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Topology as a data analysis and theoretical 
tool to understand the fundamental processes
underlying the dynamics of complex systems

https://youtu.be/W1yndTsvR0g

This paper is based on the 
invited talks given by the two 
authors in an online series on 
“Perspectives on climate 
sciences: From historical 
developments to research 
frontiers.” Its success led to 
the idea of having a special 
issue of Nonlinear Processes in 
Geophysics. 



The first sentence of Leo Tolstoy's novel Anna 
Karenina is: 

"All happy families are alike; each unhappy family is 
unhappy in its own way". 

Following the famous writer, Robert Gilmore and 
Marc Lefranc, tell us:

"All linear systems are alike; each nonlinear system is 
nonlinear in its own way". 

“It was a very happy and shocking discovery that 
there were structures in nonlinear systems that are 
always the same if you looked at them the right 
way.”



Topological analysis in phase space is the correct 
way of looking at dynamical systems. 

For deterministic systems, the topological 
structure of a flow is an invariant that provides 
information on the mechanisms acting in phase 
space to shape the flow. 

A topological analysis involves finding a 
topological representation of the underlying 
structure and obtaining an algebraic description 
allowing for the computation of topological 
invariants. 

Developing methods to accomplish these two 
steps has involved several false starts as well as 
partially successful roads, that finally lead to 
what we now call a templex. 

Charó, G. D., Letellier, C., & Sciamarella, D. (2022). Templex: A bridge between 
homologies and templates for chaotic attractors. Chaos: An Interdisciplinary Journal 
of Nonlinear Science, 32(8), 083108.



Invariants in phase space can be of different types:

a) Metric: dimensions of various types, e.g., correlation dimension (Grassberger & Procaccia, 1983), 

multifractal scaling functions (Halsey et al., 1986). 

b) Dynamic: Lyapunov exponents (Oseledec, 1968; Wolf et al., 1985), as discussed by Eckmann & Ruelle (1985) 

and by Abarbanel et al. (1993). 

c) Topological: linking numbers, relative rotation rates, Conway polynomials, 

Branched Manifolds (Birman & Williams, 1983). 

Invariants (a) and (b) do not provide information on how to model 

the system’s dynamics, while (c) actually does! 

R. Gilmore, Reviews of Modern Physics, Vol. 70(4), October 1998

• What is chaos topology and why is it important? 



The “recipe” to 
“knead” the 
Lorenz’63 attractor 
is a sequence of 
steps that are 
topological in 
nature. 

Gilmore & Lefranc. The Topology of Chaos: Alice in Stretch 
and Squeezeland. Wiley-Interscience, 2002.

• Why is this so? 

Consider a cube of initial conditions under a flow. It can stretched so that it splits into two parts heading to different parts of 
phase space; it can shrink to form a locally two-dimensional structure. Two cubes can also be squeezed together, so that 
two inflow regions are joined to the outflow region by a branch line. 

"All linear systems are alike; each nonlinear system is nonlinear in its own way". 



1) Approximate trajectories by closed curves.

2) Find a topological representation for the orbit structure. 

3) Obtain an algebraic description for the topological structure. 

1) Close-return method – time series, though, must be long and noise free.

2) Knot theory – knot º orbit in three dimensions.

3) Knot invariants – e.g., linking numbers, Conway polynomials
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Computing topological invariants
using knots…

3D trajectory set Knot invariants 

• How to unveil the topological structure of a flow in phase space? 

Knot information for a chaotic attractor can be condensed in a knot-holder or template.



What’s wrong with templates? They are very difficult to construct… they imply the 
reconstruction of Unstable Periodic Orbits (UPOs) and besides, they are no longer 
meaningful if a fourth dimension in phase space is involved, since they unknot…. 

• How to unveil the topological structure of a flow in phase space? 



RESTRICTIONS

• Precision and length of time series must be good enough 
for orbits in phase space to be reconstructed accurately … 

• Phase space dimension cannot be higher than three, since 
knots or braids unknot …

HOMOLOGY GROUPS

• Time series can be shorter and noisy since the method is 
independent of the reconstruction of trajectories in phase 
space (no periodic orbit). 

• Applicable in n dimensions: the method is knotless and 
braidless.

Computing topology 
using homologies

3-D trajectory set Knot invariants 

n-D point-cloud Homologies

Computing topology 
using knot theory

• How to unveil the topological structure of a flow in phase space? 



1) Approximate points as lying on a branched manifold.

2) Find a topological representation for the branched manifold.

3) Obtain an algebraic description of the topological structure. 

1) Local approximation by d-disks using SVD => short and noisy time series can be handled.

2) Build a cell complex keeping track of the gluing prescriptions => 3D+ can be handled. 

3) Compute homologies and orientability properties of the cell complex => the structure can be identified.    

HOMOLOGY 
GROUP 
computation

BraMAH 
COMPLEX 
construction

Computing topological invariants
using homologies

nD point-cloud Homologies
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• How to unveil the topological structure of a flow in phase space? 



• BraMAH used to detect qualitatively different particle dynamics in a fluid flow and therefore Lagrangian 
Coherent Sets (LCSs)

Charó, G., Artana, G., & Sciamarella, D. (2021). Topological colouring of fluid particles unravels finite-
time coherent sets. Journal of Fluid Mechanics, 923, A17. doi:10.1017/jfm.2021.561



Homologies cannot distinguish between two different attractors produced by the
Rössler dynamical system with different parameter values (spiral Rossler attractor
with a = 0.343295 on the left and the funnel Rössler attractor with a = 0.492 on the
right).

Spiral Rössler attractor

• Are homologies good enough to unveil the topological structure of a flow? 

Funnel Rössler attractor



Spiral Rössler attractor Funnel Rössler attractor

The template or knot-holder does distinguish between both: the spiral Rössler attractor has two strips (0, 1) while the funnel 
Rössler attractor has three strips (0,1,2). 

• Are homologies good enough to unveil the topological structure of a flow? 



Where are these strips in a BraMAH cell complex? The spiral and funnel Rössler attractors are homologically 
equivalent: they have both one hole in the centre (H1 = Z1). 

But there is more information in a cell complex than the one contained in its homology groups… for instance, the 
joining lines! They can be detected as the 1-cells shared by at least three 2-cells (thick lines). 

Planar diagrams and kirigamis of cell complexes built from the spiral and funnel Rössler point clouds: notice that the 
recipe to scotch the cell complexes is different.

• Uncovering the missing link to unveil the topological structure of a flow 



But there is something else that is very important and that is missing
in a cell complex representing a branched manifold.

This is the flow or, in other words, time!

Homologies do not consider the action of the flow on the cell
complex…

In order to take the flow on the complex into account, the cell
complex will be endowed with a directed graph that prescribes the
flow direction between its highest-dimensional cells.

• Uncovering the missing link to unveil the topological structure of a flow 



T(R)=(K(R),G(R)) T(R3)=(K(R3),G(R3)) 

Stripexes in T(R):
Stripexes in T(R3):

twisted
twisted

Spiral Rössler attractor Funnel Rössler attractor

• Template + complex = Templex



Four stripexes in T(L)=(K(L),G(L)):

weak 
cycles

The weak cycles that form the two twisted stripexes 
correspond to a single generatex of order 2.

This is consistent with the L63 
template that has four stripexes 
and a Poincaré section divided into 
two components. 

strong
cycles

https://git.cima.fcen.uba.ar/sciamarella/templex-properties
Forthcoming version in Python.

• A templex for the Lorenz 63 attractor

Kirigami L63

https://git.cima.fcen.uba.ar/sciamarella/templex-properties


The topological characterization of noise-driven 
chaos is a challenging issue that is crucial in the 
understanding of complex systems, where part of the 
dynamics remains unresolved and is modelled as 
noise.

While additive noise in a system of equations will blur 
the topological structure, multiplicative noise may 
radically change it [Chekroun et al, 2011]. 

[Charó et al, 2021] extended the concept of a 
branched manifold to account for the integer-
dimensional set in phase space that robustly supports 
the system’s invariant measure at each instant. 

Such a branched manifold, however, does not contain 
any information about the future or the past of the 
invariant measure. The branched manifold is now 
itself time-dependent.

• How can we describe the changing topology of a random attractor? 

LOrenz Random Attractor (LORA)



One cell complex per snapshot! 

• How can we describe the changing topology of a random attractor? 

LOrenz Random Attractor (LORA)



How can we track changes between different cell complexes? Tracking holes! 

• How can we describe the changing topology of a random attractor? 



A random 2-templex R = (K, D) is an indexed 
family K of BraMAH 2-complexes and a digraph D. 

The digraph D is presented as a tree plot on the 
left. It has 15 singly connected components, each 
of which tells the story of one or several holes. 

Tipping points can be identified and classified 
using the digraph. 

They are highlighted in different colours according 
to the type of event: creation in green, 
destruction in black, splitting in red, merging in 
blue, and merging followed immediately by 
splitting in magenta. 

For a random attractor, the digraph does not connect cells, but holes of successive time cell complexes. 

• How can we describe the changing topology of a random attractor? 



• How can we describe the changing topology of a random attractor? 

Merging event



Splitting event

• How can we describe the changing topology of a random attractor? 



A constellation is the set 
of immersed nodes and 
edges forming a 
connected component in 
the digraph of a random 
templex. 

Each node is immersed in 
the phase space using the 
coordinates of the 
corresponding hole’s 
barycentre. 

A better picture of how the holes are evolving in the system’s phase space can be gained by using the coordinates 
of the barycenters of the holes for an embedding of the digraph into this space. 

• How can we describe the changing topology of a random attractor? 



In this talk, we introduced novel tools into algebraic topology and used them to provide insights into 
the behaviour of deterministic and stochastically perturbed chaotic attractors.

ü Attractors in state space can be studied using Branched Manifold Analysis through Homologies: this 
strategy constructs a cell complex from a cloud of points in state space and uses homology groups to 
characterize its topology. 

ü The approach, however, does not consider the action of the flow on the cell complex. The 
procedure is here extended to take this fundamental property into account, as done with templates. 

ü The goal is achieved endowing the cell complex with a directed graph that prescribes the flow 
direction between its highest-dimensional cells. 

ü The tandem of cell complex and directed graph, baptized templex, is shown to allow for a 
sophisticated characterization of chaotic attractors and for an accurate classification of them.

ü In a random templex, there is one complex per snapshot of the random attractor and the digraph 
connects the generators or “holes” of successive cell complexes. 

ü Tipping points appear in a random templex as drastic changes of its holes in motion, namely their 
birth, splitting, merging, or death. 

• To conclude



denisse.sciamarella@cnrs.fr

"All linear systems are alike; each nonlinear system is nonlinear 
according to its templex properties". 

https://www.insu.cnrs.fr/fr/cnrsinfo/templex-une-nouvelle-mathematique-pour-comprendre-le-chaos


