N

N
N

HAL

open science

Phase Space topology of Chaos: Theory and
Applications

Denisse Sciamarella

» To cite this version:

Denisse Sciamarella. Phase Space topology of Chaos: Theory and Applications. Doctoral.
Planck Institute for the Physics of Complex Systems, Dresden, Germany. 2023. hal-04276318

HAL Id: hal-04276318
https://hal.science/hal-04276318v1
Submitted on 8 Nov 2023

HAL is a multi-disciplinary open access
archive for the deposit and dissemination of sci-
entific research documents, whether they are pub-
lished or not. The documents may come from
teaching and research institutions in France or
abroad, or from public or private research centers.

L’archive ouverte pluridisciplinaire HAL, est
destinée au dépot et a la diffusion de documents
scientifiques de niveau recherche, publiés ou non,
émanant des établissements d’enseignement et de
recherche francais ou étrangers, des laboratoires
publics ou privés.

Max


https://hal.science/hal-04276318v1
https://hal.archives-ouvertes.fr

Phase Space topology of Chaos:
Theory and Applications

Denisse Sciamarella (IFAECGCNRS)

I F AE c| Institut Franco-Argentin d’Etudes
sur le Climat et ses Impacts

m CONICET
- <y

International Seminar & Workshop, October 12th 2023
MPIPKS Dresden



Institut Franco-Argentin d’Etudes sur le Climat et ses Impacts

CONICET g

INSTITUT FRANCO-ARGENTIN D'ETUDES SUR LE CLIMAT ET SES IMPACTS
INSTITUTO FRANCO-ARGENTINO DE ESTUDIOS SOBRE EL CLIMA'Y SUS IMPACTOS

CORRIENTES@ [ incinusa

\ e -

y @ I

* */| Servicio |
/ Meteorologlcooe !

Nacional
S R s A o M
A 4
/7 7,
8SCI MA P ,
" -
"‘1._': g \‘X Instituto Franco-Argentino , ,,
' 5 CONICET T ’
'\: :“ i FCEN - UBA
T, &, _ 400 km
TR  —]

-




Institut Franco-Argentin d’Etudes sur le Climat et ses Impacts

L ifaeci.cnrs.fr

= jfaeci.cima.fcen.uba.ar Regional hub for the L RTES

Climate Sciences in WEATHER
IRL 3351 (CNRS) South America Atmosphere
UMI 262 (IRD) .

€ Cryosphere Ocean

~ 210 people [+ Variability
73 permanent staff * e A
(2 CNRS researchers, 1 délégation IRD) e S

63 PhD students

67 Master students

7 étudiants de mattrise

+ stagiaires (Ecole Polytechnique)

Services
Mitigation
Science for

Environment

d Courses

IMPACTS SOLUTIONS

(72]
=
[}
-
n
>
(72
X
L
Q.
S
(o}
@)
G
(o)
n
-
(2]
P
=
o
o
o e
)
p .
O
G
Q
]
-}
-
1]
L=
L
(S
| =
i
o
X
©
=


http://www.ifaeci.cnrs.fr/
https://emojipedia.org/es/bandera-argentina

«OOLS &

Models
Mathematics
Observations
Data Science

Topology as a theoretical and data analysis tool for understanding the
fundamental processes underlying the dynamics of complex systems.

Co-Productior This paper is based on the invited talks given by the two authors in an online series on

%
%\fHODOLOG«’

Nonlin. Processes Geophys., 30, 399-434, 2023
https://doi.org/10.5194/npg-30-399-2023

© Author(s) 2023. This work is distributed under
the Creative Commons Attribution 4.0 License.

Review article: Dynamical systems, algebraic topology
and the climate sciences

Michael Ghil->3 and Denisse Sciamarella*>-%

!Geosciences Department and Laboratoire de Météorologie Dynamique (CNRS and IPSL),
Ecole Normale Supérieure and PSL University, 75231 Paris CEDEX 05, France
2Department of Atmospheric & Oceanic Sciences, University of California at Los Angeles,
Los Angeles, CA 90095-1567, USA
3Departments of Mathematics and of Finance, Imperial College London, London, SW7 2BX, UK
“Institut Franco-Argentin d’Etudes sur le Climat et ses Impacts (IFAECI) International Reseach Laboratory
3351 (CNRS - IRD — CONICET - UBA) C1428EGA, Buenos Aires, Argentina
SFacultad de Ciencias Exactas y Naturales, Universidad de Buenos Aires, Buenos Aires, Argentina
SCentre National de la Recherche Scientifique, 75794 Paris CEDEX 16, France

Correspondence: Michael Ghil (ghil@atmos.ucla.edu) and Denisse Sciamarella
(denisse.sciamarella@cnrs.{r)

9|011JB MBIASY

“Perspectives on climate sciences: From historical developments to research frontiers”.

Perspectives on NN Webinar Series
Climate Sciences M 07 October 2020

How | Got to Love Dynamical Systems
& Their Bifurcations

Michael Ghil
Ecole Normale Supérieure, Paris, and
University of California, Los Angeles

With a thousand thanks to the great companions
many younger and some older, on this exciting road!
35 Ph.D. students, 90 descendants, 40 post-docs, etc

Topology of chaos and climate dynamics

Denisse Sciamarella (IFAECI-CNRS)

crEEe

Joint work with Gisela Charé (CIMA-CONICET),
Mickaél Chekroun (UCLA & Weizmann), Michael Ghil (ENS & UCLA)

Perspectives on Cl
Nonlinear Proce:

enc
sion
European
Geosciences
Union
July 7t0

2021




Phase Space Topology of chaos: Theory and
Applications

Introduction
 What is chaos topology?

Methods
* |sopleths, branched manifolds, cell complexes, homologies.

Applications
e Lagrangian analysis, Climate dynamics.

Templex
 Why and how was it conceived? How is it computed?

Random templex
* How is it defined? How does it encode topological tipping points?




Introduction

* What is chaos topology and why is it important?

Topological chaos considers the problem of how fluid particle trajectories are entangled in physical space during a
mixing experiment.

: )

Topological mixing with ghost rods
Gouillart, et al. PRE 73, 036311 (2006)

It generally relies on the periodic motion of obstacles in a two-dimensional flow in order to form nontrivial braids.
This motion generates exponential stretching of material lines, and hence efficient mixing.



Introduction

 What is chaos topology and why is it important?

Chaos topology (or topology of chaos) considers the problem of how n-dimensional trajectories/point-clouds
are topologically structured in state space.

~

Optically pumped molecular laser run under Embedding projection
a resonance-operating condition.

PA
\f

Branched
onto a plane. manifold.

R. Gilmore, Reviews of Modern Physics, Vol. 70, No. 4, October 1998



Introduction

* What is chaos topology and why is it important?

LES METHODES NOUVELLES

MECANIQUE CELESTE

=| H. POINCARE,

Solutions doublement asymptotiques

PARIS,

The origins of « chaos » theory can be found in the pioneering works of Henri
Poincaré towards the end of the XIX century concerning the old and difficult
problem of the stability of the Solar System.

“Analysis Situs” is a seminal mathematics paper that he published in 1895 with
five supplements that followed between 1899 and 1904.

JOURNAL

DE

L’ECOLE POLYTECHNIQUE.

These papers provided the first
systematic treatment

of topology and introduced the
use of algebraic structures to
study topological spaces, founding
the field of algebraic topology.

ANALYSIS SITUS;

Par M. II. POINCARE.

Poincaré introduced the concept of homology, that we are going to encounter further and thoroughly in this

presentation.



Introduction

 What is chaos topology and why is it important?

The first methods to reconstruct phase space from experimental time series and to study geometric structures
significance in that space appear in 1980.

VOLUME 45, NUMBER 9 PHYSICAL REVIEW LETTERS 1 SEPTEMBER 1980

Geometry from a Time Series

N. H. Packard, J. P. Crutchfield, J. D. Farmer, and R. S. Shaw

Dynamical Systems Collective, Physics Department, University of California, Santa Cruz, California 95064
(Received 13 November 1979)

It is shown how the existence of low-dimensional chaotic dynamical systems describing
turbulent fluid flow might be determined experimentally. Techniques are outlined for re-
constructing phase-space pictures from the observation of a single coordinate of any dis-
sipative dynamical system, and for determining the dimensionality of the system’s at-
tractor. These techniques are applied to a well-known simple three-dimensional chaotic

dynamical system.,

PACS numbers: 47.25.-c¢
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Introduction

* What is chaos topology and why is it important?

Geometric methods continue to be used, e.g., to
understand datasets of Lagrangian trajectories.

Understanding the geometry of transport: 90— - -
Diffusion maps for Lagrangian trajectory o
data unravel coherent sets - SO 7 SRTSI N :
Cite as: Chaos 27, 035804 (2017); https://doi.org/10.1063/1.4971788 § g ’ A A o ,::-i-;: j il o
Submitted: 20 March 2016 . Accepted: 18 July 2016 . Published Online: 22 February 2017 A i g BE : *: : 'i‘-f e
Ralf Banisch '/, and Péter Koltai -45} g Wk ’ f 7 .'“:;_ Li L :” i

o | | L _|

60 120 180 240 300 360

But is geometry the best lens we can use to
classify data according to underlying differences in
dynamics?

lon



Introduction

* What is chaos topology and why is it important?

Invariants in phase space can be of different types:

a) Metric: dimensions of various types, e.g., correlation dimension (Grassberger & Procaccia, 1983),

multifractal scaling functions (Halsey et al., 1986).

b) Dynamic: Lyapunov exponents (Oseledec, 1968; Wolf et al., 1985), as discussed by Eckmann & Ruelle (1985)
and by Abarbanel et al. (1993).

c) Topological: linking numbers, relative rotation rates, Conway polynomials,

Branched Manifolds (Birman & Williams, 1983). @ “D
boundary
. ) . ) layer Q
Invariants (a) and (b) do not provide information on how to model
the system’s dynamics, while (c) actually does! % ‘\sﬁ%
squeeze _4 3 €lch ~0

(b)

R. Gilmore, Reviews of Modern Physics, Vol. 70(4), October 1998 @



Introduction

 What is chaos topology and why is it important?

Topology is concerned with the properties of a geometric object that are preserved under continuous deformations,
such as stretching, twisting, crumpling, and bending; that is, without closing holes, opening holes, gluing, or passing
through itself. The animated image shows a continuous deformation of a mug into a doughnut: both objects are
topologically equivalent.

—

!
UL

SHRINK

SHRINK

! The “recipe” to
STRETCH / SHRINK @ ”knead" the
,.~‘,','-""': 4 AYER

Lorenz’63 attractor
is a sequence of
T | steps that are
_,> SQUEEZE —_a topological in
1
—2. BRANCH
LINE

nature.
=
«“/ /\ l g Gilmore & Lefranc. The Topology of Chaos: Alice in Stretch
and Squeezeland. Wiley-Interscience, 2002.
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Introduction

* What is chaos topology and why is it important?

The advantage of using topology, instead of geometry or fractality, to describe chaos lies in
the fact that topology provides information about the stretching, folding, tearing or
squeezing mechanisms that act in phase space to shape the flow.

"\ IS WS YA I'

Geometry may differ, but if the underlying dynamics is equivalent, the topology should be the same.

Unveiling the topology <=> Unveiling the dynamics



Methods

e |sopleths, branched manifolds, knot-holders, cell complexes, homologies

Henri Poincaré first described the way in which a dynamical system’s properties depend upon its topology.

The concept of branched manifold, introduced by Robert F. Williams in 1974, was anticipated in Edward Lorenz’s
famous 1963 paper: on page 20, he remarks that the trajectory ‘lives’ on a surface and describes the architecture
of the attractor in terms of “isopleths.”

Deterministic Nonperiodic Flow!

D . Y
EXPANDING ATTRACTORS Epwazp N. Lorenz
by R. F. WILLIAMS Massachusetls Institule of Technology
(Manuscript received 18 November 1962, in revised form 7 January 1963)

138 JOURNAL OF THE ATMOSPHERIC SCIENCES VOLUME 20
TABLE OF CONTENTS ;
INTRODUGTION .\ ottt ittt ettt e e et et e e ettt e e it e i e eaaeeeeeannnaannn 169
BASIC CONCEPTS « « vt v tn v eutteanennsteatasananssetassassanonssetosaeesnnsessnnonserosansons 170
STATEMENT OF RESULTS .0 iuuuu it iatotinannteoasaanaassaanesonsasanassnonensenennasnnnnen 17t
SecTIONS
§ 1. Branched manifolds: definitions and elementary properties. .. .........ccevvreuvvenanns 171
§ 2. How branched manifolds arise ...........oiuiiiiiiii it iiiaiiiin it neenns 179
F T T 13 (-3 o T G 182
§ 4. Expanding attractors ..........oiiiiiii i i e it 185
§ 5. Shift equivalence .......iiuiii i i i e e e i e 188
§ 6. Periodic points: theorem D . .ucnitinitinii i e i s 192
§ 7. Local homogencity of n-solenoids ........ooiiiiiiiiiiiiii i 193
§ 8. Realization of n-solenoids as expanding Attractors ..............c.eveueieennnierenannns. 194
§ 9. Proof of Theorem E ....oitinenit ittt i ie it 199
§ 10. A Criterion for AXIOM T ... ....ouuiiinuit ittt ittt eaaie i 200
§ r1. Neighborhoods of compacta, nice relative to a foliation .............oooiiiiioianin, 201
BIBLIOGRAPHY 40t etvtetvacassanaseneeannnsessssnananesessissasasossssseasossasasssssasansnns 203

— — SN E——S S ¢
-200 o 200

Fic. 3. Tsopleths of X as a function of ¥ and Z (thin solid curves), and isopleths of the lower of two

Publ. Math. IHES, v. 43 (1974), p. 169-203 R R g P i T L e
surfaces.



Methods

e |sopleths, branched manifolds, knot-holders, cell complexes, homologies

With Joan Birman, Robert F. Williams used branched manifolds to classify chaotic attractors in terms of the way

periodic orbits are “knotted” in dynamical systems.

(040-9383/83/01(X47-36803.00/0
Pergamon Press Lid.

1
Topology Vol. 22. No. |, pp. 47-82, 1983
Printed in Gieat Britain.

KNOTTED PERIODIC ORBITS IN DYNAMICAL SYSTEMS—I:
LORENZ’S EQUATIONS

Joan S. Birmant and R. F. WiLLiaMs#
(Received 31 March 1980)

§1. INTRODUCTION

THIS PAPER is the first in a series which will study the following problem. We
investigate a system of ordinary differential equations which determines a flow on the
3-sphere S (or R? or ultimately on other 3-manifolds), and which has one or perhaps
many periodic orbits. We ask: can these orbits be knotted? What types of knots can
occur? What are the implications?

The set of unstable periodic orbits (UPOs) of the Lorenz
attractor lie on a “Branched Manifold”, i.e. on a 2-manifold or
surface with the property that each point has a

neighbourhood that is homoeomorphic to either a full 2-ball
or a half 2-ball.

Birman & Williams discovered that systems whose branched manifolds have the same topology are

dynamically equivalent.
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Methods

* Isopleths, branched manifolds, knot-holders, cell complexes, homologies

Is there a “table of elements” for the different dynamics?

Dynamical system ODEs Parameters Branched manifold
T = —-yYy—=z
Rossler y = T+ay (a,b,c) = (2.0,4.0,0.398) @
2 = b+z(z—c
Duffing o=y (6, A,w) = (0.4,0.4,1.0)
y = —0y—z3+x+ Asin(wt) T e
van der Pol T = by+(c—dy*)z (e, CEA’ w) @’ )
. _ _ . - _— T~ ™~ /
y = —z+Asin{wt) (0.7,1.0,10.0,0.25, 7/2) S
r = —oxr—+oy | o
: X0
Lorenz Y Rr —y—xz (R,0,b) = (26.0,10.0,8/3) ca
z = —=bz+uay

Gilmore & Lefranc. The Topology of Chaos: Alice in Stretch and Squeezeland. Wiley-Interscience, 2002.




Methods

e |sopleths, branched manifolds, knot-holders, cell complexes, homologies

In the late 90s, it was possible to determine whether or not two three-dimensional (3-D) dissipative dynamical
systems are equivalent by using knot theory.

. . . . _ the user's Qpproach to
Topological analysis of chaotic dynamical systems

Robert Gilmore and Marc Lefranc WWILEY-VCH
Robert Gilmore S
Department of Physics & Atmospheric Science, Drexel University, Philadelphia,
Pennsylvania 19104 I h e I o o I o
Topological methods have recently been developed for the analysis of dissipative dynamical systems p gy

that operate in the chaotic regime. They were originally developed for three-dimensional dissipative

dynamical systems, but they are applicable to all “low-dimensional”” dynamical systems. These are topo I og I COI methOds I n
systems for which the flow rapidly relaxes to a three-dimensional subspace of phase space. .
Equivalently, the associated attractor has Lyapunov dimension d;<3. Topological methods o aos 3d dlIJnOm I COI SllJStGmS

supplement methods previously developed to determine the values of metric and dynamical
invariants. However, topological methods possess three additional features: they describe how to
model the dynamics; they allow validation of the models so developed; and the topological invariants
are robust under changes in control-parameter values. The topological-analysis procedure depends on
identifying the stretching and squeezing mechanisms that act to create a strange attractor and organize H H

all the unstable periodic orbits in this attractor in a unique way. The stretching and squeezing m O rl O Q m O t | 6 | | O
mechanisms are represented by a caricature, a branched manifold, which is also called a template or
a knot holder. This turns out to be a version of the dynamical system in the limit of infinite dissipation.
This topological structure is identified by a set of integer invariants. One of the truly remarkable
results of the topological-analysis procedure is that these integer invariants can be extracted from a
chaotic time series. Furthermore, self-consistency checks can be used to confirm the integer values.
These integers can be used to detevmine whether or not two dynamical systems are equivalent; in
particular, they can determine whether a model developed from time-series data is an accurate
representation of a physical system. Conversely. these integers can be used to provide a model for the
dynamical mechanisms that generate chaotic data. In fact, the author has constructed a doubly
discrete classification of strange attractors. The underlying branched manifold provides one discrete
classification. Each branched manifold has an ‘“‘unfolding” or perturbation in which some subset of
orbits is removed. The remaining orbits are determined by a basis set of orbits that forces the presence
of all remaining orbits. Branched manifolds and basis sets of orbits provide this doubly discrete
classification of strange attractors. In this review the author describes the steps that have been
developed to implement the topological-analysis procedure. In addition, the author illustrates how to
apply this procedure by carrying out the analysis of several experimental data sets. The results
obtained for several other experimental time series that exhibit chaotic behavior are also described.
[S0034-6861(98)00304-3]

Alice in Stretch and Squeezeland

lund university, sweden

herndn g solari

universidad de buenos aires, argentina

\\Cﬁ World Scientific

NEW JERSEY - LONDON - SINGAPORE - BEIJING - SHANGHAI - HONG KONG - TAIPEI - CHENNAI

Reviews of Modern Physics, Vol. 70, No. 4, October 1998



Computing topological invariants

Methods using knots...

e |sopleths, branched manifolds, knot-holders, cell complexes, homologies y k

1) Approximate trajectories by closed curves.

3D trajectory set Knot invariants

— 2) Find a topological representation for the orbit structure.

3) Obtain an algebraic description for the topological structure.

"’:;,:’;;;' /Q (xgyx / Knotted

= ] ]
=— tredul (g’ xy (4 periodic
+7P€ (‘153) torug (-3/-7’)') OrbitS j_n

type
1 2 3

hast '
pretrel st dynamical

systems.
Topology:

2) Knot theory — knot = orbit in three dimensions. Vol.22. No.

I,pp.47~81.
3) Knot invariants — e.g., linking numbers, Conway polynomials. Ny 9?3)

— 1) Close-return method — time series, though, must be long and noise free.



Methods

e |sopleths, branched manifolds, knot-holders, cell complexes, homologies

Knot information for a chaotic attractor can be condensed in a knot-holder
or template.

Splitting chart

Local torsion

A chaotic attractor is an invariant set under the action of a flow. For
strongly dissipative systems, this invariant set can be described strips that

lodge the knots along the attractor. ,
The different branches discriminate the different paths followed by the E Permutation
flow determining the (fictive) boundaries between the different strips. R

Typically, a strip is defined between a splitting chart and a joining chart
where the strips are joined (squeezed) into a single strip.

Joining chart

All the non-trivial dynamical processes are captured between the splitting

and the joining chart, ended by a
joining line, which corresponds to a Poincaré section.



Methods

* Isopleths, branched manifolds, knot-holders, cell complexes, homologies
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Chaos, Solitons & Fractals
!' . Volume 13, Issue 5, April 2002, Pages 1099-1113

ELSEVIER

Should all the species of a food
chain be counted to investigate the
global dynamics?

Christophe Letellier & &, Luis A. Aguirre b,Jean Maquet 2, M.A. Aziz-Alaoui ©

/ Biosystems
| Volume 158, August 2017, Pages 17-30

ELSEVIER

How tumor growth can be
influenced by delayed interactions
between cancer cells and the
microenvironment?

Dibakar Ghosh ? &, Subhas Khajanchi bom Sylvain Mangiarotti ¢, Fabrice Denis
d Syamal K. Dana €, Christophe Letellier f

Chaos, Solitons & Fractals

Volume 13, Issue 1, January 2002, Pages 95-107

Analysis of the dynamics of a
realistic ecological model

Christophe Letellier 22 &, M.A. Aziz-Alaoui

@ Springer Link

Published: 30 March 2008

Forecasting the Time Series of Sunspot
Numbers

L. A. Aguirre &, C. Letellier & J. Maquet

Solar Physics 249, 103-120 (2008) | Cite this article
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Methods

* Isopleths, branched manifolds, knot-holders, cell complexes, homologies

the user's approach to

What'’s wrong with templates? They are very difficult to construct... they imply the !
reconstruction of Unstable Periodic Orbits (UPOs) and besides, they are no longer =I!-

meaningful if a fourth dimension in phase space is involved, since they unknot.... topological methods in

Chapter 7

A braided view of a knotty story

Mario Natiello

Matematikcentrum-LTH, Lunds Universitet
Box 118, 221 00 Lund, Sverige

Hernén Solari

Departmento de Fisica, Facultad de Ciencias Exactas y Naturales
Universidad de Buenos Aires, Argentina

Periodic orbits of 3-d dynamical systems admitting a Poincaré section can be
described as braids. This characterisation can be transported to the Poincaré
section and Poincaré map, resulting in the braid type. Information from braid
types allows to estimate bounds for the topological entropy of the map while re-
vealing detailed orbit information from the original system, such as the orbits that
are necessarily present along with the given one(s) and their organisation. We re-
view this characterisation with some examples —from a user-friendly perspective—,
focusing on systems whose Poincaré section is homotopic to a disc.

3d dynamical systems

mario a natiello

lund university, sweden

herndn g solari

universidad de buenos aires, argentina

w World Scientific

NEW JERSEY + LONDON . SINGAPORE + BEIJING + SHANGHAI + HONG KONG + TAIPEI « CHENNAI
6.6.3 Homology groups

Still, we may want to understand the topological properties of the set of
periodic orbits hidden in our data. We need some “braidless” method (in
the sense that knots “dissolve” into trivial objects in higher dimensions))
and one method that appears to jump at hand is to consider the homology
groups associated to our data [Muldoon et al. 1993, Sciamarella and Mindlin
1999; 2001].
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Methods

* Isopleths, branched manifolds, knot-holders, cell complexes, homologies

a5 om0 - 1993 ~ PHYSIGA ¥

SDI: 0167-2789(92)00026-1 e

Topology from time series

M.R. Muldoon®, R.S. MacKay®, J.P. Huke® and D.S. Broomhead"

*Nonlinear Systems Lab. y, Math ics Institute, University of Warwick, Coventry CV4 7AL, United Kingdom
°DRA at RSRE, Malvern, St. Andrew’s Road, Great Malvern, Worcestershire WR14 3PS, United Kingdom 1 9 9 9

Received 15 August 1992

Revised manuseript received 13 November 1992 VOLUME 82, NUMBER 7 PHYSICAL REVIEW LETTERS 15 FEBRUARY 1999
Accepted 23 November 1992

Communicated by G. Ahlers

We describe methods for the study of topological pro; Topological Structure of Chaotic Flows from Human Speech Data

systems. We explain how to compute such invariants as the
and suggest a number of potential applications. Denisse Sciamarella and G.B. Mindlin

Departamento de Fisica, FCEN, Universidad de Buenos Aires, Pab I, Ciudad Universitaria,
cp 1428, Buenos Aires, Argentina 200 1
(Received 7 July 1998)

We report the analysis of branched manifolds through homolog PHYSICAL REVIEW E. VOLUME 64, 036209
applicability of the topological approach to the analysis of human sp: ’ ?

cases are discussed. [S0031-9007(99)08424-0]
) Unveiling the topological structure of chaotic flows from data
PACS numbers: 47.52.+j, 02.40.5f, 43.72.+q
Denisse Sciamarella and G. B. Mindlin
Departamento de Fisica, Facultad de Ciencias Exactas y Naturales, Universidad de Buenos Aires, Pab 1, Ciudad Universitaria,
Casilla de Correo 1428, Buenos Aires, Argentina
(Received 13 December 2000; published 21 August 2001)

We report the analysis of branched manifolds through homologies, in order to extend the range of applica-
bility of the topological approach to the analysis of chaotic data. Analytic and numerical cases are discussed.

DOI: 10.1103/PhysRevE.64.036209 PACS number(s): 05.45.Pq, 47.52.+]j, 02.40.Sf



Methods

Isopleths, branched manifolds, knot-holders, cell complexes, homologies

Computing topology
using knot theory

g

3-D trajectory set Knot invariants

Computing topology
using homologies

g =

n-D point-cloud Homologies

RESTRICTIONS

e Precision and length of time series must be good enough
for orbits in phase space to be reconstructed accurately ...

e Phase space dimension cannot be higher than three, since
knots or braids unknot ...

HOMOLOGY GROUPS

* Time series can be shorter and noisy since the method is
independent of the reconstruction of trajectories in phase
space (no periodic orbit).

e Applicable in n dimensions: the method is knotless and
braidless.
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Methods

e Branched Manifold Analysis through Homologies (BraMAH)

Acronym first used in Chard, Artana & Sciamarella,
Physica D 405 (2020) 132371

Sanskrit: STEHT, Romanized: Brahma or Bramah

Brahma is a Hindu god, referred to as "the Creator" within the
Trimurti, the trinity of supreme divinity. He is associated with

knowledge and creation.

Brahma is traditionally depicted with four faces and four
arms. Each face of his points to a cardinal direction. His
hands hold no weapons, one of his hands holds mala
(Sanskrit: HATIT) symbolizing time. As we shall see, time will
lead us to the templex.

Unlike other complexes, the BraMAH cell complex is
constructed to fit on a branched manifold.
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Computing topological invariants

Methods using homologies

* Branched Manifold Analysis through Homologies (BraMAH) y %

— 1) Approximate points as lying on a branched manifold.

nD point-cloud Homologies
~ 2) Find a topological representation for the branched manifold. P 5
3) Obtain an algebraic description of the topological structure.
| , | ’ Hy = 1
BraMAH HOMOLOGY Hy ~ ZZ;
COMPLEX GROUP
construction computation H, =~

1) Local approximation by d-disks => short and noisy time series can be handled.

— 2) Build a cell complex keeping track of the gluing prescriptions => 3D+ can be handled.

3) Compute homologies and orientability properties of the cell complex => the structure can be identified.



Methods

e Branched Manifold Analysis through Homologies (BraMAH)

A patch is a set of points {x;} around an arbitrary point x,, that is locally homeomorphic to the interior of a disk
in d dimensions (d < n)

Point-cloud decomposition A patch is a good approximation of a Patches are used to construct the
into patches hyperplane of dimension d in a space cells in the cell complex

of dimension n if the square roots of d

among the n second moments of {x;}

decrease linearly with R while (n—d)

decrease as lower powers of R.

Xij=(Xj=X o) =

find N; such that d among n singular
values of X;; vary linearly with N
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Methods

e Branched Manifold Analysis through Homologies (BraMAH)

How to determine if two spaces are

Cell complex covering the

topologically equivalent?

O-cell

> 2-cell

1-cell

An n-cell is a set corresponding to the interior of a disk
in n dimensions whose borders are divided into a

number of cells of lower dimension.
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» cylinder

An n-complex is a set of cells such that
their borders are elements of the complex
with interiors that do not intersect.
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£ Methods

=

(2

u>f * Branched Manifold Analysis through Homologies (BraMAH)

X

%_ 1 Oriented

= | complexes

o

O /

G

[}

(2]

o

4 Uniformly

T oriented =~ ———

() complex

<

-

p .

i 2

9 Example of a 1-chain:

_,g <3,7>-<5,7> Example of border map:
b1 A k-chain in a complex Kis a sum C = (<37 45 =<3 To><d T5-<3 4>
= Ya;0; such that o; are the k-cells ————  0(<3,7,4>)=<3,7>-<4,7>-<3,
'é with a; € Z and such that Ci(K) = {k-

© chains of K} has an abelian group A border map is an operation 0: C(K) —C.1(K) such that
‘:: structure. 8(2a.0)= Za. &)

®

=
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Methods

Branched Manifold Analysis through Homologies (BraMAH)

A k-cycle is a k-chain C such that 0(C)=0

Z(K) = {all k-cycles in a complex}

A k-border is a k-chain C / there exists a (k+1)-
chain D such tat d(D)=C

B\(K) = {all k-borders of an n-complex}

Equivalence relationship:

Two k-chains C; and G, are called homologically equivalent (C; ~ G,) if there exists a (k+1)-chain D such
that 5(D)=C1-C2

Example: -<3,4>+<3,7> ~ -<1,4>+<1,2>+<2,5>+<5,7>




Methods

e Branched Manifold Analysis through Homologies (BraMAH)

Homology groups

The n+1 homology groups of an n-complex K are the sets:

H(K) = Z,/B\ ={the k-cycles being homologically independent that are not borders of any (k+1)-cell}

Example: the cylinder

Ho(K;1)=[[<1>]] ~ 2t = one connected component
H,(K,)=[[<1,3>+<3,4>-<1,4>]] ~ Z! = one nontrivial loop

H,(K,)= & ~ 0 = no cavities enclosed
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Methods

e Branched Manifold Analysis through Homologies (BraMAH)

Homology groups
The n+1 homology groups of an n-complex K are the sets:

H(K) = Z,/B, ={the k-cycles being homologically independent that are not borders of any (k+1)-cell}

Example: the torus K>
Ho(K;) =[[<1>]]~ Z* = one connected component

. E 7
H.(K;) ~Z?>= two nontrivial loops =

H,(K,) ~ Z* = one cavity enclosed
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Methods

* Branched Manifold Analysis through Homologies (BraMAH)

Homology groups
The n+1 homology groups of an n-complex K are the sets:

H(K) = Z,/B, ={the k-cycles being homologically independent that are not borders of any (k+1)-cell}

Example: the Klein bottle

Ho(Ks5) =[[<1>]]~ Z* = one connected component
Hi(K5) ~Z2= two nontrivial loops

H,(K5) ~ 0 = no cavity enclosed

The Klein bottle has a torsioned 1-cycle that is not
the boundary of any 2-chain, but that becomes one
if travelled 2 times, thus defining a weak boundary.




Methods

Branched Manifold Analysis through Homologies (BraMAH)

An orientability chain in a uniformly oriented complex K with cells b; is a chain O= 0(Xb;) = Z g;t; if there
exists at least one coefficient j such that |a;|>1. We call torsion chains, the consecutive cells t; preceded

by the same multiple in O.

Example: Mobius strip.
Ho(K;) =[[<1>]]~ Z* = one connected component
H,(K;) ~ [[L]] Z=> one nontrivial loop

H,(K;) ~ 0 = no cavities enclosed

O(K4) - 8(2b|) =-2 <1,7>

T(K,;) ={<1,7>} = on torsion located at <1,7>.
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Methods

e Branched Manifold Analysis through Homologies (BraMAH)

3D X'=-(z+2) d (x-a) + (2-z)
(a(x-2) By - @ (x-2) (x-2)* +
+y’ /R%)

y' =-(z+2) (y-b) + (2-2)
(B (X'(Z) ;) 6;(}’ '2 2
- x-2) ((x-2)° +
+y*/R?)

2’ = (4-2°) (z+2-m (x+2)) -sc z

y . 1

4D X'=~(z+2) d (x- (a+ &3 (2+w)) ) + (2-2)
(a(x-2) -BY - a (x-2) ((x-2)* + z
+y*/R)

y' =-(z+2) (y-b) + (2-2)
(Bx-2)- ay- t
-ay (x-2) (x-2)* +
+yV/RY) 0

£ 2= (42 (z+2-m (x+2)) - &1 C 2 "

EW = (420) (242=m (x+2)) - 8 C 2 .
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Methods

e Persistent homologies

The concept of persistent homology (PH) emerged independently in Bologna, in Colorado, and within a bio-
geometry project North Carolina, towards 2005.

The method
constructs a series
of complexes as a
function of a
distance parameter
(e or d).

The connectivity of

the point cloud
increases as € or d

grows.

CAMBRIDGE

Zomorodian, A. J. Topology for PH was conceived to solve pattern recognition problems, mainly in scanned images.
computing (Vol. 16). Cambridge

university press.

n
=
Q
o+
n
>
wn
X
L
Q.
£
(@)
O
(T
(o)
wn
-
n
>
L=
s
Q
L=
-
p .
O
=
Q
o+~
=
s e
7]
=
e
(S
=
e
o
X
(©
=



n
=
Q
o+
n
>
wn
X
L
Q.
£
(@)
O
(T
(o)
wn
-
n
>
L=
s
Q
L=
-
p .
O
=
Q
o+~
=
s e
7]
=
e
(S
=
e
o
X
(©
=

Methods

Persistent homologies

Latest Release Software Open Programming
Software package Creator 4
release date licensel”] source language
OpenPH Rodrigo Mendoza-Smith, Jared Tanner 0.0.1%F 25 April 2019 Apache 2.0 Yes Matlab, CUDA
javaPlex Andrew Tausz, Mikael Vejdemo-Johansson, Henry Adams 425 14 March 2016 Custom ¢ Yes Java, Matlab
C++, Python
Dionysus Dmitriy Morozo GPL Yes
fonysus & R L bindings &
Perseus & Vidit Nanda &/ 4.0 beta GPL Yes C++
PHAT &/ Ulrich Bauer, Michael Kerber, Jan Reininghaus 1.41 Yes C++
DIPHAR? Jan Reininghaus Yes C++
2 , Pyth
Gudhig? INRIA 21.0 8 January GPLV3 Yes G+, Pyton
2018 bindings&®
CTL Ryan Lewis 0.2 BSD Yes C++
phom &’ Andrew Tausz Yes R
Brittany T. Fasy, Jisu Kim, Fabrizio Lecci, Cl t Maria,
TDAG rittany T. Fasy, JISU- im, Fabrizio Lecci, Clement Maria 15 16 June 2016 Yes R
Vincent Rouvreau
Eirene & Gregory Henselman 1.0.1 9 March 2019 GPLv3 Yes Julia
1 temb
Ripser&’ Ulrich Bauer 1.0.1 5 September LGPL Yes C++
2016
lien Tierny, Guill Favelier, Joshua Levine, Charl , VTK and Pyth
the Topology ToolKiti& Julien Tierny, Guillaume a.ve ier, Jc?s ua Levine, Charles 0.9.2 25 June 2017 BSD Yes C++ . a.n Python
Gueunet, Michael Michaux bindings
Latest Software Open Programming
Software package Creator Release date i
Release licensel”] source language




Methods

e Persistent homologies

Filtrations: the rules used to build cell complexes as the filtration parameter () is varied. The Vietoris-Rips filtration
is illustrated in the gif below.

Vietoris-Rips Example:

- A ball of diameter d is drawn around these . P s
points. i . °

- Two balls intersect (two points are separated by .' Tt
a distance less than d) - connect the two points . ° o
with a segment or 1-cell (simplicial cell of B e o

dimension 1).

- The triangles formed are completed by forming
2-cells (simplicial cells of dimension 2), and so on.

The Vietoris—Rips complex was originally called the Vietoris complex, for Leopold Vietoris, who introduced it as
a means of extending homology theory from complexes to metric spaces.



Methods

* Persistent homologies Ripser

Load oint clou
PH is not a Branched Manifold approximation cace [mwrdod

method but can help characterizing state-space Choisir le fichier _ lorenz_532.txt

point-clouds, serving as guide.
https://live.ripser.org

Problems with barcodes:
- Betti numbers (the rank of H,) depend on the choice of &,,,, Which is
always somewhat arbitrary. .

- H, generators not provided as output: branches cannot be identified.
- Orientability properties are not computed.

Problems’ origin:

- The complexes are constructed in such a way that:
(1) #cells > #points in the point-cloud = big point clouds not supported.
(2) the complexes have k-cells with k> d, d being the local dimension.




Applications

 BraMAH can be harnessed for multiple purposes
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Applications

 BraMAH can be harnessed for multiple purposes

« Topological methods can be used to determine whether or not two dynamical systems are
equivalent; in particular, they can determine whether a model developed from time-series
data is an accurate representation of a physical system. Conversely, it can be used to provide
a model for the dynamical mechanisms that generate chaotic data. »

R. Gilmore, Reviews of Modern Physics, Vol. 70, No. 4, October 1998

v’ Validate/refute models — simulations vs. observations.

v' Comparing models — time series generated by different models.

v' Comparing datasets — e.g., in situ versus satellite data.

v’ Extracting models from data — using global modeling techniques with a topological validation.
v Characterizing and labeling chaotic behaviors — towards a systematic classification.

v’ Classifying sets of time series according to their main dynamical traits — e.g., in Lagrangian Analysis.



Applications

e Lagrangian Analysis

: 0 :
Eulerian —+v-V= —  Lagrangian
What is Lagrangian analysis? Ot {
(S — o
/‘ Eulerian Lagrangian
. . . . . / derivative (Material )
In fluid mechanics, two viewpoints are possible. \ derivative
In the Eulerian viewpoint, fluid motion is — oo = t+0t
observed at specific locations in space, as time |7 g = . 7
passes. gt
/
In t.h(.e Lagrangian viewpoint, the observer follows Spatially fixed Following the motion
individual fluid particles as they move through volume element

f the fluid el
the fluid domain. of the fluid element

The Driven Double Gyre (DDG) system is an analytic model, often used to show how much Lagrangian patterns may differ
from patterns in Eulerian fields.

It was introduced by Shadden et al. (2005) to mimic the motion of two adjacent oceanic gyres enclosed by land and,

since Sulalitha Priyankara et al. (2017), it is known to present chaotic transport in some ‘regions’ of the fluid, even if the
Eulerian picture is periodic.



Applications

e Lagrangian Analysis

Let us consider the kinematic model inspired in a pattern that occurs frequently in geophysical flow.

Double-gyre Flow at 0.01s

(z,y) € D =10,2] x [0,1]

dt

it) _ -4 cos(m * forcing) sin(mwy)(2ax + b);

{dx(t) = —mAsin(m x forcing) cos(my)
dt

a = esin(wt), b =1 — 2esin(wt)
forcing = ax® + bx

tO:())tf:]-O;620-1,14:0.1,&):%

From the Eulerian perspective periodically driven Double-Gyre flow has a periodic and simple behaviour.
But what about particle behaviour? What happens, for instance, if there is an “oil spill” in the middle of the

domain?

(72}
£
(]
]
n
>
w
X
L
Q.
=
(@)
@)
(T
(o)
S
n
P
=
o
()]
o e
)
Yo
L
(]
]
-}
-
7]
=
e
(S
=
0
o
X
©
=



Applications

e Lagrangian Analysis

Let us paint in blue the particles that are continuously passing through the centerpoint (streakline) to “visualize”
particle behaviour.

animt '} [11] : Transport barriers appear, showing that the
: tracer invades some parts of the domain
leaving some other regions blank.

e f These non-mixing islands move circularly in
) each half-domain.

What can state-space topology tell usin a
problem of this kind?

Lagrangian time series (the position or the velocity of a particle) can be generated and studied in state space with
our topological tools.



Applications
e Lagrangian Analysis

A BraMAH topological practised on a collection of 8528 particles (x; time series) in a time window of 500 units yields
five topological classes. Computations involve complexes constructed from 4-dimensional time-delay embeddings.

®
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Moebius strip

Five-loop structure
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Applications
e Lagrangian Analysis

Topo'ozical colouring of 8528 advected particles in the driven Double-Gyre flow to visualize topologies are
organized in physical space.

Assigning a different color to each topological
class, the colors in motion define particle sets
that move together forming coherent regions,
i.e., without mixing with the surrounding fluid.

Let us use the term ‘separator’ to designate the
frontier between differently colored regions.

Such flow separators are associated with
‘Lagrangian coherent structures’, known to
separate dynamically distinct regions in fluid
flows (Kelley, Allshouse & Ouellette, 2013).




Applications
e Lagrangian Analysis

Topo'ozical colouring of 8528 advected particles in the driven Double-Gyre flow to visualize topologies are
organized in physical space.

If the advected particles are coloured according to
the BraMAH topological analysis, the non-mixing
islands come to light.

Classifying topologies (= classifying dynamics) can

be used:

i. for an indirect identification of particle sets
that do not mix with the surrounding fluid,

ii. to characterize such dynamics within each
region,

iii. tocompare distant regions behaving similarly,

iv. to compare the behaviour of particles in X
different flows.




Applications a(t) = nsin [wt (1 + 7sin(%)>] ,b(t) = 1 —2a(t)

e Lagrangian Analysis

What happens if we introduce a perturbation in the driving force of the Double-Gyre in which the particles in
the formerly non-mixing islands slowly migrate towards the chaotic sea?

X, (1)

1

B

400 600 800 1000
t

>0.5¢

The topology that is computed is always referred to the time
window that is chosen for the analysis. A particle that
migrates ‘moves’ from one topological class to the other.
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Applications

e Lagrangian Analysis

The Bickley Jet: this kinematic flow simulates a zonal sinuous jet flanked by counter-rotating vortices. It
corresponds to the idealization of geophysical flows such as the Gulf Stream or the polar-night jet

perturbed by a Rossby wave.

(a) Velocity magnitude (ms~) (D) 3 FTLE field (x1077)

e

Coe—

—~ N\ s AN\ /a l
g 0 \\V/ﬂ V/A\\\QJ | 0
~ AT

- =

oo | — M f\'— — _3 ‘
3O 10 0
x (Mm) x (Mm)

Schlueter-Kuck & Dabiri. J. Fluid Mech. (2017), vol. 811, pp. 468—-486.
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Applications

e Lagrangian Analysis

A BraMaH analysis on a collection of 105 time series of sparse particles produces 4 topological classes marked
with different symbols. All the flanking vortices share the same structure: a torus “surrounded” by Moebius
strips. The background flow has a three-loop structure, and the jet is characterized by a standard strip.

The streakline snapshot is taken at 40 days with injection locations
P = (x1,%) /X, = 1x108 A x, E[-4:0.05: -2] x 10° U [2 : 0.05 : 4] x
106,

Standard strip

Moebius strip
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Applications

e Lagrangian Analysis

o

JM PAPERS

N\~ ¥ 4

“Topological colouring of fluid particles” = using BraMAH
to study the individual dynamics of a sparse particle set.

Topological colouring of fluid particles unravels

: : 0.1
finite-time coherent sets
0.05 |
Gisela D. Charé'->*f, Guillermo Artana’* and Denisse Sciamarella’-’
ICONICET - Universidad de Buenos Aires, Centro de Investigaciones del Mar y la Atmésfera (CIMA), xN 07
Buenos Aires, Argentina
2CNRS - IRD — CONICET - UBA, Institut Franco-Argentin d’Etudes sur le Climat et ses Impacts (IRL -0.05 |

3351 IFAECI), Buenos Aires, Argentina
3CONICET - Consejo Nacional de Investigaciones Cientificas y Técnicas, C1425FQD CABA, Argentina 0.1

4Laboratorio de Fluidodindmica, Facultad de Ingenieria, Universidad de Buenos Aires, C1063ACV -0.05 0 0 65 0'1 0 :|5 02 025
CABA, Argentina - - & ; 8 j i

SCNRS - Centre National de la Recherche Scientifique, 75795 Paris, France 1

(Received 21 December 2020; revised 8 May 2021; accepted 18 June 2021)

Numerically generated fluid particle behaviour in the wake past a rotary oscillating cylinder (ROC). With these
applications, methodological progress is being made: BraMAH is successfully applied to non-dissipative (conservative)

systems.
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Applications

Climate dynamics

Can homologies distinguish between simulated climate attractors?

Climate Dynamics
https://doi.org/10.1007/500382-019-04926-7

o')

Check for
updates

Co-existing climate attractors in a coupled aquaplanet
M. Brunetti'© - J. Kasparian' - C. Vérard?

Received: 8 March 2019 / Accepted: 2 August 2019
© Springer-Verlag GmbH Germany, part of Springer Nature 2019

Abstract

The first step in exploring the properties of dynamical systems like the Earth climate is to identify the different phase space
regions where the trajectories asymptotically evolve, called ‘attractors’. In a given system, multiple attractors can co-exist
under the effect of the same forcing. At the boundaries of their basins of attraction, small changes produce large effects.
Therefore, they are key regions for understanding the system response to perturbations. Here we prove the existence of
up to five attractors in a simplified climate system where the planet is entirely covered by the ocean (aquaplanet). These
attractors range from a snowball to a hot state without sea ice, and their exact number depends on the details of the coupled
atmosphere—ocean—sea ice configuration. We characterise each attractor by describing the associated climate feedbacks, by
using the principal component analysis, and by measuring quantities borrowed from the study of dynamical systems, namely
instantaneous dimension and persistence.

Keywords Coupled aquaplanet - Attractors - GCM - Complexity

https://web.dm.uba.ar/files/tesis_lic/2023/Salvagni.pdf
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SAT (°C) —33.00 +0.03 22+01 17.0+ 0.2 234+01
Ocean temperature (°C) — 1.6449 + 0.0008 3.225 £ 0.002 9.877 + 0.004 17.418 + 0.006
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TOA budget (W/m?) 1.6+0.1 3.0+02 26+02 23+02
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Applications

* Climate dynamics

The time series of the annual averages are, when embedded, indistinguishable from each other, giving rise to point clouds

distributed in the form of spheres or tori.

Hotstate
s i
o}
5 1
-10E L 1 L 1 =
0 500 1000 1500 2000 2500
10 Warmstate
2 5[t |
0 Wi Tl
I i ]
L L L L
0 500 1000 1500 2000 2500
w0 : Coldstate .
s b A I, \
oph i ",
h ety | il | L{
50 L L L L
0 500 1000 1500 2000 2500
Waterbelt
2 T T
> ol
20F 1 1 1 1
0 500 1000 1500 2000 2500

Solid sphere in phase space - statistical version
of a fixed point in phase space: transient
discarded, the system stabilizes around a given
point.

Hotstae
JDCJI- T
]
@ 290
-_,Ml 1 1 L 1 1 L
0 1000 2000 3000 4000 5000 6000 7000 8000 9000 10000
t
Warmstate
300 , T T T T = T = T T T T
d g
1 220y A g O S g A gy P B i
280 1 1 1 1 1 1 1 1 1
0 1000 2000 300 4000 5000 £000 700 8000 5000 10000
t
Coidstate
300 T T T T I> T T T T
3 vy
o LI Wy
3 1 1 1 1 1 1 1 1 1
0 1000 2000 300 4000 5000 £000 700 8000 5000 10000
t
Walsrbalt
0SS Iv.; AV ARATAVARAY N iTATATATAVAVAS AT AT AT 7 -
- RYRYRY| IYRTRTRYRY IR YAYAY] YIVAYA AR |
“"m»"-h\' T'.I-'l‘_“r‘n',““I‘\.i\\'\"‘:’f‘l_
1 L 1 Il L L y

1
0 1000 2000 3000 4000 5000 £000 7000 8000 8000 10000
t

Filled torus in phase space - When the
predominant dynamics in the global variability is
that of the seasonal cycle Falasca, F., & Bracco, A.
(2022). The seasonal cycle will be filtered.



Applications

* Climate dynamics

The dynamical properties of a climate attractor depend on its local and instantaneous properties, rather than its
average properties [Lucarini et al, 2016]. Time series for the analysis will have a lower time resolution than that used
in [Brunetti et al, 2019], filtering the seasonal cycle.

- T=1days 2 5HE0@A4G q- T=1 days
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‘ T=1 days q- T=1 days
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Evolution of four attractors with sliding time windows of 1000 days (range 5000 days) and daily time resolution. The
time series were calculated by Maura Brunetti specifically for Luciana Salvagni's bachelor thesis.



Applications

e Climate dynamics

It is common practice to perform multi-channel singular spectrum analysis (M-SSA) separated by variable type
(oceanic and atmospheric) to obtain consistent surrogate time series representative of each subsystem.
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Vautard, R., Yiou, P., & Ghil, M. (1992). Singular-spectrum analysis: A toolkit for short, noisy chaotic signals. Physica D: Nonlinear
Phenomena, 58(1-4), 95-126.
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Applications
e Climate dynamics
We gather in the same
Plane persistence diagram: persistence diagram:
0-holes (blue),
- Points close to the horizontal axis = "noise", born and die fast. 1-hole (orange)

- Points away from the horizontal axis = significant features, persist longer.
- Two orange dots - two 1-hole butterfly wings.

Reconstructed Lorenz

Lorenz attractor
0.40 A 0.4

e o o o o

0.3 1

ureume

0.2 1

B e Ho
. e Ho
o8 o ¢ o Hy .
T T T T 0.0 0.1 0.2 0.3 0.4
0.0 0.1 0.2 03 Birth

(72}
=
Q
-
n
>
wn
X
L
Q
S
(@)
O
G
o
n
-
n
P
A=
o
)
o e
-
p .
O
G
Q
]
-}
-
1]
L=
=
(S
| =
s
o
X
©
=




g A IiCGtiOI’)S Four attractors.
E pp | .
- Atmospheric & oceanic planar
wn . .
> . . ersistence diagrams.
wn e Climate dynamics P g
o
_Q_ Hotstate dataset for atmospheric variables Warmstate dataset for atmospheric variables Coldstate dataset for atmospheric variables Waterbelt dataset for atmospheric variables
] - . 0.12 ——
E 0.40 - - .
8 035 : ol
0301 0.41 2 3
L 0.3 g i |
o Lt ’
[e) L 03] N . i .
£ £ £ E 0.06 -
8 g g & 021 = o
3 L - = .
© m— 0.15 : 0.2 o -
n 7 0.04 -
> 0.10 . 014 .
0 4 - . . % .
09 * e, 2 . L ©
L% . = e Ho (N e Ho = . . e Ho J ". - e Ho
Q o.oo-—I——-lﬂl‘: - - H o.o-—i‘—:—“ - a—H uo-—'—ﬁ.—_-. ——s o Hy 0.00 __I_M__' o Hy ]
ﬁ 0.0 01 _o.'hz 03 0.4 00 01 02 Bmho-'B 04 05 0.0 01 0.2 03 0.4 000 002 004 006 008 010
Birt Birth Birth
| -
o) N .
(R Hotstate dataset for. oceanic variables Warmstate dataset for oceanic variables I Coldstate dataset for oceanic variables Waterbelt dataset for oceanic variables
Q 0.6 === B B =] (1Y, Lo R ———
e 0.35 - —
=
- 0.5 . 0.30 - a & a e
i
m 0.4 0.25 1 0.25 -
0.15 -
--E - £ 0204 ’ £ 0204 . g
g o3 e 8 g = .
= s = - -
- . 7 0151 .. ~ 015+ - = 0.10
(&) . %
0.2 .
% K 0.10 . i 0.10 ‘e .
.
i o 0.05 ¢
E 0.1 ! ~rw ; - §=3 . ; 0.05 - o Trmearrs ‘... e
«c @ e Ho o e Ho ce % e Ho :* e« Ho
x 0.0 -—l“ r 1 . Hi - 0.00 > - H 0.00 - bt pr_® a_Hy 0.00 : o Hy
(© 00 01 02 03 04 05 06 0.0 01 02 03 0.0 01 0.2 0.3 000 005 010 015 020 025
E Birth Birth Birth Birth



Applications

* Climate dynamics A | T

To analyze the persistence diagrams, a set of eight markers or topological indices will be defined to condense the
properties of the diagrams and compare them with each other. The markers are based on the vertical coordinates
of the blue and orange points of the persistence diagrams.

0.30

M 163 Original

FO,: vertical coordinate or lifetime of the second most persistent 0-hole w63 reconstructed
(indicates the onset in the filtration where the simplices of the 0.25 1
corresponding complex form a connected component).

FO,: vertical coordinate or lifetime of the third 0-hole (indicates the
beginning in the filtration where two related components are formed).

0.15 A

0.10 A

FO3: sum of the lifetimes of all 0-holes except those exceeding the
maximum filtration value (describes the degree of compactness of the
points).

0.05 1

0.00 - -

FO,: averaged lifetime of the 0-holes except those exceeding the For Fo: F0s /300 FOs
maximum filtration value.

https://web.dm.uba.ar/files/tesis_lic/2023/Salvagni.pdf



Applications

e Climate dynamics AR

To analyze the persistence diagrams, a set of eight markers or topological indices will be defined to condense the
properties of the diagrams and compare them with each other. The markers are based on the vertical coordinates

of the blue and orange points of the persistence diagrams.

W L63 Original
M 163 reconstructed

F1,: the start (birth) value of the largest 1-hole (shows the
filtration value at which the largest persistent 1-hole is
formed). 025 4

F1,: vertical coordinate or lifetime of the largest 1-hole
(reflects the size of the geometrically dominant 1-hole).

F15: sum of the half-lives of all 1-holes except those exceeding 010
the maximum filtration value.

0.05 1

F1,: averaged life time of the 1-holes, except those exceeding bon j —
the maximum filtration value (indicative of the average size of F1y F1, F13 / 300 Fla
the 1-holes).

https://web.dm.uba.ar/files/tesis_lic/2023/Salvagni.pdf



Applications

Topological markers for the four climatic attractors

* Climate dynamics

P
a
e
°

Each attractor has a predominant trait
that distinguishes it from the others in
time windows of one thousand days.

Betti O Feature Value
Betti 1 Feature Value

Persistent homology methods do not
allow the topological structure of each

att ra CtO r to b e CO n d e n Se d i nto a Si n g I e Atmospheric variables Atmospheric variables

. b
representative cell complex. @ ®

Em HOT m HoT

. WARM . WARM
. COLD . COLD
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Although persistence diagrams offer a
less precise topological
characterization, they mark a path
toward the construction of cell
complexes that represent the

o
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Betti 1 Feature Value

Betti O Feature Value

o
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=
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~

topological structure of each climatic E LL
attractor, using the markers as a guide. o e Fou Fu o variamey > Fa

(c) (d
https://web.dm.uba.ar/files/tesis_lic/2023/Salvagni.pdf
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Templex

«  Why and how was it conceived? [ 5

X
Homologies cannot distinguish between two different attractors produced by the Rossler { )’ =X+ ay,
dynamical system with different parameter values (spiral Rossler attractor with a = <
0.343295 on the left and the funnel Rossler attractor with a = 0.492 on the right).

Spiral Rossler attractor Funnel Rossler attractor




Templex

*  Why and how was it conceived?

The template does distinguish between both: the spiral Rossler attractor has two strips (0, 1), while the funnel
Rossler attractor has three strips (0,1,2).

Spiral Rossler attractor Funnel Rssler attractor
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Templex

*  Why and how was it conceived?

The spiral and funnel Rossler attractors are homologically equivalent: they have both one hole in the centre
(Hy=27%).

H1(K(Rs)) = [[{0,2) — (0,6) + (2,4) + (4,6)]]

Hi(K(R)) = [[(0,2) = (0,7) 4 (2,4) + (4, 7)]]

But there is more information in a cell complex than the one contained in its homology groups... for instance,
the joining lines! They can be detected as the 1-cells shared by at least three 2-cells (thick lines).
Notice that the recipe to scotch the cell complexes is different.
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Templex

 Why and how was it conceived?

But there is something else that is very important and that is
missing in a cell complex representing a branched manifold.

This is the flow or, in other words, time!

Homologies do not consider the action of the flow on the cell
complex...

Flow

In order to take the flow on the complex into account, the cell Periphery
complex will be endowed with a directed graph that prescribes @)

the flow direction between its highest-dimensional cells.
~(1) = 6

Definition 1. A templex T = (K, G) is made of a complex K
of dimension dim(K) = « and a digraph G = (N, E) whose under-

lying space is a branched k-manifold associated with a dynamical
system, such that (i) the nodes N are the «-cells of K and (ii) the
edges E are the connections between the « -cells allowed by the flow.

W —— > N

A
S}
Y
N




Templex

*  Why and how was it conceived? How is it computed?

The thick line
indicates the joining
1-cell <0, 1>, which
will be used to
identify:

O ingoing nodes
(squares)

O outgoing nodes
(circles)

in the digraph.
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Templex

*  Why and how was it conceived? How is it computed?

Spiral Rossler attractor Funnel Rossler attractor

T(R)=(K(R).G(R)) T(R3)=(K(R3),G(Rs))

,/\
)
1/]0
N
Flow Periphery Peerah)ery
(a)
Stripexes in T(R3):

Stripexes in T(R): 1 —>2—>3—>4—1,
twisted 1 -2 —>4— 6 — 1, twisted l—>2—>3—>5—>l,|
l—-2—-3—=5—1 1-2—>3—>6—1,



Templex

 Example |: Lorenz 63 example (autonomous) Four stripexes in T(L):
T=(K(L,G(L) a=1-2->4->6->1 | song
. ' cycles
6=8—->9—> 11— 13 = 8§,
6, =1>3->5->7->8] | eak
' cycles
|c325§—> 10 - 12 — 14—>L| |

The weak cycles that form the two twisted stripexes
correspond to a single generatex of order 2.

This is consistent with the Lorenz template that has
four stripexes and a Poincaré section divided into

two components.
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Templex

 Example ll: 4D Deng 94 attractor (autonomous)

A four-dimensional system designed from a
three-dimensional system proposed by Deng.

(k=—(z+2)dx—[a+e2+w])+2—2)
[a(x—z>—ﬁy—a<x—2) (’“—222”],

y=—+2)(y-b+2-2

‘ [ﬁ(x—2)+ay—ay(x_2;+yz],

2=(4_Z2)z—|—2—:(x+2) e

R L et ) B

k €

(d)

A solution to this system was already investigated with a BraMAH cell complex (but not with a templex) in
Sciamarella & Mindlin, 2001.
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Templex

« Example ll: 4D Deng 94 attractor (autonomous)

The BRAMAH complex K(4D) is built from a cloud of 24999
points (once the transient regime is completed).

The highest-dimensional cells of this complex are the 3-
cells y;, and the 2-cells o; which are not the border of any 3-
cell.

The complex has one 0-hole, five 1-holes and no 2-holes (no
enclosed empty cavity).

The joining lines are highlighted in colour. They are the 1-cells
shared by a set of at least three k-cells, with k=2,3.

The green and red lines form the main joining locus in the
bottom scroll and the second one (violet) is in the upper part
of the attractor according to our plot.




Templex

« Example ll: 4D Deng 94 attractor (autonomous)

The dotted blue line is a splitting line between one 3-cell and
three 2-cells.

The fact that the ingoing cell is of dimension 3 allows us to
preserve the determinism at this splitting locus.

This is a feature that we had not observed for three-
dimensional systems.

The simplest deterministic representation of the flow around
this splitting locus is to consider that three strips—close to
each other as in a foliation within the 3-cell— are sent away
from each other.

This specificity will require a novel element for drawing a
template.




Templex
« Example ll: 4D Deng 94 attractor (autonomous)

Digraph on the BRAMAH complex constituting the templex. Ingoing and outgoing nodes are squared and
circled, respectively. Splitting loci are not considered for stripex computation.

Three order-1 cycles: Five stripexes in T(4D)=(K(4D),G(4D)):

=1->2—->3->4->5->6—>7—>8-—>1,

g=1-2—>3—->4—>5—->6—>37—> 40— 36
—>35>25—>26—> 27 > 28 > 29 — 30 > 31
— 32 —> 33> 34 > 1.

3=1—->2—->3—->4—>5—>6—> 37— 40 — 38

—-20519—->18—> 17— 21 > 22—>23 > 24— 1,

Two order-2 cycles:
4, =1>2—>3—->4—>5—>6—>37—> 40— 38

—-20-19—->18—>17—>16—> 15— 14 — 12,

64y E =5 151005 1y

1

&, S1-28 - -l 5= 3~ -3 30— 1935 13,

(72}
=
Q
-
n
>
wn
X
L
Q
S
(@)
O
G
o
n
-
n
P
A=
o
)
o e
-
p .
O
G
Q
]
-}
-
1]
L=
=
(S
| =
s
o
X
©
=



Templex

« Example ll: 4D Deng 94 attractor (autonomous)

The four-dimensional attractor can be described with five stripexes, that is, with a
five symbol dynamics. A paper model of the attractor is constructed, similar to the

xyz projection of the system.

The volume formed by the ten 3-cells of
K(4D) is topologically equivalent to a
solid (filled) torus.

Homologies of a filled torus are
equivalent to those of a cylinder, and
so, the paper model is homologically
equivalent to K(4D).

A direct template can be drawn for the
four-dimensional system from the
templex analysis.
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Templex

« Example ll: 4D Deng 94 attractor (autonomous)

The templex dissects the phase-space structure into several identifiable components, connected at certain
joints. Closed non-redundant pathways are cell sequences encoded by the digraph.

The templex properties: some describe the spatial structure alone (homology groups, torsion groups, weak
boundaries) and a subset for the topology of flow along the structure (generatex, stripex, twists).



Templex

 Example lll: 3D AMOC example (autonomous)

Let us now consider an autonomous 3D model of the Atlantic Meridional Overturning Circulation (AMOC) : Sévellec et
Fedorov, J. Clim., 2014) reproducing the chaotic dynamics of the glacial periods.

diw = —Aw — €BSns,
d¢Spr = +$2Sns — K Spr + Fpr,
d¢Sns = —$2Spr — K Sns + Fns.

The most simple AMOC

) , model has the same set of
. stripexes as the spiral Rossler

A attractor.

e L i !
i LA TR
T s, B

T(AMOC3D) = (K(AMOC3D), G(AMOC3D)) K(AMOC3D) has two 1-holes —
ﬁrzsrrr*'*"“’?r»o:g\ T(AMOC3D) has two stripexes.
/,»‘” : \\{? Stripexes in T(AMOC3D) )’
WT :m [ twisted 152546 lJ
R 4 15253551,
NG P

~ m ne”
o1 ns. e
. Lol

Work in progress with C. Mosto et J. Ruiz (IFAECI) en collaboration avec F. Sévellec et al. (Brest)
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 Example IV: Unstable AMOC (non autonomous)

Let us consider the imposed temporal changes in the position of the edge of sea ice (ESI) to account for the chaotic behavior
during the glacials and for the stable ocean conditions during the interglacials.. Fgr and Fjs are the Fourier projections of
surface salt flux.

dtw: _)"w_eﬂSNS’ ~0-.1| T T T T T T T |7O
0.05 | -
de Spr = +£2SNs — K Spr + Fr, o
> 0 63
de SNs = —$2 ST — KSNs + Fs. % oosl I . ( ]
7 — i 27 —i6 o 1 1 1 I| I 1 1
where Fpr + iFns = 2mh Fe="do. Olgo 80 70 160 150 40 30 420 410 100 90"

Simulated variations in the overturning rate (-Q) for two slightly different sets of initial conditions (solid black and red
dashed lines) for a single glacial—-interglacial cycle.

The grey sawtooth line indicates the imposed temporal changes in the position of the edge of sea ice (ESI).

The four vertical lines indicate the freezing times (t0) used later to compute the Pullback attractor (PBA) [Ghil et al, 2008 ;
Chekroun et al, 2011].
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Example IV: Unstable AMOC (non autonomous)
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Templex

 Example IV: Unstable AMOC (non autonomous)

4D solutions: we obtain a cloud of four-dimensional points. We construct the BraMAH complex from this point
cloud. The four-dimensional point cloud does not have false neighbors: it is related to an atonomous writing of

the AMOC equations and can be used to build a templex.

-1.204390949016654645e-02
-1.224216393305090946e-02
-1.243740567030636977e-02
-1.262932547193569219e-02
-1.281761394464031763e-02
-1.300196222019738522e-02
-1.318206265102916247e-02
-1.335760953344140682e-02
-1.352829982505172543e-02
-1.369383396027380913e-02
-1.385391662238839167e-02
-1.400825754992730994e-02
-1.415657236815926791e-02
-1.429858339870929487e-02
-1.443402050473086007e-02
-1.456262192774995280e-02
-1.468413509473222647e-02
-1.479831746114401020e-02
-1.490493731082714705e-02
-1.500377453792354869e-02
-1.509462142964136840e-02
-1.517728339478972496e-02
-1.525157967480668918e-02
-1.531734402118566096e-02
-1.537442532355817737e-02
-1.542268819799532883e-02

-3.755666436397816499e-01
—-4.105094258159222020e-01
—-4.455459503156868895e-01
-4.806182011675594890e-01
-5.156665152828940890e-01
-5.506297133049842252e-01
-5.854452473115573374e-01
—-6.200493585640195482e-01
—6.543772419896768389%¢e-01
-6.883632413582051468e-01
-7.219410390573020031e-01
—-7.550438634653665604e-01
-7.876047132207103507e-01
—-8.195565760147025536e-01
-8.508326700754310634e-01
-8.813666883084957382e-01
-9.110930350798221999e-01
—9.399470891449953625e-01
-9.678654534644385299¢e-01
-9.947862054894188732e-01
-1.020649159083170110e+00
-1.045396106763873956e+00
-1.068971066939994996e+00
-1.091320526419735426e+00
-1.112393665222866090e+00
-1.132142579929327209e+00

1.306518394821738482e+00
1.302943763424306400e+00
1.297985263600033523e+00
1.291628288655764401e+00
1.283860898299330700e+00
1.274673984047107300e+00
1.264061403415025930e+00
1.252020112163938492e+00
1.238550270411638454e+00
1.223655375731521167e+00
1.207342364900948040e+00
1.189621705883329605e+00
1.170507470205472522e+00
1.150017391270899081e+00
1.128172909629967080e+00
1.104999200382378088e+00
1.080525186846978958e+00
1.054783525091836704e+00
1.027810576471543280e+00
9.996463597398603795e-01
9.703344758810172888e-01
9.399220267897770986e-01
9.084595025506267962e-01
8.760006462164051655e-01
8.426023160366005182e-01
8.083243076167658803e-01

1.348398174857631283e-02
1.348421537371332669e-02
1.348444899293549729%¢e-02
1.348468260624273440e-02
1.348491621363492356e-02
1.348514981511196587e-02
1.348538341067376072e-02
1.348561700032020402e-02
1.348585058405119691e-02
1.348608416186663009e-02
1.348631773376640641e-02
1.348655129975042180e-02
1.348678485981857564e-02
1.348701841397076037e-02
1.348725196220687365e-02
1.348748550452682354e-02
1.348771904093049555e-02
1.348795257141779599%¢e-02
1.348818609598861386e-02
1.348841961464285373e-02
1.348865312738041326e-02
1.348888663420118143e-02
1.348912013510506283e-02
1.348935363009195684e-02
1.348958711916175765e-02
1.348982060231436464e-02




Templex
 Example IV: Unstable AMOC (non autonomous)

T(AMOC4D) = (K(AMOC4D), G(AMOC4D))

K(AMOC4D) has 3-cells
(basis: solid torus)

Three 1-holes in the BraMAH
complex

3 stripexes
(1 twisted)

52621523
5262758292102 11 212 —>13 > 19
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What is the relationship between the PBA approach and the 4D Templex structure?
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Templex

 Example IV: Unstable AMOC (non autonomous)

The templex can be considered as a single static object of higher dimension, combining all the « parts » of the
structure observed in the snapshot sequence in a PBA approach as a fonction of (t,,t).

t =-175 kyr t, =-150 kyr
) o 8) o

-2 )

- yrh

Working in higher dimensions may provide an alternative to working with the PBA approach.



Random Templex

e How is it defined?

The topological characterization of noise-driven chaos is a
challenging issue that is crucial in the understanding of
complex systems, where part of the dynamics remains
unresolved and is modelled as noise.

While additive noise in a system of equations will blur the
topological structure, multiplicative noise may radically
change it [Chekroun et al, 2011].

[Charod et al, 2021] extended the concept of a branched
manifold to account for the integer-dimensional set in
phase space that robustly supports the system’s invariant
measure at each instant.

Such a branched manifold, however, does not contain any
information about the future or the past of the invariant
measure. The branched manifold is now itself time-
dependent.




Random Templex

e How is it defined?

Home > Chaos: An Interdisciplinary Journal of Nonlinear Science > Volume 31, Issue 10 > 10.1063/5.0059461

@u Open + Submitted: 09 June 2021 « Accepted: 15 September 2021 « Published Online: 12 October 2021

Noise-driven topological changes in chaotic dynamics
Chaos 31, 103115 (2021); https:/doi.org/10.1063/5.0059461

GCisela D. Charc’)w'z'a), Mickaél D. Chekroun3, Denisse Sciamarella2'4, and [ Michael Ghil®>®

One cell complex per snapshot!
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Random Templex

e How is it defined?

How can we track changes between different cell complexes? Tracking holes!
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For a random attractor, the digraph does not connect cells, but holes of successive time cell complexes.
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Random Templex

How is it defined?

A random 2-templex R = (K, D) is an indexed
family K of BraMAH 2-complexes and a
digraph D.

The digraph D is presented as a tree plot on the
left. It has 15 singly connected components,
each of which tells the story of one or several
holes.

Tipping points can be identified and classified
using the digraph.

They are highlighted in different colours
according to the type of event: creation in
green, destruction in black, splitting in red,
merging in blue, and merging followed
immediately by splitting in magenta.
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Random Templex

 How does it encode topological tipping points?

25
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Merging event: a type of topological tipping point




Random Templex

 How does it encode topological tipping points?
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Splitting event: a type of topological tipping point




Random Templex

e How does it encode topological tipping points?

A better picture of how the holes are evolving in the system’s phase space can be gained by using the coordinates
of the barycenters of the holes for an embedding of D into this space. We call the embeddings of D’s distinct
connected components into phase space constellations.

A constellation Cis the set of
immersed nodes and edges
forming a connected
component in the digraph D of a
random templex.

Each node is immersed in the
phase space using the
coordinates of the
corresponding hole’s barycenter.




Concluding remarks

In this talk, we introduce novel tools into algebraic topology and used them to provide insights into the
behaviour of deterministic and stochastically perturbed chaotic attractors.

Attractors in state space can be studied using Branched Manifold Analysis through Homologies: this strategy
constructs a cell complex from a cloud of points in state space and uses homology groups to characterize its
topology.

The approach, however, does not consider the action of the flow on the cell complex. The procedure is here
extended to take this fundamental property into account, as done with templates.

The goal is achieved endowing the cell complex with a directed graph that prescribes the flow direction
between its highest-dimensional cells.

The tandem of cell complex and directed graph, baptized templex, is shown to allow for a sophisticated
characterization of chaotic attractors and for an accurate classification of them.

In a random templex, there is one complex per snapshot of the random attractor and the digraph connects
the generators or “holes” of successive cell complexes.

Tipping points appear in a random templex as drastic changes of its holes in motion, namely their birth,
splitting, merging, or death.
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