1) Approximate trajectories by closed curves.

2) Find a topological representation for the orbit structure.

3) Obtain an algebraic description for the topological structure.

1) Close-return method -time series, though, must be long and noise free.

2) Knot theory -knot º orbit in three dimensions.

3) Knot invariants -e.g., linking numbers, Conway polynomials. 

Methods

• Isopleths, branched manifolds, knot-holders, cell complexes, homologies

Knot information for a chaotic attractor can be condensed in a knot-holder or template.

A chaotic attractor is an invariant set under the action of a flow. For strongly dissipative systems, this invariant set can be described strips that lodge the knots along the attractor.

The different branches discriminate the different paths followed by the flow determining the (fictive) boundaries between the different strips.

Typically, a strip is defined between a splitting chart and a joining chart where the strips are joined (squeezed) into a single strip.

All the non-trivial dynamical processes are captured between the splitting and the joining chart, ended by a joining line, which corresponds to a Poincaré section.

Methods

• Isopleths, branched manifolds, knot-holders, cell complexes, homologies

Methods

• Isopleths, branched manifolds, knot-holders, cell complexes, homologies

Methods

What's wrong with templates? They are very difficult to construct… they imply the reconstruction of Unstable Periodic Orbits (UPOs) and besides, they are no longer meaningful if a fourth dimension in phase space is involved, since they unknot….

• Isopleths, branched manifolds, knot-holders, cell complexes, homologies Methods 1993 1999 2001

• Isopleths, branched manifolds, knot-holders, cell complexes, homologies RESTRICTIONS • Precision and length of time series must be good enough for orbits in phase space to be reconstructed accurately …

• Phase space dimension cannot be higher than three, since knots or braids unknot … HOMOLOGY GROUPS

• Time series can be shorter and noisy since the method is independent of the reconstruction of trajectories in phase space (no periodic orbit).

• Applicable in n dimensions: the method is knotless and braidless.

Computing topology using homologies

3-D trajectory set Knot invariants n-D point-cloud Homologies

Computing topology using knot theory

Methods

• Isopleths, branched manifolds, knot-holders, cell complexes, homologies

Unlike other complexes, the BraMAH cell complex is constructed to fit on a branched manifold.

Methods

Brahmā is traditionally depicted with four faces and four arms. Each face of his points to a cardinal direction. Brahmā is a Hindu god, referred to as "the Creator" within the Trimurti, the trinity of supreme divinity. He is associated with knowledge and creation.

• Branched Manifold Analysis through Homologies (BraMAH)

1) Approximate points as lying on a branched manifold.

2) Find a topological representation for the branched manifold.

3) Obtain an algebraic description of the topological structure.

1) Local approximation by d-disks => short and noisy time series can be handled.

2) Build a cell complex keeping track of the gluing prescriptions => 3D+ can be handled.

3) Compute homologies and orientability properties of the cell complex => the structure can be identified.

HOMOLOGY GROUP computation

BraMAH COMPLEX construction

Computing topological invariants using homologies nD point-cloud Homologies Methods 1 2

• Branched Manifold Analysis through Homologies (BraMAH)

Methods

A patch is a set of points {x i } around an arbitrary point x 0 , that is locally homeomorphic to the interior of a disk in d dimensions (d ≤ n)

A patch is a good approximation of a hyperplane of dimension d in a space of dimension n if the square roots of d among the n second moments of {x i } decrease linearly with R while (n-d) decrease as lower powers of R. Cell complex covering the cylinder

X i,j = (x i,j -x 0,j ) Þ find N 1 such that d among n singular values of X i,
An n-cell is a set corresponding to the interior of a disk in n dimensions whose borders are divided into a number of cells of lower dimension.

An n-complex is a set of cells such that their borders are elements of the complex with interiors that do not intersect.

• Branched Manifold Analysis through Homologies (BraMAH)

Methods

A k-chain in a complex K is a sum C = Sa i s i such that s i are the k-cells with a i Î Z and such that C k (K) = {kchains of K} has an abelian group structure.

A border map is an operation ¶:

C k (K) ®C k-1 (K) such that ¶(Sa i s i )= Sa i ¶(s i )
Oriented complexes

Uniformly oriented complex

Example of a 1-chain: <3,7>-<5,7> Example of border map: ¶(<3,7,4> )=<3,7>-<4,7>-<3,4>

• Branched Manifold Analysis through Homologies (BraMAH)

Methods 

1-cycle 1-bord A k-cycle is a k-chain C such that ¶(C)=0 Z k (K) = {all k-cycles in a complex} A k-border is a k-chain C /

Methods

Example: the cylinder

H 0 (K 1 )=[[<1>]] ~Z1 Þ one connected component H 1 (K 1 )=[[<1,3>+<3,4>-<1,4>]] ~Z1 Þ one nontrivial loop H 2 (K 1 )= AE ~0 Þ no cavities enclosed K 1

Homology groups

The n+1 homology groups of an n-complex K are the sets: 

H k (K) = Z k /B k ={the k-cycles

Methods

Example: the torus

H 0 (K 2 ) =[[<1>]]~Z 1 Þ one connected component H 1 (K 2 ) ~Z2 Þ two nontrivial loops H 2 (K 2 ) ~Z1 Þ one cavity enclosed

Homology groups

The n+1 homology groups of an n-complex K are the sets:

H k (K) = Z k /B k ={the k-cycles being homologically independent that are not borders of any (k+1)-cell} K 2
• Branched Manifold Analysis through Homologies (BraMAH)

Methods

Example: the Klein bottle

H 0 (K 3 ) =[[<1>]]~Z 1 Þ one connected component H 1 (K 3 ) ~Z2 Þ two nontrivial loops H 2 (K 3 ) ~0 Þ no cavity enclosed K 3

Homology groups

The n+1 homology groups of an n-complex K are the sets:

H k (K) = Z k /B k ={the k-cycles being homologically independent that are not borders of any (k+1)-cell}
The Klein bottle has a torsioned 1-cycle that is not the boundary of any 2-chain, but that becomes one if travelled 2 times, thus defining a weak boundary.

• Branched Manifold Analysis through Homologies (BraMAH)

Methods

An orientability chain in a uniformly oriented complex K with cells b i is a chain O= ¶(Sb i ) = S a j t j if there exists at least one coefficient j such that |a j |>1. We call torsion chains, the consecutive cells t j preceded by the same multiple in O.

Example: Möbius strip.

H 0 (K 4 ) =[[<1>]]~Z 1 Þ one connected component H 1 (K 4 ) ~[[L]] Z 1 Þ one nontrivial loop H 2 (K 4 ) ~0 Þ no cavities enclosed O(K 4 ) = ¶(Sb i ) = -2 <1,7>
T(K 4 ) ={<1,7>} Þ on torsion located at <1,7>.

K 4

• Branched Manifold Analysis through Homologies (BraMAH)

Methods

3D 4D

• Branched Manifold Analysis through Homologies (BraMAH)

Methods

The concept of persistent homology (PH) emerged independently in Bologna, in Colorado, and within a biogeometry project North Carolina, towards 2005.

PH was conceived to solve pattern recognition problems, mainly in scanned images.

The method constructs a series of complexes as a function of a distance parameter (𝜀 or d).

The connectivity of the point cloud increases as 𝜀 or d grows.

Zomorodian, A. J. Topology for computing (Vol. 16). Cambridge university press.

• Persistent homologies

Methods

• Persistent homologies

Methods

Filtrations: the rules used to build cell complexes as the filtration parameter () is varied. The Vietoris-Rips filtration is illustrated in the gif below.

• Persistent homologies

Vietoris-Rips

-A ball of diameter d is drawn around these points.

-Two balls intersect (two points are separated by a distance less than d) → connect the two points with a segment or 1-cell (simplicial cell of dimension 1).

-The triangles formed are completed by forming 2-cells (simplicial cells of dimension 2), and so on.

The Vietoris-Rips complex was originally called the Vietoris complex, for Leopold Vietoris, who introduced it as a means of extending homology theory from complexes to metric spaces. What is Lagrangian analysis?

In fluid mechanics, two viewpoints are possible.

In the Eulerian viewpoint, fluid motion is observed at specific locations in space, as time passes.

In the Lagrangian viewpoint, the observer follows individual fluid particles as they move through the fluid domain.

Let us consider the kinematic model inspired in a pattern that occurs frequently in geophysical flow.

From the Eulerian perspective periodically driven Double-Gyre flow has a periodic and simple behaviour. But what about particle behaviour? What happens, for instance, if there is an "oil spill" in the middle of the domain?

• Lagrangian Analysis

Applications

Let us paint in blue the particles that are continuously passing through the centerpoint (streakline) to "visualize" particle behaviour.

Transport barriers appear, showing that the tracer invades some parts of the domain leaving some other regions blank.

These non-mixing islands move circularly in each half-domain.

What can state-space topology tell us in a problem of this kind? Lagrangian time series (the position or the velocity of a particle) can be generated and studied in state space with our topological tools. Assigning a different color to each topological class, the colors in motion define particle sets that move together forming coherent regions, i.e., without mixing with the surrounding fluid.

• Lagrangian Analysis

Let us use the term 'separator' to designate the frontier between differently colored regions.

Such flow separators are associated with 'Lagrangian coherent structures', known to separate dynamically distinct regions in fluid flows [START_REF] Kelley | Lagrangian coherent structures separate dynamically distinct regions in fluid flows[END_REF].

• Lagrangian Analysis

If the advected particles are coloured according to the BraMAH topological analysis, the non-mixing islands come to light.

Classifying topologies (= classifying dynamics) can be used: i. for an indirect identification of particle sets that do not mix with the surrounding fluid, ii. to characterize such dynamics within each region, iii. to compare distant regions behaving similarly, iv. to compare the behaviour of particles in different flows.

Topological colouring of 8528 advected particles in the driven Double-Gyre flow to visualize topologies are organized in physical space.

• Lagrangian Analysis

Applications

What happens if we introduce a perturbation in the driving force of the Double-Gyre in which the particles in the formerly non-mixing islands slowly migrate towards the chaotic sea?

The topology that is computed is always referred to the time window that is chosen for the analysis. A particle that migrates 'moves' from one topological class to the other.

• Lagrangian Analysis

Applications

The 

Moebius strip

Standard strip

Three-loop structure

Torus

The streakline snapshot is taken at 40 days with injection locations p = (x 1 ,x 2 ) / x 1 = 1×10 6 ∧ x 2 ∈ [-4 : 0.05 : -2] × 10 6 ∪ [2 : 0.05 : 4] × 10 6 .

• Lagrangian Analysis

Applications

"Topological colouring of fluid particles" = using BraMAH to study the individual dynamics of a sparse particle set.

Numerically generated fluid particle behaviour in the wake past a rotary oscillating cylinder (ROC). With these applications, methodological progress is being made: BraMAH is successfully applied to non-dissipative (conservative) systems.

• Climate dynamics

The time series of the annual averages are, when embedded, indistinguishable from each other, giving rise to point clouds distributed in the form of spheres or tori.

Filled torus in phase space → When the predominant dynamics in the global variability is that of the seasonal cycle Falasca, F., & Bracco, A. ( 2022). The seasonal cycle will be filtered.

Solid sphere in phase space → statistical version of a fixed point in phase space: transient discarded, the system stabilizes around a given point.

• Climate dynamics

The dynamical properties of a climate attractor depend on its local and instantaneous properties, rather than its average properties [Lucarini et al, 2016]. Time series for the analysis will have a lower time resolution than that used in [Brunetti et al, 2019], filtering the seasonal cycle.

Evolution of four attractors with sliding time windows of 1000 days (range 5000 days) and daily time resolution. The time series were calculated by Maura Brunetti specifically for Luciana Salvagni's bachelor thesis.

It is common practice to perform multi-channel singular spectrum analysis (M-SSA) separated by variable type (oceanic and atmospheric) to obtain consistent surrogate time series representative of each subsystem. -Points close to the horizontal axis → "noise", born and die fast.

-Points away from the horizontal axis → significant features, persist longer.

-Two orange dots → two 1-hole butterfly wings.

We gather in the same persistence diagram: 0-holes (blue), 1-hole (orange)

• Climate dynamics Four attractors. Atmospheric & oceanic planar persistence diagrams.

• Climate dynamics https://web.dm.uba.ar/files/tesis_lic/2023/Salvagni.pdf

To analyze the persistence diagrams, a set of eight markers or topological indices will be defined to condense the properties of the diagrams and compare them with each other. The markers are based on the vertical coordinates of the blue and orange points of the persistence diagrams.

F0 1 : vertical coordinate or lifetime of the second most persistent 0-hole (indicates the onset in the filtration where the simplices of the corresponding complex form a connected component).

F0 2 : vertical coordinate or lifetime of the third 0-hole (indicates the beginning in the filtration where two related components are formed).

F0 3 : sum of the lifetimes of all 0-holes except those exceeding the maximum filtration value (describes the degree of compactness of the points). To analyze the persistence diagrams, a set of eight markers or topological indices will be defined to condense the properties of the diagrams and compare them with each other. The markers are based on the vertical coordinates of the blue and orange points of the persistence diagrams.

F1 1 : the start (birth) value of the largest 1-hole (shows the filtration value at which the largest persistent 1-hole is formed).

F1 2 : vertical coordinate or lifetime of the largest 1-hole (reflects the size of the geometrically dominant 1-hole).

F1 3 : sum of the half-lives of all 1-holes except those exceeding the maximum filtration value. • Climate dynamics Topological markers for the four climatic attractors Each attractor has a predominant trait that distinguishes it from the others in time windows of one thousand days.

Persistent homology methods do not allow the topological structure of each attractor to be condensed into a single representative cell complex.

Although persistence diagrams offer a less precise topological characterization, they mark a path toward the construction of cell complexes that represent the topological structure of each climatic attractor, using the markers as a guide. The template does distinguish between both: the spiral Rössler attractor has two strips (0, 1), while the funnel Rössler attractor has three strips (0,1,2).

Templex

• Why and how was it conceived?

Spiral Rössler attractor Funnel Rössler attractor

Templex

• Why and how was it conceived?

The spiral and funnel Rössler attractors are homologically equivalent: they have both one hole in the centre (H 1 = Z 1 ).

But there is more information in a cell complex than the one contained in its homology groups… for instance, the joining lines! They can be detected as the 1-cells shared by at least three 2-cells (thick lines).

Notice that the recipe to scotch the cell complexes is different.

But there is something else that is very important and that is missing in a cell complex representing a branched manifold. This is the flow or, in other words, time!

Homologies do not consider the action of the flow on the cell complex…

In order to take the flow on the complex into account, the cell complex will be endowed with a directed graph that prescribes the flow direction between its highest-dimensional cells.

Templex

• Why and how was it conceived?

Templex

The thick line indicates the joining 1-cell <0, 1>, which will be used to identify:

q ingoing nodes (squares)
o outgoing nodes (circles) in the digraph.

• Why and how was it conceived? How is it computed?

T(R)=(K(R),G(R)) T(R3)=(K(R 3 ),G(R 3 ))
Stripexes in T(R): A four-dimensional system designed from a three-dimensional system proposed by Deng.

A solution to this system was already investigated with a BraMAH cell complex (but not with a templex) in [START_REF] Sciamarella | Unveiling the topological structure of chaotic flows from data[END_REF].

The BRAMAH complex K(4D) is built from a cloud of 24999 points (once the transient regime is completed).

The highest-dimensional cells of this complex are the 3cells γ i , and the 2-cells σ i which are not the border of any 3cell.

The complex has one 0-hole, five 1-holes and no 2-holes (no enclosed empty cavity).

The joining lines are highlighted in colour. They are the 1-cells shared by a set of at least three k-cells, with k=2,3.

The green and red lines form the main joining locus in the bottom scroll and the second one (violet) is in the upper part of the attractor according to our plot.

Templex

• Example II: 4D Deng 94 attractor (autonomous)

The dotted blue line is a splitting line between one 3-cell and three 2-cells.

The fact that the ingoing cell is of dimension 3 allows us to preserve the determinism at this splitting locus.

This is a feature that we had not observed for threedimensional systems.

The simplest deterministic representation of the flow around this splitting locus is to consider that three strips-close to each other as in a foliation within the 3-cell-are sent away from each other. This specificity will require a novel element for drawing a template.

Templex

• Example II: 4D Deng 94 attractor (autonomous)

Digraph on the BRAMAH complex constituting the templex. Ingoing and outgoing nodes are squared and circled, respectively. Splitting loci are not considered for stripex computation.

Three order-1 cycles:

Two order-2 cycles: The four-dimensional attractor can be described with five stripexes, that is, with a five symbol dynamics. A paper model of the attractor is constructed, similar to the xyz projection of the system.

The volume formed by the ten 3-cells of K(4D) is topologically equivalent to a solid (filled) torus.

Homologies of a filled torus are equivalent to those of a cylinder, and so, the paper model is homologically equivalent to K(4D).

A direct template can be drawn for the four-dimensional system from the templex analysis.

Templex

• Example II: 4D Deng 94 attractor (autonomous)

The templex dissects the phase-space structure into several identifiable components, connected at certain joints. Closed non-redundant pathways are cell sequences encoded by the digraph.

The templex properties: some describe the spatial structure alone (homology groups, torsion groups, weak boundaries) and a subset for the topology of flow along the structure (generatex, stripex, twists). The four vertical lines indicate the freezing times (t0) used later to compute the Pullback attractor (PBA) [START_REF] Ghil | Climate dynamics and fluid mechanics: Natural variability and related uncertainties[END_REF][START_REF] Chekroun | Stochastic climate dynamics: Random attractors and timedependent invariant measures[END_REF].

Templex

• Example IV: Unstable AMOC (non autonomous)

  j vary linearly with N

  there exists a (k+1)chain D such tat ¶(D)=C B k (K) = {all k-borders of an n-complex} Equivalence relationship: Two k-chains C 1 and C 2 are called homologically equivalent (C 1 ~C2 ) if there exists a (k+1)-chain D such that ¶(D)=C 1 -C 2 Example: -<3,4>+<3,7> ~-<1,4>+<1,2>+<2,5>+<5,7> • Branched Manifold Analysis through Homologies (BraMAH)

Methods•

  PH is not a Branched Manifold approximation method but can help characterizing state-space point-clouds, serving as guide.https://live.ripser.org𝜀Problems' origin:-The complexes are constructed in such a way that:(1) #cells ≫ #points in the point-cloud ⇒ big point clouds not supported.(2) the complexes have k-cells with k > d, d being the local dimension.H 1 𝜀 max Problems with barcodes: -Betti numbers (the rank of H k ) depend on the choice of 𝜀 max which is always somewhat arbitrary. -H k generators not provided as output: branches cannot be identified.-Orientability properties are not computed. BraMAH can be harnessed for multiple purposes « Topological methods can be used to determine whether or not two dynamical systems are equivalent; in particular, they can determine whether a model developed from time-series data is an accurate representation of a physical system. Conversely, it can be used to provide a model for the dynamical mechanisms that generate chaotic data. » R.Gilmore, Reviews of Modern Physics, Vol. 70, No. 4, October 1998 ü Validate/refute models -simulations vs. observations. ü Comparing models -time series generated by different models.ü Comparing datasets -e.g., in situ versus satellite data.ü Extracting models from data -using global modeling techniques with a topological validation.ü Characterizing and labeling chaotic behaviors -towards a systematic classification.ü Classifying sets of time series according to their main dynamical traits -e.g., in Lagrangian Analysis.

Applications•

  BraMAH can be harnessed for multiple purposes • Lagrangian Analysis Applications The Driven Double Gyre (DDG) system is an analytic model, often used to show how much Lagrangian patterns may differ from patterns in Eulerian fields. It was introduced by Shadden et al. (2005) to mimic the motion of two adjacent oceanic gyres enclosed by land and, since Sulalitha Priyankara et al. (2017), it is known to present chaotic transport in some 'regions' of the fluid, even if the Eulerian picture is periodic.

ApplicationsA

  BraMAH topological practised on a collection of 8528 particles (x 1 time series) in a time window of 500 units yields five topological classes. Computations involve complexes constructed from 4-dimensional time-delay embeddings. 8528 advected particles in the driven Double-Gyre flow to visualize topologies are organized in physical space.

  Bickley Jet: this kinematic flow simulates a zonal sinuous jet flanked by counter-rotating vortices. It corresponds to the idealization of geophysical flows such as the Gulf Stream or the polar-night jet perturbed by a Rossby wave. Schlueter-Kuck & Dabiri. J. Fluid Mech. (2017), vol. 811, pp. 468-486. on a collection of 105 time series of sparse particles produces 4 topological classes marked with different symbols. All the flanking vortices share the same structure: a torus "surrounded" by Moebius strips. The background flow has a three-loop structure, and the jet is characterized by a standard strip.

F0 4 :

 4 averaged lifetime of the 0-holes except those exceeding the maximum filtration value.• Climate dynamics https://web.dm.uba.ar/files/tesis_lic/2023/Salvagni.pdf

F1 4 :

 4 averaged life time of the 1-holes, except those exceeding the maximum filtration value (indicative of the average size of the 1-holes).

•

  https://web.dm.uba.ar/files/tesis_lic/2023/Salvagni.pdf Templex Templex Why and how was it conceived? Spiral Rössler attractor Funnel Rössler attractor Homologies cannot distinguish between two different attractors produced by the Rössler dynamical system with different parameter values (spiral Rossler attractor with a = 0.343295 on the left and the funnel Rössler attractor with a = 0.492 on the right).

•

  Why and how was it conceived? How is it computed?T(L)=(K(L),G(L))Four stripexes in T(L): weak cyclesThe weak cycles that form the two twisted stripexes correspond to a single generatex of order 2. This is consistent with the Lorenz template that has four stripexes and a Poincaré section divided into two components. strong cycles Templex • Example I: Lorenz 63 example (autonomous) Templex • Example II: 4D Deng 94 attractor (autonomous)

Five

  stripexes in T(4D)=(K(4D),G(4D)): Templex • Example II: 4D Deng 94 attractor (autonomous)

Templex•

  Example II: 4D Deng 94 attractor (autonomous) The most simple AMOC model has the same set of stripexes as the spiral Rössler attractor. Let us now consider an autonomous 3D model of the Atlantic Meridional Overturning Circulation (AMOC) : Sévellec et Fedorov, J. Clim., 2014) reproducing the chaotic dynamics of the glacial periods. K(AMOC3D) has two 1-holes T(AMOC3D) has two stripexes. Work in progress with C. Mosto et J. Ruiz (IFAECI) en collaboration avec F. Sévellec et al. (Brest) Stripexes in T(AMOC3D) twisted T(AMOC3D) = (K(AMOC3D), G(AMOC3D)) Templex • Example III: 3D AMOC example (autonomous) Let us consider the imposed temporal changes in the position of the edge of sea ice (ESI) to account for the chaotic behavior during the glacials and for the stable ocean conditions during the interglacials.. F BT and F NS are the Fourier projections of surface salt flux. Simulated variations in the overturning rate (-Ω) for two slightly different sets of initial conditions (solid black and red dashed lines) for a single glacial-interglacial cycle. The grey sawtooth line indicates the imposed temporal changes in the position of the edge of sea ice (ESI).

  

  

  

  

  

  

  

  

  

  

  

  

  

  

  

  

  

  

  

  

  

  

  

  

  

  

  

  

  

  

  

  

  

  

  

  

  

  

  

  

  

  

  

  

  

  

  

  

  

  

  

  

  

  

  

  

  

  

  

  

  

  

  

  

  

  

  

  

  

  

  

  

  

  

  

  

  

  being homologically independent that are not borders of any (k+1)-cell}

	• Branched Manifold Analysis through Homologies (BraMAH)

• Lagrangian Analysis
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Templex

• Example IV: Unstable AMOC (non autonomous)

4D solutions: we obtain a cloud of four-dimensional points. We construct the BraMAH complex from this point cloud. The four-dimensional point cloud does not have false neighbors: it is related to an atonomous writing of the AMOC equations and can be used to build a templex. The templex can be considered as a single static object of higher dimension, combining all the « parts » of the structure observed in the snapshot sequence in a PBA approach as a fonction of (t 0 ,t).

Working in higher dimensions may provide an alternative to working with the PBA approach.

Templex

• Example IV: Unstable AMOC (non autonomous)

Random Templex

The topological characterization of noise-driven chaos is a challenging issue that is crucial in the understanding of complex systems, where part of the dynamics remains unresolved and is modelled as noise.

While additive noise in a system of equations will blur the topological structure, multiplicative noise may radically change it [START_REF] Chekroun | Stochastic climate dynamics: Random attractors and timedependent invariant measures[END_REF]. [START_REF] Charó | Topological colouring of fluid particles unravels finite-time coherent sets[END_REF] extended the concept of a branched manifold to account for the integer-dimensional set in phase space that robustly supports the system's invariant measure at each instant. Such a branched manifold, however, does not contain any information about the future or the past of the invariant measure. The branched manifold is now itself timedependent.

• How is it defined?

Random Templex

One cell complex per snapshot!

• How is it defined?

Random Templex

How can we track changes between different cell complexes? Tracking holes!

• How is it defined? For a random attractor, the digraph does not connect cells, but holes of successive time cell complexes. The digraph D is presented as a tree plot on the left. It has 15 singly connected components, each of which tells the story of one or several holes.

Random Templex

Tipping points can be identified and classified using the digraph.

They are highlighted in different colours according to the type of event: creation in green, destruction in black, splitting in red, merging in blue, and merging followed immediately by splitting in magenta.

• How is it defined?

Random Templex

Merging event: a type of topological tipping point

• How does it encode topological tipping points?

Random Templex

Splitting event: a type of topological tipping point

• How does it encode topological tipping points?

Random Templex

A constellation C is the set of immersed nodes and edges forming a connected component in the digraph D of a random templex.

Each node is immersed in the phase space using the coordinates of the corresponding hole's barycenter.

A better picture of how the holes are evolving in the system's phase space can be gained by using the coordinates of the barycenters of the holes for an embedding of D into this space. We call the embeddings of D's distinct connected components into phase space constellations.

• How does it encode topological tipping points?

Concluding remarks

In this talk, we introduce novel tools into algebraic topology and used them to provide insights into the behaviour of deterministic and stochastically perturbed chaotic attractors.

• Attractors in state space can be studied using Branched Manifold Analysis through Homologies: this strategy constructs a cell complex from a cloud of points in state space and uses homology groups to characterize its topology.

• The approach, however, does not consider the action of the flow on the cell complex. The procedure is here extended to take this fundamental property into account, as done with templates.

• The goal is achieved endowing the cell complex with a directed graph that prescribes the flow direction between its highest-dimensional cells.

• The tandem of cell complex and directed graph, baptized templex, is shown to allow for a sophisticated characterization of chaotic attractors and for an accurate classification of them.

• In a random templex, there is one complex per snapshot of the random attractor and the digraph connects the generators or "holes" of successive cell complexes.

• Tipping points appear in a random templex as drastic changes of its holes in motion, namely their birth, splitting, merging, or death.