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Michael Ghil has worked on Climate Dynamics, Dynamical
and Complex Systems, Extreme Events, Numerical and
Statistical Methods, and Mathematical Economics. He is
the author or editor of a dozen books and author or co-
author of nearly 300 research and review articles. Many
can be found on the website of his research group at
UCLA. His honors and awards include the L.F. Richardson
Medal of the EGU (2004), the E.N. Lorenz Lecture of the
AGU (2005), a Plenary Lecture at the 7th International
Congress on Industrial and Applied Mathematics (ICIAM
2011), the Alfred Wegener Medal of the EGU (2012), and

Membership in the Academia Europaea (1998).



Topology as a data analysis and theoretical
tool to understand the fundamental processes This paper is based on the

. . invited talks given by the two
underlying the dynamics of complex systems authors in an online series on
“Perspectives on climate
sciences: From historical
developments to research
frontiers.” Its success led to
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The first sentence of Leo Tolstoy's novel Anna
Karenina is:

"All happy families are alike; each unhappy family is
unhappy in its own way".

Following the famous writer, Robert Gilmore and
Marc Lefranc, tell us:

Robert Gilmore and Marc Lefranc WWILEY-VCH

The Topology
of Chaos

"All linear systems are alike; each nonlinear system is
nonlinear in its own way". L R

Alice in Stretch and Squeezeland

“It was a very happy and shocking discovery that
there were structures in nonlinear systems that are
always the same if you looked at them the right

»

way.




Topological analysis in phase space is the correct
way of looking at dynamical systems.

For deterministic systems, the topological
structure of a flow is an invariant that provides
information on the mechanisms acting in phase
space to shape the flow.

A topological analysis involves finding a
topological representation of the underlying
structure and obtaining an algebraic description
allowing for the computation of topological
invariants.

Developing methods to accomplish these two
steps has involved several false starts as well as
partially successful roads, that finally lead to
what we now call a templex.
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 What is chaos topology and why is it important?

Invariants in phase space can be of different types:

a) Metric: dimensions of various types, e.g., correlation dimension (Grassberger & Procaccia, 1983),
multifractal scaling functions (Halsey et al., 1986).

b) Dynamic: Lyapunov exponents (Oseledec, 1968; Wolf et al., 1985), as discussed by Eckmann & Ruelle (1985)
and by Abarbanel et al. (1993).

c) Topological: linking numbers, relative rotation rates, Conway polynomials,

Branched Manifolds (Birman & Williams, 1983).
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the system’s dynamics, while (c) actually does!

R. Gilmore, Reviews of Modern Physics, Vol. 70(4), October 1998 (;,



Why s this so?

Consider a cube of initial conditions under a flow. It can stretched so that it splits into two parts heading to different parts of

phase space; it can shrink to form a locally two-dimensional structure. Two cubes can also be squeezed together, so that
two inflow regions are joined to the outflow region by a branch line.
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"All linear systems are alike,; each nonlinear system is nonlinear in its own way".



Computing topological invariants
using knots...

B 1) Approximate trajectories by closed curves. y %

— 2) Find a topological representation for the orbit structure.

* How to unveil the topological structure of a flow in phase space?

3D trajectory set Knot invariants

3) Obtain an algebraic description for the topological structure.
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1) Close-return method — time series, though, must be long and noise free.

2) Knot theory — knot = orbit in three dimensions.

3) Knot invariants — e.g., linking numbers, Conway polynomials

Knot information for a chaotic attractor can be condensed in a knot-holder or template.

Splitting chart

Local torsion

Permutation



How to unveil the topological structure of a flow in phase space?

What’s wrong with templates? They are very difficult to construct... they imply the
reconstruction of Unstable Periodic Orbits (UPOs) and besides, they are no longer
meaningful if a fourth dimension in phase space is involved, since they unknot....

Chapter 7
A braided view of a knotty story

Mario Natiello

Matematikcentrum-LTH, Lunds Universitet
Box 118, 221 00 Lund, Sverige

Hernan Solari

Departmento de Fisica, Facultad de Ciencias Ezxactas y Naturales
Universidad de Buenos Aires, Argentina

Periodic orbits of 3-d dynamical systems admitting a Poincaré section can be
described as braids. This characterisation can be transported to the Poincaré
section and Poincaré map, resulting in the braid type. Information from braid
types allows to estimate bounds for the topological entropy of the map while re-
vealing detailed orbit information from the original system, such as the orbits that
are necessarily present along with the given one(s) and their organisation. We re-
view this characterisation with some examples —from a user-friendly perspective—,
focusing on systems whose Poincaré section is homotopic to a disc.




How to unveil the topological structure of a flow in phase space?

Computing topology
using knot theory

g N

3-D trajectory set Knot invariants

Computing topology
using homologies

& B

n-D point-cloud Homologies

RESTRICTIONS

e Precision and length of time series must be good enough
for orbits in phase space to be reconstructed accurately ...

e Phase space dimension cannot be higher than three, since
knots or braids unknot ...

HOMOLOGY GROUPS

* Time series can be shorter and noisy since the method is
independent of the reconstruction of trajectories in phase
space (no periodic orbit).

e Applicable in n dimensions: the method is knotless and
braidless.



How to unveil the topological structure of a flow in phase space?

Computing topological invariants
using homologies

1) Approximate points as lying on a branched manifold. y %

~_ 2) Find a topological representation for the branched manifold. nD point-cloud Homologies

3) Obtain an algebraic description of the topological structure.
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BraMAH . Hy = Z;
COMPLEX HOMOLOGY H ~ ZZ‘
construction . — GROUP ! ’
N h computation H, =
ShAl ;

1) Local approximation by d-disks using SVD => short and noisy time series can be handled.
2) Build a cell complex keeping track of the gluing prescriptions => 3D+ can be handled.

3) Compute homologies and orientability properties of the cell complex => the structure can be identified.



* BraMAH used to detect qualitatively different particle dynamics in a fluid flow and therefore Lagrangian
Coherent Sets (LCSs)
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G.D. Chardo, G. Artana and D. Sciamarella
Cell complex Bo B B 0 w Topological class Colour
Ky 1 1 0 X X I Green
Ks 1 2 1 X X I Magenta
Kg 1 3 0 v X 1 Blue
K7 1 1 0 v v v Red
Kg 1 2 1 v v v Orange

Table 2. Betti numbers B (k = 0, 1, 2), orientability chain o and weak boundary w for the cell complexes
obtained in the BraMAH analysis of the DDG flow example.

Char¢, G., Artana, G., & Sciamarella, D. (2021). Topological colouring of fluid particles unravels finite-
time coherent sets. Journal of Fluid Mechanics, 923, A17. doi:10.1017/jfm.2021.561



Are homologies good enough to unveil the topological structure of a flow?

Homologies cannot distinguish between two different attractors produced by the X=—=)Yy—%
Rossler dynamical system with different parameter values (spiral Rossler attractor 1 y = X + ay,

with a = 0.343295 on the left and the funnel Réssler attractor with a = 0.492 on the z=>b4+ z(x — ¢).
right). L

Spiral Rossler attractor Funnel Rossler attractor




* Are homologies good enough to unveil the topological structure of a flow?

The template or knot-holder does distinguish between both: the spiral Réssler attractor has two strips (0, 1) while the funnel
Rossler attractor has three strips (0,1,2).

Spiral Rossler attractor Funnel Rossler attractor




Uncovering the missing link to unveil the topological structure of a flow

Where are these strips in a BraMAH cell complex? The spiral and funnel Réssler attractors are homologically
equivalent: they have both one hole in the centre (H, = Z1).

But there is more information in a cell complex than the one contained in its homology groups... for instance, the
joining lines! They can be detected as the 1-cells shared by at least three 2-cells (thick lines).

Planar diagrams and kirigamis of cell complexes built from the spiral and funnel Rdssler point clouds: notice that the
recipe to scotch the cell complexes is different.

HK®) = 11(0,2) = {0.7) + (24 + (4 7)]] Hi(K(Rs)) = [1(0,2) = (0,6) + (2,4) + 4,6)]]



e Uncovering the missing link to unveil the topological structure of a flow

But there is something else that is very important and that is missing
in a cell complex representing a branched manifold.

This is the flow or, in other words, time!

Homologies do not consider the action of the flow on the cell
complex...

In order to take the flow on the complex into account, the cell
complex will be endowed with a directed graph that prescribes the
flow direction between its highest-dimensional cells.

of dimension dim(K) = « and a digraph G = (N, E) whose under-

lying space is a branched «-manifold associated with a dynamical
system, such that (i) the nodes N are the k-cells of K and (ii) the
edges E are the connections between the k -cells allowed by the flow.

5
Definition 1. A templex T = (K, G) is made of a complex K |
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 Template + complex = Templex

Funnel Rossler attractor
T(R3)=(K(R3),G(R3))

Spiral Rossler attractor
T(R)=(K(R),G(R))

—_—
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Stripexes in T(R;):

Stripexes in T(R): 1 2 3 4 1
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A templex for the Lorenz 63 attractor
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Four stripexes in T(L)=(K(L),G(L)):

=1—-2—->4—6— 1,

=8—>9— 11— 13 = §,

o, =1>3>55->7->38 |

[=8>10>D>1d>1]

The weak cycles that form the two twisted stripexes
correspond to a single generatex of order 2.

This is consistent with the L63
template that has four stripexes
and a Poincaré section divided into

two components.

https://git.cima.fcen.uba.ar/sciamarella/templex-properties

Forthcoming version in Python.

X=—0x+0Y,
y=Rx—y—xz
z = —bz+ xy,

r=28,s=10,and b = 8/3:

strong
cycles

weak
cycles



https://git.cima.fcen.uba.ar/sciamarella/templex-properties

How can we describe the changing topology of a random attractor?

The topological characterization of noise-driven
chaos is a challenging issue that is crucial in the
understanding of complex systems, where part of the
dynamics remains unresolved and is modelled as
noise.

While additive noise in a system of equations will blur
the topological structure, multiplicative noise may
radically change it [Chekroun et al, 2011].

[Chard et al, 2021] extended the concept of a
branched manifold to account for the integer-
dimensional set in phase space that robustly supports
the system’s invariant measure at each instant.

Such a branched manifold, however, does not contain
any information about the future or the past of the
invariant measure. The branched manifold is now
itself time-dependent.

LOrenz Random Attractor (LORA)

dx = s(y — x)dt + oxdW,,

dy = (rx — y — xz)dt + oydW,,
dz = (—bz+ xy)dt + ozdW,.
re= 285 =10 and bi= 8/3i



How can we describe the changing topology of a random attractor?

AI P Chaos: An Interdisciplinary
Journal of Nonlinear Science

LOrenz Random Attractor (LORA)
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é Open « Submitted: 09 June 2021 + Accepted: 15 September 2021 « Published Online: 12 October 2021 dy — (rx S y il xz)dt _|_ O-yth,
Noise-driven topological changes in chaotic dynamics

Chaos 31, 103115 (2021); https://doi.org/10.1063/5.0059461

dz = (—bz+ xy)dt + ozdW,.
Fe285=10 and bi= 831
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One cell complex per snapshot!
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How can we describe the changing topology of a random attractor?

How can we track changes between different cell complexes? Tracking holes!
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* How can we describe the of a random attractor?

For a random attractor, the digraph does not connect cells, but holes of successive time cell complexes.

A R = (K, D) is an indexed ,a e o
. . . Pt =
family K of BraMAH 2-complexes and a digraph D. ore E e ‘e
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How can we describe the of a random attractor?

Merging event
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How can we describe the of a random attractor?

Splitting event
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How can we describe the of a random attractor?

A better picture of how the holes are evolving in the system’s phase space can be gained by using the coordinates
of the barycenters of the holes for an embedding of the digraph into this space.

A constellation is the set
of immersed nodes and
edges forming a
connected component in
the digraph of a random
templex.

Each node is immersed in
the phase space using the
== coordinates of the
corresponding hole’s
barycentre.




e To conclude

In this talk, we introduced novel tools into algebraic topology and used them to provide insights into
the behaviour of deterministic and stochastically perturbed chaotic attractors.

v’ Attractors in state space can be studied using Branched Manifold Analysis through Homologies: this
strategy constructs a cell complex from a cloud of points in state space and uses homology groups to
characterize its topology.

v' The approach, however, does not consider the action of the flow on the cell complex. The
procedure is here extended to take this fundamental property into account, as done with templates.

v The goal is achieved endowing the cell complex that prescribes the flow
direction between its highest-dimensional cells.

v" The tandem of cell complex and directed graph, baptized , is shown to allow for a
sophisticated characterization of chaotic attractors and for an accurate classification of them.

v Ina , there is one complex per snapshot of the random attractor and the digraph
connects the generators or “holes” of successive cell complexes.

v Tipping points appear in a random templex as drastic changes of its holes in motion, namely their
birth, splitting, merging, or death.



"All linear systems are alike; each nonlinear system is nonlinear
according to its templex properties"”.
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