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Topology as a theoretical and data analysis tool for understanding the 
fundamental processes underlying the dynamics of complex systems.

This paper is based on the invited talks given by the two authors in an online series on 
“Perspectives on climate sciences: From historical developments to research frontiers”.



Introduction
• What is chaos topology?

Methods
• Isopleths, branched manifolds, cell complexes, homologies.

Applications
• Lagrangian analysis, Climate dynamics.

Templex
• Why and how was it conceived? How is it computed? 

Random templex
• How is it defined? How does it encode topological tipping points?  

Phase Space Topology of chaos: Theory and 
Applications



Introduction
• What is chaos topology and why is it important? 

Topological chaos considers the problem of how fluid particle trajectories are entangled in physical space during a 
mixing experiment. 

It generally relies on the periodic motion of obstacles in a two-dimensional flow in order to form nontrivial braids. 
This motion generates exponential stretching of material lines, and hence efficient mixing. 

Topological mixing with ghost rods 
Gouillart, et al. PRE 73, 036311 (2006) 



Introduction

Chaos topology (or topology of chaos) considers the problem of how n-dimensional trajectories/point-clouds
are topologically structured in state space.

Optically pumped molecular laser run under 
a resonance-operating condition. 

Embedding projection 
onto a plane.

Branched 
manifold. 

R. Gilmore, Reviews of Modern Physics, Vol. 70, No. 4, October 1998 

• What is chaos topology and why is it important? 



Introduction

The origins of « chaos » theory can be found in the pioneering works of Henri 
Poincaré towards the end of the XIX century concerning the old and difficult 
problem of the stability of the Solar System.

“Analysis Situs” is a seminal mathematics paper that he published in 1895 with 
five supplements that followed between 1899 and 1904. 

These papers provided the first 
systematic treatment 
of topology and introduced the 
use of algebraic structures to 
study topological spaces, founding 
the field of algebraic topology.

Poincaré introduced the concept of homology, that we are going to encounter further and thoroughly in this 
presentation. 

• What is chaos topology and why is it important? 



The first methods to reconstruct phase space from experimental time series and to study geometric structures 
significance in that space appear in 1980.

Introduction
• What is chaos topology and why is it important? 



Geometric methods continue to be used, e.g., to 
understand datasets of Lagrangian trajectories. 

But is geometry the best lens we can use to 
classify data according to underlying differences in 
dynamics?

Introduction
• What is chaos topology and why is it important? 



Invariants in phase space can be of different types:

a) Metric: dimensions of various types, e.g., correlation dimension (Grassberger & Procaccia, 1983), 

multifractal scaling functions (Halsey et al., 1986). 

b) Dynamic: Lyapunov exponents (Oseledec, 1968; Wolf et al., 1985), as discussed by Eckmann & Ruelle (1985) 

and by Abarbanel et al. (1993). 

c) Topological: linking numbers, relative rotation rates, Conway polynomials, 

Branched Manifolds (Birman & Williams, 1983). 

Invariants (a) and (b) do not provide information on how to model 

the system’s dynamics, while (c) actually does! 

Introduction

R. Gilmore, Reviews of Modern Physics, Vol. 70(4), October 1998

• What is chaos topology and why is it important? 



The “recipe” to 
“knead” the 
Lorenz’63 attractor 
is a sequence of 
steps that are 
topological in 
nature. 

Introduction

Gilmore & Lefranc. The Topology of Chaos: Alice in Stretch 
and Squeezeland. Wiley-Interscience, 2002.

Topology is concerned with the properties of a geometric object that are preserved under continuous deformations,
such as stretching, twisting, crumpling, and bending; that is, without closing holes, opening holes, gluing, or passing
through itself. The animated image shows a continuous deformation of a mug into a doughnut: both objects are
topologically equivalent.

• What is chaos topology and why is it important? 



Geometry may differ, but if the underlying dynamics is equivalent, the topology should be the same. 

Introduction

Unveiling the topology <=> Unveiling the dynamics

The advantage of using topology, instead of geometry or fractality, to describe chaos lies in
the fact that topology provides information about the stretching, folding, tearing or
squeezing mechanisms that act in phase space to shape the flow.

• What is chaos topology and why is it important? 



Henri Poincaré first described the way in which a dynamical system’s properties depend upon its topology.

The concept of branched manifold, introduced by Robert F. Williams in 1974, was anticipated in Edward Lorenz’s
famous 1963 paper: on page 20, he remarks that the trajectory ‘lives’ on a surface and describes the architecture
of the attractor in terms of “isopleths.”

Publ. Math. IHES, v. 43 (1974), p. 169–203

Methods
• Isopleths, branched manifolds, knot-holders, cell complexes, homologies



With Joan Birman, Robert F. Williams used branched manifolds to classify chaotic attractors in terms of the way
periodic orbits are “knotted” in dynamical systems.

The set of unstable periodic orbits (UPOs) of the Lorenz
attractor lie on a “Branched Manifold”, i.e. on a 2-manifold or
surface with the property that each point has a
neighbourhood that is homoeomorphic to either a full 2-ball
or a half 2-ball.

Methods

Birman & Williams discovered that systems whose branched manifolds have the same topology are 
dynamically equivalent. 

• Isopleths, branched manifolds, knot-holders, cell complexes, homologies



Dynamical system ODEs Parameters Branched manifold

Is there a “table of elements” for the different dynamics?

Methods

Gilmore & Lefranc. The Topology of Chaos: Alice in Stretch and Squeezeland. Wiley-Interscience, 2002.

• Isopleths, branched manifolds, knot-holders, cell complexes, homologies



In the late 90s, it was possible to determine whether or not two three-dimensional (3-D) dissipative dynamical
systems are equivalent by using knot theory.

Methods
• Isopleths, branched manifolds, knot-holders, cell complexes, homologies



1) Approximate trajectories by closed curves.

2) Find a topological representation for the orbit structure. 

3) Obtain an algebraic description for the topological structure. 

1) Close-return method – time series, though, must be long and noise free.

2) Knot theory – knot º orbit in three dimensions.

3) Knot invariants – e.g., linking numbers, Conway polynomials.  

2 3

1 2 3

Knotted 
periodic 
orbits in 
dynamical 
systems. 
Topology: 
Vol.22. No. 
I,pp.47~81. 
1983 

1

Computing topological invariants
using knots…

3D trajectory set Knot invariants 

Methods
• Isopleths, branched manifolds, knot-holders, cell complexes, homologies



Knot information for a chaotic attractor can be condensed in a knot-holder 
or template.

A chaotic attractor is an invariant set under the action of a flow.  For 
strongly dissipative systems, this invariant set can be described strips that 
lodge the knots along the attractor. 

The different branches discriminate the different paths followed by the 
flow determining the (fictive) boundaries between the different strips. 

Typically, a strip is defined between a splitting chart and a joining chart 
where the strips are joined (squeezed) into a single strip.

All the non-trivial dynamical processes are captured between the splitting 
and the joining chart, ended by a
joining line, which corresponds to a Poincaré section.

Methods
• Isopleths, branched manifolds, knot-holders, cell complexes, homologies



Methods
• Isopleths, branched manifolds, knot-holders, cell complexes, homologies



Methods

What’s wrong with templates? They are very difficult to construct… they imply the 
reconstruction of Unstable Periodic Orbits (UPOs) and besides, they are no longer 
meaningful if a fourth dimension in phase space is involved, since they unknot…. 

• Isopleths, branched manifolds, knot-holders, cell complexes, homologies



Methods

1993

1999

2001

• Isopleths, branched manifolds, knot-holders, cell complexes, homologies



RESTRICTIONS

• Precision and length of time series must be good enough 
for orbits in phase space to be reconstructed accurately … 

• Phase space dimension cannot be higher than three, since 
knots or braids unknot …

HOMOLOGY GROUPS

• Time series can be shorter and noisy since the method is 
independent of the reconstruction of trajectories in phase 
space (no periodic orbit). 

• Applicable in n dimensions: the method is knotless and 
braidless.

Computing topology 
using homologies

3-D trajectory set Knot invariants 

n-D point-cloud Homologies

Computing topology 
using knot theory

Methods
• Isopleths, branched manifolds, knot-holders, cell complexes, homologies



Unlike other complexes, the BraMAH cell complex is 
constructed to fit on a branched manifold. 

Methods

Brahmā is traditionally depicted with four faces and four 
arms. Each face of his points to a cardinal direction. His 
hands hold no weapons, one of his hands holds mālā 
(Sanskrit: माला)  symbolizing time. As we shall see, time will 
lead us to the templex. 

Sanskrit: $%मा, Romanized: Brahmā or Bramāh

Acronym first used in Charó, Artana & Sciamarella, 
Physica D 405 (2020) 132371

Brahmā is a Hindu god, referred to as "the Creator" within the 
Trimurti, the trinity of supreme divinity. He is associated with 
knowledge and creation.

• Branched Manifold Analysis through Homologies (BraMAH)



1) Approximate points as lying on a branched manifold.

2) Find a topological representation for the branched manifold.

3) Obtain an algebraic description of the topological structure. 

1) Local approximation by d-disks => short and noisy time series can be handled.

2) Build a cell complex keeping track of the gluing prescriptions => 3D+ can be handled. 

3) Compute homologies and orientability properties of the cell complex => the structure can be identified.    

HOMOLOGY 
GROUP 
computation

BraMAH 
COMPLEX 
construction

Computing topological invariants
using homologies

nD point-cloud Homologies

Methods

1

2

• Branched Manifold Analysis through Homologies (BraMAH)



Methods

A patch is a set of points {xi} around an arbitrary point x0 , that is locally homeomorphic to the interior of a disk 
in d dimensions (d ≤ n)

A patch is a good approximation of a 
hyperplane of dimension d in a space 
of dimension n if the square roots of d
among the n second moments of {xi} 
decrease linearly with R while (n–d)
decrease as lower powers of R. 

Xi,j = (xi,j – x 0,j)  Þ

find N1 such that d among n singular 
values of Xi,j vary linearly with N

Point-cloud decomposition 
into patches

Patches are used to construct the 
cells in the cell complex

• Branched Manifold Analysis through Homologies (BraMAH)



Methods

0-cell

2-cell

1-cell

How to determine if two spaces are 
topologically equivalent? 

Cell complex covering the 
cylinder

An n-cell is a set corresponding to the interior of a disk 
in n dimensions whose borders are divided into a 
number of cells of lower dimension. 

An n-complex is a set of cells such that 
their borders are elements of the complex 
with interiors that do not intersect. 

• Branched Manifold Analysis through Homologies (BraMAH)



Methods

A k-chain in a complex K is a sum C = 
Saisi such that si are the k-cells  
with  ai Î Z and such that Ck(K) = {k-
chains of K} has an abelian group 
structure.

A border map is an operation ¶: Ck(K) ®Ck-1(K) such that 
¶(Saisi)= Sai ¶(si)

Oriented 
complexes

Uniformly 
oriented 
complex

Example of a 1-chain: 
<3,7>-<5,7> Example of border map:

¶(<3,7,4> )=<3,7>-<4,7>-<3,4>

• Branched Manifold Analysis through Homologies (BraMAH)



Methods

1-cycle

1-bord

A k-cycle is a  k-chain C such that ¶(C)=0

Zk(K) = {all k-cycles in a complex}

A k-border is a k-chain C / there exists a (k+1)-
chain D such tat ¶(D)=C

Bk(K) = {all k-borders of an n-complex}

Equivalence relationship:

Two  k-chains C1 and C2 are called homologically equivalent (C1 ~ C2) if there exists a (k+1)-chain D such 
that ¶(D)=C1-C2

Example:  -<3,4>+<3,7> ~ -<1,4>+<1,2>+<2,5>+<5,7>

• Branched Manifold Analysis through Homologies (BraMAH)



Methods

Example: the cylinder

H0(K1)=[[<1>]] ~ Z1 Þ one connected component

H1(K1)=[[<1,3>+<3,4>-<1,4>]] ~ Z1 Þ one nontrivial loop

H2(K1)= Æ ~ 0 Þ no cavities enclosed

K1

Homology groups

The n+1 homology groups of an n-complex K are the sets: 

Hk(K) = Zk/Bk ={the k-cycles being homologically independent that are not borders of any (k+1)-cell}

• Branched Manifold Analysis through Homologies (BraMAH)



Methods

Example: the torus

H0(K2) =[[<1>]]~ Z1 Þ one connected component

H1(K2)  ~ Z2 Þ two nontrivial loops

H2(K2) ~ Z1 Þ one cavity enclosed

Homology groups

The n+1 homology groups of an n-complex K are the sets: 

Hk(K) = Zk/Bk ={the k-cycles being homologically independent that are not borders of any (k+1)-cell}

K2

• Branched Manifold Analysis through Homologies (BraMAH)



Methods

Example: the Klein bottle

H0(K3) =[[<1>]]~ Z1 Þ one connected component

H1(K3)  ~ Z2Þ two nontrivial loops

H2(K3) ~ 0 Þ no cavity enclosed

K3

Homology groups

The n+1 homology groups of an n-complex K are the sets: 

Hk(K) = Zk/Bk ={the k-cycles being homologically independent that are not borders of any (k+1)-cell}

The Klein bottle has a torsioned 1-cycle that is not 
the boundary of any 2-chain, but that becomes one 
if travelled 2 times, thus defining a weak boundary.

• Branched Manifold Analysis through Homologies (BraMAH)



Methods

An orientability chain in a uniformly oriented complex K with cells bi is a chain  O= ¶(Sbi) = S aj tj if there 
exists at least one coefficient j such that |aj|>1. We call torsion chains, the consecutive cells tj preceded 
by the same multiple in O.

Example: Möbius strip. 

H0(K4) =[[<1>]]~ Z1 Þ one connected component

H1(K4)  ~ [[L]] Z1 Þ one nontrivial loop

H2(K4) ~ 0 Þ no cavities enclosed

O(K4) = ¶(Sbi) = -2 <1,7>

T(K4) ={<1,7>} Þ on torsion located at <1,7>.

K4

• Branched Manifold Analysis through Homologies (BraMAH)



Methods

3D

4D

• Branched Manifold Analysis through Homologies (BraMAH)



Methods

The concept of persistent homology (PH) emerged independently in Bologna, in Colorado, and within a bio-
geometry project North Carolina, towards 2005. 

PH was conceived to solve pattern recognition problems, mainly in scanned images.

The method 
constructs a series 
of complexes as a 
function of a 
distance parameter 
(𝜀 or d). 

The connectivity of 
the point cloud 
increases as 𝜀 or d 
grows. 

Zomorodian, A. J. Topology for 
computing (Vol. 16). Cambridge 
university press.

• Persistent homologies



Methods
• Persistent homologies



Methods

Filtrations: the rules used to build cell complexes as the filtration parameter () is varied. The Vietoris-Rips filtration 
is illustrated in the gif below. 

• Persistent homologies

Vietoris-Rips

- A ball of diameter d is drawn around these 
points.

- Two balls intersect (two points are separated by 
a distance less than d) → connect the two points 
with a segment or 1-cell (simplicial cell of 
dimension 1). 

- The triangles formed are completed by forming 
2-cells (simplicial cells of dimension 2), and so on.

The Vietoris–Rips complex was originally called the Vietoris complex, for Leopold Vietoris, who introduced it as 
a means of extending homology theory from complexes to metric spaces.



Methods

PH is not a Branched Manifold approximation 
method but can help characterizing state-space 
point-clouds, serving as guide. 

https://live.ripser.org

𝜀

Problems’ origin:  
- The complexes are constructed in such a way that: 
       (1) #cells ≫  #points in the point-cloud ⇒ big point clouds not supported. 
       (2) the complexes have k-cells with k > d, d being the local dimension. 

H1

𝜀max 
Problems with barcodes:
- Betti numbers (the rank of Hk) depend on the choice of 𝜀max which is 

always somewhat arbitrary. 
- Hk generators not provided as output: branches cannot be identified. 
- Orientability properties are not computed. 

• Persistent homologies



Applications

Voice production

Laser optics

Cardiac arrythmia

Chemical 
reactions

Population dynamics

Vegetation 
index

Ocean color (with knots)

Nano-oscillators

Birdsong 
motor control

• BraMAH can be harnessed for multiple purposes 



« Topological methods can be used to determine whether or not two dynamical systems are 
equivalent; in particular, they can determine whether a model developed from time-series 
data is an accurate representation of a physical system. Conversely, it can be used to provide 
a model for the dynamical mechanisms that generate chaotic data. » 

R. Gilmore, Reviews of Modern Physics, Vol. 70, No. 4, October 1998 

ü Validate/refute models – simulations vs. observations.

ü Comparing models – time series generated by different models.

ü Comparing datasets – e.g., in situ versus satellite data.

ü Extracting models from data – using global modeling techniques with a topological validation.

ü Characterizing and labeling chaotic behaviors – towards a systematic classification.

ü Classifying sets of time series according to their main dynamical traits – e.g., in Lagrangian Analysis.

Applications
• BraMAH can be harnessed for multiple purposes 



• Lagrangian Analysis

Applications

The Driven Double Gyre (DDG) system is an analytic model, often used to show how much Lagrangian patterns may differ 
from patterns in Eulerian fields. 

It was introduced by Shadden et al. (2005) to mimic the motion of two adjacent oceanic gyres enclosed by land and, 
since Sulalitha Priyankara et al. (2017), it is known to present chaotic transport in some ‘regions’ of the fluid, even if the 
Eulerian picture is periodic. 

What is Lagrangian analysis? 

In fluid mechanics, two viewpoints are possible. 

In the Eulerian viewpoint, fluid motion is 
observed at specific locations in space, as time 
passes.

In the Lagrangian viewpoint, the observer follows 
individual fluid particles as they move through 
the fluid domain. 



Applications

Let us consider the kinematic model inspired in a pattern that occurs frequently in geophysical flow. 

From the Eulerian perspective periodically driven Double-Gyre flow has a periodic and simple behaviour. 
But what about particle behaviour? What happens, for instance, if there is an “oil spill” in the middle of the 
domain?  

• Lagrangian Analysis



Applications

Let us paint in blue the particles that are continuously passing through the centerpoint (streakline) to “visualize” 
particle behaviour. 

Transport barriers appear, showing that the 
tracer invades some parts of the domain 
leaving some other regions blank. 

These non-mixing islands move circularly in 
each half-domain. 

What can state-space topology tell us in a 
problem of this kind? 

Lagrangian time series  (the position or the velocity of a particle) can be generated and studied in state space with 
our topological tools. 

• Lagrangian Analysis



Applications

A BraMAH topological practised on a collection of 8528 particles (x1 time series) in a time window of 500 units yields 
five topological classes. Computations involve complexes constructed from 4-dimensional time-delay embeddings. 

Torus Klein bottleFive-loop structure Moebius strip Standard strip

5

• Lagrangian Analysis



Applications

Topological colouring of 8528 advected particles in the driven Double-Gyre flow to visualize topologies are 
organized in physical space.

Assigning a different color to each topological 
class, the colors in motion define particle sets 
that move together forming coherent regions, 
i.e., without mixing with the surrounding fluid. 

Let us use the term ‘separator’ to designate the 
frontier between differently colored regions. 

Such flow separators are associated with 
‘Lagrangian coherent structures’, known to 
separate dynamically distinct regions in fluid 
flows (Kelley, Allshouse & Ouellette, 2013).

• Lagrangian Analysis



Applications

If the advected particles are coloured according to 
the BraMAH topological analysis, the non-mixing 
islands come to light. 

Classifying topologies (= classifying dynamics) can 
be used: 
i. for an indirect identification of particle sets 

that do not mix with the surrounding fluid, 
ii. to characterize such dynamics within each 

region, 
iii. to compare distant regions behaving similarly,
iv. to compare the behaviour of particles in 

different flows. 

Topological colouring of 8528 advected particles in the driven Double-Gyre flow to visualize topologies are 
organized in physical space.

• Lagrangian Analysis



Applications

What happens if we introduce a perturbation in the driving force of the Double-Gyre in which the particles in 
the formerly non-mixing islands slowly migrate towards the chaotic sea? 

The topology that is computed is always referred to the time 
window that is chosen for the analysis. A particle that 
migrates ‘moves’ from one topological class to the other. 

• Lagrangian Analysis



Applications

The Bickley Jet: this kinematic flow simulates a zonal sinuous jet flanked by counter-rotating vortices. It 
corresponds to the idealization of geophysical flows such as the Gulf Stream or the polar-night jet 
perturbed by a Rossby wave. 

Schlueter-Kuck & Dabiri. J. Fluid Mech. (2017), vol. 811, pp. 468–486. 

Velocity magnitude FTLE field

• Lagrangian Analysis



Applications

A BraMaH analysis on a collection of 105 time series of sparse particles produces 4 topological classes marked 
with different symbols. All the flanking vortices share the same structure: a torus “surrounded” by Moebius 
strips. The background flow has a three-loop structure, and the jet is characterized by a standard strip. 

Moebius strip

Standard strip Three-loop structure

Torus

The streakline snapshot is taken at 40 days with injection locations 
p = (x1,x2) / x1 = 1×106 ∧ x2 ∈ [−4 : 0.05 : −2] × 106 ∪ [2 : 0.05 : 4] ×
106. 

• Lagrangian Analysis



Applications

“Topological colouring of fluid particles” = using BraMAH 
to study the individual dynamics of a sparse particle set.

Numerically generated fluid particle behaviour in the wake past a rotary oscillating cylinder (ROC). With these 
applications, methodological progress is being made: BraMAH is successfully applied to non-dissipative (conservative) 
systems. 

• Lagrangian Analysis



Applications
• Climate dynamics

Can homologies distinguish between simulated climate attractors? 

https://web.dm.uba.ar/files/tesis_lic/2023/Salvagni.pdf



Applications
• Climate dynamics

The time series of the annual averages are, when embedded, indistinguishable from each other, giving rise to point clouds 
distributed in the form of spheres or tori.  

Filled torus in phase space → When the 
predominant dynamics in the global variability is 
that of the seasonal cycle Falasca, F., & Bracco, A. 
(2022). The seasonal cycle will be filtered. 

Solid sphere in phase space → statistical version 
of a fixed point in phase space: transient 
discarded, the system stabilizes around a given 
point. 



Applications
• Climate dynamics

The dynamical properties of a climate attractor depend on its local and instantaneous properties, rather than its 
average properties [Lucarini et al, 2016]. Time series for the analysis will have a lower time resolution than that used 
in [Brunetti et al, 2019], filtering the seasonal cycle. 

Evolution of four attractors with sliding time windows of 1000 days (range 5000 days) and daily time resolution.  The 
time series were calculated by Maura Brunetti specifically for Luciana Salvagni's bachelor thesis. 



Applications
• Climate dynamics

Vautard, R., Yiou, P., & Ghil, M. (1992). Singular-spectrum analysis: A toolkit for short, noisy chaotic signals. Physica D: Nonlinear 
Phenomena, 58(1-4), 95-126.

It is common practice to perform multi-channel singular spectrum analysis (M-SSA) separated by variable type 
(oceanic and atmospheric) to obtain consistent surrogate time series representative of each subsystem.



Applications
• Climate dynamics

Atmospheric variables Ya(t) Oceanic variables Yo(t)

Persistent diagrams



Applications
• Climate dynamics

Plane persistence diagram:

- Points close to the horizontal axis → "noise", born and die fast.
- Points away from the horizontal axis → significant features, persist longer.
- Two orange dots → two 1-hole butterfly wings.

We gather in the same 
persistence diagram: 
0-holes (blue), 
1-hole (orange)



Applications
• Climate dynamics

Four attractors.
Atmospheric & oceanic planar

persistence diagrams. 



Applications
• Climate dynamics

https://web.dm.uba.ar/files/tesis_lic/2023/Salvagni.pdf

To analyze the persistence diagrams, a set of eight markers or topological indices will be defined to condense the 
properties of the diagrams and compare them with each other. The markers are based on the vertical coordinates 
of the blue and orange points of the persistence diagrams.

F01: vertical coordinate or lifetime of the second most persistent 0-hole 
(indicates the onset in the filtration where the simplices of the 
corresponding complex form a connected component).

F02: vertical coordinate or lifetime of the third 0-hole (indicates the 
beginning in the filtration where two related components are formed).

F03: sum of the lifetimes of all 0-holes except those exceeding the 
maximum filtration value (describes the degree of compactness of the 
points).

F04: averaged lifetime of the 0-holes except those exceeding the 
maximum filtration value.



Applications
• Climate dynamics

https://web.dm.uba.ar/files/tesis_lic/2023/Salvagni.pdf

To analyze the persistence diagrams, a set of eight markers or topological indices will be defined to condense the 
properties of the diagrams and compare them with each other. The markers are based on the vertical coordinates 
of the blue and orange points of the persistence diagrams.

F11: the start (birth) value of the largest 1-hole (shows the 
filtration value at which the largest persistent 1-hole is 
formed).

F12: vertical coordinate or lifetime of the largest 1-hole 
(reflects the size of the geometrically dominant 1-hole).

F13: sum of the half-lives of all 1-holes except those exceeding 
the maximum filtration value.

F14: averaged life time of the 1-holes, except those exceeding 
the maximum filtration value (indicative of the average size of 
the 1-holes).



Applications
• Climate dynamics Topological markers for the four climatic attractors

Each attractor has a predominant trait 
that distinguishes it from the others in 
time windows of one thousand days.

Persistent homology methods do not 
allow the topological structure of each 
attractor to be condensed into a single 
representative cell complex. 

Although persistence diagrams offer a 
less precise topological 
characterization, they mark a path 
toward the construction of cell 
complexes that represent the 
topological structure of each climatic 
attractor, using the markers as a guide.

https://web.dm.uba.ar/files/tesis_lic/2023/Salvagni.pdf



Templex



Templex
• Why and how was it conceived? 

Spiral Rössler attractor Funnel Rössler attractor

Homologies cannot distinguish between two different attractors produced by the Rössler
dynamical system with different parameter values (spiral Rossler attractor with a =
0.343295 on the left and the funnel Rössler attractor with a = 0.492 on the right).



The template does distinguish between both: the spiral Rössler attractor has two strips (0, 1), while the funnel 
Rössler attractor has three strips (0,1,2). 
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Templex
• Why and how was it conceived? 

The spiral and funnel Rössler attractors are homologically equivalent: they have both one hole in the centre
(H1 = Z1). 

But there is more information in a cell complex than the one contained in its homology groups… for instance, 
the joining lines! They can be detected as the 1-cells shared by at least three 2-cells (thick lines). 
Notice that the recipe to scotch the cell complexes is different.



But there is something else that is very important and that is
missing in a cell complex representing a branched manifold.

This is the flow or, in other words, time!

Homologies do not consider the action of the flow on the cell
complex…

In order to take the flow on the complex into account, the cell
complex will be endowed with a directed graph that prescribes
the flow direction between its highest-dimensional cells.
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• Why and how was it conceived? 



Templex

The thick line 
indicates the joining 
1-cell <0, 1>, which 
will be used to 
identify:

q ingoing nodes 
(squares) 

o outgoing nodes 
(circles)

in the digraph. 

• Why and how was it conceived? How is it computed? 



T(R)=(K(R),G(R)) T(R3)=(K(R3),G(R3)) 

Stripexes in T(R):
Stripexes in T(R3):

twistedtwisted

Templex

Spiral Rössler attractor Funnel Rössler attractor

• Why and how was it conceived? How is it computed? 



T(L)=(K(L),G(L)) 

Four stripexes in T(L):

weak 
cycles

The weak cycles that form the two twisted stripexes 
correspond to a single generatex of order 2.

This is consistent with the Lorenz template that has 
four stripexes and a Poincaré section divided into 
two components. 

strong
cycles

Templex
• Example I: Lorenz 63 example (autonomous)



Templex
• Example II: 4D Deng 94 attractor (autonomous)

A four-dimensional system designed from a 
three-dimensional system proposed by Deng. 

A solution to this system was already investigated with a BraMAH cell complex (but not with a templex) in 
Sciamarella & Mindlin, 2001. 



The BRAMAH complex K(4D) is built from a cloud of 24999 
points (once the transient regime is completed). 

The highest-dimensional cells of this complex are the 3-
cells γi , and the 2-cells σi which are not the border of any 3-
cell.

The complex has one 0-hole, five 1-holes and no 2-holes (no 
enclosed empty cavity). 

The joining lines are highlighted in colour. They are the 1-cells 
shared by a set of at least three k-cells, with k=2,3. 

The green and red lines form the main joining locus in the 
bottom scroll and the second one (violet) is in the upper part 
of the attractor according to our plot. 

Templex
• Example II: 4D Deng 94 attractor (autonomous)



The dotted blue line is a splitting line between one 3-cell and 
three 2-cells. 

The fact that the ingoing cell is of dimension 3 allows us to 
preserve the determinism at this splitting locus. 

This is a feature that we had not observed for three-
dimensional systems.

The simplest deterministic representation of the flow around 
this splitting locus is to consider that three strips—close to 
each other as in a foliation within the 3-cell— are sent away 
from each other.

This specificity will require a novel element for drawing a 
template.

Templex
• Example II: 4D Deng 94 attractor (autonomous)



Digraph on the BRAMAH complex constituting the templex. Ingoing and outgoing nodes are squared and 
circled, respectively. Splitting loci are not considered for stripex computation.

Three order-1 cycles:

Two order-2 cycles:

Five stripexes in T(4D)=(K(4D),G(4D)):

Templex
• Example II: 4D Deng 94 attractor (autonomous)



The four-dimensional attractor can be described with five stripexes, that is, with a 
five symbol dynamics. A paper model of the attractor is constructed, similar to the 
xyz projection of the system. 

The volume formed by the ten 3-cells of 
K(4D) is topologically equivalent to a 
solid (filled) torus. 

Homologies of a filled torus are 
equivalent to those of a cylinder, and 
so, the paper model is homologically 
equivalent to K(4D).

A direct template can be drawn for the 
four-dimensional system from the 
templex analysis. 

Templex
• Example II: 4D Deng 94 attractor (autonomous)



The templex dissects the phase-space structure into several identifiable components, connected at certain 
joints. Closed non-redundant pathways are cell sequences encoded by the digraph. 

The templex properties: some describe the spatial structure alone (homology groups, torsion groups, weak 
boundaries) and a subset for the topology of flow along the structure (generatex, stripex, twists). 

Templex
• Example II: 4D Deng 94 attractor (autonomous)



The most simple AMOC 
model has the same set of 
stripexes as the spiral Rössler 
attractor. 

Let us now consider an autonomous 3D model of the Atlantic Meridional Overturning Circulation (AMOC) : Sévellec et 
Fedorov, J. Clim., 2014) reproducing the chaotic dynamics of the glacial periods.

K(AMOC3D) has two 1-holes
T(AMOC3D) has two stripexes.

Work in progress with C. Mosto et J. Ruiz (IFAECI) en collaboration avec F. Sévellec et al. (Brest)

Stripexes in T(AMOC3D)

twisted

T(AMOC3D) = (K(AMOC3D), G(AMOC3D))

Templex
• Example III: 3D AMOC example (autonomous)



Let us consider the imposed temporal changes in the position of the edge of sea ice (ESI) to account for the chaotic behavior 
during the glacials and for the stable ocean conditions during the interglacials.. FBT and FNS are the Fourier projections of 
surface salt flux.

Simulated variations in the overturning rate (−Ω) for two slightly different sets of initial conditions (solid black and red 
dashed lines) for a single glacial–interglacial cycle. 

The grey sawtooth line indicates the imposed temporal changes in the position of the edge of sea ice (ESI). 

The four vertical lines indicate the freezing times (t0) used later to compute the Pullback attractor (PBA) [Ghil et al, 2008 ; 
Chekroun et al, 2011].

Templex
• Example IV: Unstable AMOC (non autonomous)



Templex
• Example IV: Unstable AMOC (non autonomous)



4D solutions: we obtain a cloud of four-dimensional points. We construct the BraMAH complex from this point 
cloud. The four-dimensional point cloud does not have false neighbors: it is related to an atonomous writing of 
the AMOC equations and can be used to build a templex. 

Templex
• Example IV: Unstable AMOC (non autonomous)



K(AMOC4D) has 3-cells 
(basis: solid torus)

Three 1-holes in the BraMAH 
complex

3 stripexes 
(1 twisted)

T(AMOC4D) = (K(AMOC4D), G(AMOC4D))

What is the relationship between the PBA approach and the 4D Templex structure?

Templex

twisted

• Example IV: Unstable AMOC (non autonomous)



The templex can be considered as a single static object of higher dimension, combining all the « parts » of the 
structure observed in the snapshot sequence in a PBA approach as a fonction of (t0,t). 

Working in higher dimensions may provide an alternative to working with the PBA approach. 

Templex
• Example IV: Unstable AMOC (non autonomous)



Random Templex

The topological characterization of noise-driven chaos is a 
challenging issue that is crucial in the understanding of 
complex systems, where part of the dynamics remains 
unresolved and is modelled as noise.

While additive noise in a system of equations will blur the 
topological structure, multiplicative noise may radically 
change it [Chekroun et al, 2011]. 

[Charó et al, 2021] extended the concept of a branched 
manifold to account for the integer-dimensional set in 
phase space that robustly supports the system’s invariant 
measure at each instant. 

Such a branched manifold, however, does not contain any 
information about the future or the past of the invariant 
measure. The branched manifold is now itself time-
dependent.

• How is it defined? 



Random Templex

One cell complex per snapshot! 

• How is it defined? 



Random Templex

How can we track changes between different cell complexes? Tracking holes! 

• How is it defined? 

For a random attractor, the digraph does not connect cells, but holes of successive time cell complexes. 



Random Templex

A random 2-templex R = (K, D) is an indexed 
family K of BraMAH 2-complexes and a 
digraph D. 

The digraph D is presented as a tree plot on the 
left. It has 15 singly connected components, 
each of which tells the story of one or several 
holes. 

Tipping points can be identified and classified 
using the digraph. 

They are highlighted in different colours 
according to the type of event: creation in 
green, destruction in black, splitting in red, 
merging in blue, and merging followed 
immediately by splitting in magenta. 

• How is it defined? 



Random Templex

Merging event: a type of topological tipping point

• How does it encode topological tipping points? 



Random Templex

Splitting event: a type of topological tipping point

• How does it encode topological tipping points? 



Random Templex

A constellation C is the set of 
immersed nodes and edges 
forming a connected 
component in the digraph D of a 
random templex. 

Each node is immersed in the 
phase space using the 
coordinates of the 
corresponding hole’s barycenter. 

A better picture of how the holes are evolving in the system’s phase space can be gained by using the coordinates 
of the barycenters of the holes for an embedding of D into this space. We call the embeddings of D’s distinct 
connected components into phase space constellations.

• How does it encode topological tipping points? 



Concluding remarks

In this talk, we introduce novel tools into algebraic topology and used them to provide insights into the 
behaviour of deterministic and stochastically perturbed chaotic attractors.

• Attractors in state space can be studied using Branched Manifold Analysis through Homologies: this strategy 
constructs a cell complex from a cloud of points in state space and uses homology groups to characterize its 
topology. 

• The approach, however, does not consider the action of the flow on the cell complex. The procedure is here 
extended to take this fundamental property into account, as done with templates. 

• The goal is achieved endowing the cell complex with a directed graph that prescribes the flow direction 
between its highest-dimensional cells. 

• The tandem of cell complex and directed graph, baptized templex, is shown to allow for a sophisticated 
characterization of chaotic attractors and for an accurate classification of them.

• In a random templex, there is one complex per snapshot of the random attractor and the digraph connects 
the generators or “holes” of successive cell complexes. 

• Tipping points appear in a random templex as drastic changes of its holes in motion, namely their birth, 
splitting, merging, or death. 
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