
HAL Id: hal-04276497
https://hal.science/hal-04276497

Submitted on 9 Nov 2023

HAL is a multi-disciplinary open access
archive for the deposit and dissemination of sci-
entific research documents, whether they are pub-
lished or not. The documents may come from
teaching and research institutions in France or
abroad, or from public or private research centers.

L’archive ouverte pluridisciplinaire HAL, est
destinée au dépôt et à la diffusion de documents
scientifiques de niveau recherche, publiés ou non,
émanant des établissements d’enseignement et de
recherche français ou étrangers, des laboratoires
publics ou privés.

Privacy-Preserving Digital Vaccine Passport
Thai Duong, Jiahui Gao, Duong Hieu Phan, Ni Trieu

To cite this version:
Thai Duong, Jiahui Gao, Duong Hieu Phan, Ni Trieu. Privacy-Preserving Digital Vaccine Passport.
CANS 2023 - The 22nd International Conference on Cryptology and Network Security, Oct 2023,
Augusta, United States. pp.137-161, �10.1007/978-981-99-7563-1_7�. �hal-04276497�

https://hal.science/hal-04276497
https://hal.archives-ouvertes.fr

Privacy-Preserving Digital Vaccine Passport

Thai Duong1, Jiahui Gao2, Duong Hieu Phan3, and Ni Trieu4

1 Google LLC, USA
thai@calif.io

2 Arizona State University, USA
jgao76@asu.edu

3 LTCI, Telecom Paris, Institut Polytechnique de Paris, France
hieu.phan@telecom-paris.fr

4 Arizona State University, USA
nitrieu@asu.edu

Abstract. The global lockdown imposed during the Covid-19 pandemic
has resulted in significant social and economic challenges. In an effort
to reopen economies and simultaneously control the spread of the dis-
ease, the implementation of contact tracing and digital vaccine passport
technologies has been introduced. While contact tracing methods have
been extensively studied and scrutinized for security concerns through
numerous publications, vaccine passports have not received the same level
of attention in terms of defining the problems they address, establishing
security requirements, or developing efficient systems. Many of the exist-
ing methods employed currently suffer from privacy issues.

This work introduces PPass, an advanced digital vaccine passport system
that prioritizes user privacy. We begin by outlining the essential security
requirements for an ideal vaccine passport system. To address these
requirements, we present two efficient constructions that enable PPass
to function effectively across various environments while upholding user
privacy. By estimating its performance, we demonstrate the practical
feasibility of PPass. Our findings suggest that PPass can efficiently verify
a passenger’s vaccine passport in just 7 milliseconds, with a modest
bandwidth requirement of 480KB.

1 Introduction

As we navigate into the third year of the unprecedented global disruptions caused
by the COVID-19 pandemic, there is a noticeable improvement in our circum-
stances. The accelerated development and widespread distribution of vaccines
have played a vital role in expediting the pandemic’s resolution and enhancing
our preparedness for future outbreaks. However, it is crucial to recognize that
privacy is equally significant in the context of vaccine passports as it is in contact
tracing. Surprisingly, despite the multitude of proposals introduced by the scien-
tific community last year for contact tracing, vaccine passports have not received
the same level of attention when it comes to defining the problems they aim

to address, establishing security requirements, or developing efficient systems.
Consequently, many of the current methods employed in vaccine passport imple-
mentation suffer from privacy issues. In this study, we specifically focus on the
privacy implications of a vaccine passport rollout (the term "vaccine passport"
is used here to emphasize the privacy concern, but the discussion applies to all
types of digital certificates).

It is important to acknowledge that the incentives for the general public to
adopt a vaccine passport are considerably higher compared to those for using
a contact tracing app. The use of a vaccine passport directly and immediately
benefits the passport holder by allowing them to resume a normal life. On the
other hand, the purpose of a contact tracing application primarily revolves
around reducing the circulation of the virus in a more abstract manner. This
disparity may explain why people tend to be more skeptical about the privacy and
effectiveness of contact tracing while being more supportive of vaccine passports.

A survey conducted by Ipsos [17] further sheds light on public sentiment. The
survey, which encompassed over 21,000 individuals across 28 countries between
March 26 and April 9, 2021, revealed that 78% of respondents supported the
requirement of COVID-19 vaccine passports for travelers. Interestingly, the same
survey found that, on average across the 28 countries, only 50% of individuals felt
comfortable with their government accessing their personal health information,
with the number dropping to 40% in the case of private companies. Meanwhile,
amidst the evolving landscape, several governments have made the decision to
implement vaccine passports. Notably, we examine instances within countries
known for their commitment to privacy:

– European leaders have reached an agreement to expedite the implementation
of an EU-wide Digital Green Certificate as a matter of utmost importance.

– Some European countries, including Denmark, Sweden, and Iceland, have
taken the initiative to launch their own vaccine passports. Denmark, for
instance, has introduced the "Coronapas" vaccine passport domestically, with
potential plans to utilize it for international travel purposes as well.

– Estonia has introduced the VaccineGuard, a distributed data exchange plat-
form, to issue vaccination certificates in adherence to the EU’s green certificate
proposal. Additionally, in collaboration with the World Health Organization
(WHO), Estonia has been involved in the creation of a "smart yellow card,"
which serves as a global vaccine certificate.

– In the United Kingdom, the primary National Health Service (NHS) has
undergone updates to facilitate the presentation of COVID-19 vaccination or
test results by the public when traveling or attending public events.

Essentially, the aforementioned solutions involve issuing a certificate to indi-
viduals after they have been vaccinated. This certificate is signed by the relevant
authority and can be utilized for various purposes. In the case of the EU-wide
Digital Green Certificate [1], it is specified that the certificate incorporates a QR
code that is protected by a digital signature to prevent counterfeiting. During the
verification process, the QR code is scanned and the signature is validated. To
safeguard user privacy, the certificate contains only a limited set of information

2

that cannot be retained by the visited countries, and all health data remains
under the jurisdiction of the member state that issued the certificate. However, it
is important to note that this approach necessitates placing trust in the issuing
authority. If the QR code is compromised or marked, it becomes possible to trace
the movements of an individual. Moreover, even if the QR code is solely scanned
by a machine, a security breach could result in the linkage of an individual’s
entire movement history. The reliance on trust in the authority and the potential
linkability of data raise significant privacy concerns. Therefore, it is imperative to
urgently address privacy concerns through a privacy-by-design approach rather
than relying solely on trust. This entails proposing methods that offer the highest
level of privacy protection.

1.1 Our Contribution

In this work, we present PPass, an innovative solution for safeguarding privacy
in digital vaccine passports. Our system combines robust security measures
with low resource requirements, ensuring an efficient and cost-effective approach.
To enable PPass, we introduce two cryptographic constructions that function
seamlessly both online and offline during the passport verification process. These
constructions are specifically designed to optimize performance on resource-
limited devices, such as mobile phones, while accommodating a substantial
user base. Moreover, our proposed constructions fulfill all security and privacy
objectives, which we will elaborate on in subsequent discussions. In summary,
our contributions can be summarized as follows.

1. Problem Definition and Desirable Properties: We provide a formal definition
of the digital vaccine passport problem and outline the essential security and
performance requirements for an ideal scheme. To the best of our knowledge,
this work represents the first formal study of this problem.

2. Efficient Constructions for PPass: Leveraging an untrusted cloud server, we
propose two efficient constructions for PPass, namely a digital signature-based
construction for offline verification and a PIR-based construction for online
verification. For each construction, we conduct a thorough analysis of their
security properties and assess their computational and communication costs.

3. Performance Evaluation: To demonstrate the feasibility of PPass, we esti-
mate its performance in practical scenarios. Remarkably, the computational
requirements for the involved entities—the health authority, the client/user
(phone’s holder), and the service (verifier)—are lightweight during the pass-
port verification process. Specifically:

– The authority needs a mere 0.054ms per client to generate/sign a valid
vaccination certificate, with its runtime scaling linearly with the number
of clients.

– The client’s computation cost is constant per redeemed token, requiring
up to 13 milliseconds to redeem a vaccine passport certificate.

– In the PIR-based construction, the service’s computation cost grows
logarithmically with the number of valid tokens held by the cloud server.

3

However, in the signature-based construction, it remains constant per
redeemed token, taking only 155 milliseconds.

Note that the cloud server bears the highest computation cost, but this
can be mitigated by employing a more powerful machine or distributing
the workload across multiple servers/cores. Importantly, PPass ensures no
information leakage to the untrusted cloud server, enabling computation
outsourcing without any privacy risks.

2 Problem Statement and Desirable Properties

In this section, we will elucidate the issue concerning digital vaccine passports
that we aim to address. We will outline its security definition and expound upon
the desirable properties of the system we propose.

Problem Definition. The problem at hand revolves around digital vaccine pass-
ports, which are mobile applications designed to verify an individual’s vaccination
status for a specific disease (e.g., COVID-19). The digital vaccine passport system
comprises three primary participants: the client (C), the health authority (A),
and the service or verifier (S). When a client (C) receives a vaccination, they
obtain a vaccination certificate (σ) from a health authority (A). The client (C)
can utilize this certificate (σ) to authenticate their vaccination status to a service
without disclosing the actual certificate (σ) itself. The proof process involves
leveraging information from the health authority (A) that issued the certificate.
In our proposed system, known as PPass, we employ an untrusted cloud server
(H) that performs the computational workload of the health authority (A) to
enhance system efficiency while ensuring the cloud server (H) remains unaware
of any sensitive information.

2.1 Security Definition

The vaccine passport system involves four types of participants: a client (or phone
holder) C, an authority A, a cloud server H, and a service (or verifier) S. All
participants have agreed upon a specific functionality, which is vaccine passport
verification, and have consented to share the final result with a designated party.
The computational process ensures that nothing is revealed except the final
output.

For simplicity, we assume the presence of an authenticated secure channel
(e.g., with TLS) between each pair of participants. In this work, we specifically
focus on the semi-honest setting and the colluding model. In the ideal execution,
the participants interact with a trusted party that evaluates the function while a
simulator corrupts the same subset of participants. In the real-world execution,
the protocol is performed in the presence of an adversary who can corrupt a subset
of the participants. Privacy of the users is guaranteed as long as the adversary
can only corrupt parties and does not compromise the authority server A and
the service S. Further details regarding the formal security definition and the
security of our system can be found in Appendix D and Section 4, respectively.

4

2.2 Desirable Security

We outline the security and privacy requirements for the privacy-preserving
digital vaccine passport system. One of the primary objectives is to ensure that
the actions of honest clients, as well as other participants such as the authority
server A, cloud server H, and service S, are indistinguishable from each other.
In other words, an ideal digital vaccine passport system would guarantee that
executing the system in the real model is equivalent to executing it in an ideal
model with a trusted party. This requirement aligns with the standard security
definitions presented in [27]. Based on this definition, we consider the following
security and privacy properties for the vaccine passport system:

– Anonymous Identity: The real identity of a client C should not be revealed
to the untrusted cloud server H. Furthermore, unless necessary, the service
S should remain unaware of the client’s identity. It is important to note that
our PPass system does not maintain anonymity for clients if they willingly
publish identifiable information. The authority A is only allowed to know the
identity of a vaccinated client C.

– Token Unlinkability: Valid tokens, generated from the same vaccination
certificate σ, can be redeemed at multiple services S. However, it should
not be possible for any participant to link tokens belonging to the same
client. Our PPass system does not guarantee token unlinkability if a group of
services collude with the authority server A.

– Token Unforgeability: All vaccination tokens must be unforgeable. A
client should not be able to compute a valid token unless it corresponds to
their valid vaccination certificate σ. Similarly, a client should not be able to
compute a valid token generated from another client’s vaccination certificate
σ. Clients should be unable to redeem forged tokens, and any attempt to do
so should be detected.

– Token Unreusability: Each valid token should be usable only once. Once a
token is redeemed, it should be immediately deleted from the client’s device.
Clients and all participants, including services, should not be able to reuse
redeemed tokens.

2.3 Desirable Performance

In addition to ensuring security and privacy, an ideal privacy-preserving digital
vaccine passport system should possess certain performance requirements. We
consider the following desirable performance properties:

– Efficiency: The digital vaccine passport system should be capable of process-
ing a verification computation within a few seconds and should be scalable to
accommodate a large number of users. Furthermore, participants, especially
the authority A and the client C, should perform lightweight tasks to ensure
efficient operation.

– Flexibility: In certain scenarios where the client’s ID is required to be
collected by a service (e.g., at the airport), the vaccine passport system
cannot maintain anonymous identity. Therefore, the system should be flexible

5

enough to provide a trade-off between performance and privacy in such cases.
Similarly, the system can be optimized for efficiency in other scenarios where
presenting an ID is not necessary.

– Offline/Online Redeem: In practice, a service may experience a slow
network connection or be unable to connect to the internet during the
verification process. The system should be designed to function correctly under
different network conditions, supporting both offline and online redemption
processes.

3 Cryptographic Preliminaries

This section introduces the notations and cryptographic primitives used in the
later sections. For n ∈ N, we write [n] to denote the set of integers {1, . . . , n}.
We use ‘||’ to denote string concatenation. In this work, the computational and
statistical security parameters are denoted by κ, λ, respectively. Our PPass system
is essentially based on the CDH or DDH assumption in a cyclic group [11].

3.1 Randomizable Signature Scheme

The use of digital signatures [25, 33] in various applications has been crucial,
serving as a fundamental building block. With the integration of advanced features
like randomizability, digital signatures have become even more valuable. This
added functionality allows for the derivation of a new valid signature σ⋆ on the
same message, given an original valid signature σ. Importantly, randomizability
ensures that these two signatures remain unlinkable, even for the signer themselves.
The initial construction achieving this property was proposed by Camenisch
and Lysyanskaya [7], which has since been further enhanced by Pointcheval
and Sanders [31,32]. The use of randomizable signature schemes proves highly
advantageous in our scenario as it enables the preservation of user privacy, even
if the authority responsible for providing signed certificates is compromised.

Bilinear Group Setting. In the context of bilinear groups, a bilinear group
generator G refers to an algorithm that takes a security parameter λ as input
and produces a tuple (G1,G2,GT , p, g1, g2, e). Here, G1 = ⟨g1⟩ and G2 = ⟨g2⟩
are cyclic groups of prime order p (a λ-bit prime integer), generated by g1 and g2
respectively. The function e : G1 ×G2 → GT is an admissible pairing satisfying
the following properties:

– Bilinearity: For all a, b ∈ Zp, e(ga
1 , gb

2) = e(g1, g2)ab.
– Efficiency: e can be computed efficiently in polynomial time with respect to

the security parameter λ.
– Non-degeneracy: e(g1, g2) ̸= 1.

Additionally, the bilinear setting (G1,G2,GT , p, g1, g2, e) is considered asym-
metric when G1 ̸= G2. There exist three types of pairings:

1. Type 1: G1 = G2.

6

2. Type 2: e : G1 × G2 → GT is asymmetric, but an efficient homomorphism
exists from G2 to G1, while no efficient homomorphism exists in the reverse
direction.

3. Type 3: e is asymmetric, and no efficiently computable homomorphism exists
between G1 and G2.

The Camenisch and Lysyanskaya signature scheme utilizes pairings of type 1,
while the Pointcheval and Sanders signature scheme uses type 3 with a constant-
size signature. The Pointcheval-Sanders scheme’s unlinkability is based on the
Decisional Diffie-Hellman (DDH) assumption in G1, and its unforgeability relies
on a complex assumption defined in [31]. In our PPass system, we rely on the
Pointcheval-Sanders signature scheme because pairing type 3 offers the best
performance among the three types.

3.2 Private Information Retrieval
Private Information Retrieval (PIR) allows a client to request information from
one or multiple servers in such a way that the servers do not know which
information the client queried. The basic concept of PIR is that the server(s) hold
a database DB of N strings, and the client wishes to read data record DB[i]
without revealing the value of i. The construction of PIR [4] typically involves
three procedures:

– PIR.Query(pk, i)→ k: a randomized algorithm that takes the index i ∈ [N]
and public key pk as input and outputs an evaluated key k.

– PIR.Answer(pk, k, DB)→ c: a deterministic algorithm that takes an evaluated
key k, public key pk, and the DB as input and returns the response c.

– PIR.Extract(sk, c)→ d: a deterministic algorithm that takes the private key
sk and the response c as input and returns the desired data d.
A PIR construction is correct if and only if d = DB[i]. We say that PIR is

(symmetric) secure if an evaluated key k reveals nothing about the index i and
the answer c reveals nothing about other database record DB[j], j ∈ [N], j ̸= i.

Keyword-PIR. A variant of PIR called keyword-PIR was introduced by Chor,
et al. [8]. In keyword-PIR, the client has an item x, the server has a database
DB, and the client learns whether x ∈ DB. The most efficient keyword PIR [4]
is implemented using bucketing with Cuckoo hashing [12]. In this paper, we are
interested in Keyword PIR based on 1-server PIR [4, 26, 29], but our protocol
can use multiple-server PIR [6,10,28] to speed up the system’s performance.

Similar to traditional PIR, a keyword-PIR construction [4] comprises four
procedures. However, in keyword-PIR, the PIR.Query(pk, x) procedure takes a
keyword x as input, and PIR.Extract returns a bit d indicating whether x exists
in the server’s database DB. Utilizing hashing techniques [4, 5], keyword-PIR
exhibits similar computational and communication costs as traditional PIR. Angel
et al.’s work [5, Figure 5] demonstrates that a PIR query on a database of size
220 incurs approximately 7.62 milliseconds of client-side processing time and 80
milliseconds of server-side processing time (online time). Furthermore, the query
requires 480KB of bandwidth for communication.

7

PIR-with-Default. Another variant of PIR, known as PIR-with-Default, was
introduced by Lepoint et al. [20]. In PIR-with-Default, the server maintains a set
of key-value pairs P = (x1, v1), . . . , (yn, vn), where yi are distinct values and vi

are pseudo-random values. Additionally, there is a default (pseudo-random) value
w. When the client submits an item x, it receives vi if x = vi, and w otherwise.
The default value w needs to be refreshed for each query. This variant of PIR
has found applications in private join and compute scenarios.

Similar to keyword-PIR, a PIR-with-Default construction also consists of
the same procedures. However, in PIR-with-Default, the PIR.Answer(pk, k, P, w)
procedure takes P and w as input, and PIR.Extract returns a value v. The PIR-
with-Default protocol proposed by Lepoint et al. [20] is highly efficient, enabling
28 PIR with default lookups on a database of size 220 with a communication cost
of 7MB and an online computation time of 2.43 milliseconds.

3.3 Private Matching

A Private Matching (PM) is a two-party communication protocol where a sender
possessing an input string m0 interacts with a receiver who holds an input string
m1. The goal of this protocol is for the receiver to determine whether m0 is equal
to m1, while ensuring that the sender learns nothing about m1”. The receiver
obtains a single bit as output, indicating the equality result, but no additional
information is revealed.

To the best of our knowledge, the concept of Private Equality Testing (PM)
was first introduced in the works of Meadows [23] and FNW [14]. PM plays a
crucial role in private set intersection (PSI) protocols [15]. Performing a batch of
PM instances efficiently can be achieved using Oblivious Transfer (OT) extension
techniques. For instance, a study by KKRT [19] demonstrates that the amortized
cost of each PM instance, with an unbounded input domain 0, 1∗, amounts to
only a few symmetric-key operations and involves a communication of 488 bits.
However, our protocol necessitates executing one PM instance at a time, rendering
the construction of [19] unsuitable for our requirements. In our PPass system, we
adopt a DH-based PM scheme, please refer Appendix E for the details.

4 Digital Vaccine Passport Constructions

We begin with describing the overview of our PPass system. We then present two
cryptographic constructions: one for online verification and the other for offline
verification.

4.1 System Overview

The purpose of a digital vaccine passport is to provide a means of verifying
whether the individual holding the phone (referred to as the client) has been
vaccinated for a specific disease. In this section, we present an overview of our
proposed PPass system, which encompasses three primary procedures.

8

– RegistrationRequest(κ, inf) → σ: The client C initiates this protocol by
submitting a certificate request to the health authority A. The A verifies
whether the client has been vaccinated. If so, A generates a valid vaccination
certificate σ and returns it to the client C. Additionally, A sends certain
anonymous information to the cloud server H.

– TokenGeneration(σ, n)→ {tok1, ..., tokn}: The client C engages in this pro-
tocol with the cloud server H to generate a list of n vaccination tokens. The
client C provides her vaccination certificate σ and specifies the number n,
resulting in the generation of n tokens as output.

– TokenRedeem(tokt, inf)→ {0, 1}: At time t, the client C redeems a token tokt.
The protocol takes as input the token tokt and the client’s information inf if
required. Optionally, a service provider (verifier) S interacts with the cloud
server H to verify the validity of tokt and its association with the token
holder. The output may be returned to the client C. Once redeemed, the
token toki becomes invalid.

Fig. 1. The Overview of our PPass System. It consists of three main phases: Registration,
Token’s Generation, Token’s Redeem. The solid and dashed lines show the required and
optimal communication/connection between the participants, respectively.

4.2 PIR-based Construction (Online Verification)

In this section, we present the vaccine passport construction where a service
requires to be online for verifying whether a token is valid. The construction
heavily relies on different PIR variants.

4.2.1 Technical Overview. At a starting point, we consider a blueprint
solution in which a client C obtains a vaccination certificate σ from the authority
A, after being vaccinated. When visiting a location and needing to demonstrate
vaccination status, the client C presents the certificate σ to a service, which

9

securely communicates with the authority to validate σ in a privacy-preserving
manner. A similar variation of this blueprint solution is currently implemented
by the Smart Health Cards Framework, discussed in Section B.

Although the above solution provides a basic functionality for a digital vaccine
passport, it falls short in terms of the desired security measures described in
Section 2.2. For instance, it enables multiple compromised services to link tokens
belonging to the same client. Moreover, the blueprint solution requires the
authority to perform computationally intensive secure computations for token
verification, contradicting the desired performance outlined in Section 2.3.

To meet the desirable security criteria of a vaccine passport system, we modify
the blueprint construction to enable the client C to prove to the service S that
she has been vaccinated, while keeping the vaccination certificate σ confidential.
Specifically, we generate redeem tokens by computing a Pseudorandom Function
(PRF), denoted as tok ← F (σ, t), where t represents the token’s redemption
time. This process ensures that all generated tokens are unlinkable due to the
underlying PRF, and each token can be redeemed individually. For certain
locations, each token can be associated with an encryption of the client’s ID to
prevent unauthorized usage of a valid token by other clients.

Regarding the system’s performance, we observe that the authority A can
delegate its computations to an untrusted cloud server, denoted as H. If the
vaccination certificate σ is computed from a random key r and the client’s
information, revealing σ to H does not compromise privacy as long as r remains
secret and known only to the authorityA. In our construction, σ = F (r, I2||...||In),
where r is randomly chosen by the authority, I1 represents the client’s ID, and
Ii ∈ {0, 1}⋆ denotes additional information about the client’s vaccine, such as
the "type of vaccine" and "effective date." With the vaccination certificate σ, the
cloud server H can generate a list T consisting of valid tokens tok ← F (σ, t).
Additionally, the authority A sends the cloud server H the group element m =
gH(I1) for anonymizing the user’s identification where H is a one-way hash
function. Based on the Diffie–Hellman assumption, m reveals no information
about the client’s actual ID.

To verify the token’s validity, the service S, possessing a token tok obtained
from the client, aims to determine whether tok exists in the list of valid tokens
held by the cloud server H. This verification can be achieved using Keyword-PIR,
as described in Section 3.2. Specifically, the service S sends a PIR request as
PIR.Query(pk, tok) → k and receives PIR.Answer(pk, k, T) → c from the cloud
server H. By utilizing PIR.Extract(sk, c)→ 0, 1, the service S can determine the
validity of the token tok. Here, the public-private key pair pk, sk is generated by
the service S using PIR.Gen(κ)→ (pk, sk).

Depending on whether the client’s ID is required by the service, we consider
two cases. In the first case, where the service S (e.g., an airline company) possesses
the client’s identity I1 in clear, S can compute m = gH(I1) and append it to the
token as tok||m before sending a PIR request. Similarly, the cloud server modifies
T to include a set of tok||m before returning a PIR answer to the service.

10

In the second case, where the service is not permitted to collect the client’s ID,
our construction relies on PIR-with-Default and Private Matching. Specifically,
the cloud server H creates pairs (tok, m) and allows the service S to retrieve
either m or a random default value using PIR-with-Default. Subsequently, the
service S and the client C, possessing m, engage in a private matching instance,
leveraging the obtained PIR output, to determine whether the client redeemed a
valid token generated from her vaccination certificate σ.

4.2.2 Construction. Figure 2 illustrates the construction of our PIR-based
vaccine passport. The construction closely adheres to the technical overview
described earlier. We organize the construction into three phases, aligning with
the system overview detailed in Section 4.1. The first phase involves the compu-
tation and distribution of the vaccination certificate by the authority A. In the
second phase, each client C and the cloud server H independently generate valid
tokens based on the obtained vaccination certificate. The final phase entails the
redemption process of the tokens, wherein all participants except the authority
A are involved (as the authority’s role is limited to the first phase).

It is easy to see that correctness is obvious from the definitions of PIR variants,
private matching, and Diffie–Hellman’s assumption.

4.2.3 Security. We analyze the security of the proposed PIR-based construc-
tion according to our desirable security and privacy of a digital vaccine passport.

Anonymous Identity. To ensure anonymity, we demonstrate that the client’s
identity is not revealed to the cloud server. We assume that the corrupt cloud
server H does not collude with the authority A. The view of H includes the
vaccination certificate σ, the exponentiation m = gH(I1), and PIR transcripts.
As H does not know the authority’s secret value r, σ appears random to H. Our
construction relies on the difficulty of the discrete log problem. Therefore, given
m = gH(I1), H cannot recover the client’s identity I1.

We consider two cases: one where the service does not require collecting the
client’s identity I1 but mandates presenting the ID (Step IV,3 in Figure 2), and
another where presenting the client’s identity is not required. In the former case,
the view of the corrupt service S consists of the redeemed token tok′

t, PIR’s and
private matching transcripts. The token tok′

t is generated from the PRF key σ
which is unknown to S. Thus, tok′

t looks random to him. Because of PIR and
private matching pseudorandomness property, the real identity of the client is
protected. For the latter case, the analysis of anonymous identity security remains
similar to the first one.

Token Unlinkability. Token unlinkability is crucial to prevent the disclosure of a
user’s travel history, safeguarding their privacy. In this section, we discuss how
PPass ensures token unlinkability. We focus on the steps of the protocol and
show the difficulty an attacker faces when attempting to link multiple individual
tokens. We assume that clients use secure channels for communication with
service providers and disregard attacks involving IP address matching.

11

Parameters:
– A client C, an authority A, a service S, and a cloud server H.
– A cyclic group G = ⟨g⟩ of prime order p
– A PRF function F : ({0, 1}κ, {0, 1}⋆)→ {0, 1}κ

– A hash function H : {0, 1}⋆ → {0, 1}κ

– A Keyword-PIR, PIR-with-Default, and Private Matching primitives.

Inputs: When a client C is vaccinated, it is associated with an information vector
I = {I1, . . . , In} ∈ ({0, 1}⋆)n, where I1 represent the client’s ID, other Ii ∈ {0, 1}⋆

represents information about the vaccine taken by the client such as “type of
vaccine”, “effective date”, etc.

Protocol:

I. Registration Phase
• The client C sends I = {I1, . . . , In} to the authority A
• A chooses a random value r, computes σ = F (r, I2||...||In) and m = gH(I1)

• A distributes σ to both C and H. Besides, A sends m to H.
II. Tokens Generation Phase

• For each pair (σ, m) received from A, the cloud server H computes a set
Tm of valid tokens F (σ, t), where t indicates the time of redeem (e.g. every
15 minutes).
• C generates a list of tokens tok′

t = F (σ, t), where t is the redeem time.
III. Token’s Redeem Phase: At the time t,

1. If presenting the client’s identity I1 is not required (light verification):
• C sends tok′

t to S
• S and H involve a keyword-PIR instance:

∗ S sends a PIR query PIR.Query(pk, tok′
t)→ k to H

∗ H replies PIR.Answer(pk, k, D)→ c to S where D is a set of tok,
for all tok ∈ Tm

∗ S outputs PIR.Extract(sk, c)
2. If the client’s identity I1 is collected by the service S

• C sends (tok′
t, I1) to S who computes m′ = gH(I1)

• S and H involve a keyword-PIR instance:
∗ S sends a PIR query PIR.Query(pk, tok′

t||m′)→ k to H
∗ H replies PIR.Answer(pk, k, D)→ c to S where D is a set of tok||m,

for all tok ∈ Tm

∗ S outputs PIR.Extract(sk, c)
3. If presenting the client’s identity I1 is required, but the service does not

allow to collect the client’s identity I1
• C sends tok′

t to S
• S and H involve a PIR-with-Default instance:

∗ S sends a PIR query PIR.Query(pk, tok′
t)→ k to H

∗ H replies PIR.Answer(pk, k, D, w) → c to S where D is a set of
pairs (tok, m), for all tok ∈ Tm, and w is a zero string.

∗ S computes PIR.Extract(sk, c)→ v
• If v is a zero string, the S outputs 0 (i.e. tok′

t is invalid). Otherwise,
the service S and the client C involve a private matching instance:

∗ C acts as a sender with input m′ = gH(I1).
∗ S acts as a receiver with input v and output whether v = m′.

Fig. 2. Our PIR-based Vaccine Passport Construction.

12

– Phase 1. Registration Phase: During registration, the client and the cloud
server communicate with the authority A to obtain a vaccination certificate
σ and a value m. It is impractical for an attacker to recover the client’s
information I2, . . . , In from the PRF value without the authority’s secret
value r, unless A is compromised. Additionally, due to the Diffie-Hellman
assumption, the value m appears random to the attacker.

– Phase 2. This phase involves local computation by individual clients and the
cloud server, without any communication or computation between the partic-
ipants. Hence, no information is leaked. However, if an attacker compromises
the cloud server, they can identify which tokens are generated from the same
vaccination certificate σ, but they cannot determine where the tokens are
redeemed (Phase 3).

– Phase 3. Token’s Redeem Phase: During this phase, if an attacker controls
a subset of service providers S who collect the client’s IDs, PPass cannot
provide unlinkability. However, if the attacker collects a list of redeemed
tokens from different service providers S, all the redeemed tokens appear
random, even if they were generated from the same key σ. Furthermore,
each token is designed for one-time use only. Therefore, no linkability can
be established between tokens. If the attacker compromises the cloud server,
they also gain no information due to the PIR ideal functionality. The cloud
server does not know which tokens were redeemed at which places.

Token Unforgeability. According to our construction, if a token tok is not gen-
erated from a valid vaccination certificate, the service is able to detect this
event via PIR. Recall that the cloud server H has a set of valid tokens, PIR
functionality allows the service to check whether tok is in the H’s database.
Moreover, PIR-with-default allows S to retrieve anonymous information of the
client’s identity m. Private matching between S and C prevents an attacker to
redeem tokens of another client.

Token Unreusability. Each token is associated with a specific redeem time, which
prevents an attacker from reusing the token later. However, PPass cannot prevent
an attacker from attempting to redeem the same token simultaneously at two
different service providers, unless ID presentation is required. Therefore, we rely
on end-user devices to delete the token after redemption. To eliminate the need
for trust in end-user devices, secure deletion can be employed to obliviously
remove redeemed tokens from the cloud server’s database T . However, the cloud
server can observe which token was deleted. To address this issue, multiple cloud
servers can be used, with each holding secret shares of T . After executing an
oblivious deletion event, all the shares must be re-randomized.

Finally, we state the security of our PIR-based construction using the following
theorem. The proof of security straightforwardly follows from the security of its
constituent building blocks and the security analysis presented above. Therefore,
we omit the proof.
Theorem 1. Given the Keyword-PIR, PIR-with-Defalt, Private Matching func-
tionalities described in Section 3, the PIR-based construction of Figure 2 securely

13

implements the digitial vaccine passport described in Section 2 in semi-honest
setting.

4.2.4 Complexity. We begin with the analysis of the computational complex-
ity. As desired, the authority only needs to perform one PRF (e.g. AES), and
one exponentiation per client who was vaccinated.

The cloud server H requires to perform N AES calls to generate the set Tm.
N can set to be 80 if assuming that a token is generated every 15 minutes for
approximately 20 hours a day. The H also involves PIR with the service in Phase
3. Denote the computational cost of PIR as |PIR| which is O(Nn), where n is the
number of vaccinated clients. The computational complexity of H is N + |PIR|.

The client needs to compute N AES instances and one exponentiation in Phase
2. In the token redemption phase, she may need to perform private matching with
the service, involving two additional exponentiations as described in Section 3.3.
The computation on the service’s side includes PIR, private matching (if the
client presents their ID but doesn’t allow the service to collect it), and one
exponentiation (if the service can collect the ID).

In terms of communication complexity, the A sends a κ-bit σ to the client C
and a 3κ-bit σ||m to the cloud server. The client sends the service a κ-bit token
along with 2κ-bits m, if required. Additionally, all participants except A send
and receive transcripts/randomness from PIR or private matching executions.

4.3 Digital Signature-based Construction (Offline Verification)

The vaccine passport construction described here eliminates the need for an online
service provider, S, to verify the authenticity of a token. It relies on randomized
signatures and signatures on committed values.

4.3.1 Technical Overview. At the initial stage, the client C obtains a vac-
cination certificate σ from the authority after receiving the vaccination. In the
PIR-based construction, the validation of a valid token requires an online interac-
tion with the cloud server H to ensure client privacy. However, our construction
eliminates the need for such online verification.

The central concept of our construction, based on digital signatures, involves
randomizing the certificate σ into σ⋆ to ensure their unlinkability. The client can
then utilize σ⋆ during the redemption process in a way that prevents the authority
from linking it to the original certificate. The Pointcheval-Sander signature scheme
perfectly aligns with our objective as it allows for randomization and offers a
scalable solution with constant-sized signatures. Therefore, our signature-based
construction relies on the Pointcheval-Sander signature scheme. The authority
A generates a signature σ on the client’s information I, which includes details
such as the client’s identity, vaccine type, and effective date. To optimize system
performance, the health authority A only issues a long-term certificate to the
client and delegates the generation of short-lived temporary tokens to an untrusted
cloud server H.

14

The design of the system raises the question of how clients can request tokens
from the cloud server H. The simplest approach would be for the client to
present the cloud server H with the randomized signature σ⋆ on the information
I. However, this would expose all personal information to the cloud server H.
Fortunately, the Pointcheval-Sander signature scheme enables us to transform the
signature σ on the information I into a randomized signature σ⋆ on a committed
value derived from I. Consequently, the cloud server H can verify the validity
of the client’s certificate from the authority A without gaining access to any
personal information. Subsequently, the H can issue tokens to the clients.

Each token includes a signature from the cloud server H on the committed
value derived from I, along with additional information t. This additional informa-
tion t, appended by the cloud server H, primarily comprises the redemption time
for the token to prevent any potential reuse. To validate the token, the service
S simply needs to check the validity of the signature, thereby enabling offline
verification. For enhanced privacy, the client can also randomize the received
token tok into tok⋆ and store only tok⋆ in memory. Consequently, even if the
authority and the cloud server collude, they cannot link the utilized token tok⋆

with personal information, ensuring strong privacy guarantees.
Additionally, we propose an optional “light verification” approach where

services such as cinemas or restaurants can verify the validity of a token by
checking if it is a valid signature from the cloud server H. In this case, the client
only needs to present their token tok to the service S, along with aggregated
information V related to their personal information, to demonstrate that the
token tok is a valid signature issued by the cloud server H. This allows the
service S to quickly verify the token’s validity without requiring any personal
information from the client. While this approach benefits privacy, its drawback is
that the token can be transferred between clients as personal information is not
disclosed. For important checks, such as at airports or borders, where identity
verification is necessary, the client must present their identity card and provide
the information I. This enables the service S to perform a thorough verification of
the token against the personal information I. In practice, a combination of light
and full verification can be employed, wherein daily activities (e.g., restaurants,
cinemas, public transport) mainly undergo light verification, with occasional
random checks of full verification to mitigate the risk of token transfer between
individuals.

4.3.2 Construction. The construction of our signature-based PPass system is
outlined in Figure 3, closely adhering to the technical overview provided earlier.
Since our construction is based on the Pointcheval-Sander signature scheme [31],
we will briefly explain the multi-message version of this signature below:

Setup: A type 3 bilinear map e : G1 × G2 → GT with G1 = ⟨g1⟩, G2 = ⟨g2⟩,
and GT = ⟨gT ⟩ are cyclic group of prime order p.

KeyGen: Choose a secret key sk = (x, y1, . . . , yn) and computes the public key
pk = (g2, X, Y1, . . . , Yn), where X = gx

2 and Yi = gyi

2 , i = 1, . . . , n.

15

Sign(sk, {m1, . . . , mn} ∈ (Z⋆
p)n) : Choose a random h ∈ G1, define σ1 = h and

σ2 = hx+Σn
j=1yjmj , and output σ = (σ1, σ2)

Verify(sk, {m1, . . . , mn}, σ = (σ1, σ2)): Check whether σ1 ̸= 1G1 and e(σ2, g2) =
e(σ1, XΠn

j=1Y
mj

j) are both satisfied, here 1G1 denotes the identity in G1. If
yes, it accepts, otherwise, it rejects.

We use this signature for both authority server S and cloud server H. In partic-
ular, the cloud server H utilizes the signature to sign the committed value of
m1, . . . , mn, ensuring that clients’ personal information remains concealed from
the cloud server H. To accommodate space constraints, we defer the detailed se-
curity analysis of our PIR-based construction to Appendix C, where we elaborate
on its security.

4.3.3 Complexity. The utilization of the Pointcheval-Sanders signature scheme
is particularly advantageous for devices with limited storage capacity. This is
because the signature size remains constant, allowing each token to contain
only two elements in G1. In terms of computational requirements, the following
observations can be made:

– Client C performs 2 pairings and n exponentiations in G1 to verify the validity
of each credential or token. However, in practice, C may directly utilize
credentials or tokens without the need for verification. C needs to randomize
each credential or token for privacy, which requires only 2 exponentiations in
G1 per credential or token.

– The cloud server H performs n + 2 pairings to verify each credential because
C only provides H with the committed values com = (M1, . . . , Mn).

– Service S requires 2 pairings and n exponentiations in G1 for verification (no
exponentiation is necessary for light verification) of each token.

– The generation of credentials or tokens is efficient, requiring just one expo-
nentiation in the group G1.

5 Performance

In this section, we present an estimation of the performance of our PPass system
to demonstrate its feasibility in practical scenarios. We assume that a redeem
token is generated every 15 minutes, resulting in approximately 80 distinct tokens
per day for each user (denoted as N = 80). We consider user information to
consist of its identity I1 and the concatenated vaccine information I2, which gives
us a value of n = 2.

For the PIR-based construction, we implement PRF and PRG instances using
AES. Each AES operation costs 10 cycles, and on a 2.3 GHz machine, we can
expect to compute an AES operation in approximately 0.005 microseconds. In
our constructions, participants need to compute exponentiations. For example,
the DH-based private matching consists of 3 exponentiation. [30, Table 2] reports
the computation cost of DH-based PSI which computes 221 exponentiations in

16

Parameters:
– A client C, an authority A, a service S, and a cloud server H.
– A bilinear map of type 3 e : G1 × G2 → GT , where G1 = ⟨g1⟩, G2 = ⟨g2⟩, and

GT = ⟨gT ⟩ are cyclic groups of prime order p.
– A hash function H : {0, 1}⋆ → Z⋆

p

– S chooses a secret key skS = (x, y1, . . . , yn) and computes the public key pkS =
(g2, X, Y1, . . . , Yn), where X = gx

2 and Yi = gyi
2 , for i ∈ [n].

– H chooses a secret key skH = (a, b1, . . . , bn, , bn+1) and computes the public key
pkH = (g2, A, B1, . . . , Bn, Bn+1), where A = ga

2 and Bi = gbi
2 , for i ∈ [n + 1].

Inputs:
– When a client C is vaccinated, it is associated with an information vector I =
{I1, . . . , In} ∈ ({0, 1}⋆)n, where I1 represent the client’s ID, other Ii ∈ {0, 1}⋆

represents an information about the vaccine taken by the client such as “type of
vaccine”, “effective date” etc.

Protocol:
I. Registration Phase
• Client C sends I = {I1, . . . , In} to the authority A who computes mi = H(Ii)

and gets the vector m = {m1, . . . , mn} ∈ (Z⋆
p)n.

• Authority A signs on m with the Pointcheval-Sanders signature and outputs
σ = (σ1, σ2), where:

∗ σ1 = h, for a random h ∈ G1
∗ σ2 = hx+Σn

j=1yj mj

• Client receives the credential σ = (σ1, σ2) and checks whether σ1 ̸= 1G1 and
e(σ1, XΠn

j=1Y
mj

j) = e(σ2, g2). If it is positive (otherwise it aborts) then C
randomizes it by randomly chooses r ∈ Zp and outputs σ⋆ = (σ⋆

1 = σr
1 , σ⋆

2 =
σr

2).
• The client computes a committed value of its data: com = (M1, . . . , Mn), where

Mj = (σ⋆
1)mj , for j = 1, . . . , n.

II. Tokens Generation Phase
• Client C sends to H the committed value com and σ⋆.
• Upon receipt com and σ⋆, the server checks the validity whether σ⋆

1 ≠ 1G1 and
e(σ⋆

1 , X)Πn
j=1e(Mj , Yj) = e(σ⋆

2 , g2).
• If it is positive (otherwise it aborts), then H generates tokens for the client.

∗ Define t ∈ (Z⋆
p) to encode the redeem time for the token.

∗ H randomly chooses λ ∈ Z⋆
p and computes f = (σ⋆

1)λ (equivalently, f is
randomly generated from G1).

∗ H sets tok = (tok1, tok2) where tok1 = f , tok2 = fa(Πn
j=1M

bj

j)λf tbn+1 =
fa+Σn

j=1bj mj +bn+1t. Each token is thus a Pointcheval-Sanders signature of
H on (m1, . . . , mn, t)

• H sends back (tok, t) to the client C.
III. Token’s Redeem Phase:

• Upon receipt a token tok = (tok1, tok2) and t, the client randomizes it as
tok⋆ = (tok⋆

1 = tokγ
1 , tok⋆

2 = tokγ
2), for a random γ ∈ Zp.

• Verification: the client shows tok⋆ and its information I = {I1, . . . , In} and t
to the service who checks the validity whether: e(tok⋆

1, A(Πn
j=1B

mj

j)Bt
n+1) =

e(tok⋆
2, g2), where mi = H(Ii) is computed by the service.

• Light verification: The client pre-compute V = A(Πn
j=1B

mj

j) and then
shows tok⋆ and V, t to the service who simply checks the validity whether:
e(tok⋆

1, V Bt
n+1) = e(tok⋆

2, g2).

Fig. 3. Our signature-based construction.17

1148.1 seconds using the miracl library 5. Using libsodium library 6 which is
approximately 10× faster than miracl, we estimate that the time per exponen-
tiation is 1148.1s/221/10 = 54 microseconds. Our signature-based construction
requires participants to compute pairings. We estimate that each pairing consists
of about 30× exponentiations [9, 16] which cost about 1620 microseconds.

As mentioned in Section 3.2, a Keyword-PIR query on a database of size
220 requires 7.62 milliseconds on the client’s side and 80 milliseconds on the
server’s side (online time). These queries necessitate a communication bandwidth
of 480KB. The PIR-with-Default queries [20] with 28 queries on a database of
size 220 require a communication of at most 7MB and an online computation
time of 2.43 milliseconds.

Table 1 (Appendix A) provides a summary of the estimated running time and
communication/size for AES, exponentiation (Exp), two PIR variants (Keyword-
PIR and PIR-with-Default) with different running times on the sender/client
and receiver/server sides, private matching (PM), and pairing. It is important to
note that Keyword-PIR includes a fixed cost for an offline phase on the cloud
server’s side, which is not included in Table 1.

Based on the information provided in Table 1, we have calculated the running
time and communication costs for various implementation options in our PPass
system. The estimated values are presented in Table 2 (Appendix A). Upon
analysis, we observe that the PIR-based construction generally outperforms the
signature-based construction in terms of speed. However, it does come with higher
bandwidth costs and relies on an (online) connection between the cloud server H
and the service S. We observe that, a service such as an airport service counter
can conduct an online verification to validate the authenticity of a token within
just 7 milliseconds, leveraging its authorization to collect the passenger’s ID. For
offline verification, our protocol takes a maximum of 0.15 seconds. Based on these
results, we conclude that the proposed PPass system is practical and feasible for
real-world applications.

Acknowledgments.

The second and the fourth authors were partially supported by NSF awards
#2101052, #2200161, #2115075, and ARPA-H SP4701-23-C-0074. The third
author was partially supported by the BPI VisioConfiance Project.

References

1. European digital green certificates. https://ec.europa.eu.
2. Apple and google privacy-preserving contact tracing. https://www.apple.com/

covid19/contacttracing, 2020.
5 Experiments were done on a machine with an Intel(R) Xeon(R) E5-2699 v3 2.30GHz

CPU and 256 GB RAM
6 https://doc.libsodium.org/

18

https://ec.europa.eu
https://www.apple.com/covid19/contacttracing
https://www.apple.com/covid19/contacttracing
https://doc.libsodium.org/

3. A. Abid, S. Cheikhrouhou, S. Kallel, and M. Jmaiel. Novidchain: Blockchain-based
privacy-preserving platform for covid-19 test/vaccine certificates. Software: Practice
and Experience, 52(4):841–867, 2022.

4. A. Ali, T. Lepoint, S. Patel, M. Raykova, P. Schoppmann, K. Seth, and K. Yeo.
Communication–computation trade-offs in PIR. Cryptology ePrint Archive, Report
2019/1483, 2019. https://eprint.iacr.org/2019/1483.

5. S. Angel, H. Chen, K. Laine, and S. T. V. Setty. PIR with compressed queries and
amortized query processing. In 2018 IEEE Symposium on Security and Privacy,
pages 962–979. IEEE Computer Society Press, May 2018.

6. E. Boyle, N. Gilboa, and Y. Ishai. Function secret sharing: Improvements and
extensions. In E. R. Weippl, S. Katzenbeisser, C. Kruegel, A. C. Myers, and
S. Halevi, editors, ACM CCS 2016, pages 1292–1303. ACM Press, Oct. 2016.

7. J. Camenisch and A. Lysyanskaya. Signature schemes and anonymous credentials
from bilinear maps. In M. Franklin, editor, CRYPTO 2004, volume 3152 of LNCS,
pages 56–72. Springer, Heidelberg, Aug. 2004.

8. B. Chor, N. Gilboa, and M. Naor. Private information retrieval by keywords.
Cryptology ePrint Archive, Report 1998/003, 1998. https://eprint.iacr.org/
1998/003.

9. R. Clarisse, S. Duquesne, and O. Sanders. Curves with fast computations in the
first pairing group. In 19th CANS, 2020.

10. H. Corrigan-Gibbs and D. Kogan. Private information retrieval with sublinear
online time. In A. Canteaut and Y. Ishai, editors, EUROCRYPT 2020, Part I,
volume 12105 of LNCS, pages 44–75. Springer, Heidelberg, May 2020.

11. W. Diffie and M. Hellman. New directions in cryptography. 2006.
12. C. Dong and L. Chen. A fast single server private information retrieval protocol

with low communication cost. In M. Kutyłowski and J. Vaidya, editors, Computer
Security - ESORICS 2014, 2014.

13. T. Duong, D. H. Phan, and N. Trieu. Catalic: Delegated PSI cardinality with appli-
cations to contact tracing. In S. Moriai and H. Wang, editors, ASIACRYPT 2020,
Part III, volume 12493 of LNCS, pages 870–899. Springer, Heidelberg, Dec. 2020.

14. R. Fagin, M. Naor, and P. Winkler. Comparing information without leaking it.
Commun. ACM, 39(5):77–85, May 1996.

15. M. J. Freedman, K. Nissim, and B. Pinkas. Efficient private matching and set
intersection. In C. Cachin and J. Camenisch, editors, EUROCRYPT 2004, volume
3027 of LNCS, pages 1–19. Springer, Heidelberg, May 2004.

16. A. Guillevic. Arithmetic of pairings on algebraic curves for cryptography. PhD
thesis, 2013.

17. IPSOS. Global public backs covid-19 vaccine passports for international travel.
https://www.ipsos.com/.

18. S. Kamara, P. Mohassel, and B. Riva. Salus: A system for server-aided secure
function evaluation. Cryptology ePrint Archive, Report 2012/542, 2012. https:
//eprint.iacr.org/2012/542.

19. V. Kolesnikov, R. Kumaresan, M. Rosulek, and N. Trieu. Efficient batched oblivious
PRF with applications to private set intersection. In E. R. Weippl, S. Katzenbeisser,
C. Kruegel, A. C. Myers, and S. Halevi, editors, ACM CCS 2016, pages 818–829.
ACM Press, Oct. 2016.

20. T. Lepoint, S. Patel, M. Raykova, K. Seth, and N. Trieu. Private join and compute
from pir with default. Cryptology ePrint Archive, Report 2020/1011, 2020. https:
//eprint.iacr.org/2020/1011.

19

https://eprint.iacr.org/2019/1483
https://eprint.iacr.org/1998/003
https://eprint.iacr.org/1998/003
https://www.ipsos.com/
https://eprint.iacr.org/2012/542
https://eprint.iacr.org/2012/542
https://eprint.iacr.org/2020/1011
https://eprint.iacr.org/2020/1011

21. X. Liu, N. Trieu, E. M. Kornaropoulos, and D. Song. Beetrace: A unified platform for
secure contact tracing that breaks data silos. IEEE Data Eng. Bull., 43(2):108–120,
2020.

22. P. Madhusudan, P. Miao, L. Ren, and V. Venkatakrishnan. Contrail: Privacy-
preserving secure contact tracing. https://github.com/ConTraILProtocols/
documents/blob/master/ContrailWhitePaper.pdf, 2020.

23. C. A. Meadows. A more efficient cryptographic matchmaking protocol for use in the
absence of a continuously available third party. In IEEE Symposium on Security
and Privacy, pages 134–137, 1986.

24. W. Meng, Y. Cao, and Y. Cao. Blockchain-based privacy-preserving vaccine passport
system. Security and Communication Networks, 2022.

25. R. C. Merkle. A certified digital signature. In G. Brassard, editor, CRYPTO’89,
volume 435 of LNCS, pages 218–238. Springer, Heidelberg, Aug. 1990.

26. M. H. Mughees, H. Chen, and L. Ren. Onionpir: Response efficient single-server
pir. In Proceedings of the 2021 ACM SIGSAC Conference on Computer and
Communications Security, CCS ’21, page 2292–2306, New York, NY, USA, 2021.
Association for Computing Machinery.

27. G. Oded. Foundations of Cryptography: Volume 2, Basic Applications. Cambridge
University Press, USA, 1st edition, 2009.

28. S. Patel, G. Persiano, and K. Yeo. Private stateful information retrieval. In D. Lie,
M. Mannan, M. Backes, and X. Wang, editors, ACM CCS 2018, pages 1002–1019.
ACM Press, Oct. 2018.

29. S. Patel, J. Y. Seo, and K. Yeo. Don’t be dense: Efficient keyword PIR for sparse
databases. In 32nd USENIX Security Symposium (USENIX Security 23), pages
3853–3870, Anaheim, CA, Aug. 2023. USENIX Association.

30. B. Pinkas, M. Rosulek, N. Trieu, and A. Yanai. SpOT-light: Lightweight private
set intersection from sparse OT extension. In A. Boldyreva and D. Micciancio,
editors, CRYPTO 2019, Part III, volume 11694 of LNCS, pages 401–431. Springer,
Heidelberg, Aug. 2019.

31. D. Pointcheval and O. Sanders. Short randomizable signatures. In K. Sako,
editor, CT-RSA 2016, volume 9610 of LNCS, pages 111–126. Springer, Heidelberg,
Feb. / Mar. 2016.

32. D. Pointcheval and O. Sanders. Reassessing security of randomizable signatures.
In N. P. Smart, editor, CT-RSA 2018, volume 10808 of LNCS, pages 319–338.
Springer, Heidelberg, Apr. 2018.

33. C.-P. Schnorr. Efficient identification and signatures for smart cards. In G. Brassard,
editor, CRYPTO’89, volume 435 of LNCS, pages 239–252. Springer, Heidelberg,
Aug. 1990.

34. M. Shakila and A. Rama. Design and analysis of digital certificate verification
and validation using blockchain-based technology. In 2023 Eighth International
Conference on Science Technology Engineering and Mathematics (ICONSTEM),
pages 1–9, 2023.

35. D.-H. Shih, P.-L. Shih, T.-W. Wu, S.-H. Liang, and M.-H. Shih. An international fed-
eral hyperledger fabric verification framework for digital covid-19 vaccine passport.
Healthcare, 10(10), 2022.

A Performance

We show the running time of communication cost for building blocks in Table 1
and the performance of our PPass in Table 2.

20

https://github.com/ConTraILProtocols/documents/blob/master/ContrailWhitePaper.pdf
https://github.com/ConTraILProtocols/documents/blob/master/ContrailWhitePaper.pdf

AES Exp. Keyword-PIR PIR-with-Default PM Pairing
Computation
(microsecond)

Sender 0.005 54 80000 2430 108 1620Receiver 7620 2430 108
Communication/Size (KB) 0.016 0.032 480 7000 0.096 0.064
Table 1. Estimated running time and communication cost (size) for building blocks
and core operations used in our PPass constructions.

PIR-based Construction Signature-based Construction
Runtime (ms) Comm. (KB) Runtime (ms) Comm. (KB)

Authority A 0.054 0.064 0.054 0.064

Cloud Server H 85.24 480 226492 671085.24* 7000*

Client C 0.004 0.016 1.836 0.352
12.99* 0.112* 1.944* 0.384

Service S 7.62 480 142.56 7.68
2.54* 7000.1* 13.82* 5.12*

Table 2. Estimated running time and communication cost for our PPass system across
different implementation options. The client generates N = 80 tokens per day. The cloud
server has 220 tokens. The numbers with “star" indicate the cost for Step (III,3) where
private matching and PIR-with-default are required in the PIR-based construction. The
“star" also indicates the cost of light verification in the signature-based construction.

B Related Work

In the realm of controlling the spread of COVID-19, privacy-preserving contact
tracing [2, 13, 21, 22] has garnered significant attention. However, there has been
limited research on digital vaccine passports, and most existing solutions have
privacy vulnerabilities. Notably, none of these solutions have been formally
described with their construction and security guarantees.

There have been a few attempts to build digital vaccine passports such as
in [3, 24,34,35]. However, these works are in the blockchain setting and/or lack
performance evaluations. In this section, we review the popular framework –
Smart Health Cards Framework7, which serves as a prominent system for digital
vaccine passport cards. This open-source standard has been adopted by numerous
companies and organizations, including Microsoft, IBM, and Mayo Clinic. The
framework proposes a model involving three parties:

– Issuer (e.g., a lab, pharmacy, healthcare provider, public health department,
or immunization information system) generates verifiable tokens (credentials).

– Client (e.g., a phone holder) stores the tokens and presents them when
required.

– Verifier/Service (e.g., a restaurant, an airline) receives tokens from the client
and verifies their authenticity through proper signatures.
In the Smart Health Cards system, the client is required to disclose personally

identifiable information (PII) (e.g., full name and date of birth) and immunization
7 https://smarthealth.cards

21

https://smarthealth.cards

status (e.g., vaccination location, date and time, vaccine type, lot number) to
the issuer. Based on this information, the issuer generates multiple tokens, each
containing a subset of the client’s information along with a digital signature. By
choosing which token to present to a verifier, the client can control the granularity
of information disclosed to that specific verifier.

Although the Smart Health Cards framework aims to uphold end-user privacy,
it fails to meet the desirable properties outlined in Section 2.2: token linkability
and reusability. If a client presents tokens to two different verifiers, these verifiers
can link the tokens together. Furthermore, if the verifiers collude with the issuer,
they can potentially uncover the identity of the token holder.

C Security of our Digital Signature-based Construction.

We proceed with the analysis of the security of our signature-based construction,
considering the desired security and privacy properties of a digital vaccine passport
system as described in Section 2.2.

Token Unlinkability and Unforgeability. These properties are directly inherited
from the unlinkability and unforgeability of the Pointcheval-Sanders signature.
Each token corresponds exactly to a signature generated by the cloud server H.

Token Unreusability. To ensure token unreusability, the cloud server H appends
additional information t to each token, indicating its redeem time. Therefore, the
token’s unreusability outside this redeem time is derived from the unforgeability
of the Pointcheval-Sanders signature.

Anonymous Identity. In the digital signature-based construction, clients’ anonymity
is guaranteed against collusion between the authority A and the cloud server H.
We can outline the proof as follows:

– The authority A stores all the information I = {I1, . . . , In} of each client as
well as the corresponding signature σ = (σ1, σ2).

– The cloud server H stores all the clients’ randomized signatures σ⋆ = (σ⋆
1 , σ⋆

2)
– The clients only use their randomized tokens given by the cloud server H.

After randomization, the clients do not need to store the original signature σ
and the token tok.

– The tokens used by the client tok⋆ are unlinkable to tok and thus unlikable
to σ⋆ and σ.

The unlinkability directly stems from the unlinkability property of the Pointcheval-
Sanders signature, which is guaranteed under the Decisional Diffie-Hellman (DDH)
assumption. Consequently, client privacy is inherently preserved.

Clearly, when the client is required to present personal information to the
S, privacy cannot be guaranteed if the S is compromised. In this case, we
offer the option of light verification, where the service S only receives V =
A(Πn

j=1B
mj

j) and tok⋆, t, without gaining access to any personal information.
Even if the service S colludes with the cloud H, they cannot obtain any personal

22

information because tok⋆ is unlinkable to (M1, . . . , Mn) (due to the unlinkability
property of Pointcheval-Sanders). However, if all three parties, A,H,S, collude,
the identity of the client matching the pre-calculated value V can be revealed. In
this scenario, the authority A can perform an exhaustive search on the entire set
of registered clients using their personal information (m1, . . . , mn) and check if
V matches A(Πn

j=1B
mj

j). Finally, we state the security of our signature-based
construction through the following theorem. The security proof of the construction
straightforwardly follows from the security of its building blocks and the security
discussion provided above. Therefore, we omit the proof.

Theorem 2. Given the randomizable (Pointcheval-Sanders) signature scheme
described in Section 3.1, the signature-based construction of Figure 3 securely
implements the digital vaccine passport described in Section 2 in semi-honest
setting.

D Formal Security Definition

There are two adversarial models and two models of collusion considered.
– Adversarial Model: The semi-honest adversary follows the protocol but

tries to gain additional information from the execution transcript. The mali-
cious adversary can employ any arbitrary polynomial-time strategy, deviating
from the protocol to extract as much extra information as possible.

– Collusion Security: In the non-colluding model, independent adversaries
observe the views of individual dishonest parties. The model is secure if the
distribution of each view can be simulated independently. In the colluding
model, a single monolithic adversary captures the possibility of collusion
between dishonest parties. The model is secure if the joint distribution of
these views can be simulated.
Following security definitions of [18, 27], we formally present the security

definition considered in this work.
Real-world execution. The real-world execution of protocol Π takes place

between a set of users (C1, . . . , Cn), an authority server A, a cloud server H, a
set of services (S1, . . . ,SN), and a set of adversaries (Adv1, . . . , Advm). Let H
denote the honest participants, I denote the set of corrupted and non-colluding
participants, and C denote the set of corrupted and colluding participants.

At the beginning of the execution, each participant receives its input xi, an
auxiliary input ai, and random tape ri. These values xi, ai can be empty. Each
adversary Advi∈[m−1] receives an index i ∈ I that indicates the party it corrupts.
The adversary Advm receives C indicating the set of parties it corrupts.

For all i ∈ H, let outi denote the output of honest party, let out′
i denote the

view of corrupted party for i ∈ I ∪ C during the execution of Π. The ith partial
output of a real-world execution of Π between participants in the presence of
adversaries Adv = (Adv1, . . . , Advm) is defined as

reali
Π,Adv,I,C,yi,ri

(xi)
def= {outj | j ∈ H} ∪ out′

i

23

Ideal-world execution. All the parties interact with a trusted party that
evaluates a function f in the ideal-world execution. Similar to the real-world
execution, each participant receives its input xi, an auxiliary input yi, and random
tape ri at the beginning of the ideal execution. The values xi, yi can be empty.
Each participant sends their input x′

i to the trusted party, where x′
i is equal

to xi if this user is semi-honest, and is an arbitrary value if he is malicious. If
any honest participant sends an abort message (⊥), the trusted party returns
⊥. Otherwise, the trusted party then returns f(x′

1, . . . , x′
n) to some particular

parties as agreed before.
For all i ∈ H, let outi denote the output returned to the honest participant by

the trusted party, and let out′
i denote some value output by corrupted participant

i ∈ I ∪ C. The ith partial output of a ideal-world execution of Π between
participants in the presence of independent simulators Sim = (Sim1, . . . , Simm)
is defined as

ideali
Π,Sim,I,C,zi,ri

(xi)
def= {outj | j ∈ H} ∪ out′

i

Definition 1. [18, 27] (Security) Suppose f is a deterministic-time n-party
functionality, and Π is the protocol. Let xi be the parties’ respective private
inputs to the protocol. Let I ∈ [N] denote the set of corrupted and non-colluding
parties and C ∈ [N] denote the set of corrupted and colluding parties. We say
that protocol Π(I, C) securely computes deterministic functionality f with abort
in the presence of adversaries Adv = (Adv1, . . . , Advm) if there exist probabilistic
polynomial-time simulators Simi∈m for m < n such that for all x̄, ȳ, r̄ ← {0, 1}⋆,
and for all i ∈ [m],

{reali
Π,Adv,I,C,ȳ,r̄(x̄)=̃{ideali

Π,Sim,I,C,ȳ,r̄(x̄)}

Where Sim = (Sim1, . . . , Simm) and Sim = Simi(Advi)

E Diffie–Hellman - based Private Matching

The DH-based PM operates as follows: The receiver computes u← H(m1)r using
a random, secret exponent r and a one-way hash function H. The computed
value u is then sent to the sender. The sender raises u to the power of the
random secret k, obtaining uk. This result is then sent back to the receiver. Upon
receiving uk, the receiver can compute (uk)1/r, which yields H(m1)k. Next, the
sender sends H(m0)k to the receiver. The receiver can check whether H(m0)k is
equal to H(m1)k in order to determine the equality of m0 and m1. Importantly,
in cases where m0 ̸= m1, the receiver learns no information about m1 from
H(m1)k. This scheme relies on the Diffie-Hellman assumption [11] for its security
guarantees. We introduce the Diffie-Hellman assumption in Definition 2. We
describe the ideal functionality and the DH-based construction of PM in Figure 4.
The computation and communication cost of PM is 3 exponentiations and 3
group elements, respectively.

24

Parameters: Two parties: sender and receiver
Functionality:

– Wait for input m0 ∈ {0, 1}∗ from the sender.
– Wait for input m1 ∈ {0, 1}∗ from the receiver.
– Give the receiver output 1 if m0 = m1 and 0 otherwise.

Protocol:
– The receiver chooses a random exponent r, computes u← H(m1)r and sends

it to the sender
– The sender chooses a random exponent k, computes v ← uk and sends it to

the receiver
– The sender computes w ← H(m0)k sends it to the receiver
– The receiver output 1 if v1/r = w and 0 otherwise.

Fig. 4. The Private Matching Functionality and DH-based Construction

Definition 2. [11] Let G(κ) be a group family parameterized by security pa-
rameter κ. For every probabilistic adversary Adv that runs in polynomial time in
κ, we define the advantage of Adv to be:

|Pr[Adv(g, ga, gb, gab) = 1]− Pr[Adv(g, ga, gb, gc) = 1]|

Where the probability is over a random choice G from G(κ), random generator
g of G, random a, b, c ∈ [|G|] and the randomness of Adv. We say that the
Decisional Diffie–Hellman assumption holds for G if for every such Adv, there
exists a negligible function ϵ such that the advantage of Adv is bounded by ϵ(κ).

Definition 3. Let G be a cyclic group of order N , and let g be its generator.
The Computational Diffie-Hellman (CDH) problem is hard in G if no efficient
algorithm given (g, ga, gb) can compute gab.

25

	Privacy-Preserving Digital Vaccine Passport
	Introduction
	Our Contribution

	Problem Statement and Desirable Properties
	Security Definition
	 Desirable Security
	Desirable Performance

	Cryptographic Preliminaries
	Randomizable Signature Scheme
	Private Information Retrieval
	Private Matching

	Digital Vaccine Passport Constructions
	System Overview
	PIR-based Construction (Online Verification)
	Digital Signature-based Construction (Offline Verification)

	Performance
	Performance
	Related Work
	Security of our Digital Signature-based Construction.
	Formal Security Definition
	Diffie–Hellman - based Private Matching

