Topology & Phase Space

Topological properties provide detailed information about the fundamental mechanisms that act to shape a deterministic dynamical system's flow in full phase space (with an autonomous writing of the equations).

Such mechanisms constitute a bridge between the system's dynamics and its topology: they enable determining whether two dynamics are equivalent, or whether a particular model is an adequate representation of the dynamics underlying an observational or numerically simulated time series.

To describe these mechanisms, we need a new mathematical object! Topology: Vol.22 .No. I, pp.47-81. 1983Gilmore & Lefranc, 2013 Knots can be used to describe these mechanisms, but knots unknot if the phase space dimension is greater than three… 

Templex approach

The templex (Charó, Letellier & Sciamarella, 2022) describes not only the structure supporting the trajectories in full phase space, but also the non-equivalent ways of flowing around the structure.

The templex properties include:

(i) generators of the homology groups and torsion groups to characterize the structure, (ii) non-redundant cycles in the digraph (generatex, stripex) to describe the paths around the structure. It is defined as a cell complex endowed with a directed graph (digraph) that conveys the information of the flow direction of the system in terms of allowed or forbidden connections between the cells of the complex approximating the system's branched manifold.

A reduced-dimension ocean model (A) -I

The simplest model of the AMOC is topologically equivalent to the spiral Rössler attractor: the simplest type of chaotic behavior we can find.

Let us consider a 3D autonomous model of the Atlantic Meridional Overturning Circulation (AMOC: Sévellec and Fedorov, J. Clim., 2014) that is capable of reproducing the chaotic dynamics during the glacial episodes.

Work in progress with C. Mosto, F. Sévellec et al.

The cell complex has one 1-hole. There are two stripexes and one of them is twisted.

  

  

  

  

  

  

  

  

  

  

  

  

  

  

  

A reduced-dimension ocean model (A) -II Let us now impose the temporal changes in the position of the edge of sea ice (ESI) in order to account for the chaotic behavior during the glacials & the persistence of stable ocean conditions during the interglacials. F BT and F NS are Galerkin projections of the surface salt flux. The 3D model becomes non-autonomous. The figure shows simulated variations in the overturning rate (-Ω) for two slightly different sets of initial conditions (solid black and red dashed lines) during a glacial-interglacial cycle. The grey sawtooth line is the time-dependent forcing introduced by the position of the edge of sea ice (ESI). The four vertical lines indicate the freezing times (t 0 ) used later to compute the Pullback Attractor. Work in progress with C. Mosto, F. Sévellec et al PBA of the unstable AMOC model: the sequence covers the full span of a glacial-interglacial cycle. Colors represent the probability density function for the system's positions in the

Summary

ü We have introduced the templex approach, which helps one understand deterministic flows in phase space in terms of fundamental mechanisms in full phase space (stretching, folding, squeezing or tearing).

ü Through the combination of these mechanisms, differential equations of different types lead to objects of equivalent or different topologies that can be fully characterized using a cell complex -to describe the spatial structure -combined with a digraph -to describe the flow along the structure.

ü Using a reduced-dimension ocean model of the Atlantic Meridional Overturning Circulation (AMOC) as a first example, we have shown how to construct a templex for the autonomous as well as for a nonautonomous case, scaling up to higher dimensions.

ü Results suggest that the deterministic templex can be seen as a single high-dimensional object gathering all the "parts" of an attractor that a PBA approach would illuminate partially, depending on (t 0 ,t).

ü The same rationale can, in principle, be applied to understand the onset of chaos in the low-order ocean model that Pierini, Chekroun and Ghil analyzed using pullback strategies.

? What happens with a templex when there is no determinism? Noise-driven chaos introduces the possibility of having topology-changing structures in phase space. This can be addressed using a Random Templex.

with G. Charó, M. Chekroun & M. Ghil

The topological characterization of noise-driven chaos is a challenging issue that is crucial in the understanding of complex systems, where part of the dynamics remains unresolved and is modelled as noise.

While additive noise in a system of equations will blur the topological structure, multiplicative noise may radically change it [Chekroun et al, Physica D, 2011].

Charó et al [Chaos, 2021] extended the concept of a templex to account for the evolution of a system's invariant measure at each instant.

There is one cell complex per snapshot. What about the flow?

LOrenz Random Attractor (LORA)

Random templex -I

Random templex -II

The flow does not connect cells within a single cell complex, but holes (homology group generators) between different snapshots.

For a random attractor, we can create a digraph connecting holes of successive cell complexes. Holes will sometimes preserve their identity, while sometimes they will undergo mergings, splittings, and even births or deaths.

with G. Charó, M. Chekroun & M. Ghil

Random templex -III

A random templex R = (K, D) is an indexed family K of complexes and a digraph D.

The digraph D for the LORA system is presented as a tree plot on the right. It has 15 singly connected components, each of which tells the story of one or several holes.

Topological tipping points (TTPs) can be identified and classified using the digraph.

They are highlighted in different colours according to the type of event: creation in green, destruction in black, splitting in red, merging in blue, and merging followed immediately by splitting in magenta.

For a random attractor, the digraph does not connect cells, but holes of successive time cell complexes.

The first sentence of Leo Tolstoy's novel Anna Karenina is: "All happy families are alike; each unhappy family is unhappy in its own way".

Following the famous writer, Robert Gilmore and Marc Lefranc, tell us: "All linear systems are alike; each nonlinear system is nonlinear in its own way".

Here, we conclude that:

To conclude… "All linear systems are alike; each nonlinear system is nonlinear according to its templex properties".