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Abstract

Solid solution strengthening is a technologically important mechanism controlling the strength of a wide range of
alloys. Understanding and predicting the temperature-dependent yield stress of these alloys requires to model the
interactions between dislocation and solutes atoms across a wide range of time and length-scales, and therefore ne-
cessitates the development of multiple numerical methods (atomistic calculations, statistical approach and continuous
elastic models) that are reviewed in this article. The advantages and drawbacks of each methods as well as their
complementary character and the connections between them are highlighted.

Introduction

Alloying metals contributes to improve their mechan-
ical properties through different mechanisms [1, 2]. In
particular, a large variety of metallic alloys are char-
acterized by large solubility limits over wide tempera-
ture ranges, promoting the formation of a single phase
where atoms of different species are randomly dispersed
in the crystalline lattice. These inhomogeneities form
obstacles to dislocation motion, thereby increasing the
strength of the alloy, a mechanisms referred to as solid
solution strengthening.

This review will focus on the case of substitutional
solid solution in face-centered cubic (FCC) alloys, that
encompasses a large range of applications of technolog-
ical importance, such as aluminum alloys of the 1000,
3000 and 5000 series and austenitic stainless steels, re-
spectively used in automotive and nuclear industries
[3, 4]. In addition, precipitate-hardened alloys often re-
tain a significant amount of solutes in their matrix phase,
therefore taking advantage of both solid solution and
precipitate strengthening. This is for instance the case
for Ni-based superalloys used in high temperature appli-
cations [5, 6]. Furthermore, the recent development of
high entropy alloys (HEA) that contain multiple com-
ponents in comparable quantities largely rely on solid
solution strengthening to achieve exceptional mechani-
cal properties [7–11].

Solid solution strengthening in body-cenceted cubic
alloys [12, 13] as well as the role of interstitial atoms on
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strengthening [14], albeit their high interest for numer-
ous applications, are left out of the scope of this review.
In addition, we will restrict the discussion to strengthen-
ing emerging from immobile solute atoms. At medium
to high temperature, the interplay between dislocation
glide and solute diffusion can lead to solute drag [15]
and dynamical strain ageing [16] that will not be dis-
cussed here.

The technological importance of solid solution
strengthening in FCC alloys reveals the need for a thor-
ough understanding of the underlying physical mech-
anisms, and calls for the development of quantitative
models able to predict the flow stress of solid-solution
alloys as function of compositions and temperature.

In these FCC alloys, the onset of plasticity is con-
trolled by the glide of b√

2
〈110〉 dislocations gliding on

{111} planes. The dislocation core is characterized by
a dissociation into into Shockley partials separated by a
stacking-fault ribbon [2, 15]. The origins of solid solu-
tion strengthening lies in the interactions between solute
atoms and dislocations. In particular, it is worth distin-
guishing different types of interactions. First, the atomic
volume of solute atoms are often significantly different
than the solvent’s, such that they interact with the pres-
sure field around the dislocation [15]. Considering a
perfectly straight infinite dislocation, its interaction en-
ergy with a solute atom can then be written as function
of the position of the solute with respect the disloca-
tion1:

1throughout this manuscript, we will consider a dislocation ori-
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Eint = −∆V p(ys, zs) =
µb⊥∆V

3π
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y2
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s

(1)

where ∆V is the volume difference between the solute
and solvent atoms and b⊥ denotes the magnitude of the
edge Burger’s vector of the dislocation. It is interest-
ing to note that this size interaction is effectively long-
range since it decreases with the inverse of the distance
between the solute and the dislocation.

An other source of interaction is related to the con-
trast of stiffness between solute and solvent atoms. In
a linear elastic framework, this interaction can be ex-
pressed as function of the elastic moduli of both com-
ponents [17, 18]. The corresponding interaction energy
decreases with the square of the distance to the disloca-
tion, making it effectively short-range.

An other type of short-range interaction originates
from the binding energy of solute atoms with the highly
distorted core region of the dislocation or with the stack-
ing fault ribbon between partial dislocations [13, 19,
20].

The interaction between dislocation and solute clus-
ters can also be relevant in non-dilute alloys. In partic-
ular, the atomic shear produced by dislocation glide can
modify the energy of the system by forming or breaking
solute pairs, and the resulting forces can impede dislo-
cation motion [21, 22].

Physically-based modeling tools (atomistic simula-
tions, continuous elastic models, statistical approaches)
have been developed to investigate these effects on solid
solution strengthening in different systems, in order to
predict the yield stress of alloys as function of composi-
tion and temperature. The goal of this review is to draw
a global picture of solid solution strengthening model-
ing by describing these different methods and by high-
lighting their advantages and drawbacks as well as the
connections between them.

The first part of this article focuses on atomistic sim-
ulations of solute strengthening that provide informa-
tive tools to probe the collective influence of solutes on
dislocation motion [23]. In section 2, statistical mod-
els that rely on various assumptions to average disloca-
tion/solutes interactions are discussed, with a special fo-
cus on Labusch-type approaches [24] that have recently
been revisited to model accurately both dilute [25] and
concentrated solid solution [26]. Section 3 focuses on
the development of continuous elastic models that pro-

ented along the x direction and gliding in the y direction on the plane
of normal z

vide a way to overcome time and length-scale limita-
tions of atomistic simulations without relying on the
strong assumptions of statistical approaches. Finally,
the open questions related to thermally activated glide
will be discussed in section 4.

1. Atomistic simulations

Atomistic simulations appears as a natural tool to in-
vestigate interactions between the atomic-scale defects
that are solutes atoms and dislocations. It holds the ad-
vantage of describing the details of the atomsitic inter-
actions and to naturally incorporate the different types
of interactions listed above. The development of accu-
rate interatomic potentials for binary systems and the
increase of computational resources in the past decades
enabled the use of atomistic calculations to investigate
interactions between long dislocations (50-500 nm) and
random solid solutions [23].

The strengthening in Al-Mg [27, 28] solid solutions
was investigated with embedded atom model (EAM)
potentials. Molecular statics simulations [28] can be
used to estimate the athermal critical resolved shear
stress (CRSS) to make the dislocation glide over a
threshold distance. Molecular dynamics simulations
can also be used to estimate the dislocation velocity
as function of the temperature and applied stress [27].
The results can then be fitted to deduce a temperature-
dependent CRSS and the phonon drag coefficient char-
acterizing the dynamic behavior of the dislocation be-
yond the CRSS [21, 27, 29]. Atomistic results show that
both the athermal and temperature-dependent CRSS in-
crease as c

2/3
Mg

with solute content [28], in accordance
with Labusch-type models [24] detailed in section 2.
It was suggested that strengthening in Al-Mg alloys is
dominated by the size difference between solute and
solvent atoms. Similar conclusions are reached for Ni-
Au alloys [29]. In both alloys, the CRSS of the screw
dislocation was found to be approximately half of the
edge’s, which was rationalized by considering that the
pressure field around screw dislocation is weaker than
around the edge. In particular, in the case of Ni-Au al-
loys where the dissociation between partials is signif-
icant, solute/partial dislocation interactions can be ap-
proximated by Eq. (1): since b

partial edge
⊥ /b

part. screw
⊥ =

1/
√

3 = 0.58, a weaker CRSS is expected for the screw
character.

In contrast, Rodary et al. [21] investigated disloca-
tion behavior in Ni-Al alloys and show that the depin-
ning stress scales linearly with the solute concentration.
This was attributed to the relatively small size effect in
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this system and to the prevalence of strong chemical in-
teractions between Al atoms: the atomic shear produced
by partial dislocations forms or breaks Al-Al first neigh-
bors pairs that have a high energy, thereby creating ob-
stacles for dislocation glide. Because both screw and
edge dislocations are equally affected, the strengthening
was found to have similar magnitude for both characters
[30]. A statistical model was also developed to take into
account this strengthening of chemical nature [22, 30].

More recently, atomistic simulations were used to
investigate solute strengthening in various FCC multi-
component concentrated alloys [31–33]. The CRSS for
the screw dislocation was found to be smaller than the
edge’s [31, 34], revealing the prevalence of elastic in-
teractions. In addition, the fluctuations of the stacking
fault energy with the local composition was evidenced
and suggested to contribute significantly to strengthen-
ing [32, 33, 35–39].

The high degree of roughening of the dislocation line
was also highlighted in several studies [31–34, 39, 40].
In particular, the roughness of the dislocation was pre-
cisely quantified as function of temperature and ap-
plied stress in a FeNiCr austenitic steel [40], and it was
showed that at the CRSS, the line is self-afine and is
characterized by a roughness exponent 0.6 < α < 0.8.
Similar conclusions were reached by Patinet who found
α = 0.85 ± 0.05 in the vicinity of the CRSS of a edge
dislocation gliding in a binary Ni-Al alloy [41].

Atomistic calculations also opens the possibility to
investigate the role of short-range order (SRO) in ran-
dom alloys [29, 42, 43]: Monte-Carlo simulations can
be used to equilibrate the atomic configuration at a given
temperature by minimizing its free energy. Such relax-
ation can promote the formation of atomic bounds of
lower energy, driving the system away from a purely
random configuration by introducing order. In several
systems, SRO has been shown to contribute to strength-
ening by increasing the CRSS [42, 44]. This strength-
ening is qualitatively explained by the atomic slip pro-
duced by the dislocation glide that breaks the SRO,
forming a band of higher energy in the dislocation glide
plane. The resulting force impedes dislocation motion.

Atomistic calculations can therefore be an informa-
tive tool to decipher the interactions between disloca-
tions and solid solutions. However, it was recognized
very early that they bears some limitations and cannot
reveal the full picture of solid solution strengthening
[23]. First, the computed critical stress depends strongly
on both the dislocation length and the gliding distance
[34, 45]. Second, molecular dynamics simulations re-
mains very limited in terms of time-scales. Unless pro-
hibitive computational resources are used [46], atom-

istic simulations are restricted to ns to µs time-scales.
The thermally activated events probed at these short
time-scales can be significantly different from the ones
controlling the flow stress on experimental times.

Lastly, atomistic simulations rely on the development
of accurate interatomic potentials. EAM and modified-
EAM formalisms offer physically-based frameworks to
model atomic interactions for a large variety of sys-
tems [47–49]. While these potentials hold the advan-
tage of being computationally cheap, they often suffer
from a lack of accuracy [50]. To overcome this diffi-
culty, other formalisms have been developed: in par-
ticular, Machine-Learning potentials based on artificial
intelligence methods [51, 52] can achieve a much better
accuracy. However, these potentials are also more com-
putationally expensive than EAM and modified-EAM
formalisms, revealing a trade-off between the accuracy
of the potential and the accessible length and time scales
[50, 53]. Moreover, this type of potentials are trained
using a data-base of atomic configuration and the trans-
ferability of a potential to describe configurations out-
side of the training data can be limited [52, 54].

Even if the recent development of Machine-Learning
potentials for various systems offer more accurate de-
scriptions of atomic interactions, atomistic simulations
operate at small length and time scales and may not re-
veal the full picture of the mechanisms controlling so-
lute strengthening in experimental conditions. These
limitations reveal the need for an upscaling approach,
trough the development of quantitative statistical mod-
els (section 2) or higher-scale continuous framework en-
abling to operate at greater time and length-scales than
atomistic calculations (section 3).

2. Statistical treatments and energy-based models

The limitations of atomistic simulations encourage to
consider dislocation glide in random alloys as a statisti-
cal problem to estimate the flow stress of alloys. Several
statistical approaches have been developed through the
years [24, 55–60] and detailed descriptions of these his-
torical approaches can be found elsewhere [1, 13, 30].
In the following, we will recall the important distinc-
tion between individual and collective pinning before
focusing on the recent developments of Labusch-type
approaches [24–26] and on their application to specific
systems.

2.1. Statistical models for individual pinning

Individual pinning refers to a description of solid so-
lution strengthening where the dislocation is assumed
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to bow-out between solutes modeled as strong point-
like obstacles. Friedel [60] and Fleischer [55] proposed
statistical models of this situation where the flow stress
of an alloy of solute concentration c is expressed as
function of the dislocation line-tension Γ, the obsta-
cle strength f0 and the average distance between obsta-
cles in the glide plane, eventually yielding the following
scaling for the athermal CRSS [13, 55, 60]:

τc,0 ∼
f

3/2
0

√
c

√
Γ
. (2)

However, the dislocation/solute interaction includes
a long-range elastic component emerging from the size
interaction embedded in Eq. (1) such that describing so-
lutes as point-like obstacles can only remain valid for
systems dominated by short-range dislocation/solute in-
teractions or in very dilute alloys [61].

2.2. Statistical model for collective pinning

In contrast, collective pinning (also known as weak
pinning) approaches consider that strengthening origi-
nates from fluctuations of the collective force attributed
to an ensemble of solutes along the dislocation line
[24, 57–60, 62]. Because of the randomness of the al-
loy, this collective pinning force is either positive or
negative, therefore pushing or pulling the dislocation
in environments of lower energies. Thus, the dislo-
cation is assumed to adopt a wavy zig-zag shape (see
Fig. 1.a) where segment of characteristic lengths ζ glide
a distance w. These quantities are determined by the
balance between solute-dislocation interactions and the
line-tension force. To keep calculations tractable, two
assumptions were made by Labusch in Ref. [24]: (i)
the solutes outside the dislocation glide plane were ne-
glected and (ii) the dislocation/solute interactions were
considered to have a finite range and a maximum
strength f0. After determining the characteristic length
ζ, the CRSS at 0 K is determined as the stress required
to overcome the collective solute force on a dislocation
segment ζ, eventually yielding:

τc,0 ∼
c2/3 f

4/3
0

Γ1/3
(3)

These historical models rely on the assumption that
solutes exert a given maximum force on the dislocation,
while solutes located on different planes are character-
ized by different forces. Including obstacles of various
strengths is possible but at the expense of the analyt-
ical tractability of the mathematical treatment [30, 56].
Moreover, considering finite-range interactions between

Figure 1: (a) Dislocation line adopting a zig-zag shape with charac-
teristic segment length ζ and amplitude w [13, 25, 26]. (b) Energy
profile assumed for a segment of length ζc at zero applied stress (blue
continuous line) and with applied stress (red dashed line)

dislocations and solutes conflicts with the long-range
nature of the size interactions.

These issues can be resolved by switching points
of view: instead of considering obstacles of various
strengths, Zaiser considered the fluctuation of interac-
tion energies between a dislocation and an ensemble
of solutes [63]. This strategy was later taken over by
Leyson and Curtin [25] to develop a quantitative theory
of strengthening that is described in the following.

We first introduce the characteristic change of energy
per atomic plane perpendicular to the dislocation line,
upon a displacement w of a straight dislocation in the
glide direction:

∆Ẽp(w) =















c
∑

i

(U(yi − w, zi) − U(yi, zi))2















1/2

, (4)

where U(yi, zi) is the interaction energy between a so-
lute atom located at position (yi, zi) with respect to the
dislocation line and where the sum runs over all the lat-
tice sites of the crystallographic plane perpendicular to
the dislocation line.

Considering that along a dislocation of length L, seg-
ments of length ζ move backward or forward over a dis-
tance w to more favorable positions (see Fig. 1.a), the
total energy change of the system is given by

∆Etot(ζ,w) =

















Γw2

2ζ
−

√

ζ
√

3b
∆Ẽp(w)

















L

2ζ
, (5)

where the first term is related to the line-energy cost of
the bow-out and the second term is the typical energy
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gain related to the motion of the dislocation segment
into a more favorable position. The numerical factor
ζ/
√

3b is the number of atomic planes perpendicular to
the dislocation segment of length ζ for a FCC crystal.

Minimizing ∆Etot(ζ,w) with respect to ζ and w yields
characteristic quantities ζc and wc describing the dislo-
cation zig-zag shape. In particular, this minimization
yields

ζc(w) =















4
√

3
Γ2w4b

∆Ẽ2
p(w)















1/3

. (6)

To obtain a CRSS from Eq. (5), it is then assumed that
the dislocation segment of length ζc experiences a pe-
riodic energy profiles of period 2wc (the characteristic
distance between a minimum and a maximum of energy
being wc) and of characteristic energy barrier ∆Eb (see
Fig. 1.b) that is expressed as function of Γ and ∆Ẽp(wc).

An applied stress tilts this energy profile, and it is
straightforward to express the athermal stress to unpin
the dislocation [25]:

τc,0 = 1.01
(

∆Ẽp(wc)4

Γb5w5
c

)1/3

. (7)

Since ∆Ẽp(wc) ∼
√

c, the same power dependence
τc ∼ c2/3 as in the historical Labusch approach (Eq. (3))
is recovered.

At τ < τc,0, glide occurs through thermal activation.
The simplest description of this regime consists in con-
sidering that the limiting mechanism is the movement
of a dislocation segment of length ζc over the character-
istic energy barrier represented in Fig. 1.b. At τ < τ0

y ,
the activation energy decreases with τ as:

∆E(τ) = ∆Eb

(

1 − τc

τ

)3/2
, (8)

and the dislocation average velocity is obtained from
a simple Arrhenius relation. We can then deduce the
CRSS as function of strain rate ε̇ and temperature T
[13, 25]:

τc(T, ε̇) = τ0
c















1 −
(

kbT

∆Eb

ln(ε̇0/ε̇)
)2/3













(9)

where ε̇0 is a reference strain rate estimated at ε̇0 =

105s−1 [13]. The limitations of this treatment of ther-
mally activated glide are discussed in section 4.

Applying this Labusch-type model to concentrated
systems and high entropy alloys (HEAs) appeared
highly desirable but also challenging because the dis-
tinction between solute and solvent break down in these
multi-component concentrated alloys. Some authors

[64, 65] attempted to model the strength of HEAs by
considering the influence of each species on strengthen-
ing before averaging their contribution in a generalized
Labusch model.

A more physically-based treatment was proposed by
Varvenne et al. in Ref. [26], where the energy-based
Labusch model described above was successfully gen-
eralized to incorporate the role of several species by re-
placing Eq. (4) by:

∆Ẽp(w) =















∑

n

cn

∑

i

(Un(yi − w, zi) − Un(yi, zi))2















1/2

(10)
where the first sum runs over the different components
of the alloy. As originally suggested in Ref. [26], the in-
teraction energies Un(yi − w, zi) are not unique for con-
centrated alloys because they depend on the local chem-
ical environment surrounding the solute n. The fluctu-
ations of this quantity can also be incorporated in the
formalism [26]

This strengthening model for concentrated alloys was
further extended to incorporate the role of short-range
chemical interactions between solutes [66] that controls
strengthening in Ni-Al alloys [66, 67].

2.3. Parametrization and predictions of Labusch-type

models

This type of energy-based Labusch model holds the
advantage of relying only on a few parameters: the in-
teraction energies Un(yi, zi) between a straight disloca-
tion line and a solute atom n located on the site (yi, zi)
and the line-tension coefficient Γ. In the following, we
distinguish different parameterization strategies for di-
lute and concentrated alloys and discuss their prediction
capabilities.

2.3.1. Dilute alloys

The line-tension coefficient is often estimated as Γ ≃
αµb2, where α typically ranges between 0.05 and 0.2
[15]. In the case of a dilute alloy, atomistic calcula-
tions can be used to estimate precisely the line tension
parameter of the solvent, either at 0K using molecular
statics [68–70] or in temperature using molecular dy-
namics [71, 72].

In the case of dilute alloys, the pure solvent matrix
can be considered as the reference frame and ab-initio
calculations can be performed to compute the interac-
tion energies U(yi, zi) between the dislocation and so-
lute atoms located at different positions [25]. Such
finely parameterized model can predict the magnitude
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of solid solution strengthening in dilute alloys and quan-
titative comparison with experimental measurements in
Al alloys have been achieved for both the temperature-
dependent yield-stress [25, 73] and the activation vol-
ume [13].

To compute the interaction energies U(yi, zi), Ma et
al. [74] used a different strategy by considering the in-
teractions between a solute atom and a Peierls-Nabarro
description of the dislocation [75] and by distinguish-
ing between volumetric and slip misfit interaction ener-
gies. While such approach is computationally efficient
because it does not rely on a large number of ab-initio
calculations, its prediction are in quantitative agreement
with experimental measurements of the temperature-
dependent yield stress of dilute Al-Li and Al-Mg alloys
[74].

2.3.2. Concentrated alloys

For concentrated alloys, the distinction between so-
lute and solvent breaks down, making it less straightfor-
ward to estimate the activation energies Un(yi, zi). This
quantity can be computed by considering that the ap-
propriate reference system is an average medium hold-
ing the same properties (lattice constant, elastic moduli,
stacking-fault energy, ...) as the concentrated alloy. Var-
venne and coworkers showed that EAM potentials de-
scribing the interactions between species in an alloy can
be averaged to obtain an interatomic potential for the
average atom [76]. This average atom potential repro-
duces accurately the properties of concentrated alloys
[76], and opens the possibility to compute average in-
teraction energies Un(yi, zi) by considering a solute em-
bedded into a matrix of average atoms. This average
atom potential can also be used to estimate the effec-
tive line-tension coefficient Γ of the concentrated alloy
as done in Ref. [26] . Using these atomistically deter-
mined parameters, Varvenne et al. successfully repro-
duce the composition-dependent yield stress of FeNiCr
alloys [26]. Such average-atom model can be derived
for some interatomic potentials (i.e. pair potentials and
EAM) but applying this strategy to other potential for-
malisms (in particular for machine-learning potentials)
appears challenging because of the necessity to adopt an
averaging procedure adapted to the potential formalism.

An other strategy consists in considering that the size
effect dominates the dislocation/solute interactions such
that Un(xi, yi) can be estimated from the pressure field
around the dislocation (e.g. Eq. (1)). The misfit vol-
ume of the species is computed with respect to the av-
erage atomic volume of the alloy taken as reference
[26]. Such simplification leads to compact expressions
for the athermal CRSS (Eq. (7)) and the characteristic

energy barrier (Eq. (8)) that become functions of the
elastic moduli µ and ν of the alloy and the misfit vol-
umes of species ∆Vn. These quantities can be obtained
from atomistic calculations: the use of Special Quasi-
random Structures (SQS) [77] allows to estimate these
quantities from small simulation cells compatible with
ab-initio calculations [78–81].

An additional simplification consists in considering
that the lattice spacing and the elastic moduli of the
alloy depend linearly on the composition. Employing
these rules of mixture allows for an efficient screening
of the large compositional space of FCC concentrated
alloys valuable for alloy design purposes [82, 83]. How-
ever, the atomic volumes of elements Fe, Ni, Cr, Mn and
Co are rather similar (they deviate from one another by
a few percents at most), such that strengthening is these
alloy may not be entirely controlled by the size effect; in
this situation, the use of an elastic formulation parame-
terized with rules of mixture can be hazardous. Coury
et al. [83] showed that the atomic radii of each species
have to be carefully chosen to reproduce experimentally
measured yield stresses in FeNiCrMnCo alloys. On the
other hand, the influence of other addition elements in
FeNiCrMnCo alloys is well captured by the elastic for-
mulation of the model: the atomic size of Al [84], Pd
[85] and V [86] are significantly larger than Fe, Ni,
Cr, Mn and Co, such that the elastic model reproduces
well the increase of yield stress measured experimen-
tally upon their addition.

The elastic formulation of the model was also ap-
plied to noble metals high entropy alloys, with parame-
ters obtained with rules of mixture [87] and from DFT
calculations [80]. Even though a good agreement was
achieved with a few experimental measurements, more
recent experimental measurements across the composi-
tional space of AuCuNiPdPt alloys evidenced discrep-
ancies with the prediction of the elastic model [88, 89],
possibly revealing the limitations of the elastic formula-
tion to describe this class of alloys.

Some authors highlighted the difficulties to param-
eterize the model to reach quantitative predictions for
concentrated FCC alloys [90, 91]: indeed, going beyond
the elastic approximation requires to develop an average
atom potential that depends on the alloy composition.
As an alternative, Huang et al. [91] suggested to mod-
ify the physically-based elastic model of Varvenne et al.
[26] to incorporate the influence of additional descrip-
tors (such as the charge transfer between elements) in
addition to the size effect. The authors used a machine
learning method to determine which descriptors to add
into the formulation and how to incorporate them, even-
tually yielding good agreement with experimental mea-
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surements.
The recent formulation of the Labusch-type ap-

proaches therefore provide a theoretical framework to
model strengthening in both dilute and concentrated
solid solution. Quantitative comparisons with exper-
imental results can be achieved if the parameters are
carefully obtained from atomistic calculations [25, 26,
73]. The simplified elastic formulation of the model
has also been shown to yield good agreement with ex-
periments if strengthening is dominated by size effects.
However, the assumptions necessary to derive the model
can be highlighted: first, the critical stress to unpin the
dislocation is predicted by considering a single charac-
teristic length, while atomistic calculations clearly show
that the elastic line is rough over all length-scales at
the depinning threshold [40, 41]. Moreover, consider-
ing than the CRSS is derived from the characteristic en-
ergy ∆Ẽp might seem counter-intuitive because unpin-
ning occurs when the strongest pinning configuration is
overcame, which might be controlled by extreme value
statistics. Finally, simplifying the energy landscape ex-
perienced by the dislocation by a 1D periodic profile
(see Fig. 1.b) can seem simplistic and could neglect im-
portant features of the dislocation/solute interactions.

3. Elastic continuous models

Because of the limitations of atomistic simulations
and the strong assumptions necessary to derive the sta-
tistical models, it seems desirable to develop continu-
ous models of dislocation depinning that go beyond the
atomic size and time-scales while incorporating the be-
havior of the dislocation over all wave-lengths. In con-
trast with atomistic calculations, such approaches also
allow to incorporate the role of different ingredients
(size effect interactions, short-range chemical interac-
tions, line-tension approximation, long-range elasticity,
etc.) in a well-controlled way in order to to better test
their influence. In addition, such well-controlled con-
tinuous model can contribute to better justify the as-
sumptions of the statistical model, thereby reinforcing
the theoretical foundation of these approaches.

The different approaches discussed in this section
rely on a simplified description of the dislocation as a
function h(x) (x denoting the line direction). The move-
ment of the elastic line impeded by a quenched disorder
can be modeled by:

B
∂h

∂t
= −Γ∂

2h

∂x2
+ f (x, h(x)) + fa (11)

where B is a kinetic parameter, Γ is the line-tension co-
efficient, and f (x, h(x)) denotes the quenched random

force impeding the line motion, and fa is the force ap-
plied to the system (i.e. the resolved shear stress in the
case of dislocations).

The depinning transition occurs at a critical stress fc
where the applied force overcomes the random force
impeding dislocation motion: (i) for fa < fc, the dis-
location line curves in the random environment and find
local forces that balance out the applied force fa. (ii) For
fa > fc, the applied force is large enough to prevent the
line from finding an equilibrium position and the line
glides freely. (iii) In the limit fa ≫ fc, the applied force
becomes large compared to the random forces and the
line-tension term, and the line reach a constant velocity
v = fa/B.

3.1. Choice of the random force field

In such framework, a continuous elastic model was
proposed by Foreman and Makin [92] that investigated
the glide of an elastic line through a field of randomly
located point-like obstacles. In this situation, the ran-
dom force f (x, y) is non-zero only on random locations
in the glide plane. This numerical model corresponds to
the individual pinning situation of the Fleischer-Friedel
models [55, 60] and the numerical results where found
to agree with the prediction of the statistical treatment
[92].

In the conext of collective pinning, Arsenault et al.
[93, 94] built a random noise environment f (x, y) corre-
sponding to the stresses of misfitting solutes randomly
placed in the vicinity of the dislocation. Going byound
this elastic description, the forces of individual pinning
sites can be determined from atomistic simulations [45]
and a random force field f (x, y) can be built by summing
the contributions of randomly located obstacles [45, 95].
This type of atomistically-informed elastic model was
shown to reproduce accurately the CRSS obtained from
atomistic simulations of Al-Mg and Ni-Al alloys [45].

However, it seems challenging to apply this type
of approach to multi-component concentrated alloys
because characterizing and incorporating in a self-
consistent way the interactions with all possible atomic
arrangement appears as a formidable task. In this con-
text, it seems more suitable to describe the force f (x, y)
as a random field: for example, Zhai and Zaiser [96]
investigated dislocation depinning in a quenched disor-
der chosen to be uncorrelated along the direction of the
dislocation line and with short-range correlations in the
propagation direction.

To relate the statistical properties of the random field
f (x, y) (variance and spatial correlations) to the alloy
properties (composition, elastic moduli,...), Geslin et
al. proposed a microelasticity model of random alloys
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[97, 98] that is briefly summarized in the following.
Each atom type n is described as a spherical dilatational
inclusion of eigenstrain εn, a quantity that is directly
proportional to the misfit volume ∆Vn entering the sta-
tistical models discussed in section 2. These inclusions
are randomly located on the crystalline lattice. Using
the stress field around such inclusion [18] and making
use of the superposition principle, the shear stress at a
given point of the lattice can be expressed as the sum of
all stresses emerging from the surrounding inclusions.
As shown in Ref. [97], this random number follows a
Gaussian distribution of variance

〈τ2
p〉 = Aµ2

(

1 + ν
1 − ν

)2

∆ε2 (12)

where A is a geometric prefactor that depends on the lat-
tice (FCC or BCC) and ∆ε2 =

∑

n cnε
2
n is the variance

of atomic eigenstrain. As for statistical models (see sec-
tion 2), elastic parameters µ, ν and ∆ε2 can be calcu-
lated from atomistic simulations using EAM potential
as in Ref. [97] or ab-initio SQS cells. In addition, atom-
istic calculations can also yield an estimate of 〈τ2

p〉 by
computing the virial atomic stress, and the prediction of
Eq. (12) has been shown to compare well with atomistic
results in the case of Al-Mg alloys [97].

Furthermore, this elastic framework can be used to
obtain the spatial correlations of the stress field asso-
ciated with a random alloy [98]. In order to keep the
calculations tractable analytically, the eigenstrains are
spatially spread out around their lattice site with a Gaus-
sian shape-function of standard deviation a (in practice,
a ≃ 1Å).

The spatial correlations of a given shear stress com-
ponent, say τi j, are shown to be highly anisotropic (see
Fig. 3.1). Along the transverse direction k , i, j, the
spatial correlations denoted ΣT (d) are positive and de-
crease as 1/d3 (red continuous curve on Fig. 3.1). On
the other hand, in the longitudinal directions i and j, the
correlations ΣL(d) are positive at short range and nega-
tive at long range (blue dashed curved in Fig. 3.1). In-
terestingly, both ΣT (d) and ΣL(d) die out as 1/d3, which
has been demonstrated as a general property of stress
correlations in random elastic media [99]. Combining
these spatial correlations, it is also possible to obtain
the stress correlations in a plane as shown on the inset
of Fig. 3.1.

Let us consider a glide plane of normal z and a dislo-
cation lying along the x direction having a Burger vec-
tor b = (bx, by). The Peach-Khoeler force acting on the
dislocation in the propagation direction y is given by
f (x, y) = bxτxz(x, y)+byτyz(x, y). Therefore, a pure edge

� �

Figure 2: Spatial correlations of a shear stress along the transverse
(red line) and longitudinal (dashed blue) directions (see text). The
inset shows the interplay of these correlations in 2D.

character will be only sensitive to the stress τyz(x, y)
that displays positive correlations along the line direc-
tion x and negative correlations along the propagation
direction (see inset of Fig. 3.1), while the stress corre-
lations acting on the screw character are reversed: neg-
ative along the line direction and positive in the propa-
gation direction. We note that the force field for mixed
dislocations is not simply the sum of independent stress
fields, because τxz(x, y) and τyz(x, y) are correlated.

Rida et al. [100] developed a numerical dislocation
dynamics model based on a spectral solver to find effi-
ciently the equilibrium configuration of the dislocation
at a given stress. Increasing incrementally the applied
stress until no equilibrium configuration can be found
enabled to estimate the athermal CRSS of both edge
and screw dislocations evolving in correlated environ-
ment. The simulations results reported in Fig. 3 showed
that the CRSS of the screw dislocation is significantly
smaller than for the edge, which is a direct consequence
of the different stress correlations they experience.

3.2. Statistical models and links with Labusch-type ap-

proaches

Scaling arguments originally attributed to Larkin
[101] can be used to estimate the critical force to un-
pin an elastic line as function of the statistical proper-
ties (variance and spatial correlations) of the random
field [96, 102, 103]. We consider the case of a random
field f having correlations of range w in the propaga-
tion direction. Considering a line segment of length λ
assumed to remain straight, the pinning force acting on
this segment is a random variable and its characteristic
magnitude can be approximated by:
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Figure 3: Athermal CRSS determined numerically (symbols) for pure
edge and screw dislocations. Dashed lines are prediction of a statisti-
cal model Eqs. (15-16).

fp =

[∫ λ

0

∫ λ

0
〈 f (x, y) f (x′, y)〉dxdx′

]1/2

. (13)

Under the influence of this force, the line forms a bulge
of characteristic amplitude w. Assuming equilibrium
and equating the line-tension force of such bow-out with
fp reveals a characteristic length of the problem, usually
referred as Larkin length. As an example, in the case of
uncorrelated forces along the line, fp ∼

√

λ〈 f 2〉 and

λL ∼














Γw
√

〈 f 2〉















2/3

(14)

For small segments of length λ ≪ λL, the line-tension
dominates over the pinning force fp and the line does
not bow out beyond w. On lengths λ ≫ λL, this line-
tension becomes small compared to the pinning force:
the elastic line bows-out on lengths greater than w and
explores more favorable configurations in the random
field.

As pointed out previously [63, 96], Larkin’s length
is equivalent to the characteristic length-scale ζc of
Labusch-type approaches (see section 2) that is also de-
rived as a balance between line-tension and solute inter-
actions contributions.

Similarly to the Labusch-type models, the central as-
sumption is to consider that the depinning transition
is controlled by the unpinning of segment lengths λL.
Equating the pinning force fp with the applied force
acting on the segment length λL yields an estimate of
critical force to unpin the line. This reasoning has been
applied to the case of dislocations evolving in correlated

force field [100] and yields different scaling laws for the
CRSS of edge and screw dislocations:

τ
edge

c,0 =

(

15a

4
√

2

)2/3 (

b

Γwe

)1/3

〈τ2
p〉2/3 (15)

τscrew
c,0 =

10a2b

Γπws

〈τ2
p〉 (16)

where ws and we denote the correlation lengths in the
propagation direction that are different for the edge and
screw characters. These theoretical estimates are shown
with dash lines on Fig. 3.

For the edge case, we recover the well-established
scaling τedge

c ∼ 〈τ2
p〉2/3 [96, 102, 103]. Also, by con-

sidering that the variance of the pinning shear stress is
given by Eq. (12), we obtain the following scaling be-
tween the CRSS and the properties of the alloy (compo-
sition, elastic moduli and line tension):

τ
edge

c,0 ∼
µ4/3

Γ1/3

(

1 + ν
1 − ν

)4/3 













∑

n

cn∆ε
2
n















2/3

, (17)

which is identical to the scaling derived by Varvenne et
al. in the elastic formulation of their model [26, 84, 87].

The situation is however different for the screw dis-
location where Larkin’s approach yields a linear scaling
between τc ∼ 〈τ2

p〉, as a consequence of the negative
stress correlations along the dislocation line. As shown
in Fig. 3, this scaling does not match well the numerical
results that shows a steeper increase of τc with 〈τ2

p〉 at
low stresses. This discrepancy remains to be clarified
even if the situation of an isolated dislocation of pure
screw character remains idealized because of the disso-
ciation into partials in FCC alloys [15].

It is valuable to discuss the connection between
Larkin’s approach and energy-based models presented
in section 2. In particular, force-based models assume
that the segments bow out over an amplitude w (related
to the correlations of the random field), while the value
of w results from the minimization of Eq. 5 in energy-
based models. A connection between both approaches
have been proposed in Ref. [100], where the change of
energy upon dislocation glide ∆Ẽp(w) is related to the
work of the random pinning force. For the edge disloca-
tion, this comparison reveals that both models yield very
comparable estimates for the CRSS that are consistent
with numerical results shown in Fig. 3. This agreement
reinforces the validity of the assumptions used in statis-
tical models and suggests that the athermal CRSS can
be estimated based on a characteristic length-scale even
though the dislocation is rough over all length-scales.
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Energy-based models are however not applicable to the
pure screw dislocation because the interaction energy
between a dilatationnal solute and a straight screw dis-
location is nil. The non-zero CRSS reported in Fig. 3
for the screw dislocation results from the roughening of
the dislocation away from a straight line.

Furthermore, it was attempted to apply a similar sta-
tistical treatment to mixed dislocations [104] and disso-
ciated dislocations [105]. Mixed dislocations are sensi-
tive to both stress fields τxz and τyz; while the authors of
Refs. [104, 105] used the spatial correlations of τxz and
τyz shown in Fig. 3.1, the non-zero cross-correlations
between these components was however not considered.

3.3. role of long-range elasticity

Continuous elastic models can also be used to check
if the line-tension approximation is suitable to model
dislocation pinning. Indeed, dislocations self-energy
is characterized by long-range elastic interactions, such
that the dislocation gets logarithmically stiffer on longer
wavelengths [15, 71]. In the contexts of forest harden-
ing and solid solution hardening, it was shown that in-
corporating these long-range elastic effects do not mod-
ify significantly the dislocation behavior [96, 103]. Sim-
ilar conclusions was reached in Ref. [100] where long-
range elastic interactions can be incorporated without
additional numerical cost in the Fourier-based solver.
In particular, the dependence of the CRSS on the vari-
ance of the pinning field displays the same features as
in Fig. 3 if long-range elasticity is accounted for.

4. Thermally activated glide

For applied stress below the CRSS, i.e. τ < τc, the
dislocation moves through thermally activated events.
In their original formulations [25, 26, 84], energy-based
Labusch models assume that this regime can be de-
scribed by the thermally activated glide of segment of
length ζc (see Eqs. (8-9)).

However, it was demonstrated theoretically [63, 106]
that the characteristic size of thermally activated events
increases for decreasing applied stresses. This behavior
is also consistent with experimental observations show-
ing that the activation volume of thermally activated
glide decreases for stronger applied stresses [107–109].

The increase of the size of thermally activated events
is related to an increase of their activation energy: while
Labusch suggested that the activation energy of these
events diverges logarithmically with decreasing stresses
[106], Zaiser used scaling arguments to show that the
divergence follows a power-law [63]:

∆E(τ) ∼ (τc,0/τ)µ, (18)

with an exponent µ that depends on the roughness expo-
nent α of the dislocation line through the relation:

µ =
2α − 1
2 − α

. (19)

Leyson and Curtin [110] extended their Labusch-type
approach by considering multiple hierarchical bow-
outs. By minimizing the energy of the hierarchical
configuration, they show that the bow-out lengths and
amplitudes are consistent with a roughness exponent
α ≃ 2/3, which is in accordance with results obtained
from atomistic calculations [40, 41]. However, it was
found that the activation energy at low stress increases
with a power law of exponent µ ≃ 0.54, which does
not satisfy Eq. (19). Nevertheless, this new descrip-
tion of the thermally activated events shows satisfac-
tory agreement with experimental measurements of the
temperature-dependent yield stress and activation vol-
umes for various dilute copper alloys [110].

Thermal activation has also been extensively studied
in the larger framework of the depinning of an elas-
tic line in a random field [102, 111–113], where simi-
lar scaling arguments were used to reach Eqs. (18-19)
[113, 114]. While stochastic Langevin dynamics allows
to explore the influence of thermal activation at mod-
erate applied forces [115], the limit of small forces re-
mains out of reach because of the divergence of the ac-
tivation energies between metastable states.

The development of efficient algorithms allowed to
investigate this limit by enumerating the successive
thermally activated events [116, 117]. These numeri-
cal results allowed to clarify the validity of Eqs. (18-
19). Moreover, they shed light on the complexity of
thermally activated glide: in the limit of vanishing force
and temperature, the size of thermally activated events
follow a scale-free power-law distribution and the ther-
mally activated events appear to be spatially and tempo-
rally correlated [117].

5. Conclusion and outlook

The complementary modelling approaches reviewed
in this manuscript enable to investigate solid solution
strengthening on different size and length-scales. It was
shown that molecular dynamics simulations can be used
as an informative tool to investigate the collective effect
of a ensemble of solutes on a dislocation. In particular,
it allows to distinguish if dislocation/solute interactions
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is dominated by size effects (as in the model Al-Mg sys-
tem) [27, 28], solute-solute interactions (as in Ni-Al)
[21, 30, 45] or by the fluctuations of the stacking fault
energy [37, 38]. To overcome size and length-scale lim-
itations of atomistic simulations, two paths can be fol-
lowed: the development of statistical models or multi-
scale numerical approaches.

Section 2 demonstrates the success of recently de-
veloped energy-based Labsuch statistical approaches to
predict experimental yield stress of dilute and concen-
trated alloys [25, 26, 84]. The underlying assumption is
that the athermal CRSS is controlled by a unique length-
scale emerging from the balance between the disloca-
tion line-tension and the strength of solute/dislocation
interactions. The parameters entering the model can be
determined from atomistic calculations (either with ab-
initio or classical potentials), providing quantitative pre-
dictions of yield stress without adjustable parameters. If
the size effect is assumed to dominate strengthening, an
elastic formulation of the model can also be used. How-
ever, such simplification can be hazardous if the atomic
size mismatch between the species of the alloy is small.

Another upscaling strategy consists in developing
meso-scale continuous models of a dislocation line glid-
ing in a random force field that reproduces the statistical
properties of the stress field emerging from randomly
located solutes. This was realized for solutes of dif-
ferent sizes that interact elastically with the dislocation
[97, 98]. Despite the fact that the dislocation becomes
rough on all length-scales at the depinning transition,
it was shown that a statistical model relying on a sin-
gle length-scale agrees well with numerical results for
the relevant case of an edge dislocation [100]. Such
agreement also reveals that energy-based theories and
force-based models are consistent, thereby reinforcing
the theoretical ground on which the statistical models
are built.

The picture is however less clear for thermally ac-
tivated glide. While both Labusch-type approaches
[110] and force-based models [116] reveal the necessity
to incorporate multiple length-scales to capture ther-
mally activated glide below the athermal CRSS, both
approaches disagree on the exponent of the power-law
divergence of the activation energy away from the de-
pinning threshold. This difference reveals that further
theoretical and numerical investigations are necessary to
clarify the physics of thermally activated glide, and bet-
ter justify the assumptions commonly made in energy-
based statistical approaches [110]. The recent appli-
cation of the nudged elastic band to dislocations glide
[118–120] and the clarification of thermal fluctuations
of dislocations [71, 72, 118] are laying the groundwork

for such investigations. It would also be valuable to take
profit of the numerical methods developed in the larger
framework of depinning of elastic line [113], by apply-
ing them to the case of dislocation glide and investi-
gating the influence of the correlated force field charac-
terised in Ref. [97, 98]. Also, because multiple length-
scales are involved in thermally activated glide, it would
also be valuable to investigate carefully the influence
of long-range elasticity that stiffen the dislocation line-
tension on longer length-scales.

The meso-scale elastic models described in section 3
could also be extended to incorporate effects beyond the
elastic interactions between solutes and a compact dis-
location line [100]; in particular, it seems essential to
incorporate the dissociation of dislocation into partials
characteristic of most FCC alloys. Furthermore, it also
appears valuable to investigate how the random stress
field is altered by the influence elastic anisotropy, short-
range order and environment-dependent elastic interac-
tions beyond the size effect [121]. Finally, it was shown
that the strength of concentrated alloys can be largely
influenced by the fluctuation of stacking fault energy
[37, 38, 122]. Incorporating this effect into a mesoscale
elastic model of dissociated dislocations would enable
to investigate the interplay between this additional con-
tribution and the solute/partial dislocation interaction in
a consistent framework.
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[40] G. Péterffy, P. D. Ispánovity, M. E. Foster, X. Zhou, R. B.
Sills, Length scales and scale-free dynamics of dislocations
in dense solid solutions, Materials Theory 4 (2020) 1–25.
doi:10.1186/s41313-020-00023-z .

[41] S. Patinet, D. Bonamy, L. Proville, Atomic-scale avalanche
along a dislocation in a random alloy, Physical Review B 84
(2011) 174101. doi:10.1103/PhysRevB.84.174101 .

[42] E. Antillon, C. Woodward, S. Rao, B. Akdim, T. Parthasarathy,

12

http://dx.doi.org/10.1016/j.actamat.2014.08.026
http://dx.doi.org/10.1080/21663831.2014.912690
http://dx.doi.org/10.1557/jmr.2018.153
http://dx.doi.org/10.1016/j.actamat.2019.12.015
http://dx.doi.org/10.1016/j.pmatsci.2020.100754
http://dx.doi.org/10.1016/j.actamat.2016.09.046
http://dx.doi.org/10.1016/j.apmate.2022.100034
http://dx.doi.org/10.1038/nmat1765
http://dx.doi.org/10.1088/0034-4885/33/1/303
http://dx.doi.org/10.1098/rspa.1957.0133
http://dx.doi.org/10.1143/JPSJ.17.322
http://dx.doi.org/10.1103/PhysRevB.70.054111
http://dx.doi.org/10.1080/14786430600567721
http://dx.doi.org/10.1016/S1572-4859(09)01501-0
http://dx.doi.org/10.1002/pssb.19700410221
http://dx.doi.org/10.1038/nmat2813
http://dx.doi.org/10.1016/j.actamat.2016.07.040
http://dx.doi.org/10.1088/0965-0393/13/3/007
http://dx.doi.org/10.1080/14786435.2010.543649
http://dx.doi.org/10.1103/PhysRevB.74.024113
http://dx.doi.org/10.1103/PhysRevB.78.104109
http://dx.doi.org/10.1016/j.actamat.2017.05.071
http://dx.doi.org/10.1016/j.mtla.2020.100628
http://dx.doi.org/10.1016/j.commatsci.2022.111508
http://dx.doi.org/10.1016/j.ijplas.2020.102791
http://dx.doi.org/10.1016/j.actamat.2016.03.045
http://dx.doi.org/10.1016/j.scriptamat.2023.115536
http://dx.doi.org/10.1038/s41467-021-23860-z
http://dx.doi.org/10.1103/PhysRevResearch.4.L022043
http://dx.doi.org/10.1016/j.commatsci.2019.109366
http://dx.doi.org/10.1186/s41313-020-00023-z
http://dx.doi.org/10.1103/PhysRevB.84.174101


Chemical short range order strengthening in a model FCC
high entropy alloy, Acta Materialia 190 (2020) 29–42.
doi:10.1016/j.actamat.2020.02.041 .

[43] A. Abu-Odeh, D. L. Olmsted, M. Asta, Screw disloca-
tion mobility in a face-centered cubic solid solution with
short-range order, Scripta Materialia 210 (2022) 114465.
doi:10.1016/j.scriptamat.2021.114465 .

[44] S. Chen, Z. H. Aitken, S. Pattamatta, Z. Wu, Z. G. Yu, D. J.
Srolovitz, P. K. Liaw, Y.-W. Zhang, Simultaneously enhancing
the ultimate strength and ductility of high-entropy alloys via
short-range ordering, Nature communications 12 (2021) 4953.
doi:10.1038/s41467-021-25264-5 .

[45] L. Proville, S. Patinet, Atomic-scale models for hardening in
FCC solid solutions, Physical Review B 82 (2010) 054115.
doi:10.1103/PhysRevB.82.054115 .

[46] L. A. Zepeda-Ruiz, A. Stukowski, T. Oppelstrup, V. V. Bu-
latov, Probing the limits of metal plasticity with molec-
ular dynamics simulations, Nature 550 (2017) 492–495.
doi:10.1038/nature23472 .

[47] M. S. Daw, S. M. Foiles, M. I. Baskes, The
embedded-atom method: a review of theory and appli-
cations, Materials Science Reports 9 (1993) 251–310.
doi:10.1016/0920-2307(93)90001-U .

[48] X. Zhou, R. Johnson, H. Wadley, Misfit-energy-
increasing dislocations in vapor-deposited CoFe/NiFe
multilayers, Physical Review B 69 (2004) 144113.
doi:10.1103/PhysRevB.69.144113 .

[49] F. Wang, H.-H. Wu, L. Dong, G. Pan, X. Zhou, S. Wang,
R. Guo, G. Wu, J. Gao, F.-Z. Dai, et al., Atomic-scale simula-
tions in multi-component alloys and compounds: A review on
advances in interatomic potential, Journal of Materials Science
& Technology (2023). doi:10.1016/j.jmst.2023.05.010 .

[50] Y. Zuo, C. Chen, X. Li, Z. Deng, Y. Chen, J. Behler, G. Csányi,
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