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Abstract

We present the derivation of upwind numerical fluxes for the space discontinuous Galerkin (dG) finite element
method applied to the numerical modeling of wave propagation in multidimensional coupled acoustic/elastic
media. The space dG method is formulated using the first-order velocity-pressure and velocity-stress sys-
tems for acoustic and elastic media, respectively. After eigenanalysis of the first-order hyperbolic systems
highlighting the eigenmodes of wave propagation, the upwind numerical fluxes on the acoustic/acoustic and
acoustic/elastic interface are obtained in terms of exact solutions of relevant Riemann problems. Thanks to
the proposed approach, explicit closed-form expressions of the upwind numerical fluxes are obtained on the
acoustic/elastic interface for the general case of multidimensional anisotropic heterogeneous solid media cou-
pled with acoustic fluids. The developed numerical fluxes are validated by analytical/numerical comparison
considering the example of an acoustic domain with a circular elastic inclusion. Finally, the coupled solver
is used to perform a multiparametric study on the microstructure’s echogenicity in a 3D-printed synthetic
material under ultrasonic imaging.

Keywords: Space discontinuous Galerkin method; Upwind numerical flux; Wave propagation;
Acoustic/elastic coupling; Echogenicity.

1. Introduction1

The coupled acoustic/elastic wave propagation exists in a broad range of problems, including seismic2

waves that interact with the outer core of the earth or the ocean, or ultrasonic waves, generated by trans-3

ducers for medical imaging of patients, which propagate through human tissues and bones, and the blood4

inside the organs. In these problems, fluid-solid interfaces exist, and their interactions with the wave should5

be carefully taken into account.6

An accurate numerical simulation of the acoustic and elastic wave propagation in a heterogeneous medium7

can be a difficult task if the characteristic size of the medium is comparable to the wavelength such that the8

wave interacts with the heterogeneities. This problem becomes even more challenging when dealing with9

multi-physics coupling. In this case, high-order methods are required to reduce the numerical dispersion10

and dissipation errors, and more effort is needed to maintain the high accuracy on the coupled interface [1].11

Several numerical methods are introduced in the literature for solving both second-order and first-order12

wave equations in elastic and acoustic domains, including the acoustic/elastic interface. Di Bartolo et al.13

propose a finite difference framework with an optimized memory use based on equivalent staggered-grid14

schemes [2]. Among high-order finite element (FE) methods, the spectral element method is used in [3–5]15

to model seismic waves with different strategies of taking into account the acoustic/elastic coupling on the16

fluid-solid interfaces. The spatial discontinuous Galerkin (dG) is a well-established finite element method17

∗Corresponding author
Email address: bing.tie@centralesupelec.fr (B. Tie)

Preprint submitted to Computers and Structures September 14, 2023



in which strategies to treat flux on element interfaces developed in the finite volume framework can be18

integrated, which has proven to be particularly advantageous for hyperbolic problems such as the one of19

elastic or acoustic wave propagation. Moreover, as the unknown fields are discontinuous from one element to20

another, the mass matrix is split into independent elementary matrices. Hence, the development of massively21

parallel solvers thus becomes straightforward [6, 7].22

Unlike the continuous FE method, the space dG FE method is based on the use of discontinuous basis23

functions between finite elements. However, this discontinuity must be controlled by defining appropriated24

numerical fluxes on element interfaces. Hence, developing and implementing the appropriate numerical fluxes25

is essential to the success of the dG method. A rigorous and accurate numerical flux can be obtained from the26

exact solution of the Riemann problem on element interfaces [1, 6–11]. Otherwise, the Lax-Friedrich flux or27

the penalty flux is another rigorous alternative for calculating the numerical fluxes [12–18]. In the past two28

decades, the dG method was extensively used for numerical modeling of wave propagation in elastic media29

[6–9, 19–21], as well as in more complex media involving multi-physical interfaces. More particularly for30

the elastic-acoustic coupling, Wilcox et al. introduced a unified dG framework for isotropic elastic/acoustic31

media [1], while Zhan et al. considered a dG framework for arbitrary anisotropic elastic/acoustic media32

[10]. They all used the velocity-strain formulation and developed the upwind numerical fluxes by exactly33

solving the Riemann interface problem. Zhan et al. then extended their approach to a more general case34

involving poroelastic media [11]. However, unlike the present work, the method developed by Zhan et al.35

uses the velocity-strain formulation, and the numerical fluxes are developed in cartesian coordinates. Here36

we keep the most general coordinate-free expressions for development of the numerical fluxes. Besides, using37

the first-order elastic velocity-strain and acoustic velocity-pressure formulations, Ye et al. obtained a stable38

algorithm with a penalty flux defined on element interfaces [13], while Guo et al., using the first-order elastic39

velocity-stress and acoustic velocity-pressure formulations, presented a weight-adjusted dG method also with40

a dissipative penalty flux defined on element interfaces [16].41

This work aims to present a development of the upwind numerical fluxes in the most general case of42

multidimensional anisotropic elastic/acoustic media with discontinuous material properties using the wave-43

oriented variational framework previously proposed in [9, 21]. Within the framework of the first-order44

elastic velocity-stress and acoustic velocity-pressure formulations, the numerical fluxes on the interfaces,45

including the elastic/acoustic interfaces, are obtained in terms of the exact solution of the associated Riemann46

problem, unlike the penalty flux method implemented in [13]. Moreover, unlike the approach used in47

[10, 11], we use a coordinate-free vector and tensor notation and a wave-oriented eigenanalysis of the first-48

order hyperbolic system. Thanks to the proposed approach, for the general anisotropic elasticity tensor,49

the Riemann problem is analytically solved, and explicit closed-form expressions of the numerical fluxes in50

terms of wave propagation modes are obtained. These explicit expressions of fluxes are implemented in our51

code, and they are computed only once and stored at the beginning of each dynamic calculation.52

The developed coupled acoustic/elastic solver is then employed to investigate the impact of the mi-53

crostructure of 3D-printed synthetic tissues on medical ultrasonic imaging. The microstructure of biological54

tissues plays a crucial role in their visibility under ultrasonic imaging. At the microstructural level, biological55

tissues are composed of cells, extracellular matrix, and blood vessels. Each has distinct acoustic proper-56

ties that can affect the echoes returned to the ultrasonic probe and the final reconstructed medical image.57

Recently, anatomical phantom twins are beginning to be used for surgical training and preparation for oper-58

ations in some specific medical applications. These synthetic tissues created using different manufacturing59

techniques, including 3D-printing, are expected to mimic the acoustic properties of biological tissues in the60

3-7 MHz ultrasonic imaging frequency range. The matrix of these synthetic composite materials is typically61

composed of a quasi-incompressible material such as elastomers or gels, closely resembling the material62

properties of biological tissues. The selection of different materials with different mechanical properties for63

the inclusions in this synthetic composite is intended to enhance the visibility of the material thickness in64

ultrasonic imaging by scattering the ultrasonic wave and to make the resulting image more similar to those65

of the biological tissue [22? –24].66

In this work, a two-dimensional model of a 3D printed composite material containing circular inclusions67

is studied numerically to examine how the size and area fraction of the inclusion phase affect the ultrasonic68

images. The resulting ultrasonic images, called B-mode images, are obtained using a simplified model of a69
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sequential linear array transducer (see [25] for details).70

The paper is organized as follows. In Section 2, we first present the first-order acoustic velocity-pressure71

formulation and then review the first-order elastic velocity-stress wave equations. An intrinsic tensorial72

notation is used and allows us to develop unified strong and variational frameworks [9]. Second, an analysis73

of the eigenstructure of the governing hyperbolic systems is given. In Section 3, the numerical flux for74

the acoustic/acoustic and acoustic/elastic interfaces are developed by exactly solving the relevant Riemann75

problem, and their explicit closed-form expressions are presented. In Section 4, the coupled acoustic/elastic76

dG solver using the developed upwind numerical fluxes is validated by numerical/analytical comparison77

considering the example of an acoustic domain with a circular elastic inclusion. Finally, in Section 5, the78

developed solver is applied to a 3D-printed microstructure, and virtual B-mode images of the ultrasonic wave79

propagation in it are reconstructed. A first parametric study on the effects of microstructural parameters80

on the echogenicity of the printed material is carried out.81

2. Wave governing equations: strong form, variational framework, and characteristic structure82

To apply the space dG FE method to the coupled acoustic/elastic wave propagation problem, the first-83

order hyperbolic governing equations in both elastic and acoustic media are discussed in the following84

sections, with the introduction of unified strong and variational frameworks for the coupled system.85

2.1. First-order v–p acoustic wave governing equations86

Let us consider an acoustic fluid Ω ⊂ Rd of space dimension d (d = 1, 2, 3) and in a time interval [0, tf ].87

The governing equations of acoustic wave propagation in the form of a first-order velocity-pressure system88

can be written in the following generic form: ∀(x, t) ∈ Ω×]0, tf [89

M(∂tU) +A∂x(U) = 0 or
ρf∂tv −∇xp = 0

λ−1
f ∂tp− divxv = 0

(1)

where the velocity and pressure fields are the primary unknowns, and ρf and λf respectively denote the90

density and the bulk modulus of the fluid. The tensorial compact form in (1) has been proposed by the91

authors in [21] within the frameworks of elastic waves. No source term is considered in the equilibrium92

equation without loss of generality of the purpose of the present work. The generalized unknown U(x, t) =93

(v(x, t) p(x, t))T consists of v the velocity and p the pressure, with ( · )T the adjoint operator. Hence,94

U(x, t) is a field in Rd × R and defined over the open set Ω×]0, tf [. The operator M and space derivative95

operator A∂x are defined as follows: ∀ W = (w q)T96

M
( w
q

)
=
( ρfw

λ−1
f q

)
, A∂x

( w
q

)
=
( −∇xq

−divxw

)
(2)

with the usual space gradient and divergence operators ∇x and divx.97

It is also useful to define the dot product in the vectorial space Rd × R: ∀ W i = (wi qi)
T , (i = 1, 2),98

W 1 ·W 2 = w1 ·w2 + q1q2 (3)

Herein, all the vectors and tensors are denoted using bold letters.99

On the boundary ∂D of any subdomain D ⊆ Ω, the flux operator Fn for n = niei, (herein, the Einstein100

summation convention is systematically used), the outward unit normal vector defined on ∂D, and associated101

to the first-order system (1), is: ∀ W = (w q)T ,102

Fn(W ) = An(W ) = An

( w
q

)
=
( −qn
−n ·w

)
(4)

In (4), the subscript index “n” indicates the dependency of Fn and of An on n.103
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Finally, to complete the definition of the acoustic wave propagation framework, the following boundary104

conditions with a prescribed pressure pD and a prescribed normal velocity vnN are considered:105

p = pD on ∂ΩD×]0, tf [ ; v ·n = vnN on ∂ΩN×]0, tf [ (5)

with ∂ΩN ∪ ∂ΩD = ∂Ω and ∂ΩN ∩ ∂ΩD = ∅. On the other hand, for the initial conditions, we have:106

p(x, 0) = p0(x) and ∂tp(x, 0) = λfdivxv0(x), ∀x ∈ Ω (6)

Remark 2.1. The first-order velocity-pressure governing equations (1) can also be written in the following107

equivalent form:108

∂tU +A
∂x

(U) = 0 or
∂tv − ρ−1

f ∇xp = 0

∂tp− λfdivxv = 0
(7)

with:109

A
∂x
( w
q

)
=
( −ρ−1

f ∇xq

−λfdivxw

)
, An

( w
q

)
=
( −ρ−1

f qn

−λfn ·w

)
= M−1 ·An (8)

The direct use of the strong form (7) leads to an inconsistent numerical flux on the physical interfaces.110

This issue has already been discussed in the elastic case in [9], so in-depth consideration is omitted in this111

paper. Hence, hereafter, the strong form (1) and the associated Jacobian operator are considered for the112

development of the numerical fluxes.113

114

Remark 2.2. When applied to the first-order velocity-strain wave equations used in [1], the corresponding115

tensorial compact form can be written as follows for the generalized unknown U(x, t) = (v(x, t) ε(x, t))T116

with ε the strain field: ∀(x, t) ∈ Ω×]0, tf [,117

M(∂tU) +A∂x(U) = 0 or
ρf∂tv −∇x(λf tr(ε)) = 0

∂tε− ε(v) = 0
(9)

with the operator M and the space derivative operator A∂x defined as follows: ∀ W = (w τ )T118

M
( w
τ

)
=
( ρfw

τ

)
, A∂x

( w
τ

)
=
( −∇x(λf tr(τ ))

−ε(w)

)
(10)

In (9), the infinitesimal strain operator ε( · ) is defined as follows:119

ε(w) =
1

2

(
Dxw + DT

x w
)

=
∂w

∂xi
⊗s ei (11)

with “⊗s” the symmetrized tensor product defined as: (a⊗s b)ij = 1
2 (aibj + ajbi). Then, the flux operator120

Fn associated to the first-order system (9) is in fact equal to An the Jacobian operator in the n direction:121

∀ W = (w τ )T ,122

Fn(W ) = An(W ) =
( −λf tr(τ )n

−n⊗s w

)
(12)

It is worth noticing that the method proposed in this work can be easily applied to this velocity-strain123

acoustic formulation.124

2.2. First-order v–σ elastic wave equations125

In this section, the governing equations of elastic wave propagation previously introduced in [9, 21] is126

presented. We consider the wave propagation in an elastic medium Ω ⊂ Rd of space dimension d (d = 1, 2, 3)127

and in a time interval [0, tf ]. The first-order velocity-stress governing equations is also written in the generic128

form: ∀(x, t) ∈ Ω×]0, tf [129

M(∂tU) +A∂x(U) = 0 or
ρ∂tv −Divx σ = 0

C−1 : ∂tσ − ε(v) = 0
(13)
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with the following definitions of operators:130

M
( w
τ

)
=
( ρw

C−1 : τ

)
, A∂x

( w
τ

)
=
( −Divx τ

−ε(w)

)
(14)

In (14), Divx denotes the usual space divergence operator of a tensor.131

In the elastic case, the generalized unknown is U(x, t) = (v(x, t) σ(x, t))T with σ the stress unknown. In132

(13) and (14), ρ is the density of the solid, C the fourth-order elasticity tensor, and “:” the usual double-dot133

product between two tensors defined as (C : τ )ij = Cijklτkl.134

Similar to the acoustic wave framework, it is useful to define the dot product this time in the vectorial135

space of Rd × Rd×dsym : ∀ W i = (wi τ i)
T , (i = 1, 2),136

W 1 ·W 2 = w1 ·w2 + τ 1 : τ 2 (15)

The flux operator Fn on the boundary ∂D of any subdomain D ⊆ Ω is defined as: ∀ W = (w τ )T ,137

Fn(W ) = An(W ) =
( −τ ·n
−n⊗s w

)
(16)

2.3. dG variational framework138

Now that all the required operators and parameters are defined, the unified variational framework can be139

introduced. Within the framework of the discontinuous Galerkin FE method, we look for an approximated140

solution Uh, discontinuous across the element interfaces, of the generalized unknown U . This discontinuous141

character of Uh makes it possible to integrate the concept of well-established numerical fluxes within the142

framework of the finite volume method [6].143

Let us consider Mh = {Ωk}k a FE mesh of the domain Ω. For the sake of simplicity, from now on, any144

element Ωk of the mesh Mh will be denoted by E and any of the neighboring elements of E by E′. To145

obtain the dG variational formulation of the coupled acoustic/elastic system (1) and (13) for any element146

E, the integration by parts formula is used, and the discontinuous flux F n(Uh) on the element boundary147

∂E is replaced by a numerical flux F̂n(Uh,U
′
h), which depends on the solution in both E and the adjacent148

element E′. Then we get: ∀ W h(x),149

(W h,M(∂tUh))E − (A∂x,T (W h),Uh)E+ <W h, F̂n(Uh,U
′
h) >∂E= 0 (17)

where Uh and U ′h are elementary solutions in E and E′, respectively, and Uh 6= U ′h on ∂E ∩ ∂E′. W h(x)150

are test functions, with W h(x) = (wh(x) qh(x))T in the acoustic case and W h(x) = (wh(x) τh(x))T in151

the elastic case. In (17), following notations are adopted for volume and surface integrations, respectively:152

(W 1,W 2)E =

∫
E

W 1 ·W 2 dV , <W 1,W 2 >∂E=

∫
∂E

W 1 ·W 2 dS (18)

Applying integration by parts again to (17) leads to the following equivalent form of (17): ∀ W h(x),153

(W h,M(∂tUh))E+(W h,A
∂x(Uh))E+ <W h, F̂n(Uh,U

′
h)− F (Uh) >∂E= 0 (19)

It is this variational formulation (19) that is used in the present work to implement the dG solver because154

it involves the slightly more familiar operator A∂x , instead of A∂x,T .155

The study of the numerical fluxes on internal element boundaries ∂Eint = ∂E\(∂E ∩ ∂Ω) is presented156

in Section 3. For external element boundaries ∂Eext = ∂E ∩ ∂Ω, a ghost neighbor element E′ with the157

same mechanical behavior as E is assumed [20]. In the case of an acoustic medium, one should prescribe158

p′h = 2pD − ph and v′h ·n = vh ·n on ∂E ∩ ∂ΩD, and p′h = ph and v′h ·n = 2vnN − vh ·n on ∂E ∩ ∂ΩN .159

The same approach is considered for the elastic external element boundary elaborated in [9].160
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2.4. Characteristic structure of the wave governing equations161

Before giving the definition of Riemann problems on element interfaces in the next section, it is necessary162

to analyze the characteristic structure of the wave equations (1) and (13) for both acoustic and elastic cases.163

To do this, we analyze the corresponding eigenvalue problem defined with the operator M and the Jacobian164

operator An as follows165

An(Rn) = λnM(Rn) (20)

2.4.1. Eigenanalysis of the acoustic wave equation166

In the acoustic case, we get m = d + 1 eigenvalues {λn,k}k=1,...m and m associated right eigenvectors167

{Rn,k}k=1,...m from (20). It is noteworthy that the associated eigenvalue and eigenvectors of the two168

equivalent forms of the governing equations (1) and (7) are identical. In other words, one can use (8) to169

rewrite the eigenproblem (20) in the following form:170

An(Rn) = λnRn (21)

Solving (21) results in two nonzero eigenvalues and the associated right eigenvectors:171

λ±n = ±

√
λf
ρf

, R±n =
( 1√

2
n

− 1√
2
λf (λ±n)−1

)
=
( 1√

2
n

− 1√
2
z±n

)
(22)

where zn is the acoustic impedance defined as z±n = λf (λ±n)−1 = ρfλ
±
n .172

For the calculation of the left eigenvectors of (21), which are also the right eigenvectors of the tensor A
T

n173

defined as:174

A
T

n(W ) =
( −λfqn
−ρ−1

f n ·w

)
(23)

It can be shown that:175

L±n =
( 1√

2
n

− 1√
2
(z±n )−1

)
, M(R±n) = ρfL

±
n (24)

Hence, we get the following decompositions of the flux (or jacobian) tensors:176

An = λ±nR
±
n ⊗L

±
n , An = z±nL

±
n ⊗L

±
n (25)

The systeme (20) is therefore symmetric and has R±n as eigenvectors.177

2.4.2. Eigenanalysis of the elastic wave equation178

The characteristic structure of the first-order hyperbolic velocity-stress equation (13) is studied in [21].179

Here, some of the important results are recalled.180

Among the m = d+ d(d+ 1)/2 eigenvalues of An, there are d strictly negative eigenvalues and d strictly181

positive eigenvalues, representing the propagation speed of quasi-longitudinal “qL” and quasi transverse182

“qT” wave modes propagating in the n direction. The right and left eigenmodes corresponding to the183

nonzero eigenvalues of An = M−1 ·An are the following: ∀k = qL, {qTα}α=1,··· ,d−1184

R±n,k =
( wn,k

−ρ(z±n,k)−1C : (n⊗s wn,k)

)
, L±n,k =

( wn,k

−(z±n,k)−1n⊗s wn,k

)
(26)

where z±n,k = ρλ±n,k denotes the acoustic impedance of kth eigenmode and wn,k = 1√
2
γn,k with γn,k unit185

eigenvectors of Γn the Christoffel tensor:186

Γn ·γn,k = λ2
n,kγn,k, k = qL, {qTα}α=1,··· ,d−1 (27)

and Γn is defined as:187

Γn ·w =
(
ρ−1C : (n⊗s wn,k)

)
·n,∀w (28)

Finally, as in the acoustic case, the following equations hold:188

M(R±n,k) = ρL±n,k , An = z±n,kL
±
n,k ⊗L

±
n,k (29)

6



3. Upwind numerical fluxes189

This section develops upwind numerical fluxes for multidimensional coupled anisotropic elastic-acoustic190

wave equations with discontinuous material properties (i.e., media including physical interfaces), more par-191

ticularly, those for acoustic-acoustic and acoustic-elastic interfaces. Upwind numerical fluxes for elastic-192

elastic interfaces for heterogeneous anisotropic solids have been studied in detail in [9, 21]. The acoustic-193

acoustic case is simple and has already been treated in the literature. Still, for the sake of completeness,194

it is considered below in order to have the numerical fluxes expressed with the same notations used in the195

present work. Our main contribution is the development of numeric fluxes on acoustic/elastic interfaces.196

3.1. Numerical fluxes across an acoustic-acoustic interface197

We consider the interface of two adjacent elements E and E′, governed by the previously presented
velocity-pressure acoustic wave equations and having respectively (ρf , λf ,Uh) and (ρ′f , λ

′
f ,U

′
h) as densities,

bulk modulus and initial states (Figure 1). The Riemann problem defines the states that result from the
discontinuity (Uh −U ′h)’s propagation. All the following equations are written in the 3D case without loss
of generality.

Figure 1. Sketch illustration of the Rankine-Hugoniot jump condition in the Riemann problem at an acoustic-acoustic element
interface

An(Uh −Ua
h) = λ−nM(Uh −Ua

h) (30a)

An(Ua
h) +A′n′(U

a′

h ) = 0 (30b)

A′n′(U
′
h −U

a′

h ) = λ−
′

n′M
′(U ′h −U

a′

h ) (30c)

We note that the two outward unit normal vectors n and n′ of E and E′ on their interface verify n+n′ = 0.198

According to the definition of the eigenvalues and eigenvectors (20), the discontinuity terms in (30) can be199

decomposed as follows within the right eigenvectors basis:200

Uh −Ua
h = αR−n , U ′h −U

a′

h = α′R−
′

n′ (31)

By applying (31) and the second identity of (24), the Rankine–Hugoniot jump conditions (30) finally become:

An(Uh)−An(Ua
h) = αz−nL

−
n (32a)

An(Ua
h) +A′n′(U

a′

h ) = 0 (32b)

A′n′(U
′
h)−A′n′(U

a′

h ) = α′z−
′

n′L
−′
n′ (32c)

7



It is worth noting that, according to the definition of the Jacobian operator (8), the equation (32b) corre-201

sponds to the following classical interface conditions for perfect fluids:202

pah − pa
′

h = 0 , vah ·n+ va
′

h ·n′ = 0 (33)

Solving the Riemann problem (32) leads to the determination of the two unknown states {Ua,Ua′},203

i.e., the two characteristic coefficients {α, α′}. By eliminating the two unknown states Ua
h and Ua′

h in204

(32) and using (33), the Riemann problem (32) is solved, we obtain the following formulas for {α, α′} (see205

Appendix A1):206

α = L̃−n · (Uh −U ′h) , α′ = L̃−
′

n′ · (U ′h −Uh) (34)

In (34), the two “perturbed” left eigenmodes {̃L−n,k, L̃
−′
n′,k} are calculated as follows and couple the material207

properties of the adjacent elements E and E′:208

L̃−n =

(
C−z ℘vect(L

−
n)

C−
′

z ℘scalar(L
−
n)

)
, L̃−

′

n′ =

(
C−

′

z ℘vect(L
−′
n′ )

C−z ℘scalar(L
−′
n′ )

)
(35)

with:209

C−z =
z−n

R

z−n
=

z−
′

n

z−n
V
> 0 , C−

′

z =
z−n

R

z−
′

n′

=
z−n

z−n
V
> 0 (36)

z−n
R

and z−n
V

respectively denote the harmonic and arithmetic means, between E and E′, of the acoustic210

impedance of the eigenvector. Furthermore, two operators ℘vect( · ) and ℘scalar( · ) are introduced to treat211

the vectorial and scalar part of a generalized field W = (w q)T separately, and they are defined as follows:212

℘vect(W ) = w , ℘scalar(W ) = q (37)

Finally, the upwind numerical fluxes defined as F̂n(Uh,U
′
h) = An(Ua

h) = 1
2 (An(Ua

h)−A′n′(U
a′

h )) can
be calculated by replacing the calculated characteristic coefficients in following equivalent equations:

F̂n(Uh,U
′
h) =

1

2

(
An(Uh)−A′n′(U

′
h)− αz−nL

−
n + α′z−

′

n′L
−′
n′

)
(38a)

= An(Uh)− αz−nL
−
n (38b)

3.2. Numerical fluxes across an acoustic-elastic interface213

We again consider the interface of two adjacent elements E and E′. But now, the element E is governed by
the acoustic wave equations with (ρf , λf ,Uh) as density, bulk modulus, and initial state, and E′ is governed
by the elastic wave equations with (ρ′, C ′,U ′h) as density, elasticity tensor, and initial state (Figure 2). In
this case, the Rankine-Hugoniot jump conditions are written as follows:

An(Uh −Ua
h) = λ−nM(Uh −Ua

h) (39a)

An(Ua
h) + Πn′(A

′
n′(U

c′

h )) = 0 (39b)

A′n′(U
b′

h −U
c′

h ) = λ−
′

n′,qT2
M ′(U b′

h −U
c′

h ) (39c)

A′n′(U
a′

h −U
b′

h ) = λ−
′

n′,qT1
M ′(Ua′

h −U
b′

h ) (39d)

A′n′(U
′
h −U

a′

h ) = λ−
′

n,qLM
′(U ′h −U

a′

h ) (39e)

In (39), the operator Πn′ from Rd×Rd×dsym to Rd×R is defined as follows: ∀W = (w τ )T ∈ Rd×Rd×dsym ,214

Πn′(W ) =
( w

(n′ ⊗ n′) : τ

)
(40)
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Figure 2. Sketch illustration of the Rankine-Hugoniot jump condition in the Riemann problem at an acoustic-elastic element
interface

Then, it can be shown that according to the definition of An in both acoustic and elastic media and215

the definition of Πn′ , the equation (39b) corresponds to the following classical perfect fluid-solid interface216

conditions:217

pahn+ σc
′

h ·n′ = 0 , n ·vah + n′ ·vc
′

h = 0 (41)

Now, as in the acoustic-acoustic case, the discontinuity terms in (39) are decomposed as follows using
the right eigenvectors basis:

Uh −Ua
h = αR−n (42a)

U ′h −U
a′

h = α′qLR
−′
n′,qL, U

a′

h −U
b′

h = α′qT1
R−

′

n′,qT1
, U b′

h −U
c′

h = α′qT2
R−

′

n′,qT2
(42b)

By adding the three last equations given by (39c)–(39e), and by applying (42), the second identity of (24),
and the first identity of (29), the Rankine–Hugoniot jump conditions (39) finally become:

An(Uh)−An(Ua
h) = αz−nL

−
n (43a)

An(Ua
h) + Πn′(A

′
n′(U

c′

h )) = 0 (43b)

A′n′(U
′
h)−A′n′(U

c′

h ) = α′kz
−′
n′,kL

−′
n′,k (43c)

Again by eliminating the two unknown states Ua
h and U c′

h in (43), it can be shown that the characteristic
coefficients {α, α′k} of the Riemann problem (43) are solutions of the following linear system of equations
(see Appendix A2):[

1 [Bae]1×3

[Bae
′
]3×1 [Id]3×3

]
·
(

α
{α′k}

)
=

[
L−n · (Uh −Πn′(U

′
h))

{2℘tens(L
−′
n′,k) : ℘tens(U

′
h −Ψn(Uh))}

]
(44)

where the components of the matrices [Bae] and [Bae
′
] are:218

Bae1k = −
z−n − z−

′

n′,k

2z−n
n ·γ′n′,k , B

ae′

k1 =
z−n
z−
′

n′,k

n ·γ′n′,k (45)

in (44), the operator Ψn from Rd × R to Rd × Rd×dsym is defined as follows: ∀W = (w q)T ∈ Rd × R,219

Ψn(W ) =
( w

qn⊗ n

)
(46)

After solving the system of equations (44), one finally gets:220

α = Dae
11L

−
n · (Uh −Πn′(U

′
h))− 2Hae

1k℘tens(L
−′
n′,k) : ℘tens(U

′
h −Ψn(Uh)) (47)
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with Dae
11 and Hae

1k defined by:

[Rae]−1 =

[
1 [Bae]1×3

[Bae
′
]3×1 [Id]3×3

]−1

=

[
Dae

11 −[Hae]1×3

−[Hae′ ]3×1 [Dae′ ]3×3

]
(48)

Then, the numerical flux is calculated within the acoustic element E using the equation (38b).221

When the elastic element E′ is isotropic, we get one pure longitudinal “L” mode and two pure transverse222

“T” modes, i.e.,:223

n ·γ′n′,L = 0 , n ·γ′n′,T1
= n ·γ′n′,T2

= 0 (49)

According to (44)-(45), α, the acoustic wave in E, is only coupled to α′L, the elastic longitudinal wave in224

E′, which is a well-known classical result. Otherwise, the quasi-transverse elastic waves are always coupled225

to the acoustic wave through an acoustic-elastic interface.226

227

Remark 3.1 For the case in which E is governed by elastic wave equations and the neighboring E′ is
governed by acoustic wave equations, by reversing the role of E and E′ in the preceding equations (39), (42)
and (43), after calculation of the characteristic coefficients {{αk}, α′}, the characteristic coefficients {α, α′k}
of the Riemann problem (43) are solutions of the following linear system of equations (see Appendix A2):[

[Id]3×3 [Bea]3×1

[Bea
′
]1×3 1

]
·
(
{αk}
α′

)
=

[
{2℘tens(L

−
n,k) : ℘tens(Uh −Ψn′(U

′
h))}

L−
′

n′ · (Πn(Uh)−U ′h)

]
(50)

where the components of the matrices [Bea] and [Bea
′
] are:228

Beak1 =
z−
′

n′

z−n,k
n′ ·γn,k , B

ea′

1k = −
z−n,k − z

−′
n′

2z−
′

n′

n′ ·γn,k (51)

After solving the system of equations (50) for characteristic equations, one finally gets:229

αk = 2Dea
kl℘tens(L

−
n,l)) : ℘tens(Uh −Ψn′(U

′
h))−Hea

k1L
−′
n′ · (Πn(Uh)−U ′h) (52)

with Dea
kl and Hea

k1 defined by:

[Rea]−1 =

[
[Id]3×3 [Bea]3×1

[Bea
′
]1×3 1

]−1

=

[
[Dea]3×3 −[Hea]3×1

−[Hea′ ]1×3 Dea′

11

]
(53)

Then, the numerical flux is calculated within the elastic element E using the following equation [9]:230

F̂n(Uh,U
′
h) = An(Uh)− αkz−n,kL

−
n,k (54)

3.3. Implementation and calculation of numerical fluxes in the variational formulation231

For an acoustic-elastic interface, we briefly present how to implement and compute the terms associated232

with the numerical fluxes in the variational formulation (19).233

Let us consider first the acoustic element, denoted E. In this case, the interface is consequently denoted234

∂Eae and the elastic element E′. Taking into account (38b) and (47), The flux term in (19) becomes:235

<W h, F̂n(Uh,U
′
h)− F (Uh) >∂Eae

=− <W h, αz
−
nL
−
n >∂Eae

=−
∫
∂Eae

(
W h ·L−n

)
z−n

(
Dae

11L
−
n ·Uh + 2Hae

1k℘tens(L
−′
n′,k) : ℘tens(Ψn(Uh)

)
+

∫
∂Eae

(
W h ·L−n

)
z−n

(
Dae

11L
−
n · Πn′(U

′
h) + 2Hae

1k℘tens(L
−′
n′,k) : ℘tens(U

′
h)
)

(55)
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Then, we exchange the role of acoustic and elastic elements. Let us consider the elastic element, now236

denoted E. In this case, the same interface is consequently denoted ∂Eea and the acoustic element E′.237

Taking into account (54) and (52), The flux term in (19) becomes:238

<W h, F̂n(Uh,U
′
h)− F (Uh) >∂Eea

=− <W h, αkz
−
n,kL

−
n,k >∂Eea

=−
∫
∂Eea

(
W h ·L−n,k

)
z−n,k

(
2Dea

kl℘tens(L
−
n,l)) : ℘tens(Uh)−Hea

k1L
−′
n′ · Πn(Uh)

)
+

∫
∂Eea

(
W h ·L−n,k

)
z−n,k

(
2Dea

kl℘tens(L
−
n,l)) : ℘tens(Ψn′(U

′
h))−Hea

k1L
−′
n′ · Πn(U ′h)

)
(56)

In both cases, (55) and (56), when a FE discretization is applied, we obtained two flux matrices, one for239

E itself and the other coupling E with E′. We note that the two matrices [Rae] and [Rea] being analytically240

inverted, all terms in (55) and (56) are explicitly implemented, and the flux matrices are calculated once at241

the beginning of each dynamic calculation and stored. In other words, they are not calculated in each time242

step, so their computational cost is limited.243

4. Validation of the upwind numerical fluxes244

This section aims to validate the proposed upwind numerical fluxes, particularly on the acoustic/elastic245

interface, and demonstrate the performance of the coupled dG solver. For this purpose, a numerical/analytical246

comparison is carried out by considering an example with a circular acoustic/elastic interface for which an-247

alytical solutions are available [26].248

We consider Ω = Ω1 ∪ Ω2, with Ω1 a square fluid domain [0, Lx]× [0, Ly] with Lx = Ly = 600m, inside249

which there is a circular solid inclusion Ω2 centered at (x0, y0) = (330, 299)m and with radius a = 119m (see250

Figure 3a). The acoustic wave speed in the fluid domain Ω1 with a density of ρ1 = 1000 kg
m3 is c = 1500m/s,251

while the speeds of the pressure and shear waves in the solid domain Ω2 with a density of ρ2 = 2600 kg
m3 are252

cp = 4000m/s and cs = 2000m/s respectively.253

An external loading, a uniformly distributed pressure, is applied to the left side of Ω1. Its time dependence254

is a sinusoid signal defined by the following function (Figure 3b):255

f(t) = sin(ωct)−
1

2
sin(2ωct), t ∈ [0, 0.025s] (57)

The frequency content of the signal is centered at 40Hz (Figure 3c), and a cutoff frequency fc = 150Hz can256

be defined, which gives rise to the shortest involved wavelength λmin = min{c, cp, cs}/fc = 10m. In this257

work, the non-reflecting boundary condition is handeled by using the same approach proposed by Käser et258

al. [6]. The main idea resides in the choice of the numerical fluxes, which keeps only the outgoing wave259

modes and forbids incoming modes.260

Finite element meshes with the 4-node quadrilateral (Q4) elements are used in the present work. It is261

noteworthy that the element size hE is chosen with respect to λmin. Herein, four different element sizes are262

considered: hE1 = 4m, hE2 = 2m, hE3 = 1m and hE4 = 0.5m, which correspond respectively to 2.5, 5, 10, and263

20 elements per shortest wavelength.264

The total simulation time is chosen to be 0.3s so that the incident wavefront passes entirely through the265

circular inclusion. For the choice of time steps, in the present work, the time integration is performed by266

using the fourth-order Runge-Kutta iterative method, which is explicit and conditionally stable. Hence, it267

is necessary to respect the following stability condition [9]:268

∆t ≤ CFL

2Np + 1
min
E

{
hE

cmax

}
(58)

where Np is the order of FE basis function and Np = 1 with the use of the Q4 elements, hE is the size269

of element E, cmax is the fastest wave speed in E, and CFL is the Courant-Friedrichs-Levy number. Our270

numerical experiences demonstrate that CFL = 0.6 guarantees the stability of our space DG solver.271
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(a)
(b) (c)

Figure 3. (a) Considered geometry with a circular acoustic/elastic interface and boundary conditions; (b) Initial sinusoid pulse
placed over the left edge of the fluid medium, and (c) its frequency content

4.1. Convergence analysis and analytical/numerical comparison272

First, a convergence analysis is performed using previously defined four different element sizes. Time273

signals in velocity, pressure, and stress are output and compared at two sampling points S1 = (200, 300)m ∈274

Ω1 and S2 = (330, 300)m ∈ Ω2 (Figure 3a). Figure 4 shows that, for an element size less or equal to 2m,275

the convergence is reached as suggested by the negligible differences between the obtained signals.

(a) (b)

(c) (d)
Figure 4. Convergence analysis of the space DG solver using six different element sizes by considering time signals output at
S1 = (200, 300)m ∈ Ω1 and S2 = (330, 300)m ∈ Ω2. (a) vx at S1; (b) p at S1; (c) vx at S2; (d) σxx at S2

276

Then, the wave propagation phenomena are analyzed. For the numerical simulation using hE4 = 0.5m277

and ∆t = 2.5µs, three snapshots of the evolving longitudinal (pressure) and transverse (shear) wavefronts278

are displayed in Figure 5 by means of the Helmholtz decomposition. By this method, in the case of isotropic279
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(a) t = 0.17s (b) t = 0.21s (c) t = 0.28s

(d) t = 0.17s (e) t = 0.21s (f) t = 0.28s

Figure 5. Wave propagation in the fluid-solid domain at different time instances; (a), (b) and (c): Longitudinal (pressure)
wavefronts; (d), (e) and (f): Transverse (shear) wavefronts

and homogeneous elastic 2D medium, the scalar field div(u) and the vector field curl(u) represent the280

longitudinal and transverse wavefronts, respectively. Expected wave phenomena are observed. The figures281

Figure 5(a-c) show the propagation of longitudinal waves in both media, which is faster in the solid inclusion,282

and wave reflection and transmission at the fluid-solid interface. Transverse waves are generated at the283

fluid-solid interface and only propagate inside the solid inclusion Ω2 with a slower propagation speed than284

the longitudinal waves. Moreover, the minimum amplitude of the transverse waves is obtained along the285

horizontal diameter of the inclusion because no longitudinal to transverse wave conversion takes place due286

to the normal incidence of the incident wave at the fluid-solid interface (Figure 5(d-f)).287

Finally, an analytical/numerical comparison is made using the analytical solution provided by Lombard288

et al. [26]. Figure 6 presents the comparison along the horizontal line Ls1 = {(x, y)|y = 300m} and289

Ls2 = {(x, y)|y = 344m} (Figure 3a) of the numerical stress and pressure fields obtained using hE4 = 0.5m290

and the corresponding analytical solution. Figure 6a shows the pressure field over the line Ls at t = 0.1380s,291

which is before the arrival of the wavefront at the acoustic/elastic interface. It is noteworthy that the points292

with x ∈ [0, 211[∪]449, 600]for Ls1 lie in the acoustic medium and the points with x ∈]211, 449[ are in the293

elastic medium. Hence, the y-axis in Figure 6(b-f) reports either the pressure p or the σxx component of294

the stress tensor, normalized by the maximum amplitude incident pressure pmax. It can be seen there is295

a good agreement between the numerical results and the analytical solution. In addition, Figure 7 shows296

the comparison on Ls of the numerical results of different element sizes with the analytical solution, which297

shows the convergence when the mesh gets finer.298

Although visual comparison of the spatial signals shows that the proposed method and, in particular,299

the implemented numerical fluxes are working properly, these qualitative comparisons do not provide pre-300

cise quantification and characterization of the differences between the results. Therefore, a more rigorous301

approach is presented in the next section to quantify the mismatch between the numerical and analytical302

solutions.303
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(a) (b)

(c) (d)

Figure 6. (a) Pressure wavefront in the acoustic medium Ω1 before its interaction with the acoustic/elastic interface; (b)-(c)
Numerical/analytical comparison along the horizontal line Ls1 = {(x, y)|y = 300m}; (d) Numerical/analytical comparison
along the horizontal line Ls2 = {(x, y)|y = 344m}

;

(a) (b)

Figure 7. (a) Numerical/analytical comparison along (a) Ls1 and (b) Ls2 for different element sizes

14



4.2. Space-Wavenumber misfit and goodness-of-fit criteria304

Kristekova et al. proposed a criterion that quantifies and characterizes the misfit between two temporal305

signals using their time-frequency representations (TFR) [27, 28]. This criterion is shown to be able to306

detect envelope (or amplitude) and phase misfits and has a better performance compared to the standard307

Root-Mean-Squared (RMS) misfit criterion that overestimates the misfits up to 300% [27]. In the present308

work, we use a similar approach applied to spatial signals instead of temporal signals.309

For this purpose, the Continuous Wavelet Transform (CWT) is used to obtain the space-wavenumber310

representation (SWR) of a 1-D spatial signal, denoted g(x) below [27, 29]:311

CWT (ξ, `){g} =
1√
`

∫ +∞

−∞
g(x)ψ∗

(
x− ξ
`

)
dx (59)

where ξ is the translational parameter, ` is the scale parameter inversely proportional to wavenumber k, ψ is312

the analyzing wavelet (or basic wavelet), and ( · )∗ is the complex conjugate operator. Using `, the analyzing313

wavelet is stretched in space at different scales.314

Among plenty of signals that can be used as the analyzing wavelet, the Morlet wavelet is selected for315

the rest of the calculations in this work. It is an analytical signal whose spectrum has zero amplitudes at316

negative frequencies and is written as follows:317

ψ(η) = π−1/4eiχη−0.5η2 (60)

where χ is dimensionless wavenumber, and η is dimensionless space length. By choosing the appropriate318

` and ξ, with a relation k = χ/` between the scale parameter ` and the wavenumber k, the SWR of the319

spatial signal g(x) is defined as:320

W (x, k){g} = CWT (x,
χ

k
){g} (61)

The SWRs are obtained using the “cwt” function in MATLAB® with the parameter χ = 6. Then a local
SW envelope difference ∆E and a local SW phase difference ∆P with respect to a reference signal gref (x)
are defined for g(x) as follows:

∆E(x, k) = |W (x, k){g}| − |W (x, k){gref}| (62a)

∆P (x, k) = |W (x, k){gref}|
Arg[W (x, k){g}]−Arg[W (x, k){gref}]

π
(62b)

Afterward, local envelope and phase misfits, respectively called space-wavenumber envelope misfit (SWEM)321

and space-wavenumber phase misfit (SWPM), are defined as follows:322

SWEM(x, k) =
∆E(x, k)

max(x′,k′)(|W (x′, k′){gref}|)
, SWPM(x, k) =

∆P (x, k)

max(x′,k′)(|W (x′, k′){gref}|)
(63)

323

Figure 8 presents the local envelope and phase misfits SWEM and SWPM of the spatial signals recorded324

on the previously defined line Ls1 and Ls2 . In each subfigure, the x-axis is the horizontal position of the325

points on the sampling line, the y-axis is the wavenumber, and the corresponding numerical signal and the326

analytical solution are also shown below the x-axis. It is noteworthy that the investigated wavenumber327

range is k ∈ [0, 0.65] where the maximum wavenumber is obtained as kmax = 2πfc
c in the acoustic domain.328

A general decreasing trend is observed in the local envelope and phase misfits as the element size is reduced.329

In addition, we note that the phase misfit is smaller than the envelope misfit for a given element size.330

On the other hand, Figure 9 shows the envelope and phase misfits on Ls at different time instances for331

the finest element size of hE4 = 0.5m. Similar to Figure 8, here again, the phase misfit is smaller compared332

to the envelope misfit at a given time. Moreover, both the envelope and phase misfit are bigger in the333

elastic domain compared to the acoustic domain. According to [28], a fit is considered as a “good” one334

if the envelope and phase misfits are less than 0.41 and 0.35, and an “excellent” one if the envelope and335
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(a) SWEM for hE
1 (b) SWPM for hE

1

(c) SWEM for hE
4 (d) SWPM for hE

4

Figure 8. Space-wavenumber misfits between the numerical signal and the analytical solution on the sampling line Ls2 with
different element sizes at t6 = 0.2940 s
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(a) SWEM at t2 = 0.1692s (b) SWPM at t2 = 0.1692s

(c) SWEM at t3 = 0.2316s (d) SWPM at t3 = 0.2316s

(e) SWEM at t4 = 0.2940s (f) SWPM at t4 = 0.2940s

Figure 9. Space-wavenumber misfits between the numerical signal and the analytical solution on the sampling line Ls1 and
Ls2 at different time instances for the element size hE4 = 0.5m

17



phase misfits are less than 0.16 and 0.15, respectively. Based on this Goodness-of-Fit criterion, there is an336

excellent match between the numerical result and the analytical solution all over the sampling lines Ls1 and337

Ls2 , for the element sizes of hE3 = 1m and hE4 = 0.5m.338

Significant insights could have enriched this study if the analytical solutions over the entire domain was339

available to consider the L2− or H1− error norms. Nonetheless, obtaining the analytical solution over the340

entire domain has a high, even prohibitive, numerical cost.341

5. Ultrasonic imaging of the simplified 3D-printed microstructure342

The proposed coupled acoustic/elastic solver is used to simulate ultrasonic wave propagation in a 2D343

representation of a synthetic 3D-printed material microstructure that mimics the acoustic properties of344

biological tissues. The study aims to examine the influence of two key microstructure parameters, the area345

fraction and size of inclusion, on the resulting ultrasonic imaging.346

For that purpose, as a printed microstructure, a rectangular domain made of a matrix with circular347

inclusions is considered (Figure 10a). Furthermore, the printed layer is assumed to be submerged in water,348

just as in the actual ultrasonic imaging process where tissues are usually surrounded by a fluid (blood or349

water). Hence, a water layer is added above and below the solid material layer (Figure 10a). The geometry350

size of the modeled domain is 6mm × 4.5mm, of which the thickness of each water layer is 1mm and351

the thickness of the 3D-printed material is 2.5mm. As depicted in Figure 10a, a non-reflecting boundary352

condition is applied to the sides and bottom edge of the rectangular geometry.

(a)
(b) (c)

Figure 10. (a) 2D representative geometry of the studied 3D-printed microstructure embedded in water and boundary condi-
tions; (b) Initial Ricker pulse generated by the transducer’s piezoelectric element and (c) its frequency content

353

The ultrasonic wave is initiated in the domain with a simple sequential linear array transducer model.354

A sequential linear array transducer arranges multiple small piezoelectric elements along a straight line to355

produce 2D images. It works by transmitting on each element or group of elements (to increase the aperture356

size), receiving the echo information with the same element or group of elements, and reconstructing each357

line in the final 2D image displayed. To simplify the process, It is assumed that the aperture size is that of a358

single piezoelectric element. The operation of the transducer is performed sequentially; that is, after the first359

element has completed the transmit-receive procedure, the second element initiates the pulse and completes360

the same procedure, and so on, until the last element. Hence, the total length of the image is equivalent to361

the length of the transducer. The final image is composed of n different lines, with n corresponding to the362

total number of elements in the transducer.363

In the examples presented in this paper, the transducer is assumed to have a length of 5.6mm and is364

composed of n = 28 piezoelectric elements, each with a size of 200µm. The vertical component of the365

velocity signal recorded on the transducer is used to perform the post-processing and to reconstruct the366

final image.367

The ultrasonic pulse generated by the transducer is chosen to be a Ricker wavelet with the frequency368

content centered at fmax = 5MHz, and a cutoff frequency of fc = 17MHz (Figure 10b and Figure 10c). The369
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Table I. Material properties of the quasi-incompressible matrix and the inclusions

Material ρ(kg/m3) κ(GPa) µ(MPa) cp(m/s) cs(m/s) λp(µm) λs(µm)
water 1000 2.10 − 1500 − [215− 500] −
matrix 1150 3.10 0.3 1620 17 [230− 540] [2.4− 5.6]

inclusion 1200 6.78 1830 2680 1235 [380− 890] [175− 410]

material properties and the range of ultrasonic wave wavelengths corresponding to the ultrasonic imaging370

frequency range considered here, 3− 7MHz, are presented in Table I.371

One can observe that in the quasi-compressible matrix, the propagation speed of the shear wave is372

two orders of magnitude smaller than the one of the compression wave. Therefore, to capture the shear373

wave in the matrix, an unusually small element size is required, which makes the numerical simulation374

extremely computationally expensive. In addition, the shear wave generated at the matrix/inclusion interface375

propagates very slowly in the matrix and needs much more time to reach the transducer. As a result, we376

argue that its propagation in the matrix has a negligible impact on the velocity signal recorded by the377

transducer. Therefore, the finite element size in the numerical simulations is chosen based on the next378

shortest wavelength in the domain, the one determined by the shear wave in the inclusion. By selecting379

the element size of h = 10µm, we have respectively 10 and 18 elements per this shortest wavelength at the380

cutoff frequency 12.5MHz of the ricker signal and the maximum frequency 7MHz of the ultrasonic imaging381

frequency range considered in this work. The time step ∆t = 0.7µs is calculated using (58) to ensure382

stability.383

5.1. Advantages of modeling the quasi-incompressible material as an equivalent acoustic medium384

In this section, the quasi-incompressible matrix in the composite is modeled using an equivalent acoustic385

material, i.e., both quasi-incompressible elastic material and acoustic material have the same compression386

wave speed (Table II). The objective is to see whether this modification impacts the velocity signal recorded387

on the transducer and evaluate the performance of the developed coupled acoustic/elastic solver compared388

to the pure elastic solver In this precise case. For this purpose, the layer of water is removed, and the389

transducer is placed directly in contact with the matrix over the entire top boundary (Figure 11a).

Table II. Material properties of the quasi-incompressible matrix, using acoustic and elastic models

Material ρ(kg/m3) κ(GPa) µ(MPa) cp(m/s) cs(m/s) λp(µm) λs(µm)
matrix (acoustic) 1150 3.03 − 1620 − [230− 540] −
matrix (elastic) 1150 3.10 0.3 1620 17 [230− 540] [2.4− 5.6]

390

Figure 11b shows the vertical component of velocity recorded on the transducer using two different391

models, and there is an excellent agreement in the results. However, it was observed that by using the392

coupled solver, the total calculation time is decreased by 19%. The reason is that for the acoustic element in393

a 2D problem, we have 3 degrees of freedom per node (2 for velocity and 1 for pressure, while for the elastic394

problem, we have 5 degrees of freedom per node (2 for velocity and 3 for stress). Moreover, the size of the395

flux matrices on an acoustic/elastic interface is smaller than those on an elastic/elastic interface. Therefore396

the coupled acoustic/elastic is faster and less expensive in memory than the elastic solver. This advantage397

is more pronounced in 3D because, for 3D problems, we have for the acoustic case 4 degrees of freedom398

per node (3 for velocity and 1 for pressure), whereas for the elastic case 9 degrees of freedom per node (3399

for velocity and 6 for stress). Hence, we chose to model the quasi-incompressible matrix by its equivalent400

acoustic medium for all the results presented below.401

5.2. Reconstructed medical image: a multiparametric study402

A B-mode image is a type of ultrasound image that displays the relative reflectivity of the target material.403

They are obtained by a simple post-processing procedure on the vertical component of the velocity signal404
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(a)

(b)

Figure 11. (a) Considered geometry and boundary conditions for comparing the elastic and acoustic model of the quasi-
incompressible matrix, (b) Comparison of the vertical component of the velocity signal recorded on the transducer, obtained
by coupled acoustic/elastic and pure elastic solver

recorded on the transducer. Indeed, the amplitude of the reflected echoes is used to generate an image, in405

which the brightness of each pixel representing the reflectivity of the object at that location (converted from406

time using an estimated effective propagation velocity of the medium). The image is typically displayed407

using a rectangular format, with parallel scan lines perpendicular to the direction of the ultrasound beam.408

The gray levels are represented by a 8-bit scale (0-255), with higher values corresponding to brighter pixels409

and lower values corresponding to darker pixels.410

Here we investigate the impact of the area fraction (φ) and the diameter (D) of circular inclusions on the411

echogenicity of a single layer of 3D-printed composites (Figure 10a). For that purpose, the B-mode images412

are obtained for four different area fractions of inclusions: φ1 = 1%, φ2 = 3%, φ3 = 5% and φ4 = 10% and413

three different inclusion diameters D1 = 200µm, D2 = 300µm and D3 = 400µm.414

In the reconstruction of B-mode images, a series of post-processing steps are applied to the raw received415

signal from each piezoelectric element:416

(1) Obtain the envelope of the received signal;417

(2) Convert the amplitude to gray levels (G), with higher amplitudes resulting in brighter points;418

(3) Convert the time to the distance of the reflector from the transducer by multiplying the time by the419

propagation speed of the compression wave in water, cp,water = 1500m/s, and dividing by two. This is420

done to account for the wave traveling to the object and back to the transducer.421

Figure 12 shows these steps applied to the raw signal obtained for a piezoelectric element for the case of422

φ = 10% and D = 200µm. The final image is obtained by assembling all the gray level vectors, where the423

vertical axis shows the distance of the reflector from the transducer, and the lateral axis shows the total424

scan range, which in this paper is the size of the transducer.425

As an example, Figure 13 depicts two different geometries and the corresponding B-mode images (all426

the numbers are in millimeters). One can observe that the water-matrix interface at the distance of 1mm is427

perfectly depicted. A horizontal dashed red line is also added to the B-mode image to show the ideal location428

of the matrix-water interface at the distance of 3.5mm. This interface might not be easily distinguishable429

in some cases, while it is very important if we want to obtain precisely the thickness of the imaged layer.430

Figure 14 presents the reconstructed B-mode images for all the mentioned area fractions and sizes of431

inclusions. It can be observed that as the area fraction of the inclusion decreases, the matrix-water interface432

becomes more visible. However, the interface appears to be closer to the transducer than it actually is.433

This is because the post-processing steps assume the medium in which the wave is propagating is water and434

therefore calculate distances based on the speed of sound in water. Since the speed of sound in the matrix435

is faster than that of water, the wave travels faster in the matrix and appears thus closer to the transducer.436

We also observe that as the area fraction of the inclusions increases and the size of the inclusion decreases,437

the echogenicity of the material to ultrasound waves improves. However, this makes it more challenging to438
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(a) (b)

(c) (d)

Figure 12. Post-processing steps for reconstruction of the B-mode medical image applied to a signal obtained for a single
piezoelectric element for the case of φ = 10% and D = 200µm (a) raw received signal, (b) extracted envelope, (c) converted to
gray levels ranging from 0 to 255, and (d) time converted to distance of the reflector from the transducer.

(a) Geometry: φ = 3%, D = 400µm (b) Geometry: φ = 5%, D = 200µm

(c) B-mode Image: φ = 3%, D = 400µm (d) B-mode Image: φ = 5%, D = 200µm

Figure 13. Two different configurations with various area fractions and diameter sizes of the inclusions, and corresponding
B-mode images (all the sizes are in millimeters)

distinguish the matrix-water interface located at a distance of 3.5mm from the transducer. Therefore, it is439

challenging to see the actual thickness of the material, which is an important objective.440

To have a more precise quantitative measure of echogenicity, the average gray level over the region441
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(a) φ = 1%, D = 200µm (b) φ = 3%, D = 200µm (c) φ = 5%, D = 200µm (d) φ = 10%, D = 200µm

(e) φ = 1%, D = 300µm (f) φ = 3%, D = 300µm (g) φ = 5%, D = 300µm (h) φ = 10%, D = 300µm

(i) φ = 1%, D = 400µm (j) φ = 3%, D = 400µm (k) φ = 5%, D = 400µm (l) φ = 10%, D = 400µm

Figure 14. Reconstructed B-mode images for area fractions of inclusions 1%, 5%, 5%, and 10%

of interest (ROI), which corresponds to the actual thickness of the material, is chosen as a parameter to442

measure the reflectivity of the material to ultrasound waves, which is defined as follows:443

GROI =
1

Npiezo × (dbottom − dtop)

Npiezo∑
i=1

∫ dbottom

dtop

G(xi, y)dy (64)

where dtop = 1mm and dbottom = 3.5mm are respectively the distance from the transducer to the top water-444

matrix interface and the bottom matrix-water interface. Moreover, the average gray level of the region below445

the bottom matrix-water interface, hereafter named the region of the residual signal (RORS), is calculated446

as follows:447

GRORS =
1

Npiezo × (dtotal − dbottom)

Npiezo∑
i=1

∫ dtotal

dbottom

G(xi, y)dy (65)

where the total distance dtotal = Ttotal × cp,water/2 which can be observed in Figure 12d. The ratio of448

GRORS to GROI is used as another important metric to indicate how well the thickness of the material can449

be distinguished.450

Figure 15a and Figure 15b show the average of the gray levels GROI with respect to the area fraction of451

the inclusions and the diameter size, respectively. These figures show an increasing trend in the average gray452
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level when the area fraction is increased for all three sizes. It also indicates that for a given area fraction of453

inclusion, the average gray level increases as the size of the inclusions decreases. However, the same behavior454

is observed for the GRORS as illustrated in Figure 15c and Figure 15d, which is not desirable.455

Looking at the ratio of the GRORS to the GROI , we notice that it increases for D = 200µm and456

D = 300µm as the area fraction is raised. On the other hand, for D = 400µm, the ratio decreases when457

we increase the area fraction from 5 to 10, which means that the actual thickness of the material is more458

recognizable. This behavior could be observed in Figure 15e and Figure 15f.459

(a) (b)

(c) (d)

(e) (f)

Figure 15. Quantitative analysis of the average gray levels. (a) GROI , (c) GRORS , and (e) GRORS

GROI
with respect to the area

fraction φ; (b) GROI , (d) GRORS , and (f) GRORS

GROI
with respect to the inclusion’s diameter D

The same calculations are repeated for another batch of samples with φ = 10%, and the results are460

presented in Table III. According to this table, the average gray levels are similar for two different batches,461

independent of the inclusions’ distribution. However, a more rigorous statistical study is required to study462
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different random distributions of inclusions for a given area fraction and size of inclusions.463

Table III. Comparison of average gray levels for two different batch of samples with φ = 10%

Diameter Size D = 200µm D = 300µm 400µm
1st batch 2nd batch 1st batch 2nd batch 1st batch 2nd batch

GROI 101 100 81 81 70 73
GRORS 71 72 58 58 42 43
GRORS

GROI
0.70 0.72 0.72 0.72 0.60 0.59

Conclusions464

The derivation of the upwind numerical fluxes for the space discontinuous Galerkin finite element method465

was first proposed for the numerical modeling of the coupled acoustic/elastic wave propagation in multidi-466

mensional media with arbitrary anisotropic solid and acoustic fluid. The upwind numerical fluxes derived467

at the acoustic/elastic interfaces are original within the frameworks of the first-order velocity-pressure and468

the first-order velocity-stress formulation governing the domains composed of acoustic and elastic subdo-469

mains. Developed by analytically solving the Riemann problem, they were expressed in explicit closed forms470

presented within a compact and intrinsic tensorial framework. An analytical/numerical comparison was471

performed for a problem with a circular acoustic/elastic interface, and it was shown that the developed472

numerical fluxes provided accurate results. Indeed, according to local misfit criteria, which decompose the473

difference between two signals into the envelope (amplitude) and phase misfits, the mismatch between the474

numerical and analytical solutions was quantified, and numerical errors were evaluated. However, it is nec-475

essary to compare the performance of the proposed method to other methods, such as those developing476

the numerical flux (e.g., the penalty flux method), in terms of accuracy and convergence rate. This needs477

yet to be studied in detail in future works. Finally, the developed coupled solver was applied to simulate478

ultrasonic wave propagation in a simplified model of a 3D-printed matrix-inclusion composite microstructure479

intended to mimic the acoustic behavior of the biological tissues under the ultrasonic imaging procedure. A480

parametric study of the effects of the area fraction and the size of the inclusions on the average gray level481

of the reconstructed B-images was performed. It was shown that increasing the area fraction of the circular482

inclusions and decreasing their size improved the echogenicity of the 3D-printed composite layer. However,483

it also makes it more challenging to determine the thickness of the layer accurately. Modification of the484

microstructure is therefore necessary and should be investigated in future work.485
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[6] M. Käser, M. Dumbser, An arbitrary high-order discontinuous Galerkin method for elastic waves on unstructured meshes515

- I. The two-dimensional isotropic case with external source terms, Geophysical Journal International 166 (2) (2006) 855–516

877. doi:10.1111/j.1365-246X.2006.03051.x.517

URL https://academic.oup.com/gji/article-lookup/doi/10.1111/j.1365-246X.2006.03051.x518
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Appendix A1: Acoustic-acoustic interface602

By adding the three equations of (32), the unknown states {Ua,Ua′} are eliminated and one obtains:603

An(Uh)− αλ−nM(R−n) +A′n′(U
′
h)− α′λ−

′

n′M
′(R−

′

n′ ) = 0 (66)

Regarding the definition of M (2), the Jacobian operator (4) and the eigenmodes (22) and (24), one can
obtain the following equations by applying the ℘vect and ℘scalar on (66):

−phn− p′hn′ = αz−n
1√
2
n+ α′z−

′

n′
1√
2
n′ (67a)

−n ·vh − n′ ·v′h = − 1√
2
α− 1√

2
α′ (67b)

Hence, one obtains a linear system of two equations for two unknowns {α, α′}. Its solution gives rise to604

the expressions introduced in (34) by performing the following manipulations:605
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• To obtain α606

−z
−
n

R

z−n

1√
2

(
n′

z−
′

n′

· Eq.(67a) + Eq.(67b)) leads to:607

L̃−n · (Uh −U ′h) = α (68)

• To obtain α′608

−z
−
n

R

z−
′

n′

1√
2

(
n

z−n
· Eq.(67a) + Eq.(67b)) leads to:609

L̃−
′

n′ · (U ′h −Uh) = α′ (69)

Finally, using the (38b) and (68), the term in the variational formulation (19) and linked to the numerical
flux on the acoustic-acoustic interface EE′ is calculated as follows:

< F̂n(Uh,U
′
h)− Fn(U),W >EE′=< −αz−nL

−
n ,W >EE′ (70a)

=z−n < −˜L−n .Uh,L
−
n .W >EE′ +z−n < ˜L−n .U

′
h,L

−
n .W >EE′ (70b)

Appendix A2: Acoustic-elastic interface610

In this appendix, we consider the numerical flux in an acoustic element E having an interface with an611

adjacent elastic element E′.612

613

By applying the operator Πn′ to (43c) and then adding it to the other two equations of (43), the unknown614

states {Ua,U c′} are eliminated and one obtains:615

An(Uh)− αz−nL
−
n + Πn′(A

′
n′(U

′
h))− α′kz−

′

n′,kΠn′(L
−′
n′,k) = 0 (71)

Regarding the definition of the Jacobian operator by (4) and (16), the left eigenvectors by (24) and (26),
one can obtain the following equations by applying the ℘vect and ℘scalar on (71):

−phn− σ′h ·n′ = αz−n
1√
2
n+

∑
l

α′lz
−′
n′,l

γ′n′,l√
2

(72a)

−n ·vh − n′ ·v′h = −α 1√
2
−
∑
l

α′l(n
′ ·
γ′n′,l√

2
) (72b)

Hence, one obtains a linear system of four equations for four unknowns {α, {α′k}}. Its solution gives rise616

to the expressions introduced in (44) by performing the following manipulations:617

• First equation (for α):618

1√
2

(− n
z−n

· Eq.(72a) + Eq.(72b)) leads to:619

L−n · (Uh −Πn′(U
′
h)) = α−

∑
l

z−n − z−
′

n′,l

2z−n
(n ·γ′n′,l)α

′
l (73)

• Equations for {α′k}:620

For each k,
√

2
γ′n′,k

z−
′

n′,k

· (Eq.(72a)) leads to:621

2℘tens(L
−′
n′,k) : ℘tens(U

′
h −Ψn(Uh)) =

z−n
z−
′

n′,k

n ·γ′n′,kα+ α′k (74)

27



In order to calculate the numerical flux on the acoustic-elastic interface for the acoustic element E, we
recall that the equation (38b) is used. So, one needs to find α by solving the system of equations (44), which
gives rise to: (

α
{α′k}

)
= [Rae]−1 ·

[
L−n · (Uh −Πn′(U

′
h))

{2℘tens(L
−′
n′,k) : ℘tens(U

′
h −Ψn(Uh))}

]
(75)

with [Rae]−1 defined by (48). (47) is finally proved.622

Finally, the term in the variational formulation (19) for the acoustic element E and linked to the numerical
flux on the acoustic-elastic interface EE′ with the element E′ is calculated using the following equation:

< F̂n(Uh,U
′
h)−Fn(U),W >EE′=< −αz−nL

−
n ,W >EE′= −z−n < (Dae

11L
−
n) · (Uh−Πn′(U

′
h)),L−n ·W >EE′

+ z−n < 2(Hae
1k℘tens(L

−′
n′,k)) : ℘tens(U

′
h −Ψn(Uh)),L−n ·W >EE′

= −z−n < (Dae
11L

−
n) ·Uh,L

−
n ·W >EE′ +z−n < (Dae

11L
−
n) · Πn′(U

′
h),L−n ·W >EE′

+z−n < 2(Hae
1k℘tens(L

−′
n′,k)) : ℘tens(U

′
h),L−n ·W >EE′ −z−n < 2(Hae

1k℘tens(L
−′
n′,k)) : ℘tens(Ψn(Uh)),L−n ·W >EE′

(76)

Appendix A3: Elastic-acoustic interface623

To calculate the numerical flux on the acoustic-elastic interface for the elastic element E, we recall that624

the equation (54) is used. So, one needs to find αk by solving the system of equations (50), which gives rise625

to:626

(
{αk}
α′

)
= [Rea]−1 ·

[
{2℘tens(L

−
n,k) : ℘tens(Uh −Ψn′(U

′
h))}

L−
′

n′ · (U ′h −Πn(Uh))

]
(77)

with [Rae]−1 is defined in (53). Hence, (52) is proved.627

Finally, the term in the variational formulation (19) for the elastic element E and linked to the numerical628

flux on the elastic-acoustic interface EE′ with the element E′ is calculated using the following equation:629

< F̂n(Uh,U
′
h)−Fn(U),W >EE′=< −αkz−n,kL

−
n,k,W >EE′= z−n,k < Hea

k1L
−′
n′ · (U ′h−Πn(Uh)),L−n,k ·W >EE′

+ z−n,k < 2Dea
kl℘tens(L

−
n,k) : ℘tens(Uh −Ψn(U ′h)),L−n,k ·W >EE′

= +z−n,k < Hea
k1L

−′
n′ ·U

′
h,L

−
n,k ·W >EE′ −z−n,k < Hea

k1L
−′
n′ · Πn(Uh),L−n ·W >EE′

−zn,k < 2Dea
kl℘tens(L

−
n,k) : ℘tens(Uh),L−n,k ·W >EE′ +zn,k < 2Dea

kl℘tens(L
−
n,k) : ℘tens(Ψn′(U

′
h)),L−n,k ·W >EE′

(78)

Appendix A4: Boundary Conditions Acoustic Solver630

F̂n(Uh,U
′
h) =

1

2

(
An(Uh)−A′n′(U

′
h)− αz−nL

−
n + α′z−

′

n L
−′
n

)
(79)

F̂n(Uh,U
′
h) =

1

2

( −(ph + p′h)n

−(vh + v′h).n

)
− 1

4

( z−n n.(vh − v′h)n
1
z−n

(ph − p′h)

)
(80)

As for the numerical flux on an external element boundary, a neighbor element E′ having the same acoustic631

behavior as E is introduced. In E′ , it should be imposed that: p′hn = 2g − phn and v′h = vh for the632

28



Neumann boundary conditions on ∂ΩN , and ph = p′h and v′h = 2∂uD − vh for the Dirichlet boundary633

conditions on ∂ΩD.634

For the Dirichlet boundary conditions, the flux is calculated as follows:635

F̂D = F̂n(Uh,U
′
h)− Fn(U) =

( 0

(vh − vD).n

)
− 1

2

( z−n n.(vh − vD)n

0

)
(81)

and for the Neumann boundary condition:636

F̂N = F̂n(Uh,U
′
h)− Fn(U) =

( phn− g
0

)
− 1

2

( 0
1
z−n

(ph − g.n)

)
(82)

So the flux on the external boundaries where ∂ΩExt = ∂ΩD ∪ ∂ΩN and ∂ΩD ∪ ∂ΩN = φ, is calulated as637

follows:638

< F̂ ext,W >∂Ω=< F̂D,W >∂ΩD
+ < F̂N ,W >∂ΩN

=
1

2
< z−n n.(vh)n,w >∂ΩD

− 1

2
< z−n n.(vD)n,w >∂ΩD

+ < n.vh , q >∂ΩD
− < n.vD , q >∂ΩD

+ < phn,w >∂ΩN
− < g,w >∂ΩN

+
1

2
<

1

z−n
ph, q >∂ΩN

−1

2
<

1

z−n
g.n, q >∂ΩN

(83)
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