

# External-Shell Oxygen Enabling the Local Environment Modulation of Unsaturated NbN 3 for Efficient Electrosynthesis of Hydrogen Peroxide

Dingding Li, Run-Xi Zhu, Zheng Han, Lei Bai, Jianting Zhang, Ruixin Xu, Weilong Ma, Liangpeng Nie, Yi Wang, Jinbo Bai, et al.

## ▶ To cite this version:

Dingding Li, Run-Xi Zhu, Zheng Han, Lei Bai, Jianting Zhang, et al.. External-Shell Oxygen Enabling the Local Environment Modulation of Unsaturated NbN 3 for Efficient Electrosynthesis of Hydrogen Peroxide. ACS Applied Materials & Interfaces, 2023, 15 (8), pp.10718-10725. 10.1021/acsami.2c21632. hal-04276530

# HAL Id: hal-04276530 https://hal.science/hal-04276530

Submitted on 9 Nov 2023

**HAL** is a multi-disciplinary open access archive for the deposit and dissemination of scientific research documents, whether they are published or not. The documents may come from teaching and research institutions in France or abroad, or from public or private research centers. L'archive ouverte pluridisciplinaire **HAL**, est destinée au dépôt et à la diffusion de documents scientifiques de niveau recherche, publiés ou non, émanant des établissements d'enseignement et de recherche français ou étrangers, des laboratoires publics ou privés.

# External-Shell Oxygen Enabling Local Environment Modulation of Unsaturated NbN<sub>3</sub> for Efficient Electrosynthesis of Hydrogen Peroxide

Dingding Li,<sup>a</sup> Run-Xi Zhu, <sup>b</sup> Zheng Han, <sup>a</sup> Lei Bai, <sup>a</sup> Jianting Zhang, <sup>a</sup> Ruixin Xu, <sup>d</sup> Weilong Ma, <sup>a</sup> Liangpeng Nie, <sup>a</sup> Yi Wang, <sup>a</sup> Jinbo Bai, <sup>c</sup> Hang Zhao, <sup>a</sup> Ji-Quan Liu, <sup>d</sup> Kunyue Leng, \*<sup>a</sup> Ya-Qiong Su\*<sup>b</sup> and Yunteng Qu \*<sup>a</sup>

<sup>a</sup>State Key Laboratory of Photoelectric Technology and Functional Materials, International Collaborative Center on Photoelectric Technology and Nano Functional Materials, Institute of Photonics & Photon-Technology, Northwest University, Xi'an, 710069, PR China.<sup>b</sup>School of Chemistry, Xi'an Key Laboratory of Sustainable Energy Materials Chemistry, State Key Laboratory of Electrical Insulation and Power Equipment, Xi'an Jiaotong University, Xi'an 710049, PR China.

<sup>c</sup>Université Paris-Saclay, CentraleSupélec, ENS Paris-Saclay, CNRS, LMPS-Laboratoire de Mécanique Paris-Saclay, 8-10 rue Joliot-Curie, Gif-sur-Yvette 91190, France <sup>d</sup>Key Laboratory of Synthetic and Natural Functional Molecule Chemistry, College of Chemistry & Materials Science, Northwest University, 1 Xuefu Ave., Xi'an 710127, PR China

KEYWORDS: electrocatalysis, Nb single atom, coordination environment regulation, oxygen reduction reaction

ABSTRACT: Single atom catalysts with tunable coordination structure have shown grand potential in flexibly altering the selectivity of oxygen reduction reaction (ORR) towards desired pathway. However, the local coordination number modulation on the single metal sites, which could mediate the ORR pathway, still remains challenging. Herein, we prepare the Nb single atom catalysts (SACs) with external-shell oxygen modulated unsaturated NbN<sub>3</sub> site in carbon nitride and NbN<sub>4</sub> site anchored in nitrogen doped carbon carriers, respectively. Compared with typical NbN<sub>4</sub> moieties for 4e<sup>-</sup> ORR, the as prepared NbN<sub>3</sub> SACs exhibits excellent 2e<sup>-</sup> ORR activity in 0.1 M KOH, of which the onset overpotential close to zero (9 mV) and the H<sub>2</sub>O<sub>2</sub> selectivity surpass 95%, making it one of the state-of-the-art catalysts in electrosynthesis of hydrogen peroxide. DFT theoretical calculations indicate the unsaturated Nb-N<sub>3</sub> moieties and adjacent oxygen groups optimize the interface bond strength of pivotal intermediates (OOH\*) for producing H<sub>2</sub>O<sub>2</sub>, thus accelerating 2e<sup>-</sup> ORR pathway. Our findings may provide novel platform for developing SACs with high activity and tunable selectivity.

#### **1. Introduction**

Hydrogen peroxide (H<sub>2</sub>O<sub>2</sub>), as a kind of green oxidant, is widely utilized in the chemical industry, environmental treatment and pharmaceutical manufacturing.<sup>1, 2</sup> Compared to the industrial anthraquinone process with intensive energy consumption and pollution issues, the electrochemical synthesis of H<sub>2</sub>O<sub>2</sub> manifests itself as a ideal alternative because of the mild reaction conditions, the exploitation of renewable electricity and green precursors (water and air) as feedstocks.<sup>3-5</sup> Various noble metals catalysts, such as Pd-Au,<sup>6</sup> Pd-Hg,<sup>7</sup> Au-Pt-Ni<sup>8</sup> and PtP<sub>2</sub><sup>9</sup>, have been demonstrated efficient for 2e<sup>-</sup> oxygen reduction reaction (ORR), but their scarcity and high cost significantly hinder the practical application in industry.<sup>10</sup> In this context, developing

efficient and substitutive non-noble based electrocatalysts that could enable high H<sub>2</sub>O<sub>2</sub> selectivity at a relative low reaction barrier of is of great importance.

An ideal 2<sup>e<sup>-</sup></sup> ORR electrocatalyst demands neither too strong nor too weak bonding strength between active sites and oxygen species for preservation of O-O bond.<sup>11, 12</sup> Therefore, a catalyst platform with flexibly tailorable electronic structure is crucial for modulating the ORR pathway and boosting the desired kinetic process. <sup>13, 14</sup> Thanks to the maximum atomic utilization and adjustable coordination structure, single-atom catalysts (SACs) may provide a promising platform to flexibly manipulate the ORR pathway.<sup>15-17</sup> Recently, it has been demonstrated that introducing heteroatom doping (O, B, S, P, etc.) into Fe/Co/Ni-N-C single metal site can engineer the local environment of single metal active site for desired 2e<sup>-</sup> ORR.<sup>3, 18-21</sup> However, these heteroatom doping strategies cause the problems of demetallation and stability issues of single metal sites at harsh operating conditions.<sup>22, 23</sup> Even worse, the dissociative metal ions, especially iron and cobalt ions, will potentially lead to the decomposition of H<sub>2</sub>O<sub>2</sub> due to Fenton effect. Different from heteroatom doping strategy, tailoring the coordination number of M-N sites offers another intriguing approach to simultaneously regulate the electronic structure and maintain the robust stability of SACs.<sup>24, 25</sup> Actually, it is found that engineering local coordination number of atomically dispersed M-N<sub>x</sub> moieties can greatly promote the reaction activity.<sup>26-28</sup> However, the local coordination number modulation on the metal-N sites, which could mediate the 2e<sup>-</sup>/4e<sup>-</sup> ORR pathways, still remains challenging and has rarely been investigated.

In this work, we rationally modulate the coordination number of single Nb-N sites and external-shell oxygen group to tailor ORR pathway. Inspired by CNT composites based on multiple types of structures,<sup>29, 30</sup> the as-prepared catalyst possesses an unsaturated Nb-N<sub>3</sub>

configuration in graphitic carbon nitride on carbon nanotubes and the oxygen group species on second coordination carbon, which is denoted as NbN<sub>3</sub>-(O)C<sub>3</sub>N<sub>4</sub>/OCNT. Compared with typical NbN<sub>4</sub>/NC orienting to 4e<sup>-</sup> ORR pathway, NbN<sub>3</sub>-(O)C<sub>3</sub>N<sub>4</sub>/OCNT exhibits excellent 2e<sup>-</sup> ORR activity with a near zero overpotential, a H<sub>2</sub>O<sub>2</sub> selectivity over 95%, as well as superior H<sub>2</sub>O<sub>2</sub> productivity (1020.4 mmol g<sub>catalyst</sub><sup>-1</sup> h<sup>-1</sup> at 0 V) in flow cell, make it one of the state-of-the-art catalysts in electrosynthesis of hydrogen peroxide. DFT theoretical calculations in combination with control experiments indicate the unsaturated Nb-N<sub>3</sub> moieties and external-shell oxygen group regulate electron distribution around Nb sites, thus optimizing the adsorption/desorption strength of pivotal reaction intermediates (\*OOH) for producing H<sub>2</sub>O<sub>2</sub>.

#### 2. Results and Discussion

#### 2.1. Synthesis and structural characterizations of NbN<sub>3</sub>-(O)C<sub>3</sub>N<sub>4</sub>/OCNT

NbN<sub>3</sub>-(O)C<sub>3</sub>N<sub>4</sub>/OCNT was prepared by a typical impregnation-pyrolysis strategy, in which the thermal pyrolysis of dicyanamide, niobium oxalate and oxidized carbon nanotube (OCNT) conducted at 600 °C (Figure 1a). For comparison, NbN<sub>3</sub>-C<sub>3</sub>N<sub>4</sub>/CNT and NbN<sub>4</sub>/NC were also prepared through similar methods (Figure S1). SEM and TEM images uncovered the resultant NbN<sub>3</sub>-(O)C<sub>3</sub>N<sub>4</sub>/OCNT took the similar morphology with CNT (Figure S2). Moreover, a thin layer of g-C<sub>3</sub>N<sub>4</sub> enveloped on the OCNT is observed at HRTEM image (Figure 1b). Furthermore, the N1s XPS analysis (Figure S3) and the larger specific surface areas of NbN<sub>3</sub>-(O)C<sub>3</sub>N<sub>4</sub>/OCNT



**Figure 1.** Synthesis and characterizations. (a) Schematic diagram for the preparing of NbN<sub>3</sub>-(O)C<sub>3</sub>N<sub>4</sub>/OCNT. (b) TEM image, (c) HAADF-STEM image, (d) EDS mappings of NbN<sub>3</sub>-(O)C<sub>3</sub>N<sub>4</sub>/OCNT. (e) XRD patterns of NbN<sub>3</sub>-C<sub>3</sub>N<sub>4</sub>/CNT, NbN<sub>4</sub>/NC and NbN<sub>3</sub>-(O)C<sub>3</sub>N<sub>4</sub>/OCNT. (f) Aberration-corrected HAADF-STEM image of NbN<sub>3</sub>-(O)C<sub>3</sub>N<sub>4</sub>/OCNT. (g) Intensity profiles obtained from the area highlighted with red box in f.

(146.8 m<sup>2</sup>/g) than that of OCNT (134.5 m<sup>2</sup>/g) further indicated the formation of  $C_3N_4$  layer (Figure S4 and Table S1). The HAADF-STEM image and corresponding EDS element mapping demonstrated the existence and homogeneous dispersion of Nb elenmet, no obvious Nb particles was observed (Figure 1c and d). The XRD parttern of NbN<sub>3</sub>-(O)C<sub>3</sub>N<sub>4</sub>/OCNT exhibited only the diffraction peaks belong to  $C_3N_4$ /OCNT, further demonstrating the poor crystallinity of Nb

(Figure S5). The atomic distribution of Nb sites in the as-prepared catalyst is distinguished by Aberration-corrected HAADF-STEM. 1f and g, bright spots with diameter around 0.22 nm were randomly dispersed on  $C_3N_4$  enveloped OCNT, indicating the existence of atomic dispersed Nb sites on NbN<sub>3</sub>-(O)C<sub>3</sub>N<sub>4</sub>/OCNT. The Nb content was confirmed to 0.21 wt% by ICP-OES (Table S1). The NbN<sub>3</sub>-C<sub>3</sub>N<sub>4</sub>/CNT and NbN<sub>4</sub>/NC with atomically dispersed Nb sites were also demonstrated by XRD (Figure 1e) and HAADF-STEM (Figure S6 and S7).



Figure 2. (a) Nb 3d XPS spectrum and (b) Nb K edge X-ray absorption near-edge spectroscopy spectra of NbN<sub>3</sub>-(O)C<sub>3</sub>N<sub>4</sub>/OCNT and the reference samples. (c) C K edge and (d) N K edge XANES spectra of NbN<sub>3</sub>-(O)C<sub>3</sub>N<sub>4</sub>/OCNT and NbN<sub>3</sub>-C<sub>3</sub>N<sub>4</sub>/CNT. (e) FT-EXAFS spectra and (f) EXAFS fitting curves of NbN<sub>3</sub>-(O)C<sub>3</sub>N<sub>4</sub>/OCNT and the reference samples. (g) Continuously

Cauchy wavelet transform  $k^3$ -weighted EXAFS spectra of NbN<sub>3</sub>-(O)C<sub>3</sub>N<sub>4</sub>/OCNT and the reference samples.

Furthermore, X-ray photoelectron spectroscopy (XPS) and X-ray absorption spectroscopy (XAS) were adopted to clarify the coordination environment and electronic state of Nb SACs. The N 1s spectra analysis showed the existent of Nb-N bonding on NbN<sub>3</sub>-(O)C<sub>3</sub>N<sub>4</sub>/OCNT, NbN<sub>3</sub>-C<sub>3</sub>N<sub>4</sub>/CNT and NbN<sub>4</sub>/NC (Figure S8). The peaks of Nb 3d spectra for NbN<sub>3</sub>-(O)C<sub>3</sub>N<sub>4</sub>/OCNT, NbN<sub>3</sub>-C<sub>3</sub>N<sub>4</sub>/CNT and NbN<sub>4</sub>/NC can be examined at 207.9, 207.7 and 207.6 eV, respectively, which located between  $Nb^{0}$  and  $Nb^{5+}$  (Figure 2a). This observation demonstrated the partially positive oxidative state of Nb<sup> $\delta^+$ </sup> (0< $\delta$ <5) in Nb SACs. Based on the Nb K edge XANES spectra (Figure 2b), the white-line intensity of NbN<sub>3</sub>-(O)C<sub>3</sub>N<sub>4</sub>/OCNT, NbN<sub>3</sub>-C<sub>3</sub>N<sub>4</sub>/CNT and NbN<sub>4</sub>/NC located between Nb foil and Nb<sub>2</sub>O<sub>5</sub>, in line with the Nb 3d XPS results. Notably, the single Nb sites in NbN<sub>3</sub>-(O)C<sub>3</sub>N<sub>4</sub>/OCNT exhibited unique electronic structure, as demonstrated by the higher oxidative state of Nb in NbN<sub>3</sub>-(O)C<sub>3</sub>N<sub>4</sub>/OCNT than those of NbN<sub>3</sub>- $C_3N_4$ /CNT and NbN<sub>4</sub>/NC. The lower oxidative state of Nb in NbN<sub>4</sub>/NC may be ascribed to different coordination number of Nb-N. On the other hand, the difference in oxidative state of Nb between NbN<sub>3</sub>-(O)C<sub>3</sub>N<sub>4</sub>/OCNT and NbN<sub>3</sub>-C<sub>3</sub>N<sub>4</sub>/CNT may be due to the oxygen group species on CNT. For further elucidating the effect of O group, C K edge and N K edge XANES spectra were measured over NbN<sub>3</sub>-(O)C<sub>3</sub>N<sub>4</sub>/OCNT and NbN<sub>3</sub>-C<sub>3</sub>N<sub>4</sub>/CNT, respectively. It can be seen from the C K edge XANES spectra (Figure 2c), compared with NbN<sub>3</sub>-C<sub>3</sub>N<sub>4</sub>/CNT, the peak of  $\pi^*_{N-C=N}$  attributed to C<sub>3</sub>N<sub>4</sub> showed a significant positive shift (0.14 eV) on NbN<sub>3</sub>-(O)C<sub>3</sub>N<sub>4</sub>/OCNT. Meanwhile, the slight shift towards higher energy areas (0.08 eV) also can be observed in  $\pi^*_{C-N=C}$  based on the N K edge XANES spectra (Figure 2d). Together, the stronger charge transfer occurred on C atoms of C<sub>3</sub>N<sub>4</sub>, indicating that O species were proposed to bond with second coordination carbon sites. As depicted in Figure 2e, the EXAFS at R-space showed

only a dominant peak at ~1.5 Å assigned to Nb-N bonding for these Nb samples. Additionally, the absence of Nb-Nb bonding at ~2.6 Å and wavelet transform  $k^3$ -weighted EXAFS spectra (Figure 2g) suggested the atomically dispersed of Nb species in the three as-obtained samples. According to corresponding fitting results at R-space (Figure 2f), NbN<sub>3</sub>-(O)C<sub>3</sub>N<sub>4</sub>/OCNT and NbN<sub>3</sub>-C<sub>3</sub>N<sub>4</sub>/CNT displayed the NbN<sub>3</sub> coordination structure, while NbN<sub>4</sub>/NC exhibited the NbN<sub>4</sub> coordination structure (Figure S9 and Table S2), consistent with XPS analysis. And these results above provided solid evidence for successfully fabricating Nb SACs.

#### 2.2. Electrochemical Oxygen Reduction Reaction

The as-prepared Nb SACs feature unique metal center and tunable electron structure, which provides potential opportunity to modulate the activity and selectivity for electrocatalysis. Thus, their ability to drive and alter the ORR pathway was evaluated in 0.1 M KOH with a catalyst loading of 0.10 mg cm<sup>-2</sup>. As exhibited in Figure 3a and Figure S10, the OCNT-based NbN<sub>3</sub> catalyst, NbN<sub>3</sub>-(O)C<sub>3</sub>N<sub>4</sub>/OCNT, showed a superior onset potential of 0.816 V (at -0.1 mA cm<sup>-2</sup>, vs RHE), which approached the theoretical limit for 2e<sup>-</sup> ORR (0.825 V vs RHE).<sup>31</sup> The fast ORR kinetics of NbN<sub>3</sub>-(O)C<sub>3</sub>N<sub>4</sub>/OCNT was also confirmed by a low Tafel slope of 70.5 mV dec<sup>-1</sup> (Figure S11). The selectivity towards H<sub>2</sub>O<sub>2</sub> was calculated by rotating ring-disk electrode (RRDE) tests. The NbN<sub>3</sub>-(O)C<sub>3</sub>N<sub>4</sub>/OCNT delivered a high H<sub>2</sub>O<sub>2</sub> selectivity with 95% and a nearly 2 electron transfer (n=2.07) at a wide potential window (0.4-0.7 V vs RHE) (Figure 3b and Figure S12), outperforming most reported catalysts for 2e<sup>-</sup> ORR in alkaline media (Figure 3c). Conversely, the CNT-based catalysts, NbN<sub>3</sub>-C<sub>3</sub>N<sub>4</sub>/CNT (59.5%) and NbN<sub>4</sub>/NC (27.4%) were more favorable to approach the 4e<sup>-</sup> ORR. This observation indicated the unsaturated NbN<sub>3</sub> coordination and the oxygen species around Nb sites provided by the functionalized OCNT play important role to optimize the electronic structure of Nb SACs, hence altering ORR pathway. Furthermore, the CNT and OCNT also exhibited poor selectivity for 2e<sup>-</sup> ORR (16.5% and



18.4%), which excluded the possible contribution of supports. And the higher selectivity of  $C_3N_4$ /OCNT (22.3%) compared with OCNT suggests that  $C_3N_4$  favors ORR pathway shift.

**Figure 3 Electrochemical ORR evaluation.** (a) RRDE voltammograms obtained in O<sub>2</sub>saturated 0.1 M KOH with disk current density ( $j_{disk}$ ) and the ring currents ( $i_{ring}$ ). (b) Calculated H<sub>2</sub>O<sub>2</sub> selectivity and electron transfer number (n) from RRDE. (c) Comparison of the onset potential and maximum H<sub>2</sub>O<sub>2</sub> selectivity on NbN<sub>3</sub>-(O)C<sub>3</sub>N<sub>4</sub>/OCNT and other reported electrocatalysts. (d) Voltammograms for NbN<sub>3</sub>-(O)C<sub>3</sub>N<sub>4</sub>/OCNT obtained in 0.1 M KOH containing 10 mm H<sub>2</sub>O<sub>2</sub>. (e) Stability measurement of NbN<sub>3</sub>-(O)C<sub>3</sub>N<sub>4</sub>/OCNT at a fixed disk potential of 0.5 V versus RHE. (f) Schematic illustration of the flow cell electrolytic device. (g)

The corresponding  $H_2O_2$  selectivity and production rate in the flow cell with different feed gas. (h) Long-term stability test of NbN<sub>3</sub>-(O)C<sub>3</sub>N<sub>4</sub>/OCNT at 0 V (versus RHE) and corresponding  $H_2O_2$  FE in flow cell.

For evaluating the stability of  $H_2O_2$  at operating conditions, the electrochemical  $H_2O_2$  reduction testing was conducted in N<sub>2</sub>-saturated 0.1 M KOH adding 10 mM hydrogen peroxide. Figure 3d showed that the NbN<sub>3</sub>-(O)C<sub>3</sub>N<sub>4</sub>/OCNT achieved an insignificant reaction current, verifying the poor activity for  $H_2O_2$  reduction. The robust stability of NbN<sub>3</sub>-(O)C<sub>3</sub>N<sub>4</sub>/OCNT was revealed by the chronoamperometric test at a constant disk potential of 0.5 V. After continuous operating for 12 h, the  $H_2O_2$  selectivity still retained over 95% (Figure 3e). Moreover, we performed the post-catalysis SEM, TEM, XRD and HAADF-STEM (Figure S13) and demonstrated the stability of NbN<sub>3</sub> sites on NbN<sub>3</sub>-(O)C<sub>3</sub>N<sub>4</sub>/OCNT.

Inspired by the superior activity and selectivity of NbN<sub>3</sub>-(O)C<sub>3</sub>N<sub>4</sub>/OCNT in three-electrode system, a flow cell system was assembled to simulate the scale-up H<sub>2</sub>O<sub>2</sub> using pure O<sub>2</sub> and air. As shown in Figure 3f, cathode was obtained by attaching NbN<sub>3</sub>-(O)C<sub>3</sub>N<sub>4</sub>/OCNT on gas diffusion layer (1 mg cm<sup>-2</sup>) and the iridium oxide was used as the anode. The produced H<sub>2</sub>O<sub>2</sub> was analyzed by the cerium sulfate titration method (Figure S14 and S15). The LSV curves showed the reaction current density can reach -135 mA cm<sup>-2</sup> and -110 mA cm<sup>-2</sup> (at -0.8 V) under O<sub>2</sub> and air flow, respectively (Figure S16). As shown in Figure 3g, NbN<sub>3</sub>-(O)C<sub>3</sub>N<sub>4</sub>/OCNT exhibited a high Faraday efficiency for H<sub>2</sub>O<sub>2</sub> production over 90% from -0.1 to 0.7V. Particularly, an excellent H<sub>2</sub>O<sub>2</sub> production rate was gained 1020.4 mmol g<sub>catalyst</sub><sup>-1</sup> h<sup>-1</sup> over NbN<sub>3</sub>-(O)C<sub>3</sub>N<sub>4</sub>/OCNT at 0 V, which surpassed most reported 2e<sup>-</sup> ORR electrocatalysts (Table S3). Moreover, when the flow gas was change to air, just a slight decay of H<sub>2</sub>O<sub>2</sub> production was observed. Chronopotentiometry measurement uncovered that H<sub>2</sub>O<sub>2</sub> could be continuously and efficiently produced for 12 h in O<sub>2</sub> or air flow (Figure 3h and Figure S17). Together, these results above

demonstrate the excellent activity of NbN<sub>3</sub>-(O)C<sub>3</sub>N<sub>4</sub>/OCNT for  $H_2O_2$  electrosynthesis and display promising prospect in scaling up  $H_2O_2$  towards the industrial application.

#### 2.3. Operando Electrochemical Raman and DFT Calculations

To further investigated the regulation of ORR pathway over NbN<sub>3</sub> sites, electrochemical operando Raman spectra of NbN<sub>3</sub>-(O)C<sub>3</sub>N<sub>4</sub>/OCNT and NbN<sub>4</sub>/NC were measured in O<sub>2</sub>-saturated 0.1 M KOH (Figure S18). It can be seen in Figure 4a, no extra signal was detected at 1 V over neither NbN<sub>4</sub>/NC nor NbN<sub>3</sub>-(O)C<sub>3</sub>N<sub>4</sub>/OCNT, due the insufficient dynamics. After negatively shifting the applied potential to 0.6 V, a strong band belong to \*OOH species, as a commonly intermediate in 2e<sup>-</sup> ORR pathway, emerged at 840.7 cm<sup>-1</sup> on NbN<sub>3</sub>-(O)C<sub>3</sub>N<sub>4</sub>/OCNT.<sup>32</sup> However, for NbN<sub>4</sub>/NC the band at 840.7 cm<sup>-1</sup> is quite weak and an obviously new signal belong to \*OH at emerged at 1088.2 cm<sup>-1</sup>,<sup>33</sup> indicating the NbN<sub>4</sub>/NC is more favorable to decompose \*OOH species to trigger 4e<sup>-</sup> ORR pathway. The above results demonstrated that superior 2 e<sup>-</sup> ORR performance of NbN<sub>3</sub>-(O)C<sub>3</sub>N<sub>4</sub>/OCNT stem from its modest interaction between reaction intermediate, which boosted the ORR dynamics without decomposing \*OOH species into \*OH.



Figure 4 (a) Electrochemical operando Raman spectra recorded in O<sub>2</sub>-saturated 0.10 M KOH. (b) Free energy diagram of  $2e^{-}$  ORR on NbN<sub>3</sub>-(O)C<sub>3</sub>N<sub>4</sub>/OCNT and NbN<sub>4</sub>/NC at 0 V vs. RHE. (c) Charge density differences of NbN<sub>3</sub>-(O)C<sub>3</sub>N<sub>4</sub>/OCNT and NbN<sub>4</sub>/NC.

Density functional theory (DFT) calculations further disclose the effect of Nb coordination environment on the 2e<sup>-</sup> ORR pathway. Figure 4b displays the free-energy evolution diagram of NbN<sub>3</sub>-(O)C<sub>3</sub>N<sub>4</sub>/OCNT and NbN<sub>4</sub>/NC. The potential-determining step of NbN<sub>3</sub>-(O)C<sub>3</sub>N<sub>4</sub>/OCNT is the first-step that reducing O<sub>2</sub> to form the \*OOH species, resulting in an overpotential of 0.039 eV. While the potential-determining step of NbN<sub>4</sub>/NC is the second-step reduction of \*OOH to form H<sub>2</sub>O<sub>2</sub> intermediate with an overpotential of 0.27 eV. Demonstrating the more efficient 2 e<sup>-</sup> ORR dynamics over NbN<sub>3</sub>-(O)C<sub>3</sub>N<sub>4</sub>/OCNT, which in good agreement with its rational charge distribution between Nb-N sites and O-containing species (Figure 4c).

#### **3.** Conclusion

In summary, we synthesized NbN<sub>3</sub>-(O)C<sub>3</sub>N<sub>4</sub>/OCNT by modulating the coordination number of single Nb-N site and adjacent oxygen groups, and applied it to  $H_2O_2$  electrosynthesis.

Compared with NbN<sub>4</sub>/NC with saturated nitrogen coordination, the NbN<sub>3</sub>-(O)C<sub>3</sub>N<sub>4</sub>/OCNT electrocatalyst with unsaturated Nb-N<sub>3</sub> moieties exhibits excellent catalytic performance for 2e<sup>-</sup> ORR pathway, with a near zero overpotential, a H<sub>2</sub>O<sub>2</sub> selectivity over 95%, as well as superior H<sub>2</sub>O<sub>2</sub> productivity (1020.4 mmol  $g_{catalyst}^{-1}$  h<sup>-1</sup> at 0 V) in flow cell. DFT theoretical calculations in combination with in situ Raman spectroscopy indicate the unsaturated Nb-N<sub>3</sub> moieties and adjacent oxygen group regulate electron distribution around Nb sites, thus optimizing the adsorption/desorption strength of pivotal reaction intermediates (\*OOH) for producing H<sub>2</sub>O<sub>2</sub>. It can be expected that this work will provide more options for future catalyst design and its coordination control.

#### ASSOCIATED CONTENT

#### **Supporting Information**

This material is available free of charge via the Internet at http://pubs.acs.org.

Experimental Section, Electrochemical measurements, Computational Method and Characterizations.

#### AUTHOR INFORMATION

#### **Corresponding Authors**

\***Kunyue Leng** – State Key Laboratory of Photoelectric Technology and Functional Materials, International Collaborative Center on Photoe-lectric Technology and Nano Functional Materials, Institute of Photonics & Photon-Technology, Northwest University, Xi'an, 710069, PR China Email: lengky@nwu.edu.cn

\***Ya-Qiong Su** – School of Chemistry, Xi'an Key Laboratory of Sustainable Energy Materials Chemistry, State Key Laboratory of Electrical Insulation and Power Equipment, Xi'an Jiaotong University, Xi'an 710049, China Email: yqsu1989@xjtu.edu.cn \***Yunteng Qu** – State Key Laboratory of Photoelectric Technology and Functional Materials, International Collaborative Center on Photoe-lectric Technology and Nano Functional Materials, Institute of Photonics & Photon-Technology, Northwest University, Xi'an, 710069, PR China Email: yuntengqu@nwu.deu.cn

#### Authors

**Dingding Li** – State Key Laboratory of Photoelectric Technology and Functional Materials, International Collaborative Center on Photoe-lectric Technology and Nano Functional Materials, Institute of Photonics & Photon-Technology, Northwest University, Xi'an, 710069, PR China

**Run-Xi Zhu** – School of Chemistry, Xi'an Key Laboratory of Sustainable Energy Materials Chemistry, State Key Laboratory of Electrical Insulation and Power Equipment, Xi'an Jiaotong University, Xi'an 710049, China

**Zheng Han** – State Key Laboratory of Photoelectric Technology and Functional Materials, International Collaborative Center on Photoe-lectric Technology and Nano Functional Materials, Institute of Photonics & Photon-Technology, Northwest University, Xi'an, 710069, PR China **Lei Bai** – State Key Laboratory of Photoelectric Technology and Functional Materials, International Collaborative Center on Photoe-lectric Technology and Nano Functional Materials, Institute of Photonics & Photon-Technology, Northwest University, Xi'an, 710069, PR China **Jianting Zhang** – State Key Laboratory of Photoelectric Technology and Functional Materials, International Collaborative Center on Photoe-lectric Technology and Functional Materials, Institute of Photonics & Photon-Technology, Northwest University, Xi'an, 710069, PR China **Jianting Zhang** – State Key Laboratory of Photoelectric Technology and Functional Materials, International Collaborative Center on Photoe-lectric Technology and Nano Functional Materials, Institute of Photonics & Photon-Technology, Northwest University, Xi'an, 710069, PR China **Ruixin Xu** – Key Laboratory of Synthetic and Natural Functional Molecule Chemistry, College of Chemistry & Materials Science, Northwest University, 1 Xuefu Ave., Xi'an 710127, PR China

**Weilong Ma** – State Key Laboratory of Photoelectric Technology and Functional Materials, International Collaborative Center on Photoe-lectric Technology and Nano Functional Materials, Institute of Photonics & Photon-Technology, Northwest University, Xi'an, 710069, PR China

**Liangpeng Nie** – State Key Laboratory of Photoelectric Technology and Functional Materials, International Collaborative Center on Photoe-lectric Technology and Nano Functional Materials, Institute of Photonics & Photon-Technology, Northwest University, Xi'an, 710069, PR China Yi Wang – State Key Laboratory of Photoelectric Technology and Functional Materials, International Collaborative Center on Photoe-lectric Technology and Nano Functional Materials, Institute of Photonics & Photon-Technology, Northwest University, Xi'an, 710069, PR China
Jinbo Bai – Université Paris-Saclay, CentraleSupélec, ENS Paris-Saclay, CNRS, LMPS-Laboratoire de Mécanique Paris-Saclay, 8-10 rue Joliot-Curie, Gif-sur-Yvette 91190, France
Hang Zhao – State Key Laboratory of Photoelectric Technology and Functional Materials, International Collaborative Center on Photoe-lectric Technology and Functional Materials, International Collaborative Center on Photoe-lectric Technology and Nano Functional Materials, Institute of Photonics & Photon-Technology, Northwest University, Xi'an, 710069, PR China
Ji-Quan Liu – Key Laboratory of Synthetic and Natural Functional Molecule Chemistry, College of Chemistry & Materials Science, Northwest University, 1 Xuefu Ave., Xi'an 710127, PR China

#### **Author Contributions**

K.L. and Y.Q. conceptualized and co-wrote this work. Y.S. designed and supervised the DFT calculations. D.L. synthesized the catalysts and carried out the electrochemistry evaluation. R.Z. carried out the DFT calculations. Z.H., L.B., J.Z., R.X., W.M., L.N. helped arrange the material characterizations. Y.W., J.B., H.Z., and J.-Q.L. helped with modification of the paper. All authors discussed and revised the manuscript.

#### Funding

This work was financially supported by the National Natural Science Foundation of China (21902150), Natural Science Basic Research Program of Shaanxi (2022JQ-082 and 2022JM-018) and China Postdoctoral Science Foundation (2020M673461 and 2021M692609).

#### Notes

The authors declare no competing financial interest.

#### ACKNOWLEDGMENT

This work is financially supported by the National Natural Science Foundation of China (21902150), Natural Science Basic Research Program of Shaanxi (2022JQ-082 and 2022JM-018) and China Postdoctoral Science Foundation (2020M673461 and 2021M692609). Y. Su acknowledge the "Young Talent Support Plan" of Xi'an Jiaotong University. Supercomputing facilities were provided by Hefei Advanced Computing Center. We thank the photoemission endstation beamline 1W1B station in the Beijing Synchrotron Radiation Facility (BSRF), BL14W1 in Shanghai Synchrotron Radiation Facility (SSRF), BL10B and BL11U in National Synchrotron Radiation Laboratory (NSRL) for the help in characterizations.

## REFERENCES

(1) Perry, S. C.; Pangotra, D.; Vieira, L.; Csepei, L.-I.; Sieber, V.; Wang, L.; Ponce de León, C.; Walsh, F. C., Electrochemical synthesis of hydrogen peroxide from water and oxygen. *Nat. Rev. Chem.* **2019**, *3*, 442-458.

(2) Campos - Martin, J. M.; Blanco-Brieva, G.; Fierro, J. L., Hydrogen peroxide synthesis: an outlook beyond the anthraquinone process. *Angew. Chem. Int. Ed.* **2006**, *45*, 6962-6984.

(3) Li, B. Q.; Zhao, C. X.; Liu, J. N.; Zhang, Q., Electrosynthesis of hydrogen peroxide synergistically catalyzed by atomic Co-Nx-C sites and oxygen functional groups in noble-metal-free electrocatalysts. *Adv. Mater.* **2019**, *31*, 1808173.

(4) Jiang, K.; Back, S.; Akey, A. J.; Xia, C.; Hu, Y.; Liang, W.; Schaak, D.; Stavitski, E.; Nørskov, J. K.; Siahrostami, S., Highly selective oxygen reduction to hydrogen peroxide on transition metal single atom coordination. *Nat. Commun.* **2019**, *10*, 1-11.

(5) Wu, G.; More, K. L.; Johnston, C. M.; Zelenay, P., High-performance electrocatalysts for oxygen reduction derived from polyaniline, iron, and cobalt. *Science* **2011**, *332*, 443-447.

(6) Pizzutilo, E.; Kasian, O.; Choi, C. H.; Cherevko, S.; Hutchings, G. J.; Mayrhofer, K.; Freakley, S. J., Electrocatalytic synthesis of hydrogen peroxide on Au-Pd nanoparticles: From fundamentals to continuous production. *Chem. Phys. Lett.* **2017**, *683*, 436-442.

(7) Samira; Siahrostami; Arnau; Verdaguer-Casadevall; Mohammadreza; Karamad, Enabling direct H<sub>2</sub>O<sub>2</sub> production through rational electrocatalyst design. *Nat. Mater.* **2013**, *12*, 1137-1143.

(8) Zheng, Z.; Ng, Y. H.; Wang, D. W.; Amal, R., Epitaxial growth of Au-Pt-Ni nanorods for direct high selectivity H<sub>2</sub>O<sub>2</sub> production. *Adv. Mater.* **2016**, *28*, 9949-9955.

(9) Li, H.; Wen, P.; Itanze, D. S.; Hood, Z. D.; Adhikari, S.; Lu, C.; Ma, X.; Dun, C.; Jiang, L.; Carroll, D. L. Scalable neutral  $H_2O_2$  electrosynthesis by platinum diphosphide nanocrystals by regulating oxygen reduction reaction pathways. *Nat. Commun.* **2020**, *11*, 1-12.

(10) Zhu, W.; Chen, S., Recent Progress of Single-atom Catalysts in the Electrocatalytic Reduction of Oxygen to Hydrogen Peroxide. *Electroanalysis* **2020**, *32*, 2591-2602.

(11) Kulkarni, A.; Siahrostami, S.; Patel, A.; Nørskov, J. K., Understanding catalytic activity trends in the oxygen reduction reaction. *Chem. Rev.* **2018**, *118*, 2302-2312.

(12) San Roman, D.; Krishnamurthy, D.; Garg, R.; Hafiz, H.; Lamparski, M.; Nuhfer, N. T.; Meunier, V.; Viswanathan, V.; Cohen-Karni, T., Engineering three-dimensional (3D) out-ofplane graphene edge sites for highly selective two-electron oxygen reduction electrocatalysis. *ACS Catal.* **2020**, *10*, 1993-2008. (13) Yaling, J.; Xue, Z.; Yang, J.; Liu, Q.; Xian, J.; Zhong, Y.; Sun, Y.; Zhang, X.; Yao, D.; Li, G., Tailoring the Electronic Structure of Atomically Dispersed Zn Electrocatalyst by Coordination Environment Regulation for High Selectivity Oxygen Reduction. *Angew. Chem. Int. Ed.* **2022**, *61*, e202110838.

(14) Wei, X.; Luo, X.; Wu, N.; Gu, W.; Lin, Y.; Zhu, C., Recent advances in synergistically enhanced single-atomic site catalysts for boosted oxygen reduction reaction. *Nano Energy* **2021**, *84*, 105817.

(15) Liu, X.; Zheng, L.; Han, C.; Zong, H.; Yang, G.; Lin, S.; Kumar, A.; Jadhav, A. R.; Tran, N. Q.; Hwang, Y., Identifying the Activity Origin of a Cobalt Single-Atom Catalyst for Hydrogen Evolution Using Supervised Learning. *Adv. Funct. Mater.* **2021**, *31*, 2100547.

(16) Guo, W.; Wang, Z.; Wang, X.; Wu, Y., General Design Concept for Single-Atom Catalysts toward Heterogeneous Catalysis. *Adv. Mater.* **2021**, *33*, 2004287.

(17) Song, Z.; Zhang, L.; Doyle - Davis, K.; Fu, X.; Luo, J. L.; Sun, X., Recent advances in MOF-derived single atom catalysts for electrochemical applications. *Adv. Energy Mater.* **2020**, *10*, 2001561.

(18) Wang, Y.; Shi, R.; Shang, L.; Waterhouse, G. I.; Zhao, J.; Zhang, Q.; Gu, L.; Zhang, T., High - Efficiency Oxygen Reduction to Hydrogen Peroxide Catalyzed by Nickel Single-Atom Catalysts with Tetradentate  $N_2O_2$  Coordination in a Three-Phase Flow Cell. *Angew. Chem. Int. Ed.* **2020**, *59*, 13057-13062.

(19) Gu, W.; Wang, X.; Wen, J.; Cao, S.; Jiao, L.; Wu, Y.; Wei, X.; Zheng, L.; Hu, L.; Zhang, L., Modulating Oxygen Reduction Behaviors on Nickel Single-Atom Catalysts to Probe the Electrochemiluminescence Mechanism at the Atomic Level. *Anal. Chem.* **2021**, *93*, 8663–8670.

(20) Yang, S.; Zhao, C.; Qu, R.; Cheng, Y.; Liu, H.; Huang, X., Probing the activity of transition metal M and heteroatom N<sub>4</sub> co-doped in vacancy fullerene (M-N<sub>4</sub>-C<sub>64</sub>, M= Fe, Co, and Ni) towards the oxygen reduction reaction by density functional theory. *RSC Adv.* **2021**, *11*, 3174-3182.

(21) Xiao, C.; Cheng, L.; Zhu, Y.; Wang, G.; Chen, L.; Wang, Y.; Chen, R.; Li, Y.; Li, C. J. A. C., Super-Coordinated  $N_4$ - $Ni_1$ - $O_2$  for Selective  $H_2O_2$  Electrosynthesis at High Current Densities. <u>doi.org/10.1002/ange.202206544</u>

(22) Chen, M.; He, Y.; Spendelow, J. S.; Wu, G., Atomically dispersed metal catalysts for oxygen reduction. *ACS Energy Lett.* **2019**, *4*, 1619-1633.

(23) He, Y.; Liu, S.; Priest, C.; Shi, Q.; Wu, G., Atomically dispersed metal-nitrogen–carbon catalysts for fuel cells: advances in catalyst design, electrode performance, and durability improvement. *Chem. Soc. Rev.* **2020**, *49*, 3484-3524.

(24) Ma, S.; Han, Z.; Leng, K.; Liu, X.; Wang, Y.; Qu, Y.; Bai, J., Ionic Exchange of Metal– Organic Frameworks for Constructing Unsaturated Copper Single-Atom Catalysts for Boosting Oxygen Reduction Reaction. *Small* **2020**, *16*, 2001384.

(25) Feng, J.; Gao, H.; Zheng, L.; Chen, Z.; Zeng, S.; Jiang, C.; Dong, H.; Liu, L.; Zhang, S.; Zhang, X., A Mn-N 3 single-atom catalyst embedded in graphitic carbon nitride for efficient CO <sup>2</sup> electroreduction. *Nat. Commun.* **2020**, *11*, 1-8.

(26) Zhang, F.; Zhu, Y.; Tang, C.; Chen, Y.; Qian, B.; Hu, Z.; Chang, Y. C.; Pao, C. W.; Lin, Q.; Kazemi, S. A., High-Efficiency Electrosynthesis of Hydrogen Peroxide from Oxygen Reduction Enabled by a Tungsten Single Atom Catalyst with Unique Terdentate  $N_1O_2$  Coordination. *Adv. Funct. Mater.* **2022**, *32*, 2110224.

(27) Gong, H.; Wei, Z.; Gong, Z.; Liu, J.; Ye, G.; Yan, M.; Dong, J.; Allen, C.; Liu, J.; Huang, K., Low-Coordinated Co-N-C on Oxygenated Graphene for Efficient Electrocatalytic H<sub>2</sub>O<sub>2</sub> Production. *Adv. Funct. Mater.* **2022**, *32*, 2106886.

(28) Jia, B.; Bai, L.; Han, Z.; Li, R.; Huangfu, J.; Li, C.; Zheng, J.; Qu, Y.; Leng, K.; Wang, Y., High-Performance Styrene Epoxidation with Vacancy-Defect Cobalt Single-Atom Catalysts. *ACS Appl. Mater.Interfaces* **2022**, *14*, 10337-10343.

(29) Cortés-Súarez, J.; Celis-Arias, V.; Beltrán, H. I.; Tejeda-Cruz, A.; Ibarra, I. A.; Romero-Ibarra, J. E.; Sánchez-González, E.; Loera-Serna, S., Synthesis and characterization of an SWCNT@ HKUST-1 composite: enhancing the CO<sub>2</sub> adsorption properties of HKUST-1. *ACS omega* **2019**, *4*, 5275-5282.

(30) White, D. L.; Day, B. A.; Zeng, Z.; Schulte, Z. M.; Borland, N. R.; Rosi, N. L.; Wilmer, C. E.; Star, A., Size discrimination of carbohydrates via conductive carbon Nanotube@ Metal organic framework composites. *J. Am. Chem. Soc.* **2021**, *143*, 8022-8033.

(31) Jung, E.; Shin, H.; Lee, B.-H.; Efremov, V.; Lee, S.; Lee, H. S.; Kim, J.; Hooch Antink, W.; Park, S.; Lee, K.-S. J. N. M., Atomic-level tuning of Co-N-C catalyst for high-performance electrochemical H<sub>2</sub>O<sub>2</sub> production. *Nat. Mater.***2020**, *19*, 436-442.

(32) Teng, Z.; Zhang, Q.; Yang, H.; Kato, K.; Yang, W.; Lu, Y.-R.; Liu, S.; Wang, C.; Yamakata, A.; Su, C. J. N. C., Atomically dispersed antimony on carbon nitride for the artificial photosynthesis of hydrogen peroxide. *Nat. Catal.* **2021**, *4*, 374-384.

(33) Leng, K.; Zhang, J.; Wang, Y.; Li, D.; Bai, L.; Shi, J.; Li, X.; Zheng, L.; Bai, J.; Qu, Y. J. A. F. M., Interfacial Cladding Engineering Suppresses Atomic Thermal Migration to Fabricate Well - Defined Dual - Atom Electrocatalysts. *Adv. Funct. Mater.* **2022**, 2205637.

## **Table of contents**

The resultant NbN<sub>3</sub> single atom catalyst exhibit excellent  $2e^-$  ORR activity with a near zero onset overpotential and a high H<sub>2</sub>O<sub>2</sub> selectivity over 95%, thanks to its unique local environment of unsaturated Nb-N<sub>3</sub> moieties and adjacent oxygen groups, which optimize the adsorption/desorption strength of pivotal reaction intermediates.

