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C1428EGA CABA, Argentina.
3 Rouen Normandie University — CORIA, Campus Universitaire du Madrillet, F-76800 Saint-Etienne du Rouvray, France.
4 CNRS – Centre National de la Recherche Scientifique, 75016 Paris, France.
denisse.sciamarella@cnrs.fr

Session: Nonlinear dynamical systems theory

Lagrangian analysis is central to understanding how fluid particles are organized in their time evolution. Of
particular interest in geophysics are rotating fluids in the presence of a radial temperature gradient, similar to those
that control the dynamics of the atmosphere and oceans on a planetary scale. The phenomenon can be studied with
the help of simplified kinematic models, such as Shadden’s driven double gyre, which simulates oceanic patterns,
or the Bickley Jet, which reproduces the dynamics of zonal jets in the atmosphere. The use of Branched Manifold
Analysis through Homologies (BraMAH) has proven useful for detecting Lagrangian Coherent Sets (LCSs) from
single particle time series [Charó et al., 2019, 2020,2021]. Here we examine how the templex approach, introduced
by Charó, Letellier and Sciamarella in 2022, improves the description of the dynamics of the different particle sets.

1 Introduction

The detection of coherent Lagrangian regions in fluids is central to understanding the dispersion of different chem-
ical species in the atmosphere, the ultimate fate of an oil spill in the ocean, or the concentration structure of the
ozone layer around the polar vortex. Despite the proliferation of methods over the last quarter century, as recorded
in retrospectives such as the one provided in [Hadjighasem et al., 2017], identifying coherent Lagrangian regions
from data remains a challenge.

Most theoretical approaches to the problem rely either on detailed knowledge of the velocity field, or else
on the calculation of local gradients for fluid particle trajectories. In most practical applications, such require-
ments are impossible to satisfy, making these methods impractical. On the other hand, a comparative inspection
of the results obtained with different methods reveals that the predictions can be highly dependent on the type of
[Allshouse and Peacock, 2015] approach. It is thus an open problem on which the scientific community is actively
and intensively working.

An important step towards a methodological solution for the detection of Lagrangian regions from sparse data
was taken in [Charó et al., 2019,Charó et al., 2020,Charó et al., 2021]. The approach, called Branched Manifold
Analysis through Homologies (BraMAH), describes the topological structure corresponding to the individual dy-
namics of the particle. The method is based on the principle establishing that the non-communicating (or weakly
communicating) regions of a fluid have well-differentiated dynamics [Kelley et al., 2013].

One of the models used in [Charó et al., 2020] to test the BraMAH method is known as the Bickley jet and
corresponds to a sinuous zonal jet flanked by counter-rotating vortices. The self-contained system of four coupled
ordinary differential equations can be derived from an analytical expression for the current function. Its solutions
reproduce Lagrangian patterns typically observed in the Gulf Stream or in the nocturnal polar jet perturbed by a
finite number of Rossby waves. Virtual experiments using streaklines show (Figure 1.a) the formation of coherent
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(a) (b)

Fig. 1: Lagrangian Coherent Sets (LCSs) in the Bickley Jet. (a) Streaklines for injection points located at 𝑥1 = 1×106

𝑚, 𝑥21 = [−4 ∶ 0.05 ∶ −2] × 106 𝑚 and 𝑥22 = [2 ∶ 0.05 ∶ 4] × 106, (b) topological grid where triangles, circles,
squares and asterisks correspond to the different topologies obtained for particles advected from that position.
Source: [Charó et al., 2020].

Lagrangian regions that can be studied topologically from an ensemble of scattered particles (Figure 1.b).

Introduced as a toy model for a two adjacent oceanic gyres enclosed by land, the unsteady or driven Double-
Gyre (DDG) flow has a prominent role in the development of a variety of diagnostics associated with transport
and mixing [Balasuriya et al., 2018]. The model can be seen as a simplification of a pattern that occurs frequently
in geophysical flows [Shadden et al., 2005], or as a canonical example of complex transport in non-autonoumous
flows [Sulalitha Priyankara et al., 2017]. The system presents chaotic transport between two counter-rotating gyres
[Sulalitha Priyankara et al., 2017], making it a simple and interesting testbench for methods designed to capture
transport dynamics over a finite time [Allshouse and Peacock, 2015]. The laminar mixing properties of the DDG
system, in the absence of diffusion, include the existence of persistent barriers to transport. Such flow ‘separators’
define sets of fluid particles that share a common dynamics.

As with the Bickley jet, BraMAH can be used to sort DDG particles according to their individual behavior. Col-
oring particles according to the BraMAH class they belong to provides a clear picture of how the LCSs are organised
and move in the fluid domain [Charó et al., 2021]. The next section will revisit the BraMAH methodology when
applied to this example. The subsequent section will use the templex concept, introduced in [Charó et al., 2022], to
provide a more detailed description of the Lagrangian dynamics in each of the DDG regions.

2 LCS detection using cell complexes

In this section, we show how traditional algebraic topology can help to understand transport in fluid flows. The
DDG, defined below, will be used as testbench. Its streamfunction defines a cellular flow with boundaries free of
shear stresses.

Ψ(𝑥, 𝑦, 𝑡) = 𝐴 sin (𝜋 𝑓 (𝑥, 𝑡)) sin(𝜋𝑦) (1)

with
𝑓 (𝑥, 𝑡) = 𝜂 sin(𝜔𝑡)𝑥2 + [1 − 2𝜂 sin(𝜔𝑡)] 𝑥 (2)

defining the forcing term. Without the driving term 𝑢 = 𝜂 sin(𝜔𝑡), this is a flow with two degrees of freedom (𝑑f = 2),
given by 𝑥 and 𝑦. The usual parameter values are 𝐴 = 0.1, 𝜂 = 0.1 and 𝜔 = 𝜋/5. Because 𝑢 = −𝜕𝜓/𝜕𝑦, 𝑣 = 𝜕𝜓/𝜕𝑥,
the flow is nondivergent at all times, 𝜕𝑢/𝜕𝑥 + 𝜕𝑣/𝜕𝑦 = 0. The driving term 𝑢 as the solution to the second-order
differential equation

¥𝑢 + 𝜔2𝑢 = 0 (3)

with the following initial conditions �����𝑢0 = 0
𝑣0 = 𝜔𝜂 .

(4)
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The dynamical system under consideration is hence a the set of four ordindary differential equations:

¤𝑥 = −𝐴𝜋 sin
(
𝜋
[
𝑢𝑥2 + (1 − 2𝑢)𝑥

] )
cos(𝜋𝑦)

¤𝑦 = 𝐴𝜋 (2𝑢 [𝑥 − 1] + 1)
× cos

(
𝜋
[
𝑢𝑥2 + (1 − 2𝑢)𝑥

] )
sin(𝜋𝑦)

¤𝑢 = 𝑣

¤𝑣 = −𝜔2𝑢

(5)

where the driving term 𝑢 is explicitly described.

Fig. 2: Five types of topological structures that are represented by five cell complexes. The 1-cells, i.e., the lines
that are highlighted in color, indicate the generators of the homology group 𝐻1 of holes in each cell complex.
Source: [Charó et al., 2021]

Integrating this equation system for different initial conditions yields particle trajectories in the DDG domain.
Instead of working in the state space spanned by the four state variables 𝑥, 𝑦, 𝑢, and 𝑣, we choose to work using
time-delay embeddings of the horizontal particle position 𝑥, which carries information concerning both gyres. This
choice is made because we expect to be able to apply the method even when the governing equations are unknown.
The embedding dimension 𝑚 is determined using a False Nearest Neighbors algorithm, and is found to be 𝑚 = 4,
even if the fraction of false neighbors is already quite low in 3 dimensions. These dynamical reconstructions are not
expected to match, neither the actual state space of the autonomous version of the DDG system nor the long-term
behavior of the particles. The time-delay that is adopted is 𝜏 = 𝑇𝑝/5 with 𝑇𝑝 = 10. The delay parameter can
vary slightly without altering the topological results: 𝑚 and 𝜏 are thus kept fixed for the full set of 8528 time
series (particles) considered in this study. The properties of the BraMAH cell complexes approximating these
embeddings are of five classes. Results are shown in Figure 2 and 3. The properties of the cell complexes iden-
tify the LCSs in the DDG. Notice that the frontiers between colours remain considerably well defined, even if the
LCSs deform in shape as they move. For further details, the reader is referred to the source paper [Charó et al., 2021].

Using algebraic topology, a fluid particle can thus be related to a set of properties obtained from a cell complex
that encodes its finite-time topological structure. The strategy was called ‘topological colouring of fluid particles’
because of the use of colours to tag particles according to the topological class that emerges from the analysis. Of
course, the robustness of the result depends on the quality of the dynamical reconstruction, related to the length,
level of noise, or observability of the scalar variable of the time series under analysis. The existence of a Klein
bottle among the five cell complexes in Fig. 2 underlines the importance of working in a phase space of sufficiently
high dimension that guarantees an autonomous framework: let us recall that the Klein bottle cannot be immersed in
three dimensions without self-intersections. In terms of LCSs detection, the BraMAH method differs from previous
ones because it describes transport by how particles behave without looking at where they go.

The topological characterization of a flow structure in the state space can be improved. Templates or knot-holders
developed in the eighties [Birman and Williams, 1983] and nineties [Mindlin and Gilmore, 1992,Ghrist et al., 1997]
or [Gilmore, 1998] can distinguish, for instance, the spiral and the funnel Rössler attractor in terms of strips, while
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Fig. 3: One colour is assigned to each topological class (to the properties of each of the cell complexes in Fig.
13. The colours are used to tag the 8528 particles in motion in the DDG field. The LCSs in green, orange, red or
magenta cut out from the chaotic sea in blue. Source: [Charó et al., 2021]

homologies cannot. Both, spiral and funnel Rössler attractors are associated to single-holed, homologically equiv-
alent, cell complexes. The main hindrance with templates is their dependence on knot-theory which nails them
to three dimensional state spaces. The next section discusses how the templex approach provides a mathematical
framework bearing the possibility of generalizing templates to higher dimensions, without relying on orbits or
knots.

3 Templexes for the LCSs

For over twenty years, homology theory was expected to offer an extension to the topological program for higher-
dimensional systems. However, homologies provide only a partial solution to the problem, as they do not take the
flow into account. The templex is a cell complex endowed with a directed graph. Cell complex and digraph work
as two companion objects, since the nodes of the digraph are the highest dimensional cells of the complex, and the
edges of the graph are the cell connections permitted by the flow. The term templex was born from the contraction of
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two previously existing terms: template and complex. The new mathematical object brings a long-sought formalism
for describing the topology of a flow along a spatial structure. In the particular context of deterministic dynamical
systems, the properties of a templex enable determining whether two dynamics are equivalent, or whether a particu-
lar model is an adequate representation of the dynamics underlying an observed or numerically simulated time series.

But, can we build a templex for the five topological classes identified in the DDG flow? The answer is yes, and
not only for the particles flowing the chaotic sea, where the elements needed to construct a template are present. A
template is conceived to represent the strip-structure between a splitting and a joining chart. Quasi-periodic flows
do not have splitting or joining loci, but they still can be represented with a templex, as we shall see.

The methodology implies the generation of a cell complex from a point cloud gathering subsets of points in
cells. This objective can be achieved as done in the BraMAH approach. Alternative algorithmic procedures are
being studied. A directed graph must then be generated from the data. This is done by collecting the information of
how the flow visits the cells in the complex. Neighboring cells that are glued to each other but that are not connected
by the flow, will not bring an edge to the digraph. Edges will represent cell connections allowed by the flow. This
is how the flow information is integrated to the already constructed complex.

An algorithm in Wolfram Mathematica (https://git.cima.fcen.uba.ar/sciamarella/templex-properties) can be
used to compute all the topological properties that are necessary to identify the topology of a system’s branched
2-manifold represented by the cell complex (homologies, torsion groups, orientability). If a digraph associated with
the complex is provided, too, then the algorithm also computes the generatex set and its properties, fully describing
the templex. The algorithm will look for joining loci. A joining locus in a templex is formed by the group of cells
neighboring the location where the state space flow splits into non-equivalent paths. If the dynamics being studied
has no such location, the templex will not have joining lines and only one non-redundant path along the structure
will be found. This does not mean that the structure will be topologically simple: as we have seen in the previous
section, there is a Klein bottle among the topological classes encountered for the DDG. This makes the templex a
more general tool than the template, not only because of dimensional issues, but also because it provides a distinct
description of the spatial structure (through the cell complex) and of the flow paths along that structure (through
the digraph).

Let us give an example of how the templex approach works, using the Lorenz attractor – see Figure 4. The
cell complex provides a sort of kirigami or paper model of the butterfy shape in three-dimensional phase space.
Non-equivalent paths (chains of cells) in the cell complex can be expressed as digraph cycles. Such cycles – strong
or weak, with or without twists – can be calculated from the combined algebraic handling of the cell complex and
the associated digraph. The result of this computation is the so-called ‘generatex set’. These sub-templexes indicate
the dynamical paths that are compatible with the underlying branched manifold. The three coloured lanes in the
digraph correspond to the generatexes of the Lorenz attractor, structured as the cell complex.

The figure showing the five DDG templexes corresponding to the cell complexes in Fig.3 will be shown in
the talk. We must remark that, for the DDG flow discussed here, the templexes are as good as the complexes in
discriminating the different LCSs: the number of topological classes (and therefore of Lagrangian regions) remains
five. Of course, the templex unveils a more detailed description of the topological structure of the particle dynamics
in each Lagrangian region. Notice that the templex properties confirm that the particles of the blue LCS have
a chaotic behavior, evidenced by the existence of a joining locus and a generatex set, while the regions where
particles exhibit quasi-periodic motions are free of joining lines. Discriminating between topologically different
quasi-periodic behaviors is possible because the cell complexes are not equivalent in terms of homology and torsion
groups.
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Fig. 4: Templex for the Lorenz 63 attractor (a), the cell complex juxtaposed on the point cloud (b), and the joining
locus formed by: the joining 1-cell in magenta, and the joining 2-cells 𝛾1, 𝛾2, 𝛾3, 𝛾4, 𝛾8. The directed graph (digraph)
(c) shows the connections between the 2-cells allowed by the flow.
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