameters as in (28), we can re-express
Ry, in terms of a specific Hilbert space basis |m),|m) of our choice using |¢m,xm) =
Uy ® Ug|mm), where Uy, Up are unitary operators acting in the respective subsystems.
This implies

Ry = Im ((min| Y () (Adya) S(Adys) /T @ TP |nn)) . (Ady)f Ty = UTT U . (34)

The adjoint operators implement the LU transformations and can be reabsorbed into the
velocities. In this way, the generator of rotations (33b) becomes

Vb = YU (Adpa) l(Adye)! ., Rpn = Im((mm| YO ()T @ TP |ni)).  (35)

In terms of the parameters in eq. (35), the cost function (18) becomes

P

Fpnom[V] = | X [74(Adya)d(Adys)/

bj

(36)

Minimizing the above equation over all adjoint operators and all the Y that respect the
constraint (35) will give a norm in terms of the parameters of R, that is:

p)% . (37)

BFp hom(Fmn) = YffﬁélU Z (’YC” Adya)(Adys)!

The final result pryhom(X, X) is then obtained by minimizing (37) over all matrices R
satisfying (33a).

We conclude this section by stating an important matrix inequality which will be useful
for the evaluation of binding state complexity for the F pom norm:°

2 X (V) 2 L7, (38)

mln Z ‘ y* AdUA ) AdUB

where ", aa(f/) is the nuclear norm, which sums the singular values of the matrix Y. The
technical proof of this result is reported in Appendix A. When further minimized over
all Y with the appropriate boundary conditions (35), the first term on the left-hand side
becomes the BF| hom(Rmn) norm in terms of the matrix R and the inequality (38) provides
the following lower bound

BF thom(Rmn) > min Y[V (39)
Y: Rpp is fixed 7

We will find in section 4.1 that this inequality is actually saturated, at least when consid-
ering the Gell-Mann basis for the generators of the unitary group, see eq. (55). In this way,
we will be able to derive exact results for the binding state complexity with the Fi pom
norm.

5The index a goes from 1 to N2 — 1, even if Y is rectangular, see appendix A. Since the nuclear norm
is invariant under rotations, Y can be replaced in the rightmost-hand side by any OaY Op, where O are
orthogonal matrices, yielding other equally valid inequalities.
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3.3 Summary of the procedure

Based on the previous analysis, we outline the steps that will be followed in the remainder
of the paper to compute binding state complexity for a bipartite system with Hilbert space
(12):

1. Specify a basis for the generators of SU(N4),SU(Npg) and define the reference and
target states in the Hilbert space.

2. Impose that the rotation matrix R,,, is given by eq. (35), and solve for as many
velocities Y% as the degrees of freedom encoded by this orthogonal matrix.'¢

3. Plug the solution inside the desired cost function of the form (15) with penalties (16)
and minimize over the remaining velocities Y* and the adjoint of the local operators

UA,UPB to obtain BF(Rup).

4. Solve the evolution equation for the Schmidt coefficients (33a) and minimize over the
remaining degrees of freedom inside the stabilizer of SO(N4) to obtain BF (X, X).

5. Minimize fol BF(X, X) dt with boundary conditions X(0) = Xg, X(1) = Ap to find the
complexity.

3.4 Example: two qubits

Before diving into the general analysis, we exemplify our method in a simple setting:
a system composed of two qubits, split into two subsystems of one qubit each. In the
following, we specify the step numbers according to the list outlined in section 3.3 above.
We will treat in turn the cases of the F yom and Fb o, norms. Steps 1 and 2 are actually
independent of the norm used, except for the fact that the norm F»y,om does not depend
on the choice of basis of generators of the unitary group.

Step 1. The basis of generators for the SU(2) group acting on each qubit separately is
given by the Pauli matrices, therefore the Hamiltonian of the full system reads

Ht)=Yit) o2 012 + Vi) 14 @ o + Y () ot @ 0P . (40)

From now until the end of the section, we will omit the superscripts referring to the
subsystems {A, B}, since the generators for the two copies are the same. We denote the
eigenstates of the Pauli matrix o, by {|1) = [1),]2) = [|)}.!” and define {|1),[2)} =
{|1),7|2)} which will serve as a convenient basis for the Hilbert space of the second qubit.
We fix the reference state and allow for a generic Schmidt decomposition of the target state
parametrized by a real angular coordinate 6

Wr) = 111) . br) = cos8|érxa) + sinf|2¥a) | (41)

where ¢, Xm (With m = 1, 2) denote a fixed basis determined by the Schmidt decompo-
sition, which is related to the computational basis |mm) by LU transformations. These

18 There always exists a solution to this equation if we allow a large enough set of non-local generators in
our control Hamiltonian. However, the procedure may fail when the set of generators is not large enough.
This will be the case for the universal-set of gates, which we discuss in detail in section 4.4. There, we will
use a different strategy than the one described here.

"The eigenstates of the matrix o, are more commonly denoted by {|0),|1)}, but here we have used
indices starting from 1 to maintain consistency with the range of indices in eq. (24).
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states fix the boundary conditions for any trajectory. At each instant in the time evolution,
the state can be expressed as

[9(t)) = cos O(t) |pr(t)xa () + sin O(t) [d2(t)x2(t)) , (42)

identifying the Schmidt coefficients A1 (t) = cos0(t) and Aa(t) = sin 6(t) in terms of a single
parameter.

Step 2. As explained in section 3.2, we identify the relation between R, the generator
of rotations of the Schmidt coefficients, and the Hamiltonian. This determines the degrees
of freedom in the Hamiltonian which are relevant for the problem. The SO(2) rotation
generator has only one degree of freedom that we parametrize as R = v(t) ioy (here oy is
understood to act on the vector of Schmidt coefficients). The constraint on the control
parameters of the Hamiltonian in terms of R (35) reads

G (1) xm ()| Y ¥ ()00 © 07 \%(t)xn(t») =
min| Y (t)o, @ o |nn>> =

Y'22(t )( m16n2 - 5m25n1)

Yoo (1))i(0y)mn

In the first line, we used the definition in eq. (33b). In the second line, we redefined the
matrix of velocities using an LU transformation on the basis elements according to eq. (35),
and we computed in the third line the non-vanishing elements. Finally, in the last line, we

recognized the appearance of the Pauli generator o,.
Binding state complexity requires to minimize the F-norm under the constraint

}711(75) — }722(75) = ’U(t) . (44)

Ry = 0(8)i(0y)mn = T (

tmn
= (Y1
= (Y11

(
< (43)
t
t

() — Yoo (1)
() — Yao(t)

BF1 hom norm

Step 3. Using the inequality (39), we find

BF1 hom(Rmn) > mln (!Yu\ + |Yoo| + !Y33\) = leél (\3711! + | —v(t) + Y| + \?33\) = |v(t)].

11,133
(45)
The lower bound, together with the constraint (43), can be attained, for instance, by the
following Hamiltonian
H(t)=—v(t)o, ® 0y, (46)

and by choosing U4 and U® to be the identity in eq. (35). We will, of course, require
an additional LU transformation at ¢ = 1 to reach the exact target state. This shows
that the minimization problem reduced from the group manifold SU(2) to SO(2), with
BFl,hom(Rmn) = ‘U(t)‘

Steps 4 and 5. Finally, we should minimize the norm over the directions of the stabilizer
of the Schmidt vector A(£) under the constraint (33a). Since in this case R and X(¢) depend
on a single parameter, the minimization is trivial and we find |v(t)| = |(t)|, where 6(t)
was introduced in eq. (42). We then conclude that BFj pom = |0(t)]. One can argue that
the geodesic for this norm does not flip the sign of é(t), since backtracking in 6 will only
elongate the integrated trajectory. Therefore a direct integration gives

BCupom[lUr)  [Yr)] = 16],  with |6] < 7, (47)
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where the restriction on the angle comes from the fact that we can always use a free local
unitary transformation to rotate ¢ — 6 + 5. We notice that the maximally entangled
state, precisely achieved when 6 = 7/4, is also maximally complex. Finally, we remark
that related results were obtained in [92] by evaluating the minimal time to entangle two
qubits under certain constraints.

Trajectory in the Hilbert space. Since the binding complexity (6) associated with
the norm (20a) is invariant under time reparametrizations (see footnote 3), we can actually
choose 6(t) = 6t, such that the velocity is simply a constant along the trajectory v(t) = 6.
The trajectory of the state under the Hamiltonian evolution will first reach an intermediate
state in the Hilbert space

Gr) = Bt h IO ) = ity | H =00, @0,, (1)
where |¢br) is related to the exact target state |¢7) in eq. (41) by a LU transformation.
Explicitly, the trajectory of the state generated by this Hamiltonian is given by

[Pp(t)) = cos(6) [11) +isin(0t) 22) ,  [(0)) = [¥r) ,  [¥(1)) = ).  (49)
To reach the exact target state, a final costless (instantaneous) LU transformation is needed
at t = 1 such that U @ V |mm) = ’gz_ﬁmxm>
We observe that the Hamiltonian which generates the trajectories with minimal length
is not unique. For example, another choice would be H = a0, ®0y+bo,@0,, where a and
b are positive and a + b = 6.'® The trajectories obtained with this class of Hamiltonians
will differ from the path in eq. (49) by the basis used for the Schmidt decomposition and
will require a different LU transformation at ¢ = 1 to reach the exact target state.

BF2hom norm

Step 3. To obtain the complexity according to the Fjpom norm, see eq. (20a), we use
the following chain of identities:

- ~ ~ 1
BFaom = min \/Var¥as = min /¥, + (Vi1 — (1)) = —5 @l (50)
11

The first step exploits the invariance of the norm under orthogonal transformations ¥ —
OAY OPB. The second step uses the constraint (44) and involves a minimization over all the
velocities except Y11, which is minimized in the last step. The minimum value is obtained
when Yi; = —Ya; = v(t)/2. Choosing the reference and target states in eq. (41), we find
that a unitary connecting them with cost (50) is given by

- i 0
) =€ Htle>L o H=—5(eo—0,00). (51)

where again a final LU transformation is needed to go from [¢7) to |¢7).

Steps 4 and 5. Steps 4 and 5 are trivial like in the previous case, because the problem

has only one degree of freedom. We can again identify v(¢) = —6 and compute the binding
complexity

S ate 1

B3 1o} o)) = [ di— 1ol = ol (52

This result is smaller by a factor of /2 with respect to the complexity associated with the
F1 hom norm.

18 At the price of being pedantic, let us comment that this Hamiltonian defines the values of Yi(t), not
those of Y**(¢) in eq. (43).

Accepted in {Yuantum 2024-07-23, click title to verify. Published under CC-BY 4.0. 16



4 Results for arbitrary qudits

We apply the strategy outlined in section 3.3 to study the general case of two subsystems
described by the unitary groups SU(N4) and SU(Npg). One can interpret this setting as
composed of two qudits.'” Alternatively, when N A(B) = 2"A(®), we can interpret the system
as a spin chain split into two parts. We will be following the general discussion in section
3.1 and specifying the step numbers according to section 3.3. The results for the Fi hom
norm depend on the choice of basis of generators used in decomposing the Hamiltonian (1).
Therefore we conduct our analysis in the context of specific examples of bases. We first
study the Gell-Mann basis of SU(N) where we have better analytic control in section 4.1.
We discuss the Pauli basis in section 4.2 where, in several cases, we can present bounds
for the Fi phom complexity. Our results for the Fjpom norm, discussed in section 4.3, are
(up to an overall constant) independent of the basis of generators and are therefore valid
for any basis. In section 4.4, we demonstrate that our results for the binding complexity
using the F} norm are, to some extent, insensitive to the assignment of penalty factors to
the non-local generators.

Step 1. The minimal set of parameters required to study binding state complexity is
given by the Schmidt coefficients and their differentials. We can then specify the reference
and target states by the set of Schmidt coefficients

5"I”ef:<1707"'70>7 5"tar:(5\175\27"'75\]\7,4)7 XIZS\QZES\NA (53)

We will always take the reference state to be factorized, |¢ref) = |104) ® |¢B), so that it has
only one non-vanishing Schmidt coefficient equal to 1. For the target state, we can always
assume (modulo a local unitary operation) that the coefficients are positive real numbers
and ordered from largest to smallest as indicated in (53).

Choice of basis for the generators. Consider the bases {T:'} and {T}®} for the
algebras su(N4) and su(Ng), containing N3 — 1 and N3 — 1 generators, respectively. The
basis for the unitary algebra su(N4Np) of the full system is built by taking the set of
(NANgB)? — 1 generators

TAe1?, 14e1P, T1ieTP. (54)

In the following, we will consider two possibilities for the basis T;EE)B ) of each subsystem:

(1) the basis of generalized Gell-Mann matrices or (2) tensor products of Pauli matrices.
These two possibilities coincide for the case of SU(2) discussed above when Ny = Np = 2.
Let us start with the generalized Gell-Mann basis.

4.1 BFinom norm with the Gell-Mann basis

The so-called Gell-Mann basis of generators of the special unitary group SU(V) is a natural
generalization of the Pauli matrices to describe qudits, the information units of higher
dimensional quantum computing [93]. The basis is defined by

(T%)kp = [K) (Dl + [p) (K f1<k<p<N
Tehop) = § (T)kp = i ([F) ol = Ip) (K]) if1<p<k<N (55)
(T9)ip = xRk + 1) (R + 1+ 25 ) ) f1<k=p<N,

9 Qudits are invariant under the SU(d) group and model atomic systems with d excited states. Qutrits
correspond to the case d = 3.
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where |p) denotes a fixed basis in the Hilbert space, and the three cases in the previous
list generalize the Pauli matrices o, 0,0, respectively. The N 2 _ 1 generators are la-
belled using the indices k,p € {1,2,..., N}, with the only constraint that we cannot have
k = p = N. The generalized Gell-Mann matrices form an orthogonal basis normalized as
Tr<Tc(k,p)Tc(m,n)) = 20kmOpn- It is sometimes convenient to label the basis using a single
index, defined by

c(k,p)=N(k—-1)+p. (56)

We build the basis for the algebra su(N4Np) generating unitary transformations on the
full system by combining the generators according to eq. (54). The bases of the Hilbert
spaces of the systems A and B (12) will be denoted with |p), |p), and the associated Gell-
Mann matrices will take the form (55) with or without tilde, respectively. Of course, as
implied by this notation, the bases |p) , |p), used here to define the Gell-Mann matrices will
be the same fixed bases used in eq. (34)-(35) to define Y.

Step 2. We now set up the constraint equations in the SO(Ny4) picture (see section 3.2)
starting from the rotation matrix R, defined in eq. (35). Since R,,, is antisymmetric,
there is not any contribution of the diagonal generators (those with m = n), either in
the subsystem A or B or both. Furthermore, since the expression (35) involves just the
imaginary part, only non-local generators of the form 7% ® TY and TY ® T* give rise to
non-vanishing contributions.?’ Assuming m > n, we get?!

Ry = T (72| Vi) e, Loty © Togy I77)) = Vi) ety + Ve tmany - (57)

In this notation, the velocities Y form a matrix with collective indices c(a,b) and c(i, 7).
Notice that (T, p) form a subset of SN4(Na — 1) Gell-Mann matrices that generate
the orthogonal subgroup SO(N4) (they are angular momentum operators in Cartesian
coordinates). Therefore, we can write

Na
R=—i Y  Run(TY%,)". (58)

m>n=1

We now perform for convenience an orthogonal transformation OP € SO(N% —1) to define
a new matrix of velocities Y/ = YOP, such that the constraints (57) are written only in
terms of diagonal elements of Y’ as®?

Y;:,(m,n),c(m,n) c/(n,m),c(n,m) = Ry, (m > n) : (59)
The constraints (59) are the starting point to study binding state complexity in a system

composed of two qudits (or equivalently a spin chain when N4 is a power of two) using
the Gell-Mann basis.

20Note that in the two qubits example in section 3.4, we had, unlike here, a relative phase between the
bases of the two systems, and therefore the generators that came into play were o, ® o, and oy ® oy.

2! Assuming instead n > m will give the same result up to an overall minus sign, as it should from the
fact that Ry, is anti-symmetric

2Explicitly, the relevant matrix is Ogi,j),c(k,l) = 6,;,10j,k, where here the indices i, j, k,l run over the
range 1,...,Np.
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Step 3. Using the inequalities (38)-(39) and the observation that the nuclear norm is
invariant under an orthogonal transformation (applied separately on the left or right), i.e

S, 0a(Y) =3, 04(Y"), we find the following bound

Bfl’hom(Rmn) = Y Rgilrllb fixed Z a(Y') 2 RS}LIIIIS fixed £~ Z | c(m,n),c(m,n) |
(60)
>Y’ Rmnnllsﬁxed Z:n’ Cm”)cmn|+| c(n,m),c(n,m mz;n|Rmn|

where the velocities Y’ were defined below eq. (58) and the minimization is subject to the
constraint (59). In going from the first to the second line, we used a trivial bound based
on excluding m = n terms from the summation. In the last step, we performed the explicit
minimization over Y’ using the constraints (59). One can check that the lower bound,
together with the constraint (57), can be achieved by using, for instance, the optimal
Hamiltonian??

H = Z RmnTc?m,n) ® Tct(?n,m) ’ (61)

m>n

and by choosing U4 and U® to be the identity in eq. (35). We will, of course, require an
additional LU transformation at the end of the trajectory to reach the exact target state.
Therefore the minimization yields

B-Fl,hom(Rmn) = Z |Rmn’ : (62)
m>n

We note that R,,, rotates a point along the plane spanned by the m and n Cartesian
axes. This means that the problem now has the interpretation of the minimal sum of
(absolute values of) rotation angles needed to reach a given point starting from the pole on
a unit sphere, where the rotations are restricted to planes spanned by all pairs of Cartesian
axes. To illustrate this point further, for a unit sphere embedded in three dimensions, the
equivalent quantity is the minimal sum of absolute values of rotation angles, where only
rotations around the z, y and z axes are allowed.

Step 4. To perform the minimization over the stabilizer group and find the state com-
plexity, we need to solve eq. (33a), which in this setting reads

> RumAm = > RonAm = A (63)

m<n m>n
There are N4 — 1 independent equations (recall that the Schmidt coefficients live on the
sphere) and a total of $No(N4 — 1) independent velocities Ry,,. Let us enumerate the
different velocity components in terms of a single index R, with o € {1,..., A Na(Na—1)}.
We can, without loss of generality, solve the equations above for the first N4 — 1 velocities
and express R, for o € {1,..., N4 — 1} in terms of the velocities Rg for B > N4 (if the
equations cannot be solved for the first N4 — 1 velocities, just enumerate them differently).
Inserting the solution back into the F} yom norm from eq. (62) gives

_’ _’ NA_]- ) NA(NAfl)/Q
BF1 hom(A, A) = min Z |Ryn| = mln Z |Ra(Amy Ams Rp)| + Z |Rs| | ,
stab =0 a=1 B=Na

(64)

230ne can check that in the two-qubit case presented in section 3.4, the Hamiltonian (61) degenerates
to H = 0o, ® oy, which connects the reference state |1)g) = |11) to the generic target state [(r) =
cos 0 |11) + sin 0 ]22) , where we have chosen the basis ‘i> = |1) and |Q> = |2). In particular, this H is
optimal because it gives the same binding state complexity as evaluated in eq. (47). This is a Hamiltonian
in the class described below eq. (49).
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where the minimization “stab” refers to step 4 in section 3.3, and allows us to express the
norm in terms of the Schmidt coefficients. To minimize over a single Rg, we notice that
the right-hand side of eq. (64) is a piece-wise linear positive function, so the minimum
must be at the points where one of the arguments of the absolute values vanish, i.e.,

Rs=0 V  Ra(Am,Am,Rs) =0. (65)

Reiterating this process for all the Rg-s amounts to setting any selection of (N4 —1)(Na —
2)/2 of the above absolute values to zero. Of course, we then have to take the absolute
minimum among all these choices. In other words, we should solve eq. (63) with only
N4 — 1 non-vanishing velocities, when the rest of the velocities are set to zero. Then we

substitute the solution, in terms of X and X, into the sum over the absolute values of all
velocities and we finally take the minimum over all choices of those N4 — 1 non-vanishing
velocities out of the N4(N4 — 1)/2 velocities.

Let us now show that the minimum of (62) is obtained by setting to zero all the

velocities other than Ry, in eq. (58) subject to the constraint (63) with given X and X.
In other words, the following matrix minimizes the norm, at least for points on the sphere
that are not too far from the reference state Ay in eq. (53):

Ny
Ropt = —i Y w (T, 1) (66)

m>1

The requirement to solve (63) fixes

A

m = Rm :7m, 1),
w = (m>1) (67)
Rmnzo, (m>n>1).

Let us first motivate this ansatz. At the start of the trajectory, all (1Y), , with m,n > 1
are members of the stabilizer subgroup of rotations of the vector of Schmidt coefficients.
Therefore, the use of these generators in R will not influence the constraint (63), but they
will increase the norm and so there is no point in using those generators in R. When
we are slightly away from the start of the trajectory, these generators are still close to
the stabilizer, and so are less efficient than (7%),, 1 in modifying the Schmidt coefficients.
Intuitively, this suggests that the same velocities will also be set to zero for a region on
the Schmidt sphere that is close enough to the reference state. We will prove that this is
the optimal solution also away from the pole, as long as A2 + A3 < A1 (assuming that the
Schmidt coefficients are ordered in decreasing order).

Let us now prove that eq. (66) gives the optimal matrix R for the minimization of the
norm. We compare the norm computed using eq. (66) to any other choice of R subject to
the constraint (63). A generic option for R can be expressed as

Na
Rgen=—1 Y ma(TY,)", (68)

m>n=1

where vy, , form another set of velocities. By comparing Roth = Rgenx defined in egs. (66)
and (68), we can express the velocities wy, in terms of v as

Wy = )\11 (Z Vmn.nAn — Z me)\n) m>1. (69)

n<m n>m
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The difference between the F} jom norm using the two different rotation matrices reads

Na Na Na
S el = S ] = S (o (1= 222 (70)
A1

m>n=1 m>1 m>n>1

where we used the identity (69) and applied the triangle inequality to the second sum on the
left-hand side following this replacement. We see that for a region on the sphere in which
An + Am < Aq, for any m > n > 1, this expression is positive (since we take the Schmidt
coefficients in a decreasing order, this region amounts to A2 + A3 < A1). Therefore the
matrix Ropt proposed in eq. (66) indeed minimizes the norm for this region on the sphere.
The B]-' 1,hom Dorm then takes the following form in terms of the Schmidt coefficients A,
and A\,

A fdAm| A dAm

BFl,hom dt = Z ‘wm|dt Z A\ Z

— (71)
m>1 m>1 m>14/1 — Zn>1 )\2

where A1 is the maximal Schmidt coefficient, and in the third equality we used the solution
for the velocities wy, given in eq. (67). This cost function defines an infinitesimal distance
in the space of Schmidt coefficients, and the length of its geodesics computes the binding
state complexity.

Step 5. Next, we compute the geodesics connecting the reference and target states (53)
in this geometry. Let us first show that for the shortest path, d\,, > 0 for m > 1 at all
points along the path. We will prove this by contradiction. Let us assume that, for a
trajectory parameterized by A(t) with X(0) = Xt defined in eq. (53), there exists some
range of time (t9,t4) during which )\m(t) < 0, while A, > 0 for ¢ < t5. Then there must
exist two times t; and t3 such that t1 < to < t3, for which A, (t1) = A\ (t3) < A (t) for
t € (t1,t3). The factor of (1 — Zn>1 A\2)~1/2 entering the norm (71) is a monotonically
increasing function of the Schmidt coefficients, thus there is a shorter trajectory such that
Am(t) = A (t1) = A (t3) for t € [t1, 3], contradicting the assumption.

Since the Schmidt coefficients are arranged in decreasing order, the possible candidates
for the geodesics are trajectories in a region defined by Ai(t) > Aa(t) > -+ > Ay, (), and
have, as shown above, A, > 0 for all m > 1. Consider the following piecewise smooth
trajectory A9, (t):

(1,0,...,0 <\/1— NA—l)ANA,)\NA,...,/\NA)
R <\/1 N~ (Na— 2%, 1AWt s, xNA) (72)
—)--'—)(5\1,5\2,...,5\NA),

where in the p-th step, the differentials satisfy d\,,, = d\, form,n € {2,3,...,Ng—p+1}
and d\,,, = 0 for m > Na — p + 1.2425 We will show that M\, (¢) is the geodesic.

First of all, let us explain how the trajectory works. The first Schmidt coefficient is
always fixed by the normalization condition 3", A2, = 1. In the first step, all the other non-
vanishing coefficients are increased at the same pace until the lowest coefficient reaches the
target value Ay - After that, the last Schmidt coefficient stops evolving and we continue

24Note that for states where certain Schmidt coefficients do not appear in the final state, these Schmidt
coefficients will also be turned off along all the trajectory.

Z5The specification of the relation between the different differentials, rather than the precise time depen-
dence, is enough to find the complexity due to the reparametrization invariance of the integrated norm.
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to increase the other ones at an equal rate until they reach the next-to-minimal value
AN .—1. Then also the second-to-last coefficient stops evolving, and we repeatedly apply
this method until the target state is reached.

We now prove that the trajectory (72) is the geodesic by showing that the difference
between the length of any other trajectory and Xg(t) is positive. Let us consider another
trajectory X(t) which we parametrize using the time ¢t =1 — \{ = 1 — \;.%

With this parametrization, ¢t € [0, =1 — A1) and Ap,»2(0) = 0. Let us compute the
difference in the length of the two trajectories, i.e., the cost of A\, () minus the cost of
A (t). We use integration by parts to find

ty N - 05 ty \g
_ 9 \I9) | = — m
/O dt [Bfl,hom(Av)‘) BF 1 hom (A, A )] /0 di mZ: 1—¢ mZ: 1t

2 2 (73)
LD S S VR
- 0 (1 _ t)Q WXZ;( m( ) - m( ))

Because of the parametrization that we chose, the trajectories satisfy

e the normalization condition

S MM = 3 An®alt) =1 (1= 1) (74
m=2

e the inequality -
0 <N, (1), Am(t) < A, (for m > 1), (75)

where \,, is the endpoint of the trajectory.

e decreasing order
AMn() S A1), Am(t) < A (B) (76)

chosen for convenience and without loss of generality.

Under these constraints, A9() maximizes the sum ZaniQ AZ (t) and so the difference be-
tween the lengths in eq. (73) is always positive. To see why, consider the sum, with Ao
replaced by the sphere constraint in eq. (74),

Ny Na Na
S An = Am+ [1=(1=02—[ D A | (77)
m=2 m=3 m=3

Taking the gradient with respect to A,;,>3 gives

9 (%ﬁ A ) 1 Am = Am (78)
Am m| =1- =1-—.
m=2 \/ L= (1-1)2 - ($h402) A2

Since A, < Ao, the gradient is non negative, and vanishes only when A,, = Xo. This
shows that the maximum of the sum is wh_en the Schmidt coefficients for m > 3 are at
their extreme values A, (t) = min(A,;,—1(t), A\), which is exactly how the geodesic A, (t)
behaves.

26Note that since the start and endpoints of the trajectory are the same and A; is monotonic, see
argument above (72), we have the freedom to choose a parametrization such that A1 = A{.
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Computing the length of the geodesic using the norm (71), we obtain the binding state
complexity

Besse — ANa (Np—1)da /XNA—l ENA — 2)da
e VI=WNa=Daz? - Sy J1-0%, — (Na - 2)2?
+//_\NA—2 (NA—3>d$ b= =0
Mt 1= W, — Ny — (Na - 3)a? (79)
Ny—1

. 5\ 1vym . 5\ 24/ M
= Z vm [arcsm Amirym — arcsin Ampaym ],
m=1

S AR VI AR

where \y ++1 = 0. In the case of the maximally entangled state, the binding complexity
reduces to v/N4 — Larccos (1/y/N4). For a generic state of a spin chain consisting of n4
spins, BC'fte | scales exponentially as /Ny = 2n4/2 a5 we have checked numerically by
considering random sequences of Schmidt coefficients sampled from a uniform distribution
and then normalized. Eq. (79) is our main result in the case of the F} yom norm in the
Gell-Mann basis.

A Hamiltonian that builds a trajectory realizing the minimal cost can be constructed

as follows

S A 5 M (t)
H = Z U}m(t)Tc(m71) X Tc(l,m) ) Wm = )\g(t) s (80)
m>1 1

where we used egs. (61) and (67) with A9(¢) the trajectory of the geodesic. This Hamil-
tonian preserves the basis for the Schmidt decomposition along the entire time evolution,
and the state along the trajectory reads

Na

() = Y N (#) [mm) . (81)

m=1

Finally, to move from the state |1)(t = 1)) to the exact target state, an additional costless
LU transformation is needed.

We notice that the trajectory built with the optimal Hamiltonian (80) does not have
large fluctuations along the null directions (i.e., the red lines containing LUE states in
fig. 1(a)), because a finite LU transformation is only performed as the final step at t = 1
to move from an LUE target state to the exact one. Therefore the results obtained in the
limit of vanishing cost for the local generators represent a good approximation for a more
realistic setting, where one has a small but non-vanishing cost for any local gate.?”

The above results are valid for systems with a finite-dimensional Hilbert space such as
qubits and qudits. Recently, the study of complexity in continuous variable systems has
raised significant interest. These studies served to find definitions of complexity in quantum
field theory as a first attempt towards making the holographic complexity conjectures more
precise, see e.g., [55, 56, 94|. The study of binding complexity in quantum field theories is
outside the scope of this manuscript, but as a first step, we can consider the complexity
for a very large number of Schmidt coefficients. In that case, the complexity formula (79)
can be cast in the form of a continuous integral. We present a closed formula in this limit
in appendix B.

27See the discussion below eq. (110) regarding the F) so¢ norm, for which there are large fluctuations in
the null directions and approximating the optimal circuits with non-vanishing cost for local gates is more
involved.
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4.2 BFinom norm with the Pauli basis

The tools developed in section 3 can also be applied to the case in which the generators
of the unitary group are the generalized Pauli matrices. However, it turns out that the
implementation of the constraints (35) and the minimization to perform are technically
harder, making it difficult to determine the geodesics in the space of states for the Fi hom
norm. For these reasons, we leave an exhaustive analysis of the BCSf, with the Pauli
basis for future work, and instead derive bounds on the complexity and exact results for

special cases.

Generalized Pauli basis. The generalized Pauli matrices give a basis of generators of
the unitary group U(V) which is natural in the case of a spin chain N = 2". They are
defined as

(82)

_ 1 2 n
Tﬁ_0u1®0uz®"'®aun7

where each factor of the tensor product is a covariant two-dimensional Pauli matrix o, =
(00,0i), with o9 = 1. The generalized Pauli matrices are orthogonal and normalized as
Tr(T;Ty) = 2"07. Assuming that the chain is split into two parts as in eq. (12), the basis
for the full system is given by

T =T{oT =ctl .. .ot geble.  golre, (83)

h ®. o U
The superscript (A, a) refers to the a-th qubit in subsystem A, while (B, ) to the -th
qubit in subsystem B. The index I runs over the Pauli matrices of the combined system,
cf. footnote 5. As we are interested in the generators of SU(N4Np), we will exclude the
case where all the matrices in the product are the two-dimensional identity matrix. The
generators are normalized as Tr(T;Ty) = 2"4%"B§; ;. In the case of the Pauli basis, the
constraints (35) will take a more complicated form than those for the Gell-Mann basis in
eq. (57) and they will involve, generically, a larger number of velocities. As a consequence,
we won’t be able to derive an exact result for BF1 nom except for the special case where
the smaller subsystem consists of a single qubit, N4 = 2; in the general case we can only
prove bounds. Therefore we will not be specifying the step structure in this section.

Upper bounds. Consider the binding state complexity for a system composed of n
qubits, divided into two subregions with n4 and np qubits, respectively. We choose refer-
ence and target states described by the Schmidt coefficients in eq. (53) (i.e., the reference
state is a product state). We take the path built with the Hamiltonian (80) (which was
a geodesic for the geometry on the space of states defined by the choice of Gell-Mann
matrices as generators), but now we compute its length according to the BF5"* norm for
the Pauli basis. In appendix C, we show that the cost is the same as with the Gell-Mann
basis norm, and as such, the result in eq. (79) gives an upper bound. However, as we show
next, this upper bound can be rather weak in certain circumstances, and we can improve
it in specific cases.

Let us now consider the special case in which the two systems are of equal size ng = np
and focus on target states which are LUE to a product of entangled qubit pairs across the
two subregions, i.e., 28

Ua @ Up [Yr) = ®;(cos(0;) |[Ta,TB,;) +sin(6;) [La,dB;)) - (84)

Z8The discussion can be extended to na < np by padding eq. (84) with, for example, tensor products
of spin up ® |1) for the Hilbert spaces of the remaining unentangled qubits of the system B.
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The cost of a minimal circuit acting on two qubits (evaluated according to the F} phom
norm) was given in eq. (47). Extrapolating this result to a circuit Up(t) composed by
the tensor product of the geodesics for each pair gives a total cost of >, |6;]. Since the
generators acting on each pair of qubits form a subalgebra of su(NoNg) = su(N3), and
since these subalgebras commute with each other, it is reasonable to expect that this cost
is the binding state complexity

BCThom = D 10l (85)

(2

which would then be additive for factorized states.?® Let us compare this bound to the
previous one from the Gell-Mann basis expression for positive angles 0 < 0; < 7/4, where
eq. (79) can be applied. In a small angle expansion the two results coincide, while for
large angles they differ significantly. This can be seen by the scaling with n4 of the
complexity bounds for the maximally entangled state, which is linear for the bound (85),
but exponential for the bound following from the Gell-Mann basis complexity (in this case
of course the above bound from additivity is much stronger). The bounds as a function of
the angle for the case of 6 entangled qubit pairs with equal angles are plotted in figure 3.
We can see that they coincide for small angles, but deviate significantly for larger angles.

12fT
10+
8k i

— Gell-Mann bound

— Additive bound

Sa
2

Bounds on BC1 hom,Pauli

00 02 04 06 o8

Figure 3: Comparison of the different bounds for the Pauli basis binding complexity of the state
(84) in the case of equal angles and 6 entangled qubit pairs, as a function of the angle . Red:
the bound coming from the Gell-Mann optimal trajectory. Blue: the bound from eq. (85) coming
from additivity. Orange: one-half the entanglement entropy of the state. The allowed region for
the binding complexity is between the blue and orange curves, according to the lower bound of
(90) when ¢ = 2.

Exact Result. Let us consider yet another special case, in which the subsystem A
consists of a single qubit, and B of an arbitrary number. In this case, we can provide
an exact result for the BCﬁfﬂBQm complexity with the Pauli basis. Here, the target state is
always LUE to a state in which there is non-vanishing entanglement only between A and a
single qubit in B. We can prove that all the other qubits (that we will call ancillary qubits)
in subregion B do not give any advantage in minimizing a trajectory for the evaluation
of binding state complexity according to the BFi pom norm with the Pauli basis. Since

there is only one independent Schmidt coefficient (two in total), the equation of motion

(32) reduces to
At) = Riay/1 — A\(2)2, (86a)

Riy = Tm ({¢1 (0 ()] Y775 ()0, @ 04y @ -+ @ 0, [02(E)xa(1))) , (86D)

29Gee [5], section IIIB, for a discussion on the additivity of geodesics lengths for tensor product target
states in the context of Finsler metrics.
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where |¢,(t)) and |y, (t)) are eigenstates for the subsystems A and B, respectively.
Eq. (86b) provides a linear relation that can be solved for one of the Y components in
terms of the others (and of Rj2). The norm Y |Y| can then be minimized (for a fixed
value of R12) using a similar procedure to the one explained around eq. (64). That is, since
the norm is a piecewise linear function, it will be minimized at points where the absolute
values change signs. Therefore, the minimum of the norm will occur when only one of the
Y#w-¥ng (t) does not vanish. The norm will then be

BF1 hom = min - At) - —
vt vng | /T — A2 Im ((11\ U@ Upoy, ®0,, ®- 0, UloU, |22>)
Ua®Usp
A®)|

VI=A)?
(87)

where the minimization is done over all possible choices of the single non-vanishing
Y#Hvi-¥ng - and over all the possible LU transformations with respect to an arbi-
trary fixed orthonormal basis.  We reach the final expression by observing that
Im (<1i| Us@Up:- 0y @0y, @+ @ Ovnyy UJ; ® U]TB |2§>) is upper bounded by the
largest eigenvalue of 0, ® 0y, ® - -+ ® 0y, , which equals 1. This shows that the norm is
the same as in the two-qubit case in section 3.4, and that the presence of ancillary qubits
did not improve the complexity.

Lower bound. We can use the maximal entanglement rate studied in [95-97] to give
lower bounds for the binding state complexity. Let us consider a trajectory in the space of
states generated by a Hamiltonian H(t) = Hx(t)+ Hp(t)+ Hap(t), where H4 and Hp are
composed by local generators in the subsystems A and B, while H 4 is the interaction term
between them. In such a case, an upper bound for the rate of change of the entanglement
entropy S4 between the two systems is given by [97]

ds
1 < ctogal a0 (88)

Here || * || is the operator norm (i.e., the maximal singular value), ¢ is an O(1) constant
(its optimal value has been numerically argued to be 2 in reference [97]), d is the dimension
of the smaller subsystem out of A and B on which H has support.? For instance, d = N4
if H contains interactions between any of the qubits, and d = 2 if it only contains an
interaction between a single pair of qubits. Since the operator norm of the generators,
both in the Pauli and Gell-Mann bases, is equal to 1, we can use the triangle inequality
to get ||Hapl| = || Za; YT @ TP < X [V T @ TP = 320 Y| = BF 1 hom.
Integrating over time and remembering that the reference state is factorized, so it has zero
entanglement entropy, gives

o < BC ) o). (59)
We note that this lower bound is valid for both choices of the basis for the unitary group
and for any kind of interactions we allow in H(t), as long as the value of d is changed
accordingly. The lower bound can be far from the binding complexity. For example, with
the Gell-Mann basis, the binding complexity for the maximally entangled state grows as
/N4, while the entanglement entropy is log Ny and therefore for large N4 the bound is

30Tf the Hilbert space of the systems A and B can be factorised as a ® @ and b ® b, and Hap has the
form of 15 ® Hap ® 13, then d = min (dim(a), dim(d)).
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far from being saturated. On the other hand with the Pauli basis, the binding complexity
for this state is upper bounded by 7 log(N4), where log(/N ) is simply the number of spins,
as can be seen from eq. (85). For the Pauli basis, the value of d changes depending on
whether we consider the BC'fus, or BCS's norms. For BCYe,, d = N, while for BCT'E,
d = 2 if the allowed interaction has support only on one spin on each side. In section 4.4,

we will actually show that BCﬁt’ﬁgfn = BC?ES;E and therefore for the Pauli basis,

S
TA < BCSpaillor) s [¥R)]- (90)

We draw this lower bound in figure 3 and highlight in light blue the region between the
most restrictive upper and lower bounds.

4.3 BF2nom Norm in any basis

In this section, we compute the binding state complexity for a system of two qudits using
the cost function Fpom in eq. (18). The Fb pom norm can be expressed as

) T H)?2
Fz,hom — /Z ‘Yaz‘Q — W, (91)

where Q(H) = >, ; YUTA ® TP is the non-local part of the Hamiltonian, while Ny =
Te(TATA) 60 and N = Tr(TP TjB )0;; are the normalization factors for the subsystems A
and B, respectively. Note that the only dependence of the F3jom norm on the basis of
generators comes from an overall normalization, as long as the generators are orthogonal.
Therefore we can use the convenient Gell-Mann basis to compute the norm, and then rescale
the result by an appropriate normalization in order to get a general expression valid for any
basis. The normalization of the Gell-Mann basis for arbitrary rank of the unitary group
is M4 = Ng = 2. Denoting the velocities of the Hamiltonian expanded in the Gell-Mann
basis as Y4 and performing a convenient rescaling in terms of the normalization of the
basis of generators, we find

4 .
Fopom = | S Y22 92
2,h \IN’ANB;‘ G" ( )

The reference and target states are specified by the Schmidt coefficients in eq. (53). We
consider, without loss of generality, the factorized reference state |[¢r) = \1i> defined in
the basis for the Hilbert space chosen in eq. (55). The constraint equations to get to the
SO(N4) picture were previously studied in egs. (57)-(59). This concludes steps 1-2 of
our procedure outlined in section 3.3.

Step 3. Since this norm is invariant under orthogonal transformations applied to the
Y-s, we can use the velocities Y introduced below eq. (58) to find

2 2
Bf2,hom(Rmn) = ﬁ nil/l,n \/Z (Y/C(m7n)7c(m7n)> =
2 R’2 1 (62)
_ mn __ T RTR ,
N\ 2 2~ VN VTH(RTR)

where in the second equality we have explicitly performed the minimization over the re-
dundant Y’ components.
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Step 4. We define the orthonormal vectors

ﬁ>
Il

Xt), = (94)

and complete them to an orthonormal basis of RV4. The frame associated with the new
basis is related to the previous one by an orthogonal matrix O. In the rotated frame the

constraint RX = X fixes the following components of the matrix R = ORO”

Ront = —Rim = Sma\/A()2. (95)

while all the other components of R belong to the stabilizer group over which we have to
minimize the norm to get the state complexity. The minimum is achieved when the latter
components are set to zero, giving

BF 2 hom (X, X) —————min \/m \/NT min Tr(RTR) =
B sta

A B stab

=L JRisRiat RarBon = | o (N2
\/NAWE\/ 1,241 2 + Mg 11191 NaNg (1)

where the “stab” minimization refers to step 4 in section 3.3, and the second step in the
first line is a consequence of the rotational invariance of the Fjpoy, norm. It is implicit

(96)

that the vector X is normalized, and so this defines the Euclidean metric on a unit sphere.

Step 5. The geodesics are the arcs and the binding state complexity is the arc length
from the reference to the target state:

Bcgt}alg‘in = \/@arccos(j\l) = \/@amcos (e 2 (|¢T>)> . (97)

Here \; is the maximal Schmidt coefficient of the target state defined in eq. (53), while
~o(|to7)) is the minimal Rényi entropy of the reduced density matrix of the target state
|Yr). Eq. (97) is our main result for the case of the F» norm. We note that up to a constant
factor due to the normalization, this result is the Fubini-Study distance between the target
state and the closest product state, which can be associated with the geometric measure
of entanglement [98]. Here, in the context of complexity, this distance naturally receives
an operational meaning (see [82] for a related discussion). The geometry generated by the
BF 3 hom norm and the corresponding geodesic are depicted in fig. 4.
For completeness, let us include the normalization constants for the different bases.
For the Gell-Mann basis, the result reads

1 - 1
BCStﬁf)em = 7 arccos(\1) = 7 arccos (e*%Sw(W’T”) ) (98)

while for the Pauli basis of a system with n4 and np spins the result is

1 - 1 1
state __ — =350 (|YT))
BC5 hom ST arccos(Aq) STyE=T=— arccos (e 2 ) . (99)

The two results coincide when n, = ny = 1, as the two bases become the same.
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0 = arccos(4;)

L 4

A3

Figure 4: Unit sphere spanned by the vector of Schmidt coefficients, with the vertical axis repre-
senting the first direction. The red trajectory is the geodesic connecting the reference and target
states in eq. (53).

The Schmidt coefficients follow a trajectory along the great circle connecting the

Schmidt vectors of the reference and target states. A particular Hamiltonian that realizes

this trajectory and has the cost BCZtﬁg‘in is

-
_j awecos (Au) S An(jmn) (11| = [11) (mn | (100)

V1= \m=1

With this Hamiltonian, the basis of the Schmidt decomposition will remain in the compu-

H =

tational basis ‘ﬁ> until £ = 1, and the state will be related to the exact target state by a

final costless LU transformation |¢pp) = e~ N4 X lmm) = e~ S0e—il |11), where Sy
is a time independent generator of LU transformations (i.e., take eq. (14) with Y% = 0).

Since the geometry associated with binding complexity contains null directions de-
termined by LUE states (see the discussion in section 3.1), there is a degeneracy in the
unitaries that take the reference state to the target state with minimal cost. Specifically
for the case of the F5 norm, it is possible to find a continuous trajectory that does not
require a final LU transformation. We determine such geodesic in appendix D.1 by using
the Euler-Arnold equations, and we show an alternative way to compute its cost (97) in
appendix D.2.

A possible extension of the Fjpom norm to a multipartite system associates vanish-
ing cost to each local transformation, and equal cost to any non-local generator. Related
notions were considered in [82, 98]. We can speculate, extrapolating from the above bi-
partite case, that the state complexity of such generalization will be given in terms of the
Fubini-Study distance to the closest multipartite pure factorized state. Notice that the
above-mentioned extension will differ from the multipartite notion of complexity that will
be discussed in section 6 because there, we will only allow non-local generators to act on
a maximum of two subsystems at the same time.

4.4 |nsensitivity of BJF; binding complexity to penalty factors of non-local gates

We have obtained two results that give the binding state complexity for the F hom and
F3 hom norms as two different functions of the Schmidt coefficients, see egs. (79) and (97).
One may be tempted to conjecture that by a suitable assignment of penalty factors, it
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would be possible to obtain an arbitrary function of the Schmidt coefficients.>! We will
now show that this is not the case, at least for the BC; complexity. On the contrary,
the binding complexity computed according to the BJF7 norm is rather insensitive to the
precise choice of penalty factors for the non-local gates.?? More precisely, we will argue
that BC; does not depend on the choice of penalties assigned to the non-local generators,
up to an overall normalization stemming from the value of the minimal penalty, as long
as the generators forming the optimal trajectory all lie on the same adjoint orbit of the
SU(N4) ® SU(Np) action as the cheapest generator. This condition is satisfied for the
Gell-Mann and Pauli bases. The logic behind this is that if LU transformations are free,
one could use them together with the cheapest non-local gate to create any other non-local
gate.
To prove this statement, let us consider the norm

FanlV) =ty (Selale Sevhl e S alv®le ) oon
Gai>1 a (a,9)#(1,1)

which represents an intermediate case between the homogeneous norm (20a) and the norm
for a universal set of gates (20b). All three norms assign a vanishing cost to local operations,
but the penalties g4; associated with non-local generators are 1 for Fi pom, ¢ei > 1 finite
for F1 jnt and gq; = 00 for Fy 4et. Since complexity increases with the penalties, we conclude
that the binding state complexities associated with the three cost functions satisfy

BChom < BCn < BCTS - (102)

We are going to show that these bounds are saturated, 7.e., that all these complexities are
the same as long as the conditions specified at the beginning of this subsection hold.

To make this argument formal, let us first notice that we can express a generic trajectory
in the SU(NoNp) group manifold as a circuit of infinitesimal steps

Uzﬁexp( / dt'H (t ) = hm 1_:[ exp (—H (M)) , (103)

where H(t) = Y{()T2 ® 18 + Y, (1)14 @ TP + Y9 ()T @ TP. Let us now consider a
different circuit that creates the same unitary, in which we break the gate exp (—ﬁH (%))
into (N4Ng)? — 1 consecutive gates

_ Y4 (5 )TA01E -5 Yh (5 )14eTh — LYy (mN\TARQTE
_J\/}l—r>nool__[H€ YA (1) He Ve (1) i aie Y (1) , (104)
where the product over a and 7 is from 1 to Nfl —1 and N% — 1 respectively, and we used
the Baker-Campbell-Hausdorff formula in the limit M — oo. Notice that the cost of the
circuits (103) and (104) is the same according to the F} yom norm, but is a priori different
using the Fp>1 hom norm.?? This is because the cost of the circuit (104) is 3 > omoa |y (m) |
regardless of p, as the Hamiltonian is composed out of a single generator at any given time
step.
We now assume that the circuit in (103) is the optimal trajectory obtained using the
Fi hom norm. Let us construct yet another circuit that creates the same unitary and has

31'We thank Yaron Oz for raising this question.
32The insensitivity to penalty factors does not apply to other BCp,~1 complexities, as we explain below.

33For this reason, the arguments presented in this subsection only apply to the BF; norm.
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the same cost. This circuit will only use a single non-local generator TIA ® TP, thus its
cost will be the same whether the norm is Fj yom or Fi set. To begin with, let us assume
that for every non-local generator T2 ® TB, there is an LU transformation such that

UATAUA o UB'TBUB = T4 o TB. (105)

Notice that this statement is about the individual systems, i.e., there exists an LU transfor-
mation that takes a TIA /B 4o any other generator TIA /B The construction is now straight-
forward: take the circuit in (104) and replace any occurrence of a non-local generator with
the preferred non-local generator T{! @ T3

_ Lys(m)T — LY (m)TE AT BY =Yl (35 TATE A B
_]\/}gnoo H H@ M A M e M M HU U M (M) 141 Ua Ui ,
m=1 a 7 a,t

(106)
where we have omitted the tensor product notation for convenience. Since the cost of the
LU transformations is zero, the cost of this circuit will be the same regardless of whether
we used the F hom or Fi gt norm. Due to the inequalities (102), we conclude that for
p = 1 all these binding complexities are the same, in particular this is true for BC?E?IEE,
which assigns arbitrary penalties g,; > 1 to the non-local generators.

We are left to discuss the validity of our assumption (105). For the Pauli basis, take,
without loss of generality, the single allowed generator to be UA7laB 1. We show below
that we can create any generator out of the set of generalized Pauli basis with JA loBil
and an LU transformation. Let us focus on a system of n spins and ask whether there is a
U € SU(2") such that UTolU = Ub 1052...025, for any sequence of u;s except for all zeros,
where the superscript marks the site, and the subscript marks which Pauli matrix is being
considered (cf. the text below eq. (82)). Since we have not made any assumption about
the number of spins, this argument will be valid for both systems A and B. Let us define

- __ 2 n _
o =0p,..0, . If pp =y orz, then
—iZolo 1 .i%Zole _ 1= iZols 1 —iZole _ 1=
e "1%:%0,e"1%:% = 0,0, €1%0,e 1% =0.0. (107)

To reach 015, we can first perform the transformation to o

y
.. . o1 g w1 _ _
an additional LU transformation e14"zoiae v39%: = 010 To reach 1'5, we can use the

o and then complement it with

swap S = exp (—z’%(a}cag + J;UZ + aiag)) which gives STolS = 02, and then recursively
use similar transformations on the subset of n — 1 remaining spins to reach & from o?2.
This concludes the argument for the equivalence of BCﬁfﬁfﬁn = BC?‘?S&? in the Pauli basis.
For the Gell-Mann basis, one cannot hope to create from one generator and an LU
transformation any other generator, as the diagonal and off-diagonal generators have in
general different eigenvalues. If the single non-local generator is a tensor product of two
off-diagonal generators T(f(‘n’m) ® ch(;k’p) where n # m, k # p, then all the other off-diagonal
generators can be reached with an LU transformation. To demonstrate that, we note the

following relations for Tt 1), where p > k > 2:

—iZT, 12T, _ —i5T, i5T, =
e~ % (p,2)T6(271)€ 2te(p2) = Tc(p,1), e 2 (2’p)TC(2:1)e 2 = Tc(l,p)’ (108a)
’LET(‘ ,iﬂTp _ Z'ET(‘ 7i£Tc n —
et Tgne 27wl =Tepg), €2 <P Tyg e 27emr) =Toop
15 Te(2,p) ei%Tc(l’k)Tc(Q 1)671%'1“6(1,;“)6*’5%7‘.:(2,;7) = Tc(p k) s
) ’ (108b)

12T, 12T, —iZT, —iZT
24c(2,p)e2 C(k71)Tc(2’1)e 2 te(k,1) g7t te(2,p) :Tc(k,p)'

34Tt would be sufficient to show this only for the generators forming the optimal trajectory, but since
we do not know the optimal trajectory in the Pauli basis, showing it for all generators will be the strategy
there.
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These relations show that any off-diagonal generator can be reached from T ;) by an LU
transformation. This is not special to Ti 1), since from the above identities we learn that
all the off-diagonal generators are on the same adjoint orbit.

Fortunately, the geodesic circuit with the Gell-Mann basis, which is generated by the
Hamiltonian in eq. (80), only uses off-diagonal generators. Thus, the previous argument is
still valid if we limit the generality of the allowed single non-local generator such that it is
off-diagonal. For the geodesic obtained using the Gell-Mann basis, the associated circuit
in eq. (104) will take the form

o mA\ A B
= lim [] Hexp< <M> T ®Tc(1,p)> : (109)

M=oo 21 po1

For instance, if the allowed single non-local generator is ch(‘2 ) ® TC% 1), We can construct
the circuit as

M Na _17[

:hm HH

© m= 1p>1

A B X 7 B B
Tpy®17+1 ®Tc<2p>] ’Rpl(%)Tsz,1>®T§2,1>e’2[Tc<p2>®1 +14@T, <2p)}

(110)
We still need to discuss an additional subtlety. The derivation given above applies when
the local generators have exactly zero cost. However, in any realistic experimental set-up,
the penalty assigned to local generators is € # 0, in which case the circuit (110) would
have divergent cost in the limit M — oo. However, it is possible to remedy this issue
by considering the unitary (110), but with finite M. If the additional cost and the error
coming from the Trotterization of a Hamiltonian [99, 100] can be kept small, this will
describe an efficient approximation for the target unitary. To estimate the error and cost
of such a circuit, consider a simple case in which the Hamiltonian (103) is constant. This
is the form of the geodesic in the Gell-Mann basis if all but the largest Schmidt coefficients
are equal. The Trotterization error can be estimated as O(%CQ) (compare to eq. (16) in
[100]), and the extra cost to the binding complexity will be O(M Na¢). Depending on the
engineer’s budget, states with small enough BC could be reached to a good approximation.
Furthermore, as long as ¢ is small enough, the cost of the above circuit will provide a good
estimate of the states’ complexity.

5 Binding complexity of two qutrits and complexity of a single qubit

The simplest system on which one can ask questions of Nielsen’s complexity is a single
qubit. However, much less is known for the single-qubit complexity with an F; norm. It
turns out that the results we obtained earlier in this paper for the binding complexity can
be applied to this problem, too. More specifically, we will show that the binding complexity
for a system of two qutrits in the Gell-Mann basis is related to the F} Nielsen’s complexity
for a single qubit.

In the case of two qutrits, we expand the SO(3) generator R introduced in eq. (33b) in
terms of the rotations around each axis

R(t) =1 (t)Ll + Ug(t)LQ + Ug(t)Lg , (111)

where (L;);i = €1 with € the Levi-Civita symbol. The relation to the Gell-Mann gener-
ators introduced in eq. (55) is L1 = i(TY)s2, Lo = —i(TY)31, Ls = i(T¥)21. According to
the result (62), in the Gell-Mann basis, the minimization yields the norm

B}—l,hom(Rmn) = ”Ul(t)’ + |’02(t)| + |U3(t)‘ . (112)
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When A\; > Ay + A3, as we have shown in eq. (71), the metric can be written in terms of

the Schmidt coefficients as

RS R

and the optimal trajectory from X(O) = (1,0,0) to X(l) = (A1, A2, A3), depicted in fig. 5,
has the following cost determined according to eq. (79):

= AsAg + A1y/1 — 223
BC o = V2 arccos (\/1 - 2)@) + arccos ( A 3) . (114)

IV

BF 1hom dt = (113)

For the maximally entangled state, the complexity is v/2 arccos (1/v/3).

Al &

>
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>
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Figure 5: Piecewise trajectory (72) in the space of Schmidt coefficients for the case of two qutrits.
Binding complexity is given by the sum of the lengths of the red and blue curves in this geometry.

Since the s0(3) and su(2) algebras are isomorphic, and since the nature of the com-
plexity problem is completely algebraic, eq. (112) can also be interpreted as the unitary
(not binding) complexity norm for a single qubit using the basis of Pauli matrices. This is
because a trajectory in SU(2) can be written as

Ult) = Pexp (—i /0 t dt’H(t’)) L H®E) = 01ty + w(t)os +vs(t)os,  (115)

for which the norm Fy = ¥, |Tr(UdUo;)|/2 is equal to (112). The density matrix of a
single spin in a pure state can be written as

1
p=|o) (¢ = 5(1 + z101 + z202 + 2303) , where |Z| =1. (116)

The vector & is real, while the condition |#| = 1 defines the Bloch sphere and ensures
that the state is pure. The six points x; = £1 correspond to the eigenstates of the Pauli
matrices o;. To some extent, as we discuss below, the complexity problems can be mapped
to each other by identifying the vector of Schmidt coefficients X with the position on the
Bloch sphere #. Starting from the equations of motion p = —i[H, p], one can find the state
complexity norm by applying similar methods to those discussed in section 4.1 (see eq. (63)
with the map Rss = 2v1, R31 = —2v3, Ro1 = 2v3). The minimization over the stabilizer
group with respect to p implies that either v1, vy or vs vanish, giving

(’dwg’ + |d$3| ’dxg’ + |d$1| ’dﬁl‘ + ’dﬂ?g’)

1
Fidt = —min ) )
1] |z2] |z3]

2

(117)
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Certain points on the sphere are related by LU transformations, which are free in the
framework of binding complexity. Therefore, any reference and target states can be mapped
to the region Ay > Ay > A3 > 0. For the complexity of a single qubit, we do not have this
freedom. Nevertheless, the norm in (117) is invariant under a sign flip of each coordinate,
and under permutations of the coordinates. Therefore, we can map any reference state
which is an eigenstate of one of the Pauli matrices to (z; = 1,29 = 0,23 = 0), and any
target state to another state that has o > x3 > 0. It is then possible to map the single
qubit complexity to the binding complexity of two qutrits if the inequality 1 > I9 is
also satisfied. Since we could only compute the binding complexity for two qutrits when
A1 > A2 + A3, then the result in eq. (114) corresponds to twice the complexity of a single
qubit in the regime Z; > Zo + T3, provided that we identify \; = Z;, that is

1 1 T3y + T14/1 — 223
Ciatts. = —= arccos (\/ 1-— 2:1:%) + Zarceos i (118)

V2 1— 72

This expression is directly applicable when the reference state is an eigenstate of the Pauli
matrix o1. More generally, when the reference state is an eigenstate of o; for some given
i, the state complexity of the single qubit is given by half of eq. (114), with A\; = |z,
Ao = max(|Z;|, |7x|) and A3 = min(|zZ;|, |Zk|), where j, k label the other two directions in
the Bloch sphere. This solution is valid as long as the inequality |z;| > |z;| 4+ |Z)|, defining
two separate connected regions on the sphere (around the positive and negative i-th axis),
is satisfied, and as long as the reference and target states both belong to the same region
out of the two.

It is interesting to notice that the minimization over the stabilizer group, which yielded
the norm for the state complexity, amounts to setting one of the velocities v; to zero (see
eq. (65)). In the context of the complexity of a single qubit, this gives a trajectory in SU(2)
that does not use the o; Pauli matrix associated with the velocity v;. Thus, giving o; a
larger penalty will not change the results. It was argued in [62] that in certain experimental
two-level systems the o, gate is much harder to implement (see their discussion below
eq. (2.4)). In order to estimate the complexity, the authors therefore proposed to use a
Riemannian F» norm with a very large penalty assigned to the o, direction. In our results
we see that we can alternatively use the F} cost function with reference state |1) and the
same effect of suppressing the use of the o, gate will be achieved, even without the use of
penalty factors. We expect that a similar effect will come into play for larger systems and
intend to investigate this issue further in the future.

6 Geometrically local complexity and multipartite binding complexity

We now consider a multipartite system with a factorizable Hilbert space of the form (11).
As we mentioned below eq. (11), oftentimes one of the constraints imposed on complexity
(even outside the context of binding complexity) is that only generators between pairs of
qubits are allowed. This type of locality constraint plays an important role in circuit com-
plexity in realistic quantum computation scenarios, where many-qubit gates are typically
harder to implement. Motivated by these considerations, in this section, we study Nielsen’s
state complexity according to the F} norm in eq. (4), using the following nomenclature
adopted in [85]:

e Local complezity C5** allows gates acting on one part or any pair of parts of the

system.

o Geometrically-local complexity Cf'j;te allows gates acting only on nearest-neighbour

parts or within each part.
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These notions of complexity are depicted in fig. 6. As a side comment, let us mention that
the authors of [101] have noted that the notion of geometrically-local complexity seems
incompatible with the holographic notions of complexity. On the other hand, many works
have taken locality (as opposed to geometrical-locality) as a guiding principle in looking
for a quantum mechanical dual of holographic complexity, see e.g., 3, 62, 63, 86].

In [85], the authors derived lower bounds on the notion of local and geometrically-local
complexity in terms of the entanglement entropies of different bipartitions of the target
state. We will now use the techniques developed in this work to derive new lower bounds,
in terms of binding complexity, which improve the lower bounds of [85].

G2 GA 62
1 1 m Tt | &
. «———» . -~ .
el e 1) i e
(a) Local (b) Geometrically-local

Figure 6: Pictorial representation of a spin chain where the vertical purple lines represent a sepa-
ration between parts. (a) Circuit with gates acting on at most two parts of a system. (b) Circuit
with gates acting only on nearest-neighbour parts or within each part. Both circuits can be used to
study local complexity (120), but only case (b) is a circuit that can be used to study geometrically-
local complexity (121). When the penalties associated with operations within a subsystem vanish
(in this example, gate G5 for both circuits), the definitions reduce to multipartite binding com-
plexity, see egs. (122a) and (122b), respectively.

Let us define the set-up. The system is split into n identical parts, each of them has an
N-dimensional Hilbert space on which the special unitary space SU(N) can act. Therefore,
the possible circuits in the composite system belong to SU(N™).?> We denote the set of
generators for each part as TZA7 where the subscript ¢ runs over the list of generators
{1,...,N? — 1} within each subsystem, while the superscript A refers to the site on which
they act (i.e., a generator TZA is the identity on all sites except for the A-th site).?% The full
set of generators for the system is made by taking products of these TiA for the different
parts. Suppose that we construct our control Hamiltonian and unitary circuits from gates
which act on at most two parties, that is

n N2-1 n N2-1

S OB RCERES SID Sl SR CLIAr N Y

A=1 i=1 A=1B=A+1 ij=1

n N2-1 n—1 N2—1 (119)
_ Z Z }/iAjﬂiAjL Z Z K?AJAT;ATJAJA’ e [0’ 1],

A=1 i=1 A=1 i,j=1

where the two Hamiltonians differ by the restriction of the non-local generators of Hy(t)
to nearest-neighbour-parts interactions. We will denote our reference and target states as
|YR) ,|¢r). The notions of complexity introduced in this section correspond to

e The local complexity

n N2-1 n  N2-1
Citllir) o) = in [ (305 A+ S 3 S ) o
A=1 i=1 A=1 B=A+1 i,j=1

35This applies, for example, to a subdivision of a spin chain to n equal parties, where N = 27 spins,

36The notation has changed from the previous sections in which A denoted one of the two parties A and
B, and not a running index.
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e The geometrically-local complexity

n N2-1 n—1N2-1 i 1
Ciathomllir) . [0m)] = min / DD D D S Zaan | BT
A=1 i=1 A=1i,5=1

In both cases, the minimization is performed over all the control Hamiltonians of the
form (119) which connect the reference and target states. We also added the subscript
“hom” referring to the homogeneous choice of penalties equal to unity for all the generators
(including the local ones).

It is useful for the following to introduce also a multipartite notion of binding complex-
ity MBCI|11) , |¢r)]. This can be defined as a special case of the (geometrically-) local
complexity, when the penalty factors assigned to local gates vanish:

n N2-1

MBCHnlli) o) = pin [0S 3° Y g, )
Hi(t) A=1B=A+1 i j=1
n—1 N2-1 AA 1
MBS mll¥r)  [VR)] = m / DN (122D)
A=1i,5=1

These notions of binding complexity are pictorially depicted in fig. 6. Since complexity
decreases when we decrease the penalties, we immediately get

MBCTomllvr)  [WR)] < Cliomll¥r)  [¥R)],  MBCYGEomllvr) , [vR)] < Tf;“ﬁom[hé}T>,)l¢R>]-
123

From now until the end of this section, we will omit the explicit dependence of the com-
plexity on the reference and target states. In order to derive bounds on the (geometrically-)
local complexity and the multipartite binding complexity, we introduce some useful defi-
nitions:

state
1,hom

e The bipartite binding complexity BC [A], computed using the norm (18) with
the two subsystems given by the union of the subsystems {1,..., A} in one part, and
{A+1,...,N} in the other part. This is the kind of binding complexity that we

studied, e.g., in section 4.1.

e The bipartite binding complexity l’)’CState[A]7 where all the non-local gates which
have support on both sides of the partitioning, are not allowed, except from nearest-

neighbour interactions of the form 7}’47“;4‘*'1. This is similar to BC$%, except that
we allow several generators T;“TJAJr1 with support on parties A and A + 1, instead
of just one.

The previous notions of bipartite binding complexity are pictorially represented in fig. 7.
We note that those quantities refer to the bipartite binding complexity and therefore, all
generators that have support on just one side of the partitioning are free. Of course, this
implies that

BC%gte [A] > BCstate 4], (124)

1,hom

because for the circuit that minimizes BCﬁfgte the cost function is the same, but on the

right-hand side we can build circuits using a larger set of generators, which allows to find
in principle a better geodesic compared to the left-hand side.
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Figure 7: Pictorial representation of a spin chain where the vertical purple lines represent a separa-
tion between parts P, ..., Py. (a) Circuit with gates acting on at most two parts of a system. (b)
Circuit with gates acting only on nearest-neighbour parts or within each part. Consider a bipar-
tition of the system into A = {Py, P», P3} and B = {P,}. Both circuits can be used to study the

bipartite binding complexity BCit,ﬁffm(Pg), but only case (b) is a circuit that can be used to study
BC%ate(Pg) because G in subfigure (a) does not act on nearest-neighbor-parts. The complexity is
evaluated according to a norm only assigning non-vanishing cost to gates connecting the parts A

and B among the allowed gates.

Consider now the following term involving nearest-neighbour parts in the expression
for the geometrically-local complexity (122b)

N2-1

1
| S, (125)

,j=1

where the value of the control functions Y in this expression are those determined by the
minimization done in eq. (122b). Intuitively, when local generators (with respect to the
bipartitioning) have no cost, the minimal circuit can be further optimized by using those
gates. In other words, BCState [A] minimizes the cost of producing the target state with the
norm of (125). If we con81der a sub-optimal trajectory given by the minimization done in
eq. (122b), we will certainly obtain a larger value for this norm. This formally corresponds
to the inequality
gl A,A+1 tat
/ at S [V > By 4. (126)
1,j=1

Summing over all parties gives on the left-hand side the definition (122b), and on the
right-hand side a bound involving the bipartite notion of binding complexity:

n—1
MBCe > 3" Betarel 4] . (127)

If we now combine the inequalities (123), (124) and (127), we obtain a lower bound on
geometric complexity:

e 2 ZBc?ﬁzin . (128)

1ghom

Similar arguments (applied to the subset of terms in the expression (122a) corresponding
state

to the binding complexity BCTion,[4]), lead to a lower bound on local complexity:

Clihom = max BCT L, [A]. (129)
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The bounds above are an improvement of the results obtained by [85] using the notion of
entanglement power; the results of [85] are recovered by also using the inequality (89).

The bounds we derived in terms of bipartite binding complexity are tighter than the
ones of [85]. To illustrate this, consider a system consisting of a three-qubit chain, with
reference and target states

|vr) = [000), |ir) = cosa|000) + sina [111) (130)

where we assume 0 < o < 7/4. To use (128), when A = 1 we partition the system between
the first qubit and the rest, and when A = 2, the partition is between the third qubit
and the rest. In both partitions, the Schmidt decomposition is straightforward, and the
coefficients are X = (cosa,sina). In section 4.2 we argued that the binding complexity
for such partitions is given by the binding complexity between two qubits having the same
Schmidt coefficients. Using eq. (47), we find that the binding complexity for each partition
is given by «, therefore the bound in (128) becomes

n—1
Creomll¥)] > Z BCe [A] =20 > —cos®a log (COS2 a) —sin? a log (sin2 ) . (131)
A=1

The rightmost term in this inequality is the bound derived in reference [85], which we then
proved to be less restrictive, in this case, than (128).

7 Discussion

7.1 Summary of results

In this paper, we studied binding state complexity, a notion of Nielsen’s geometric complex-
ity for a multipartite system (11) such that gates acting on each subsystem separately (we
refer to such gates as local) have zero cost. Here we focused, mainly, on the bipartite case
(12). The freedom to act with local generators implies that the norm F®*** induced on
the space of states can be reduced to a norm that only depends on the Schmidt coefficients

X of the state and on their derivatives X along a trajectory connecting the reference and
target states:

ESe[l (), [9(t))] = BFp[X, X]. (132)

To find this norm, we took an intermediate step in wh