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Introduction and results

Context

Let S be a smooth closed orientable surface of genus at least 2. The moduli space of complex structures on S modulo diffeomorphisms isotopic to the identity is famously known as the Teichmüller space. The Poincaré-Koebe uniformization theorem implies that the Teichmüller space also describes all marked hyperbolic structures on S. The holonomy representation of a hyperbolic structure leads to a discrete and faithful representation π 1 S → PSL 2 (R), thus allowing for an algebraic realization of the Teichmüller space of S as a connected component of the character variety X (π 1 S, PSL 2 (R)). Generalizing the uniformization theorem to higher rank Lie groups is the main motivation of this work.

Representations of fundamental groups and their links to geometric structures are captured by the character variety. For a Lie group G, the G-character variety X (π 1 S, G) = Hom(π 1 S, G)/G is defined as the space of isomorphism classes of completely reducible representations, where G acts by conjugation.

Higher Teichmüller theory concerns the study of connected components of character varieties for more general Lie groups than PSL 2 (R) which share analogous properties to the classical Teichmüller space. The first step in this direction was taken by Hitchin in [START_REF] Hitchin | Lie groups and Teichmüller space[END_REF], where he found a connected component of χ(π 1 S, PSL n (R)) (and more generally for any adjoint group of the split real form of a complex simple Lie group) which is contractible, and naturally contains a copy of Teichmüller space. Representations parametrized by these components, now most often called Hitchin components, were later shown to be discrete and faithful [START_REF] Fock | Moduli spaces of local systems and higher Teichmüller theory[END_REF][START_REF] Labourie | Anosov flows, surface groups and curves in projective space[END_REF].

The mapping class group Mod(S) of the surface S, that is, the group of all orientation-preserving diffeomorphisms of S modulo the ones which are isotopic to the identity, acts naturally on the Teichmüller space by changing the marking. This action is properly discontinuous and the resulting quotient is the moduli space of Riemann surfaces with the same topological type as S. Similarly, Mod(S) acts on any character variety by precomposition.

Fixing a complex structure on S, the nonabelian Hodge correspondence identifies χ(π 1 S, G), for any reductive Lie group G, with the moduli space of polystable G-Higgs bundles. The nonabelian Hodge correspondence is very effective in providing complex analytic descriptions of character varieties X (π 1 S, G), their Hitchin components, and other Teichmüller space-like components, now called positive components. However, a major drawback in this correspondence is that one has to fix a complex structure on S, and so Mod(S) does not act on the moduli of Higgs bundles.

In [START_REF] Labourie | Cross rations, Anosov representations and the energy functional on Teichmüller space[END_REF], Labourie proposed a remedy which, if generally applicable, could provide a canonical way to associate a complex structure on S to a given point in the Hitchin component. This analytic method involving harmonic maps and minimal surfaces has received considerable attention and has proven to be effective in several cases of higher Teichmüller spaces but only for groups of rank 2; we refer to [START_REF] Labourie | Cyclic surfaces and Hitchin components in rank 2[END_REF] and [START_REF] Collier | The geometry of maximal representations of surface groups into SO 0 (2, n)[END_REF] for general accounts on split real simple Lie groups of rank 2 and Hermitian Lie groups of rank 2 respectively. Yet, it recently became clear that this approach via minimal surfaces towards establishing a canonical choice of complex structure on S and thus obtaining a mapping class group equivariant parametrization of the associated higher Teichmüller spaces in terms of holomorphic data, fails for groups of rank greater than 2. In [START_REF] Sagman | Unstable minimal surfaces in symmetric spaces of noncompact type[END_REF], Sagman and Smillie demonstrated the existence of numerous equivariant minimal surfaces for certain Hitchin representations ρ ∶ π 1 (S) → G, when G is a split real semisimple Lie group of rank at least 3, building on the breakthrough accomplished by Marković [START_REF] Marković | Non-uniqueness of minimal surfaces in a product of closed Riemann surfaces[END_REF], who applied his New Main Inequality to get an analogous statement in the case of PSL 2 (R) 3 .

A new approach towards realizing an equivariant parametrization of the Hitchin components was proposed by Vladimir Fock and the third author [START_REF] Fock | Higher complex structures[END_REF] in terms of newly introduced geometric structures called higher complex structures. These were originally defined using the punctual Hilbert scheme of the plane and a moduli space of higher complex structures was defined in [START_REF] Fock | Higher complex structures[END_REF] as a quotient by Hamiltonian diffeomorphisms of the cotangent bundle of the surface preserving the zero section S ⊂ T * S setwise. Such diffeomorphisms were called higher diffeomorphisms and the resulting quotient space, called the geometric Hitchin space and denoted by T n (S), recovers the classical Teichmüller space when n = 2. Moreover, this space is a manifold of complex dimension equal to that of the Hitchin component for G = PSL 2 (R) [START_REF] Fock | Higher complex structures[END_REF]Theorem 2]. Its cotangent bundle can be parametrized by a set of tensors on the underlying surface, satisfying a certain compatibility condition called µ-holomorphicity [8, Theorem 3]. The main conjecture suggested in [START_REF] Fock | Higher complex structures[END_REF] was that the geometric Hitchin space is canonically diffeomorphic to the Hitchin component.

In [START_REF] Nolte | Canonical Maps from Spaces of Higher Complex Structures to Hitchin Components[END_REF], Nolte introduced the notion of harmonic representatives for higher complex structures and studied in detail the group of higher diffeomorphisms. There, the geometric Hitchin space is denoted by T n (S) and is called the degree-n Fock-Thomas space. Moreover, a canonical diffeomorphism from T 3 (S) to the PSL 3 (R)-Hitchin component was constructed. This construction is, in fact, Mod(S)-equivariant. More generally, the space T n (S) is diffeomorphic to a ball of complex dimension (g -1)(n 2 -1), meaning that it is abstractly diffeomorphic to the Hitchin component; see [START_REF] Fock | Higher complex structures[END_REF]Theorem 2] and [START_REF] Nolte | Canonical Maps from Spaces of Higher Complex Structures to Hitchin Components[END_REF]Corollary 1.7]. Nolte's method, however, for getting this canonical Mod(S)equivariant diffeomorphism uses the affine spheres perspective on the PSL 3 (R)-Hitchin component by Labourie [START_REF] Labourie | Flat projective structures on surfaces and cubic holomorphic differentials[END_REF] and Loftin [START_REF] Loftin | Affine spheres and convex RP n -manifolds[END_REF], and so the technique does not directly apply for higher rank.

In this article, we introduce a gauge-theoretic realization of higher complex structures which allows us to make progress on their link to character varieties, in particular to Hitchin components. In addition, central associated notions such as higher diffeomorphisms and the µ-holomorphicity condition become more transparent.

We introduce a new type of object (P, Φ, σ), that we call G-Fock bundle, consisting of a smooth principal G-bundle P together with an adjoint-valued 1-form Φ, called a Fock field, that satisfies certain conditions. In this triple, σ is an involution on P generalizing the notion of a symmetric pairing on a vector bundle. This notion is similar to a G-Higgs bundle, with the crucial difference that it does not involve fixing a priori any complex structure on the underlying surface S. Isomorphism classes of PSL n (C)-Fock bundles are equivalent to higher complex structures of order n. A G-Fock field Φ as above naturally induces a complex structure on S. Varying the Fock field also varies this complex structure.

We then set to establish a passage from G-Fock bundles to connections analogously to the nonabelian Hodge correspondence. Our theory associates to a Fock bundle (P, Φ, σ) equipped with a compatible hermitian structure ρ, a connection ∇ = Φ+d A +Φ * , where Φ * = -ρ(Φ) is the hermitian conjugate of Φ and d A is the unique unitary σinvariant connection satisfying d A Φ = 0. We conjecture that there exists a hermitian structure such that ∇ is flat.

The flatness equation for ∇ is similar to Hitchin's self-duality equations over a Riemann surface [START_REF] Hitchin | The self-duality equations on a Riemann surface[END_REF] and, in fact, coincides with Hitchin's equation in the most trivial examples, the so-called Fuchsian locus (Fock bundles coming from uniformizing Higgs bundles). Moreover we prove the conjecture in a neighborhood of the Fuchsian locus. For the family of flat G-Fock bundles, we show that the monodromy of the connection is always in the split real form of G.

Rudiments of the approach towards establishing a passage to a canonical family of flat connections have appeared in the previous articles [START_REF] Thomas | Higher complex structures and flat connections[END_REF][START_REF] Thomas | Differential Operators on Surfaces and Rational WKB Method[END_REF] and [START_REF] Thomas | Generalized punctual Hilbert schemes and g-complex structures[END_REF] by the third author. In particular, it was shown in [START_REF] Thomas | Higher complex structures and flat connections[END_REF] that the cotangent bundle of the moduli space of higher complex structures can be included into a 1-parameter family of spaces whose sections are flat formal connections. The theory of g-complex structures was introduced in [START_REF] Thomas | Generalized punctual Hilbert schemes and g-complex structures[END_REF], extending the case of sl n (C) to a general complex simple Lie algebra g, and constitutes the starting point for our definition of G-Fock bundles.

The introduction of Fock bundles and their relationship to families of connections points towards a broader framework to study character varieties, which includes both the theory of Higgs and Fock bundles. Fixing a complex structure on S, one may consider a G-principal bundle P on S, together with a connection d A and a field Φ ∈ Ω 1 (S, g P ) satisfying [Φ ∧ Φ] = 0, d A (Φ) = 0 and with fixed conjugacy class of Φ 0,1 . Here we used the complex structure to decompose Φ into Hodge types. Under this setup, then whenever Φ 0,1 = 0, the field Φ is holomorphic with respect to the holomorphic structure on P given by d 0, 1 A , thus leading to the theory of Higgs bundles. On the other hand, whenever Φ 0,1 is principal nilpotent, this leads to our theory of Fock bundles. We hope that to such data, one can always associate a flat connection, in analogy to the nonabelian Hodge correspondence. Alternative conditions for the conjugacy class of Φ 0,1 can possibly lead to alternative approaches to character varieties, yet the case when Φ 0,1 is principal nilpotent describes the only possible conjugacy class which stays invariant under coordinate change on S. In other words, the approach via Fock bundles within this broader framework is the only one which is independent of the complex structure on S.

Results and structure

We now make the statements appearing in the article more precise. Throughout the whole paper we denote by S a smooth closed connected orientable surface of genus at least 2 and by G a complex simple Lie group with Lie algebra g. The main new object we introduce is the notion of a G-Fock bundle. We restrict to the case G = SL n (C) here for simplicity and give the full definition in Section 3.

Definition (Definition 3.1). An SL n (C)-Fock bundle over S is a triple (E, Φ, g) where E is a complex vector bundle over S with fixed volume form, non-degenerate symmetric pairing g ∶ E × E → C, where C denotes the trivial line bundle, and

Φ ∈ Ω 1 (S, sl(E)) satisfying 1. Φ ∧ Φ = 0, 2. Φ(v)(z) is principal nilpotent for all z ∈ S and all vectors v ∈ T z S. 3. Φ is g-self-adjoint.
We refer to Φ as the Fock field. This generalizes easily to general G: a G-Fock bundle is a principal G-bundle P with a certain involution σ playing the role of the symmetric pairing, and an adjoint-valued 1-form Φ satisfying the analogous three properties above. An important example of G-Fock bundles, the so-called Fuchsian locus, arises from the underlying smooth principal bundle to the uniformizing G-Higgs bundle when we equip S with a complex structure (see Section 3.2). The link to higher complex structures is given by the following: Proposition A (Proposition 3.5). An SL n (C)-Fock bundle induces a higher complex structure of order n on S. Isomorphism classes of PSL n (C)-Fock bundles are equivalent to higher complex structures.

In Subsection 3.3 we describe variations of Fock bundles via the cohomology of a certain chain complex. In particular, we prove that a Fock bundle has no infinitesimal automorphisms, hence is stable in that sense.

The main result of Section 4 is the construction of a canonical connection associated to a Fock bundle equipped with a compatible positive hermitian structure. A hermitian structure ρ is an involution on P associated to the compact real form of G. It is said to be compatible with a Fock bundle if ρ and σ commute. The property of being positive is a certain open condition, see Definition 4.10 for the precise statement.

Theorem B (Theorem 4.6). For a G-Fock bundle (P, Φ, σ) equipped with a compatible, positive hermitian structure ρ, there is a unique unitary, σ-invariant connection d A satisfying d A Φ = 0. This result is analogous to the existence of a Chern connection on a holomorphic bundle induced by a hermitian structure. Thus, to the data (P, Φ, σ, ρ) as above we can associate a connection Φ + d A + Φ * , where Φ * = -ρ(Φ), which preserves a split-real structure, and has curvature

F (A) + [Φ ∧ Φ * ]. (1.1) 
Our main conjecture states:

Conjecture C (Conjecture 4.14). For a G-Fock bundle (P, Φ, σ), there exists a unique compatible positive hermitian structure ρ such that the associated connection Φ+d A +Φ * is flat, in other words, such that

F (A) + [Φ ∧ Φ * ] = 0.
This would give a map from the space of Fock bundles to the space of Hitchin representations. The conjecture is true for examples of Fock bundles from the Fuchsian locus obtained by the nonabelian Hodge correspondence (the uniformizing Higgs bundles).

Section 5 analyzes the conjecture near the Fuchsian locus. The following result provides strong evidence towards the validity of the conjecture in general: Theorem D (Theorem 5.2). Let (P, Φ, σ) be a G-Fock bundle equipped with a compatible positive hermitian structure ρ. The derivative of the map from the Aut(P, σ)conjugacy class of Φ to the curvature of the resulting connection

F (A) + [Φ ∧ Φ * ] is an elliptic isomorphism.
We then use the implicit function theorem in Section 5.2 to conclude that the space of solutions to Equation (1.1) is a Banach manifold which maps locally diffeomorphically to the space of Fock bundles. In particular, we get a map from a neighborhood of the Fuchsian locus in the space of higher complex structures to the Hitchin component. In [START_REF] Nolte | Canonical Maps from Spaces of Higher Complex Structures to Hitchin Components[END_REF] it is shown that on each higher diffeomorphism orbit there is a harmonic representative unique up to isotopy. By restricting our map to this slice, we get the following:

Theorem E (Theorem 5.6).
There is an open neighborhood of the Fuchsian locus in the moduli space T n (S) of higher complex structures of order n, which has a canonical map to the PSL n (R)-Hitchin component, via solution of Equation (1.1).

It is expected that the restriction to harmonic higher complex structures is not actually necessary because our map to the character variety should be constant along higher diffeomorphism orbits. In Section 6, we analyse the action of special λ-dependent gauge transformations on a family of flat connections of the form λ -1 Φ + d A + λΦ * where λ ∈ C * is a parameter. In the case of SL n (C), these special gauge transformations relate to higher diffeomorphisms: Theorem F (Theorem 6.4). The variation on an SL n (C)-Fock field Φ induced by an infinitesimal gauge transformation λ -1 η with η = Φ(v 1 )⋯Φ(v k ) is equivalent to the infinitesimal action of the Hamiltonian H = v 1 ⋯v k on the higher complex structure induced by Φ. This theorem gives a clear gauge-theoretic meaning to higher diffeomorphisms, which in the theory of higher complex structures are Hamiltonian diffeomorphisms of T * S preserving the zero-section S ⊂ T * S setwise. This realization of higher diffeomorphisms as gauge transformations, together with our ellipticity result gives the following:

Proposition G (Proposition 6.5). A differentiable family Φ t of solutions to Equation (1.1) for G = SL n (C) which induces a family of higher diffeomorphic higher complex structures maps to a constant path of representations.

Together with the main Conjecture C, this would give the desired map from T n (S) to the PSL n (R)-Hitchin component, without the need for harmonic representatives.

In the final Section 7 we consider G-Fock bundles (P, Φ, σ, ρ) equipped with a hermitian structure ρ not necessarily commuting with σ. We parametrize the space of unitary connections d A satisfying d A Φ = 0 by so-called covectors. In the case of SL n (C), covectors can be identified with cotangent vectors to the space of higher complex structures. We conjecture that we can still solve the equation F (A) + [Φ ∧ Φ * ] = 0 for small and µ-holomorphic covectors and that the monodromies of the flat connections Φ + d A + Φ * describe a tubular neighborhood of the G-Hitchin component inside the complex character variety χ(π 1 S, G). This picture generalizes the work of Donaldson [START_REF] Donaldson | Moment maps in differential geometry[END_REF] and Trautwein [START_REF] Trautwein | The hyperkähler metric on the almost-Fuchsian moduli space[END_REF] on the space of almost-Fuchsian representations in the SL 2 (C)-case. The µ-holomorphicity condition from the theory of higher complex structures gets a precise gauge-theoretical interpretation:

Theorem H (Theorem 7.13). For an SL n (C)-Fock bundle, the condition F (A) ∈ Im(ad Φ ) ⊂ Ω 2 (S, g P ) is equivalent to the µ-holomorphicity condition (2.2).
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Preliminaries

We gather necessary material for the main part of the text. We review higher complex structures in Subsection 2.1, the nonabelian Hodge correspondence in 2.2, the Lie theoretic background in 2.3 (especially principal nilpotent elements) and involutions on principal G-bundles in 2.4. Part of the material in the Lie-theoretic section seems new, the rest is well-known.

Higher complex structures

Motivated by the aspiration to describe components of real character varieties as moduli spaces of geometric structures, Vladimir V. Fock and the third author introduced higher complex structures [START_REF] Fock | Higher complex structures[END_REF] and conjectured that they parametrize PSL n (R)-Hitchin components. These were, in turn, generalized to g-complex structures where g is a complex simple Lie algebra in [START_REF] Thomas | Generalized punctual Hilbert schemes and g-complex structures[END_REF]. We give here a brief account, concentrating on the properties we need in the subsequent sections.

Definitions

Let S be a closed orientable surface of genus at least 2. A complex structure on S is equivalent to an almost complex structure, that is, an automorphism J of T S satisfying J 2 = -id. The complexified tangent bundle then decomposes as

T C S = T 1,0 S ⊕ T 0,1 S,
where T 1,0 S and T 0,1 S are pointwise the eigendirections of J. Since T 1,0 S is the complex conjugate of T 0,1 S, the complex structure is uniquely encoded by T 1,0 S which is a nonreal direction of T C S. This in turn is uniquely encoded by a certain ideal I in Sym(T C S) generated by T 0,1 S and (T 1,0 S) 2 . Geometrically, Sym(T C S) is the ring of functions on T * C S which are polynomial on fibers, and I cuts out an infinitesimal thickening of the zero section of T C S in the direction of T 1,0 S.

To describe this equivalence more explicitly, fix a reference complex structure on S and local coordinates (z, z). Denote by (p, p) the linear coordinates on T * C S corresponding to vector fields ∂ z and ∂ z . Any other complex structure can be then described by an ideal I locally of the form

I = ⟨p 2 , p -µ(z, z)p⟩,
where µ is known as the Beltrami differential which satisfies |µ| ≠ 1. The holomorphic cotangent bundle of the new complex structure is defined by the equation p = µ(z, z)p. Definition 2.1. A higher complex structure of order n (or of rank n -1) on S is a special ideal I in Sym(T C S) locally of the form

I = ⟨p n , -p + µ 2 (z, z)p + µ 3 (z, z)p 2 + ... + µ n (z, z)p n-1 ⟩, (2.1) 
where µ 2 = µ is the usual Beltrami differential and µ ℓ for ℓ = 3, ..., n are called higher Beltrami differentials (see [START_REF] Fock | Higher complex structures[END_REF]Proposition 1]).

Globally, µ ℓ is a smooth section of K 1-ℓ ⊗ K where K denotes the canonical bundle. A usual complex structure is a higher complex structure of order 2, i.e. of rank 1.

An important feature of these structures is the forgetful map, which associates to a higher complex structure of order n a structure of order n -1 by forgetting the last Beltrami differential µ n . In particular, any higher complex structure induces a complex structure on S.

Remark. The space of higher complex structures as defined above has two connected components. A higher complex structure induces a complex structure which in turn induces an orientation on S. This orientation coincides with the one induced from the reference complex structure iff |µ 2 | < 1. Changing the reference complex structure to the complex conjugate one changes µ 2 to 1/μ 2 which is of norm strictly bigger than 1.

More generally, let g be a complex simple Lie algebra. An element x ∈ g is called principal nilpotent if ad x is nilpotent and dim Z(x) = rk g, where Z(x) = {y ∈ g | [x, y] = 0} denotes the centralizer (see also Section 2.3). Definition 2.2 (Definition 4.1 in [START_REF] Thomas | Generalized punctual Hilbert schemes and g-complex structures[END_REF]). A g-complex structure on S is a G-conjugacy class of fields Φ ∈ Ω 1 (S, g) locally of the form Φ = Φ 1 (z, z)dz + Φ 2 (z, z)dz such that Φ 1 is principal nilpotent and Φ 2 ∈ Z(Φ 1 ) commutes with Φ 1 satisfying a certain inequality explained below.

There is a unique linear combination of the form µ 2 Φ 1 -Φ 2 which is not principal nilpotent [START_REF] Thomas | Generalized punctual Hilbert schemes and g-complex structures[END_REF]Proposition 2.21]. The inequality we impose is |µ 2 | < 1. This allows to identify µ 2 with a Beltrami differential of a complex structure on S. Therefore a g-complex structure induces a complex structure on S.

For g = sl n (C) we get the notion of higher complex structure as follows: principal nilpotent elements in g form a single conjugacy orbit. So we can fix a principal nilpotent element F ∈ sl n (C) and use the gauge freedom to fix Φ 1 = F . Using the standard representation of sl n (C) on C n , the centralizer of F in g is generated by all polynomials in F without constant term. Hence the ideal of polynomials P ∈ C[p, p] such that P (Φ 1 , Φ 2 ) = 0 (which makes sense since Φ 1 and Φ 2 commute) is of the form (2.1).

Moduli space

For complex structures, the associated moduli space is the Teichmüller space, where complex structures are considered modulo diffeomorphisms of S isotopic to the identity. For higher complex structures, one needs to mod-out by a larger group in order to get a finite-dimensional moduli space. We restrict exposition to the case g = sl n (C) here. For g of classical type, see [START_REF] Thomas | Generalized punctual Hilbert schemes and g-complex structures[END_REF]Section 4]. For general complex simple g, the moduli space of g-complex structures is not constructed yet. Definition 2.3 (Definition 3 in [START_REF] Fock | Higher complex structures[END_REF]). A higher diffeomorphism of a surface S is a hamiltonian diffeomorphism of T * S preserving the zero-section S ⊂ T * S setwise. The group of higher diffeomorphisms is denoted by Ham 0 (T * S).

Diffeomorphisms of T * S fixing the zero-section act on the completed symmetric algebra Ŝym(T C S) of power series. The map from ideals in Sym(T C S) to ideals in Ŝym(T C S) is injective on those which contain some power of the ideal (T C S) ⊂ Sym(T C S). This includes higher complex structures, so we can just as well view higher complex structures as ideals in Ŝym(T C S) where diffeomorphisms naturally act. A precise study of the space Ham 0 (T * S) and the action by diffeomorphisms appears in [START_REF] Nolte | Canonical Maps from Spaces of Higher Complex Structures to Hitchin Components[END_REF]Section 7].

Definition 2.4. The moduli space of higher complex structures of order n, denoted by T n (S), is the space of higher complex structures of order n, denoted by M n (S), modulo higher diffeomorphisms.

The Fuchsian locus in M n (S) consists in those higher complex structures with trivial higher Beltrami differentials. The Fuchsian locus in T n (S) is the image under the projection M n (S) → T n (S).

This moduli space is finite-dimensional of dimension (n 2 -1)(2g -2), contractible and allows a forgetful map T n (S) → T n-1 (S), see [START_REF] Fock | Higher complex structures[END_REF]Theorem 2] and [START_REF] Nolte | Canonical Maps from Spaces of Higher Complex Structures to Hitchin Components[END_REF]Theorem 1.1]. The Fuchsian locus inside T n (S) is a copy of Teichmüller space, which is T 2 (S). The main conjecture within this theory concerns the existence of a canonical diffeomorphism between T n (S) and the PSL n (R)-Hitchin component which is equivariant with respect to the natural mapping class group action. This conjecture has been proven for n = 3 by Nolte in [START_REF] Nolte | Canonical Maps from Spaces of Higher Complex Structures to Hitchin Components[END_REF] using techniques which are special to n = 3 and are analogous to a positive resolution to the Labourie Conjecture for n = 3 [START_REF] Labourie | Cross rations, Anosov representations and the energy functional on Teichmüller space[END_REF], but are known to fail for higher n (see [START_REF] Sagman | Unstable minimal surfaces in symmetric spaces of noncompact type[END_REF]).

Finally, we present the description of the total cotangent bundle T * T n (S).

Theorem 2.5 (Theorem 3 in [START_REF] Fock | Higher complex structures[END_REF]). The cotangent bundle T * T n (S) is an Ham 0 (T * S)equivalence class of tensors µ ℓ ∈ Γ(K 1-ℓ ⊗ K) and t ℓ ∈ Γ(K ℓ ) for ℓ = 2, ..., n satisfying

-∂t k +µ 2 ∂t k +kt k ∂µ 2 + n-k ∑ l=1 ((l+k)t k+l ∂µ l+2 + (l+1)µ l+2 ∂t k+l ) = 0. (2.2)
We refer to this condition as the µ-holomorphicity condition.

The tensors µ ℓ are the higher Beltrami differentials from (2.1). The tensors t ℓ describe the covector. For a trivial higher complex structure, that is, when µ k = 0 for all k ∈ {2, ..., n}, the condition simply reduces to ∂t k = 0. Thus, µ-holomorphicity can be seen as a generalization of the usual holomorphicity condition.

Nonabelian Hodge theory and twistor approach

Building on the fundamental theorems by Narasimhan-Seshadri and Eells-Sampson, nonabelian Hodge theory provides an abundance of methods that can be used for the study of character varieties via holomorphic techniques and Higgs bundles, as well as analytic techniques from the theory of harmonic maps. We provide a brief overview of this holomorphic viewpoint and the twistor space framework to character varieties.

The nonabelian Hodge correspondence

Let X be a compact Kähler manifold and let G be a connected complex reductive Lie group. For H ⊆ G a maximal compact subgroup of G, its complexification H C is isomorphic to G, and the Cartan decomposition for the corresponding Lie algebras g ∶= Lie(G) and h ∶= Lie(H) reads in this case as

g = h ⊕ ih.
A flat principal G-bundle (P, Θ) over X is equivalent to a reductive representation ρ ∶ π 1 (X) → G via the Riemann-Hilbert correspondence, for Θ a 1-form on P with values in g (a principal connection on P ). The flatness condition means that Θ satisfies the equation dΘ + 1 2 [Θ ∧ Θ] = 0. Since ρ is assumed to be reductive, Corlette's Theorem [START_REF] Corlette | Flat G-bundles with canonical metrics[END_REF] provides the existence of a ρ-equivariant harmonic map from the universal cover X of X to the associated symmetric space, f ∶ X → G/H.

An equivariant map from X to G/H is the same as a reduction of structure group of the principal G-bundle P to the maximal compact H. This means there is an H-bundle P H , and an H-equivariant map ι ∶ P H → P , and the flat connection ι * Θ on P H now splits as

ι * Θ = A + ψ,
where A is a connection on P H , and ψ descends to a 1-form on X with values in the bundle associated to P H via the isotropy representation Ad ∶ H → GL(ih). The flatness of the connection ι * Θ implies the two equations

F A + 1 2 [ψ ∧ ψ] = 0 d A ψ = 0,
and harmonicity of the map f gives the additional equation

d * A ψ = 0.
In the case when G = SL n (C), a reduction to a maximal compact is the same as a unit volume hermitian metric on the associated vector bundle. In the light of this equivalence, we call the special metric provided by Corlette's Theorem, a harmonic hermitian metric.

An application of the Siu-Sampson Theorem [25, Theorem 1] now gives that for a reduction of structure group as above, then the (0, 1)-part ∂P H of the connection A and the (1, 0)-part φ of the 1-form ψ satisfy the equations

∂2 P H φ = 0 , ∂P H φ = 0 , [φ ∧ φ] = 0.
The (0, 1)-form ∂P H defines a holomorphic structure on the C ∞ -principal bundle P H ; extending the structure group from H to H C we finally have:

Definition 2.6. For a compact Kähler manifold X and a connected complex reductive Lie group G, a G-Higgs bundle over X is a pair (P, φ), where P is a holomorphic principal G-bundle over X, and

φ ∈ Ω 1,0 (X, g P ) satisfying ∂P H φ = 0 and [φ ∧ φ] = 0.
Equivalently, we can be thinking of the Higgs field φ as a holomorphic section φ ∈ H 0 (X, g P ⊗ K), where g P denotes the adjoint bundle of P .

Remark. In the case when X is a compact Riemann surface, the two conditions ∂2 P H φ = 0 and [φ ∧ φ] = 0 are automatically satisfied.

Remark. When G ⊂ GL n (C), a G-Higgs bundle can be naturally interpreted as a Higgs bundle (E, Φ) in the original sense of Hitchin [START_REF] Hitchin | The self-duality equations on a Riemann surface[END_REF], [START_REF] Simpson | Higgs bundles and local systems[END_REF] together with some additional structure reflecting the structure of the group G. In particular, when G = SL n (C), an SL n (C)-Higgs bundle is described by a pair (E, Φ), where E is a holomorphic rank n vector bundle with trivial determinant and the Higgs field

Φ is a holomorphic section Φ ∈ H 0 (X, End(E) ⊗ K) with tr(Φ) = 0.
The flatness of the connection Θ finally gives the so-called Hitchin equation for the G-Higgs bundle (P, φ) constructed above,

F (A) + [φ ∧ φ * ] = 0, (2.3) 
where φ * denotes the hermitian adjoint coming from the Cartan involution of g extended to g P ⊗ Ω 1 (S). So far we have described the passage from a reductive representation to a Higgs bundle; the opposite direction is provided by Simpson's Theorem [START_REF] Simpson | Higgs bundles and local systems[END_REF] and its generalizations [START_REF] García-Prada | The Hitchin-Kobayashi correspondence, Higgs pairs and surface group representations[END_REF], which says that for a G-Higgs bundle (P, φ) with vanishing Chern classes, there exists a reduction of structure group of P such that Equation (2.3) holds if and only if (P, φ) is polystable. The polystability condition is a condition appropriately extending Mumford's stability condition for vector bundles, which is implemented in order to construct the moduli space of G-Higgs bundles, or Dolbeault moduli space, M Dol (X, G) as a GIT quotient. The nonabelian Hodge correspondence for a Kähler manifold X with underlying topological manifold M , therefore, is describing a bijection between this Dolbeault moduli space and the character variety, or Betti moduli space, M B (M, G) of reductive fundamental group representations:

Theorem 2.7 (Nonabelian Hodge correspondence). There is a real-analytic isomor- phism M Dol (X, G) ≅ M B (M, G).

The twistor approach

We now restrict attention to a compact Riemann surface X with underlying smooth surface S. For a polystable Higgs bundle ( ∂E H , φ) over X, Hitchin [START_REF] Hitchin | The self-duality equations on a Riemann surface[END_REF] interpreted Equation (2.3) together with the condition of holomorphicity for the Higgs field φ, ∂E H (φ) = 0, in terms of a set of three moment maps for the action of the unitary gauge group. Following symplectic reduction techniques, the moduli space M Hit of solutions to this set of equations was constructed as a hyperkähler quotient. This means that M Hit is a 4n-dimensional Riemannian manifold equipped with three covariant constant (with respect to the Levi-Civita connection) orthogonal automorphisms I, J and K of the tangent bundle T M Hit which satisfy the quaternionic identities

I 2 = J 2 = K 2 = IJK = -1.
In fact, any linear combination of the form

i(a, b, c) = aI + bJ + cK (2.4) satisfies i 2 = -id if and only if a 2 + b 2 + c 2 = 1. Taking λ = (a, b, c) ∈ CP 1
, we have a 1-parameter family of complex structures on M Hit . Then, using the Riemannian metric on M Hit , one gets a family of symplectic structures which, combined with the complex structures above, give a 1-parameter family of Kähler structures.

In the light of [START_REF] Hitchin | Hyper-Kähler metrics and supersymmetry[END_REF], the twistor approach allows one to incorporate all complex structures in the 1-parameter family described above into a single complex structure on a larger manifold, the twistor space of M Hit . As a smooth manifold, this is defined as the product manifold

Z = M Hit × CP 1 .
One can equip Z with a complex structure as follows: at a point (m, λ) of Z it is given by the pair (i λ , i 0 ), where i 0 denotes the standard complex structure on CP 1 and i λ is as in Equation (2.4), for λ = (a, b, c) ∈ CP 1 . This defines an almost-complex structure and it is not hard to prove the integrability. The projection p ∶ Z → CP 1 is holomorphic and each copy (m, CP 1 ) of the projective line is a holomorphic section of this projection, called a twistor line.

Using ideas of Deligne, Simpson [START_REF] Simpson | The Hodge filtration on nonabelian cohomology[END_REF] constructed the twistor space for M Hit as the moduli space of λ-connections which he called Hodge moduli space M Hod . In this broader picture, the Betti moduli space M B (S, G) and the Dolbeault moduli space M Dol (X, G) are two special fibers of the holomorphic fiber bundle M Hod → CP 1 . One possible way to describe Deligne's λ-connections is via what we call three-term connections, which is discussed next.

Three-term connections

For a complex reductive Lie group G, the work of Hitchin [START_REF] Hitchin | The self-duality equations on a Riemann surface[END_REF] and its extensions provide that the cotangent bundle of the space of holomorphic G-bundles on a given Riemann surface X can be mapped isomorphically to the space of families of connections of the form

A(λ) = λ -1 Φ + d A + λΦ * ,
where λ ∈ C * is a parameter, Φ a holomorphic Higgs field, Φ * the hermitian conjugate with respect to a harmonic metric h, and d A the associated Chern connection. In the Higgs bundle setting, this is a family of flat connections, the (0, 1)-part of the background connection d A defines a holomorphic structure on the bundle and the Higgs field Φ defines a cotangent vector to the space of holomorphic bundles. The family A(λ) gives a family of maps from the moduli space of flat G-connections to itself depending on the parameter λ ∈ C * . In the limit λ → 0 (resp. λ → ∞) these structures tend to the moduli space of G-Higgs bundles on X (resp. the complex conjugate X) with its Kähler structure.

Another important example of a 1-parameter family of flat connections depending on a parameter λ ∈ C * analogous to the Hitchin family of flat connections described above was given by Fock in [START_REF] Fock | Cosh-Gordon equation and quasi-Fuchsian groups[END_REF]. These flat connections are determined by solutions of the cosh-Gordon equation and describe a candidate for the twistor space of almost-Fuchsian representations. In the approach of [START_REF] Fock | Cosh-Gordon equation and quasi-Fuchsian groups[END_REF], the complex structure on the surface is a function of a background connection determined as above, and is not fixed once for all connections in the family as in Hitchin's case.

Principal nilpotent elements

Let g be a complex simple Lie algebra and G be a Lie group with Lie algebra g. For x ∈ g we denote by Z(x) = {y ∈ g | [x, y] = 0} its centralizer in g. We also denote by Z G (x) the centralizer of x in G and by Z(G) the center of G. Definition 2.8. An element of g is called regular if the dimension of its centralizer equals the rank of the Lie algebra. A regular nilpotent element is called principal nilpotent.

A more general statement holds about the dimension of the centralizer: for any x ∈ g, we have dim Z(x) ≥ rk(g) (see for example Lemma 2.1.15. in [START_REF] Collingwood | Nilpotent orbits in semisimple Lie algebra: an introduction[END_REF]). So the regular elements minimize this dimension. For g = sl n (C), a nilpotent element is principal nilpotent iff it has maximal rank, i.e. it is of rank n -1.

Theorem 2.9. [16, Corollary 5.5.] All principal nilpotent elements are conjugate under the adjoint action of the Lie group G.

For a principal nilpotent element F , its centralizer has properties quite analogous to a Cartan subalgebra (the centralizer of a regular semisimple element):

Theorem 2.10. For F a principal nilpotent element, its centralizer Z(F ) is abelian and nilpotent.

Using a limit argument one can show even more: for any element x ∈ g, there is an abelian subalgebra of Z(x) of dimension rk(g); see [START_REF] Kostant | The principal three-dimensional subgroup and the Betti numbers of a complex simple Lie group[END_REF]Theorem 5.7]. The nilpotency of Z(f ) can be found in [START_REF] Steinberg | Conjugacy Classes in Algebraic Groups[END_REF]Corollary in Section 3.7].

The Jacobson-Morozov lemma states that any non-zero nilpotent element F ∈ g can be included into an sl 2 -subalgebra, the image of an injective homomorphism from sl 2 (C) into g. An sl 2 -subalgebra is called principal if it contains a principal nilpotent element. It follows from Theorem 2.9 that all principal sl 2 -subalgebras are conjugate. Given any sl 2 -subalgebra, the Lie algebra g splits into irreducible sl 2 -modules. For a principal one, none of these modules is trivial and exactly one module is of dimension 3 (the principle sl 2 -subalgebra itself). Proposition 2.11. For a principal nilpotent element F ∈ g, we have Z(F ) ⊂ Im(ad F ).

To see this, include F into a principal sl 2 -subalgebra, decompose g into irreducible sl 2 -modules and use sl 2 -representation theory. The important point is that there is no trivial sl 2 -module.

Proposition 2.12. The sl 2 -subalgebras containing a given principal nilpotent F are acted on transitively by Z G (F ) ≅ exp(Z(F )) × Z(G) with stabilizer exp(F ) × Z(G). In particular, the set of sl 2 -subalgebras containing F is a torsor for the quotient group which is isomorphic to C rk(g)-1 . In particular, this space is contractible.

The structure of the centralizer Z G (F ) is described in Lemma 3.7.3 in [START_REF] Collingwood | Nilpotent orbits in semisimple Lie algebra: an introduction[END_REF]. It states that for a non-zero nilpotent element x the centralizer Z G (x) is a semidirect product between exp(Z(x) ∩ Im(ad x )), which is exp(Z(F )) for x = F by Proposition 2.11, and the centralizer of an sl 2 -subalgebra containing x, which in the principal case is Z(G).

A basis (F, H, E) of an sl 2 -subalgebra, satisfying the standard relations

[H, E] = 2E, [H, F ] = -2F and [E, F ] = H, is called an sl 2 -triple. Fix a principal sl 2 -triple (F, H, E).
To this triple, Hitchin [START_REF] Hitchin | Lie groups and Teichmüller space[END_REF] associates a Lie algebra involution σ 0 ∶ g → g as follows.

Using the decomposition of g into irreducible sl 2 -modules, the involution σ 0 is uniquely determined by negating all highest and lowest weight vectors [START_REF] Hitchin | Lie groups and Teichmüller space[END_REF]Proposition 6.1]. He also defines a compact real form ρ 0 ∶ g → g which extends

E ↦ -F, H ↦ -H, F, ↦ -E
and commutes with σ 0 . Finally, he shows that τ 0 ∶= σ 0 ρ 0 is a split real structure. In fact, σ 0 can be defined up to conjugation by inner automorphisms as the product of commuting split and compact real forms.

It will be useful to understand the set of involutions conjugate to σ 0 which negate a given principal nilpotent element.

Lemma 2.13. The collection of involutions σ conjugate to σ 0 which negate a given principal nilpotent F is acted on simply transitively by exp(Z(F )). In particular, this space is contractible.

Proof. Let σ, σ ′ be two such involutions which negate F . They differ by an inner automorphism:

σ ′ = σ○Ad γ where γ ∈ G. We see that Ad γ F = σσ ′ ⋅F = F , so γ ∈ Z G (F ). Since Z G (F ) ≅ exp(Z(F )) × Z(G)
, we see that exp(Z(F )) must act transitively. From this fact, we deduce Corollary 2.14 below, stating that σ negates the whole centralizer Z(F ). Hence it inverts exp(Z(F )). We have to check that if z ∈ exp(Z(F )) is different from the identity, then σ ○ Ad z ≠ σ. For X ∈ g we have:

σ(Ad z X) = Ad σ(z) σ(X) = Ad z -1 σ(X).
If this was always equal to σ(X), then z would be central, which contradicts the fact that it is the exponential of a nilpotent element.

Corollary 2.14. Any σ conjugate to σ 0 which negates F , actually negates all of Z(F ).

Proof. This is true for the involution σ of Hitchin's construction, and this property is unchanged under inner automorphisms by elements in exp(Z(F )).

Lemma 2.15. Let σ be an involution conjugate to σ 0 and let F ∈ g be principal nilpotent with σ(F ) = -F . Then there is a unique σ-invariant sl 2 -subalgebra containing F . Proof. Proposition 2.12 shows that exp(Z(F )) acts transitively on the space of sl 2subalgebras containing F . By Corollary 2.14, we know that σ inverts exp(Z(F )). The involution σ acts on the set of principal sl 2 -subalgebras containing F , intertwining the action of exp(Z(F )) with its negative. More explicitly, let p ⊂ g be a principal sl 2 -subalgebra containing F , and let z ∈ exp(Z(F )). Then:

σ(Ad z p) = Ad z -1 σ(p).
It will follow from this property that there is a unique fixed point of the action by σ, which we can construct as a kind of midpoint. Let z be the unique element of exp(Z(F )) such that Ad z 2 (p) = σ(p). Moreover,

σ(Ad z (p)) = Ad z -1 (σ(p)) = Ad z -1 (Ad z 2 (p)) = Ad z (p).
Therefore, Ad z (p) is an sl 2 -subalgebra fixed by σ. If there were two fixed subalgebras p, p ′ , then p ′ = Ad z p for some z. Such z satisfies σ(z) = z, thus is the identity.

Finally, we will need the following lemma: Lemma 2.16. For a principal nilpotent element F ∈ g and an element F ′ ∈ Z(F ), we have Im(ad F ′ ) ⊂ Im(ad F ).

Proof. By the Jacobson-Morozov lemma we can complete F into a principal sl 2 -triple (F, H, E). Choose a compact real form ρ such that E = -ρ(F ).

Let E ′ = -ρ(F ′ ). Since F ′ ∈ Z(F ) we get E ′ ∈ Z(E). The commutator Z(E) is abelian, hence we have Z(E) ⊂ Z(E ′ ).
With respect to the hermitian inner product tr(ρ(.).) on g, E and F are adjoint, and so are E ′ and F ′ . This implies that Im(ad F ) is the perp of ker(ad E ) = Z(E), and Im(ad ′ F ) is the perp of ker(ad

E ′ ) = Z(E ′ ). This concludes the proof since Z(E) ⊂ Z(E ′ ).

Involutions and reductions of structure group

There are three basic structures often put on a complex vector bundle: a hermitian structure, a symmetric pairing, and a real structure. In this section we explain precisely how to generalize these notions to principal G-bundles for connected complex simple G.

Fix an antiholomorphic involution ρ 0 ∶ G → G whose fixed point locus is a maximal compact subgroup, and another commuting antiholomorphic involution τ 0 whose fixed point locus is a split real subgroup. Call their composition σ 0 ∶= ρ 0 τ 0 . These involutions induce, (and are determined by) anti-linear involutions of the lie algebra g which we will refer to by the same symbols.

Remark. The involution σ 0 can equivalently be obtained by Hitchin's construction using a principal sl 2 -triple [14, Proposition 6.1]. Definition 2.17. Let G be a group, let ϵ 0 ∶ G → G be an involution, and let P be a principal G-bundle on a manifold M . An ϵ 0 -structure on P is an involution ϵ ∶ P → P such that ϵ(p.g) = p.ϵ 0 (g) ∀ p ∈ P, g ∈ G.

An ϵ 0 -structure on a G-bundle P → M is equivalent to a reduction of structure group of P from G to the group of fixed points G ϵ 0 . Indeed, the fixed point locus of ϵ is naturally a G ϵ 0 -bundle.

The special case of ρ 0 -structures, which we will refer to as a hermitian structure, can be understood more concretely. A hermitian structure ρ on a G-bundle P induces an involution (which we also call ρ) on the adjoint bundle g P . The eigenspaces of ρ give a fiberwise Cartan decomposition of g P . Since G ρ 0 is precisely the subgroup of G which preserves a Cartan decomposition, the reduction to G ρ 0 is fully specified by this involution of g P .

In the case of σ 0 -and τ 0 -structures, we also get involutions σ and τ of g P , but there is slightly more data in the structure. This is because the subgroup of G commuting with τ 0 is not just G τ 0 , but also the center of G. So just specifying an involution τ of g P , which is conjugate to τ 0 in each fiber, only gives a reduction to a slightly larger group. The same is true for σ. In the case G = G ad where the center is trivial, this is not an issue, and we may think of τ 0 -and σ 0 -structures purely as involutions of the adjoint bundle.

Fock bundles

In this section, we introduce Fock bundles, analyze the so-called Fuchsian locus and describe the variation in the Fock field.

Fock bundles and higher complex structures

Fix a smooth closed orientable surface S with genus at least 2. Consider a complex simple Lie group G with associated Lie algebra g. Throughout, we will fix commuting involutions ρ 0 , τ 0 and σ 0 of G such that ρ 0 is a compact real form, τ 0 is a split real form, and σ 0 = ρ 0 τ 0 . For a principal G-bundle P , denote by g P the associated g-bundle using the adjoint action of G on g.

Recall the notions of a principal nilpotent element and a σ 0 -structure from the previous Subsections 2.3 and 2.4. The main notion we introduce in this article is the following: Definition 3.1. A G-Fock bundle over S is a triple (P, Φ, σ), where P is a principal G-bundle over S, σ is a σ 0 -structure, and Φ ∈ Ω 1 (S, g P ) is a g P -valued 1-form satisfying 1. [Φ ∧ Φ] = 0, 2. Φ(v)(z) is principal nilpotent for all z ∈ S and all non-zero vectors v ∈ T z S.

σ(Φ) = -Φ.

We shall call a field Φ defined as above a Fock field and will often refer to the second condition above as the nilpotency condition. An isomorphism of Fock bundles

(P, Φ, σ) → (P ′ , Φ ′ , σ ′ ) is a G-bundle isomorphism P → P ′ taking Φ to Φ ′ and σ to σ ′ .
Note that all conditions in Definition 3.1 are given pointwise. We stress that no term in the definition of a Fock bundle is considered to be holomorphic.

There are two main cases one should highlight:

An SL n (C)-Fock bundle is a vector bundle E of rank n with fixed volume form, equipped with a symmetric pairing g (a complex bilinear non-degenerate symmetric form) and a Fock field Φ satisfying the three conditions above.

For G = G ad the adjoint group, a G-Fock bundle is specified up to isomorphism by the pair (P, Φ).

The data contained in σ is actually very little: We will see later in Proposition 3.22 that a σ 0 -structure σ which negates Φ always exists locally, and always exists globally if G = G ad is the adjoint group. For any G, any two choices of σ are conjugate by an automorphism fixing Φ, thus give isomorphic Fock bundles. That is why we will sometimes write (P, Φ) for a G-Fock bundle.

By [31, Proposition 2.21], we know that there is a unique complex line L ⊂ T C z S such that for all v ∈ L the matrix Φ(v)(z) is not principal nilpotent. Note that the uniqueness needs the Lie algebra g to be simple. The nilpotency condition in Definition 3.1 then implies that this direction L is avoiding the real locus and hence encodes a complex structure on S (see Section 2.1). Proposition 3.2. A G-Fock bundle induces a complex structure on S.

In the sequel, unless stated explicitly otherwise, whenever we work with complex local coordinates on S, we use the complex structure induced by the Fock bundle. For such a complex coordinate z on S, we can locally write Φ = Φ 1 dz + Φ 2 dz. The condition [Φ ∧ Φ] = 0 for a Fock field can be then written as [Φ 1 , Φ 2 ] = 0. By construction of the complex structure on S, we know that Φ 2 is not principal nilpotent. Hence Φ 1 has to be principal nilpotent.

We now describe more explicitly what SL n (C)-Fock bundles look like locally. We start with n = 2. Let E be a complex vector bundle of degree zero and rank 2 over S with a fixed volume form ν. Lemma 3.3. Fix an arbitrary complex coordinate on S. An SL 2 (C)-Fock field on E locally is of the form

Φ = ( 0 0 1 0 ) dz + ( 0 0 µ 2 0 ) dz,
where µ 2 is a local complex function on S with µ 2 μ2 ≠ 1.

Note that globally, µ 2 is the Beltrami differential of the complex structure on S induced by the Fock bundle.

Proof. There is a local trivialization of E in which Φ 1 is given as in the statement of the lemma since all principal nilpotent elements are conjugate. The condition [Φ 1 , Φ 2 ] = 0 then implies the form of Φ 2 . Finally, the nilpotency condition implies that for any non-zero real tangent vector v∂ + v ∂ (where v is a complex function) the combination vΦ 1 + vΦ 2 is principal nilpotent. This means that v + µ 2 v ≠ 0 for all v ≠ 0. This is equivalent to the condition |µ 2 | ≠ 1.

We can generalize this local description to higher rank. Let E be a complex vector bundle of degree zero and rank n over S with a fixed volume form ν. Lemma 3.4. Fix an arbitrary complex coordinate on S. An SL n (C)-Fock field on E locally is of the form Φ = Φ 1 dz + Φ 2 dz with

Φ 1 = n-1 ∑ i=1 E i+1,i and Φ 2 = µ 2 Φ 1 + µ 3 Φ 2 1 + ... + µ n Φ n-1 1 ,
where the µ k are local complex functions on S with µ 2 μ2 ≠ 1.

The proof is similar to the one given above; there is only one conjugacy class of principal nilpotent elements which explains the form of Φ 1 . The centralizer of Φ 1 is the set of polynomials in Φ 1 which provides the form of Φ 2 . In the complex structure induced by the Fock field, we always have µ 2 = 0. The case when all higher Beltrami differentials vanish is the so-called Fuchsian locus which will be analysed in Section 3.2 below.

Comparing Definition 3.1 of a G-Fock bundle to Definition 2.2 of a g-complex structure, we immediately see the following: Proposition 3.5. Any G-Fock bundle induces a g-complex structure on S. For the adjoint group G ad , the isomorphism class of a G ad -Fock bundle is equivalent to a gcomplex structure.

The second assertion follows directly from Corollary 3.15 below. For G = SL n (C), we get a direct link between Fock bundles and the ideals describing higher complex structures of order n: Proposition 3.6. Let (E, Φ) be an SL n (C)-Fock bundle over a surface S. The map

p ∶ { Sym(T C S) → End(E) v 1 ⋯v k ↦ Φ(v 1 )⋯Φ(v k )
is well-defined and the kernel of p defines a higher complex structure.

Proof. To prove that p is well-defined, one has to show that the expression Φ(v 1 )⋯Φ(v k ) remains unchanged under permutation of (v 1 , ..., v k ). This follows from Φ ∧ Φ = 0. The matrix viewpoint of higher complex structures analyzed in [31, Section 4.2] implies that the kernel of p is a higher complex structure.

Proposition 3.7. A G-Fock bundle (P, Φ, σ) has no infinitesimal automorphisms. Thus, all Fock bundles are stable in this sense.

Proof. Consider an infinitesimal gauge transformation η ∈ Ω 0 (S, g P ). In order to preserve Φ, we need η ∈ Z(Φ). Since Z(Φ) is negated by σ (see Corollary 2.14), the only way for η to preserve σ is to be zero.

For SL n (C), the Fock field Φ induces a natural filtration F on the bundle E:

Proposition 3.8. An SL n (C)-Fock bundle has a natural increasing filtration given by F k = ker Φ(v) k , where v is a local non-vanishing vector field. The filtration is independent of the choice of v.

The proposition follows directly from the fact that Φ(v) is a principal nilpotent element. Independence follows from Φ ∧ Φ = 0 and the fact that Z(Φ) is abelian.

Fuchsian Locus

The Fuchsian locus in a Hitchin component, for an adjoint group, is the set of representations which factor through PSL 2 (R). Similarly, we will introduce the Fuchsian locus in the space of Fock bundles for an adjoint group as the subset induced from PSL 2 (C)-Fock bundles. When G has center, we call a Fock bundle Fuchsian if the associated Fock bundle for G ad is Fuchsian. It will turn out that every Fock bundle with Φ 2 = 0 is Fuchsian, so all Fock bundles are deformable to the Fuchsian locus. Every Fock bundle in the Fuchsian locus can be equipped with a holomorphic structure, making it into a Higgs bundle. This is the uniformizing Higgs bundle. Proposition 3.9. Any SL 2 (C)-Fock bundle is of the form (E, Φ, g) where E = K 1/2 ⊕ K -1/2 , where we use the complex structure on S induced from the Fock bundle, g is the apparent symmetric pairing in which these line subbundles are isotropic, and

Φ = ( 0 0 1 0 ) where 1 denotes the canonical 1-form valued in Hom(K 1/2 , K -1/2 ) ≅ K -1 .
Proof. Let (E, Φ, g) be an SL 2 (C)-Fock bundle. The symmetric pairing g, gives an isotropic decomposition into dual line bundles E = L ⊕ L -1 . We get a decomposition

sl(E) = L -2 ⊕ C ⊕ L 2
in which σ ∶ X ↦ -X * g acts by (-1, 1, -1). The Fock field Φ must be valued in the -1 eigenspace L 2 ⊕ L -2 . Since Φ is nilpotent, it is valued in only one of these line bundles at any given point, and since it is nowhere vanishing, it is valued in only one of the line bundles globally. Without loss of generality, suppose it is valued in L -2 . Since it is nowhere vanishing, Φ is an isomorphism from the holomorphic tangent bundle of S to L -2 , so L must be a square root of the canonical bundle.

As a corollary, any SL 2 (C)-Fock bundle has a natural upgrade to a Higgs bundle for the induced complex structure, because K 1/2 ⊕ K -1/2 is naturally a holomorphic vector bundle. We see that an SL 2 (C)-Fock bundle is equivalent to a complex structure together with a spin structure. Similarly, a PSL 2 (C)-Fock bundle is equivalent to a complex structure. Proposition 3.10. Any PSL 2 (C)-Fock bundle is of the form (P, Φ, σ) where

P = K * × C * PSL 2 (C) with adjoint bundle sl 2 (C) P = K -1 ⊕ C ⊕ K, Φ is the canonical K -1 -valued 1-
form, and σ acts by (-1, 1, -1) on the adjoint bundle. Here, K * denotes the C * -bundle of nonzero covectors.

In particular, P is topologically trivial because K has even degree. Any PSL 2 (C)-Fock bundle can be upgraded to an SL 2 (C)-Fock bundle by choosing a square root of K. Now restrict attention to an adjoint group G ad . Then, the principal 3-dimensional subgroup is always PSL 2 (C). This is because the sl 2 -representations appearing in g are always odd dimensional. Fix a principal embedding PSL 

P σ × PSL 2 (C) σ 0 G ad .
Φ ′ is the composition of Φ with the inclusion sl 2 (C) P → g P ′ , and σ ′ is σ 0 acting on the right factor G ad in the second description of P ′ .

The same definition will work for general G with PSL 2 (C) possibly replaced by SL 2 (C). Definition 3.12. A G ad -Fock bundle is in the Fuchsian locus if it is induced from a PSL 2 (C)-Fock bundle. For general G, a G-Fock bundle is in the Fuchsian locus if the associated G ad -Fock bundle is in the Fuchsian locus.

Example 3.13. The SL n (C)-Fock bundle induced from an SL 2 (C)-Fock bundle is the pair (E, Φ) given by

E = K (n-1)/2 ⊕ K (n-3)/2 ⊕ ... ⊕ K (1-n)/2 and Φ = n-1 ∑ i=1 E i+1,i ,
where K denotes the canonical bundle on S, K 1/2 is a choice of a square-root and E i+1,i is the canonical identity 1-form valued in Hom(K

(n-k)/2 , K (n-k-2)/2 ) = K -1 . Again, if
we view E as a smooth vector bundle, this is a Fock bundle, but if we view it as a holomorphic bundle, it becomes the uniformizing SL n (C)-Higgs bundle. Proposition 3.14. A Fock bundle (P, Φ, σ) is in the Fuchsian locus if and only if Φ 2 = 0.

Proof. A Fock field in the Fuchsian locus clearly has no (0, 1)-part. For the converse, by Lemma 2.15, we know that there is a unique σ-invariant sl 2 -subbundle p of g P containing the image of Φ, because the image of Φ is a line bundle of principal nilpotents negated by σ.

The normalizer in G ad of a principal sl 2 -subalgebra is just the principal PSL 2 (C) it generates. To see this, first recall that the centralizer of a principal sl 2 is trivial, then note that anything in the normalizer can be multiplied by an element of PSL 2 (C) to be in the centralizer. The subbundle p thus gives a reduction of structure group of G ad to PSL 2 (C). Call this reduction of structure group Q ⊂ P . The induced map of adjoint bundles is simply the inclusion p → g P . The involution σ on g P restricts to an involution on p, and in fact is the unique extension of this involution conjugate to σ 0 . We see that (P, Φ, σ) is the induction from PSL 2 (C) to G of the Fock bundle (Q, Φ, σ| Q ).

Corollary 3.15. Let (P, Φ, σ) be a G-Fock bundle. Then P is topologically trivial.

Proof. We can deform Φ continuously to get to the Fuchsian locus where Φ 2 = 0. This does not alter the topology of P . We then consider the induced G ad -bundle P ad . If P ad is trivial, it follows the same for P . We know that P ad is induced from a PSL 2 (C)-Fock bundle. We have seen in Proposition 3.10 that those are topologically trivial.

As with the SL n (C)-case, G-Fock bundles in the Fuchsian locus are exactly those obtained by uniformizing G-Higgs bundles by forgetting the holomorphic structure. For any G, there is a finite collection of G-Fock bundles which induce a given G ad -Fock bundle.

Proposition 3.16. Let A be the subgroup of the center of G which is fixed by σ. There is a simply transitive action of H 1 (S, A) on the set of G-Fock bundles which induce a given G ad -Fock bundle.

The proof is once more abstract bundle theory, which we leave to the reader. Instead, we describe the case of SL n (C). The center of SL n (C) is the n-th roots of unity and σ acts by inversion, so for n even A is {1, -1} whereas for n odd A is trivial. This means that for n even there are 2 2g SL n (C)-Fock bundles for every PSL n (C)-Fock bundle, whereas for n odd SL n (C)and PSL n (C)-Fock bundles are the same.

Variations of Fock bundles

Simpson [START_REF] Simpson | Higgs bundles and local systems[END_REF] studied the infinitesimal deformation space of stable Higgs bundles via a hypercohomology group for suitable chain complexes. In a similar way, we study the variations of G-Fock bundles (P, Φ, σ). We will first forget about σ and study the variations of Fock fields, then see what happens when we introduce σ.

Variation complex without σ 0 -structure

Consider the complex Ω • (S, g P ) of g-valued differential forms, with differential given by the adjoint action of the Fock field Φ: Ω 0 (S, g P )

ad Φ → Ω 1 (S, g P ) ad Φ
→ Ω 2 (S, g P ).

(3.1)

Proposition 3.17. The complex (3.1) is a chain complex.

Proof. Indeed, using the Jacobi identity and [Φ ∧ Φ] = 0, we get for all A ∈ Ω 0 (S, g P ):

[Φ ∧ [Φ, A]] = -[Φ ∧ [Φ, A]] + [A, [Φ ∧ Φ]],
which implies ad 2 Φ (A) = 0. We call the cohomology groups defined for this chain complex, Φ-cohomology groups, and denote them by H • (Φ). The zero-th cohomology group H 0 (Φ) describes the centralizer of Φ. To be more precise, the centralizers of all Φ(v)(z) for a non-zero real vector v ∈ T z S are all equal. This follows from [Φ ∧ Φ] = 0, the nilpotency condition and the general fact that the centralizer of a principal nilpotent element is abelian. This is why we often write Z(Φ) ⊂ Ω 0 (S, g P ) for any of these centralizers. We have the following:

Proposition 3.18. The dimensions of H 0 (Φ), H 1 (Φ) and H 2 (Φ) are respectively rk(g), 2rk(g) and rk(g).

Proof. We have H 0 (Φ) = ker ad Φ = Z(Φ), which by the nilpotency condition is of dimension rk(g). The natural pairing between a ∈ ker ad Φ ⊂ Ω 0 (S, g P ) and b ∈ Ω 2 (S, g P ) given by ∫ S tr(ab), where tr denotes the Killing form on g, descends to cohomology. This follows from the cyclicity property tr([a, b]c) = tr([b, c]a) of the Killing form. Hence H 2 (Φ) ≅ H 0 (Φ) * which gives dim H 2 (Φ) = dim H 0 (Φ) = rk(g). Finally, the dimension of H 1 (Φ) can be computed via the Euler characteristic of the complex which is zero.

The first Φ-cohomology group describes variations of G-Fock fields which do not necessarily preserve the nilpotency condition: Proof. A variation δΦ preserves the condition [Φ∧Φ] = 0 if and only if [Φ∧δΦ] = 0, that is, if and only if δΦ is a cocycle. An infinitesimal gauge transformation η ∈ Ω 0 (S, g P ) induces δΦ = [Φ, η] which is a coboundary.

We next analyze variations of Fock bundles including the nilpotency condition. The space Ω 1 (S, g P ) has a natural symplectic structure ω defined by

ω(α, β) = ∫ S tr α ∧ β, (3.2) 
where tr denotes the Killing form of g. The symplectic structure ω descends to a symplectic structure on H 1 (Φ). Indeed, for α, β ∈ Ω 1 (S, g P ) representing classes in H 1 (Φ), adding a coboundary where Z(Φ) ⊂ Ω 0 (S, g P ) denotes the kernel of ad Φ and K the conjugated canonical bundle.

Proof. Using the complex structure on S induced from the Fock bundle, we can locally write Φ = Φ 1 dz + Φ 2 dz, where Φ 1 is principal nilpotent. Since all principal nilpotent matrices are conjugate, any variation preserving the nilpotency condition is equivalent modulo Im ad Φ to a a variation which changes Φ 2 without changing Φ 1 . Such a variation is of the form Z(Φ 1 )dz since [Φ ∧ δΦ] = 0.

Corollary 3.21. For a G-Fock bundle (P, Φ) over S, Var(Φ) forms an isotropic subspace in (Ω 1 (S, g P ), ω). Modulo Im(ad Φ ), it descends to an isotropic subspace of H 1 (Φ).

Proof. Take the variations of two Fock fields δΦ = ad Φ (η) + Cdz and δΦ

′ = ad Φ ′ (η ′ ) + C ′ dz, with C ∈ Z(Φ 1 ), C ′ ∈ Z(Φ ′ 1 )
and η, η ′ ∈ Ω 0 (S, g P ). One now checks that the symplectic form ω(δΦ, δΦ ′ ) defined by (3.2) vanishes. Indeed, since ad Φ squares to zero, we get tr ad Φ (η) ∧ ad Φ ′ (η ′ ) = 0. Moreover, Cdz ∧ C ′ dz = 0 and the wedge product of the crossed terms also vanishes since C ∈ Z(Φ 1 ) and C ′ ∈ Z(Φ ′ 1 ). Note that pointwise, Var(Φ) is a Lagrangian in T * S ⊗ g (where we choose a volume form at a point to identify Λ 2 (T S) with C).

Introduction of σ 0 -structures

We first analyse the possible σ 0 -structures σ one can put on a pair (P, Φ) where Φ satisfies the first two conditions of Definition 3.1. Proposition 3.22. For any such pair (P, Φ), there locally exist σ 0 -structures making it into a Fock bundle. If G = G ad , they exist globally.

Proof. Recall that Φ 1 is valued in principal nilpotent elements. By Lemma 2.13 there is a contractible space of choices of involution of each fiber of the adjoint bundle which negate the image of Φ 1 . We can thus choose σ ∶ g P → g which negates Φ 1 globally. By Lemma 2.14, σ will also negate the centralizer of Φ 1 , so must negate Φ 2 as well. When G is adjoint, σ uniquely determines a σ 0 structure σ ∶ P → P .

When G is not adjoint, there is slightly more data to a σ 0 -structure. The involution σ gives a reduction to π -1 (G σ ad ) where π ∶ G → G ad is the projection. A σ 0 -structure on the other hand is a reduction to G σ which is the identity component of this group. Reductions of a principal bundle to its identity component are sections of a bundle with discrete fibers, so they always exist locally.

Proposition 3.23. The infinitesimal variations of σ 0 -structures negating Φ are described by H 0 (Φ).

Proof. Consider a σ 0 -structure σ satisfying σ(Φ) = -Φ. Since all σ 0 -structures are conjugate, any infinitesimal variation δσ is described by ξ ∈ g -σ and given by δσ(x) = [ξ, x] for x ∈ g. The variations negating Φ have to satisfy δσ(Φ) = 0, hence ξ ∈ ker ad Φ , i.e. ξ ∈ H 0 (Φ).

Actually a stronger statement is true: by Lemma 2.13 the exponential of H 0 (Φ) = Z(Φ) acts simply transitively on the space of choices of σ 0 -structure. In particular, all σ 0 structures are conjugate.

We can now use the σ 0 -structure σ in the Φ-cohomology. Define Ω k,σ (S, g P ) to be the space of σ-invariant g P -valued k-forms, and similarly Ω k,-σ (S, g P ) to be the space of σ-anti-invariant forms. Since σ(Φ) = -Φ, the Φ-cohomology complex splits as a direct sum of two complexes Ω 0,±σ (S, g P )

ad Φ → Ω 1,∓σ (S, g P ) ad Φ → Ω 2,±σ (S, g P ),
and we may define H k,σ (Φ) and H k,-σ (Φ) as the subspaces represented by σ-invariant and respectively σ-anti-invariant elements of these complexes. Equivalently, we can define them as the σ-invariant and σ-anti-invariant parts of H k (Φ):

H k (Φ) ≅ H k,σ (Φ) ⊕ H k,-σ (Φ).
Moreover, one sees that the Lie bracket respects the σ-grading, because σ commutes with the Lie bracket. Proposition 3.24. We have H k,σ (Φ) = 0, for k = 0, 1, 2.

Proof. One needs to show that σ acts by -1 on Φ-cohomology. This is a pointwise statement. For k = 0, the 0-th cohomology is simply the center Z(Φ), on which σ acts by -1. The natural pairing between 0-forms and 2-forms is σ-invariant. Hence σ also acts by -1 on H 2 (Φ).

For k = 1, the centralizer Z(Φ) K descends to a Lagrangian subspace in H 1 (Φ). This subspace is negated by σ, so is its complement under the symplectic pairing between 1-forms. This describes the entire space H 1 (Φ).

In view of Proposition 3.24, we have H k (Φ) = H k,-σ (Φ), hence [H k (Φ), H ℓ (Φ)] ⊂ H k+ℓ,σ (Φ) = 0. We thus have the following:

Corollary 3.25. For representatives α, β of cohomology classes [α] ∈ H k (Φ) and [β] ∈ H ℓ (Φ), the bracket [α, β] is a coboundary.

Connections associated to Fock bundles

In nonabelian Hodge theory, one associates to polystable Higgs bundles, gauge equivalence classes of Hermitian-Yang-Mills metrics and subsequently flat bundles over a Riemann surface. In this section, we will associate to Fock bundles a certain family of connections. Our main conjecture is that we can moreover choose these connections to be flat. To begin with, we define a compatible connection on a Fock bundle:

Definition 4.1. On a G-Fock bundle (P, Φ, σ), a connection d A is called Φ-compatible if d A Φ = 0.
Note that d A Φ = 0 is an affine equation in the connection matrix A, thus easily provides the existence of Φ-compatible connections. Indeed, local solutions can be found by choosing a local trivialization of P in which the centralizer of Φ is constant. In this trivialization, dΦ will be valued in the centralizer of Φ, thus it will be in the image of ad Φ (see Proposition 2.11), allowing us to find a matrix valued 1-form A 0 with dΦ + [A 0 ∧ Φ] = 0. These local solutions can be now patched together using a partition of unity. We thus have the following: Proposition 4.2. There exist Φ-compatible connections on any given G-Fock bundle.

Three-term connections

In Section 2.2.3 we reviewed two sorts of families of 3-term connections from the works of Hitchin [START_REF] Hitchin | The self-duality equations on a Riemann surface[END_REF] and Fock [START_REF] Fock | Cosh-Gordon equation and quasi-Fuchsian groups[END_REF] subject to a parameter λ ∈ C * . The form of these families comes from the general theory of hyperkähler manifolds and their twistor space [START_REF] Hitchin | Hyper-Kähler metrics and supersymmetry[END_REF]. Within this framework, we consider a family of connections on a principal G-bundle P over a surface S of the form

A(λ) = λ -1 Φ + d A + λΨ, (4.1) 
where λ ∈ C * is a parameter, d A is a fixed background connection on P and Φ, Ψ ∈ Ω 1 (S, g P ). The curvature of a connection in this family is a Laurent polynomial in λ given by:

F (A(λ)) = [A(λ) ∧ A(λ)] = λ -2 [Φ ∧ Φ] + λ -1 d A (Φ) + F (A) + [Φ ∧ Ψ] + λd A (Ψ) + λ 2 [Ψ ∧ Ψ], (4.2) 
where F (A) denotes the curvature of the fixed background connection d A .

In order to have a family A(λ) of flat connections, i.e. flat for all values of λ, all five coefficients of the Laurent polynomial in (4.2) have to vanish. Note that if Φ and Ψ are Fock fields, then the terms λ -2 [Φ ∧ Φ] and λ 2 [Ψ ∧ Ψ] in (4.2) do vanish. If, in addition, the background connection d A is a connection compatible with both Φ and Ψ, then the curvature F (A(λ)) becomes independent of the parameter λ. In this situation, the flatness of A(λ) is equivalent to the equation

F (A) + [Φ ∧ Ψ] = 0. (4.3)
Note the similarity of this equation to the form of the well-known Hitchin equation from [START_REF] Hitchin | The self-duality equations on a Riemann surface[END_REF]. In Section 4.3 below, we will show the existence of a connection d A compatible with both Fock fields Φ and Ψ. For this to be possible, the two fields have to satisfy a certain transversality condition.

Transversality

We next define the notion of transverse Fock fields. Definition 4.3. For a pair of Fock fields Φ, Ψ ∈ Ω 1 (S, g P ), we call Φ and Ψ transverse if Ω 1 (S, g P ) = ker(ad Φ ) ⊕ Im(ad Ψ ) and Ω 1 (S, g P ) = ker(ad Ψ ) ⊕ Im(ad Φ ). Moreover, in the setting of σ-splitted Φ-cohomology from Section 3.3.2, we get the following corollary: Corollary 4.5. For a pair of transverse Fock fields Φ, Ψ ∈ Ω 1 (S, g P ), one has:

Ω 1 (S, g P ) σ = Im(ad Φ ) σ ⊕ Im(ad Ψ ) σ .
This follows from the fact that H 1,σ (Φ) = 0 (see Proposition 3.24) and the identification of ker(ad Φ ) ∩ ker(ad Ψ ) with H 1 (Φ).

The transversality condition is an open condition. In the unitary setting (where the bundle P is equipped with a hermitian structure ρ), we will see that the Fock field Ψ = Φ * can be made transverse to Φ, by a suitable diagonal gauge transformation.

Canonical connection from transverse Fock fields

We now associate a canonical connection d A to a given pair of transverse Fock fields Φ and Ψ. This allows to get a family of 3-term connections λ -1 Φ + d A + λΨ. The existence and uniqueness of d A brings to mind the Chern connection on a holomorphic bundle with hermitian structure. Theorem 4.6. Let (P, Φ, σ) be a G-Fock bundle equipped with a second Fock field Ψ, transverse to Φ. Then there is a unique σ-invariant connection d A on P which is compatible with both Φ and Ψ, i.e. solving the equations

d A Φ = d A Ψ = 0.
In the sequel, we call d A the canonical connection and refer to the construction of d A as the filling-in procedure (since it gives the middle term in the 3-term connection). The associated 3-term connection Φ + d A + Ψ will be called the canonical 3-term connection.

Proof. Existence: By Proposition 4.2, we first find a compatible connection d A 0 on P , i.e. such that d A 0 Φ = 0. The existence of d A 0 relies on the fact that for appropriate local trivializations, dΦ lies in the image of ad Φ . Note that we can choose d A 0 to be σ-invariant since σ(Φ) = -Φ.

The same argument as for Φ shows that d

A 0 Ψ = dΨ + [A 0 ∧ Ψ] lies in the image of ad Ψ . Hence there is a section R ∈ Ω 1 (S, g P ) such that d A 0 Ψ = [R ∧ Ψ].
Since both Ψ and d A 0 Ψ are σ-anti-invariant, we can choose R to be σ-invariant. By Corollary 4.5 (since Φ and Ψ are transverse) we can decompose

R = R 1 + R 2 where R 1 ∈ Im(ad Φ ) σ and R 2 ∈ Im(ad Ψ ) σ . Since ad 2 Ψ = 0, we have [R ∧ Ψ] = [R 1 ∧ Ψ]. We claim that d A ∶= d A 0 -R 1 is a solution. Indeed, d A Ψ = 0 by definition of R 1 and d A Φ = -[R 1 ∧ Φ] = 0 since R 1 ∈ Im(ad Φ ) and ad 2 Φ = 0. Finally, both d A 0 and R 1 are σ-invariant. Therefore d A is indeed a solution.
Uniqueness: The space of solutions to the equations d A Φ = d A Ψ = 0 is an affine subspace of the space of connections. If d A is one such solution, then all solutions are of the form d A + C, where C ∈ ker(ad Φ ) ∩ ker(ad Ψ ). Lemma 3.24 shows that the involution σ acts by -1 on the Φ-cohomology, so acts by -1 on ker(ad Φ ) ∩ ker(ad Ψ ). Since d A + C and d A are σ-invariant, C has to be σ-invariant. Therefore C = 0.

Unitary case

We equip a G-Fock bundle (P, Φ, σ) with a compatible hermitian structure ρ. Ideally we would like to apply the construction of a canonical connection from Theorem 4.6 for the pair of Fock fields Φ and Ψ = Φ * = -ρ(Φ). However, the construction can not be used directly since the Fock fields Φ and Φ * need not be necessarily transversal. We will see that we can always conjugate Φ so that Φ and Φ * become transversal. Definition 4.7. A hermitian structure ρ on a G-Fock bundle (P, Φ, σ) is called compatible if the involutions ρ and σ of g P commute.

In the case of an SL n (C)-Fock bundle (E, Φ, g), this is equivalent to the existence of a real vector bundle E R equipped with a real metric g R such that the complexification of E R gives the bundle E, the complex linear extension of the real metric g R gives g and the hermitian extension gives the hermitian form h. Proposition 4.8. For any G-Fock bundle (P, Φ, σ), there is a compatible hermitian structure.

Proof. The statement is pointwise, so we can reduce to a problem of Lie algebra involutions on g. The proposition directly follows from the fact that for any Lie algebra involution (here σ), there is a compact real form which commutes with it [START_REF] Knapp | Lie groups beyond an introduction[END_REF]Theorem 6.16]. Proposition 4.9. Let (P, Φ, σ) be a G-Fock bundle equipped with a compatible hermitian structure ρ. Then (P, Φ * , σ) is again a G-Fock bundle.

Proof. Applying the hermitian conjugation to [Φ ∧ Φ] = 0 we get the same condition for Φ * . Since the set of principal nilpotent matrices is invariant under hermitian conjugation, Φ * satisfies the nilpotency condition. Finally, Φ * is negated by σ:

σ(Φ * ) = -σ ○ ρ(Φ) = -ρ ○ σ(Φ) = ρ(Φ) = -Φ * .
In order to use the filling-in procedure of Theorem 4.6, we need Φ and Φ * to be transverse. For that, note that the spaces Im(ad Φ ) and ker(ad Φ * ) are orthogonal complements with respect to the (pseudo-)hermitian form on T * S ⊗ g P given by ⟨α, β⟩dz ∧ dz = tr(α * ∧ β), where tr denotes the Killing form on g. These are indeed orthogonal complements because ad Φ and ad Φ * are adjoint with respect to the inner product on the entire space Λ • T * S ⊗ g P given by this same formula. Note that we chose a volume form to define this, but different choices of volume form will lead to metrics which differ by a scalar, so the notions of adjoint, and orthogonal complement do not depend on this choice. This hermitian form is not positive definite though, in fact, the norm of a dz + b dz is given by tr(a * a)tr(b * b).

On Ω 1 (S, g P ), the pseudo-hermitian form is given by the formula

⟨α, β⟩ = -i 2 ∫ S tr α * ∧ β. (4.4)
Recall that any subspace W of a vector space equipped with an indefinite form is complementary to a subspace W ⊥ , precisely whenever the form is non-degenerate when restricted to W . This motivates the following: Definition 4.10. For a G-Fock bundle (P, Φ) with hermitian form ρ, the Fock field Φ is called positive if Im(ad Φ ) ⊂ Ω 1 (S, g P ) is positive-definite with respect to the pseudohermitian form in (4.4). The space of positive Fock fields is denoted by P. We also refer to ρ being a positive hermitian structure.

Note that for a positive Fock field Φ ∈ P, the fields Φ and Φ * are transverse. Note further that the Fuchsian locus, as described in Section 3.2, is included in P since Im(ad Φ ) consists only of (1, 0)-forms. Lemma 4.11. For every Fock field Φ ∈ Ω 1 (S, g P ) there is a diagonal gauge transformation a ∈ Aut(P, σ) such that a -1 Φa is positive.

Proof. Consider a G-Fock bundle (P, Φ, σ). Decompose Φ = Φ 1 + Φ 2 . There is an sl 2subbundle p ⊂ g P obtained by completing Φ 1 into a principal sl 2 -triple. Let H be a non-vanishing section of the line subbundle l ⊂ p consisting of the semisimple elements of the principal sl 2 -triples (acting on the nilpotent part by scaling). Note that l is a degree zero line bundle, so this section indeed exists.

Consider the gauge transformation a t = exp(tH). Since H is σ-invariant, we have a t ∈ Aut(P, σ). The element H allows to decompose the bundle g P ≅ ⊕ k∈Z g P,k where elements in g P,k are eigenvectors of ad H with eigenvalue k. We know that Φ 1 ∈ g P,-2 since Φ 1 and H are part of the same sl 2 -triple. We have Φ 2 ∈ Z(Φ 1 ), i.e. Φ 2 is a linear combination of lowest weight vectors. In addition, Φ 2 is not regular since we work in the complex structure induced from (P, Φ). This implies that Φ 2 ∈ ⊕ k≤-4 g P,k since in the decomposition of g P into irreducible sl 2 -modules (via adjoint action by p), only one module is of dimension 3.

Therefore the quantity e 2t a -1 t Φa t converges to Φ 1 for t → ∞. Since Φ 1 is clearly positive and positive Fock fields form an open set, we conclude.

For transverse Φ and Φ * we can use the filling-in procedure from Theorem 4.6 to get a canonical connection d A .

Proposition 4.12. For a Fock bundle (P, Φ, σ) equipped with a compatible positive hermitian structure ρ, then the canonical connection d A is unitary.

Proof. One can first check that both d A and ρ(d A ) are σ-invariant solutions to the equations d A (Φ) = 0 and d A (Φ * ) = 0. Indeed, since σ and ρ commute,

ρ(d A ) is σ- invariant. Applying ρ to the equation d A Φ = 0 gives ρ(d A )(Φ * ) = 0. Similarly, applying ρ to d A (Φ * ) = 0 gives ρ(d A )(Φ) = 0. Hence ρ(d A )
is also a solution. By uniqueness from Theorem 4.6, we get ρ(d A ) = d A , thus the connection d A is unitary.

An important example of positive Fock fields is the Fuchsian locus: Proposition 4.13. If (P, Φ, σ) lies in the Fuchsian locus, then there is a compatible positive hermitian structure ρ. In addition, the canonical connection d A is the Chern connection.

Proof. From Proposition 3.14, we know that a Fock bundle in the Fuchsian locus comes from some uniformizing G-Higgs bundle (V, Φ). From [START_REF] Hitchin | Lie groups and Teichmüller space[END_REF] we know that V can be equipped with a compatible hermitian structure ρ and σ 0 -structure σ. Since Φ ∈ Ω 1,0 (S, g V ), the image of ad Φ is positive definite for the form defined in (4.4), i.e. Φ is positive.

From nonabelian Hodge theory, we know that the Chern connection d A satisfies d A Φ = 0 and σ(d A ) = d A [14, Equation (7.2)]. Hence the Chern connection is the result of the filling-in procedure by the uniqueness part of Theorem 4.6.

Main Conjecture

We have seen that on a G-Fock bundle (P, Φ, σ) with compatible positive hermitian structure ρ, there is a canonical 3-term connection Φ + d A + Φ * . Our main conjecture is that we can choose ρ to get a flat connection. We give evidence in favor of the conjecture.

Instead of varying ρ, we can equivalently fix the hermitian structure ρ and vary the gauge class of the Fock field.

Conjecture 4.14. Let (P, Φ 0 , σ) be a G-Fock bundle over S equipped with a compatible hermitian structure ρ. Then there exists a unique hermitian endomorphism-valued function η ∈ Ω 0 (S, g σ,-ρ P ) such that Φ = e -η Φ 0 e η is positive, and the corresponding 3-term connection Φ + d A + Φ * is flat, that is, it satisfies the equation

F (A) + [Φ ∧ Φ * ] = 0. ( 4.5) 
The conjecture is appealingly similar to nonabelian Hodge theory associating a flat connection to the gauge equivalent class of any polystable Higgs bundle. In our setting, Fock bundles are automatically stable, see Proposition 3.7. Apart from the similarity with nonabelian Hodge theory, there is strong evidence for the conjecture which is discussed below:

1. There is a class of Fock bundles for which Conjecture 4.14 is indeed true, namely, for Fock bundles in the Fuchsian locus from Section 3.2. Fix a complex structure on S and consider the uniformizing G-Higgs bundle (V, Φ), i.e. the Higgs bundle in the Hitchin section with principal nilpotent Φ. Forgetting about the holomorphic structure, we get a G-Fock bundle (P, Φ). Proposition 4.13 tells us that Φ and Φ * are transverse and that the Chern connection is the result from our construction of 3-term connections. Therefore, Conjecture 4.14 follows from the nonabelian Hodge correspondence in this case.

2. The strongest argument in favor of the conjecture is that the linearization is an elliptic isomorphism. This is developed below in Section 5.1. We can then conclude that the subset of Fock fields for which there exists a solution is open.

3. Another interesting class of examples pertains to harmonic higher complex structures as introduced in [START_REF] Nolte | Canonical Maps from Spaces of Higher Complex Structures to Hitchin Components[END_REF]. Fix a complex structure on S giving a hyperbolic metric g S (via uniformization). A higher complex structure is called harmonic if its induced complex structure on S coincides with the fixed one and if

∂(μ k g k-1 S ) = 0, (4.6) 
for all k ∈ {3, ..., n}. The gauge-theoretic meaning of condition (4.6) can be given as follows: denote by h S the hermitian structure on V = K (n-1)/2 ⊕...⊕K (1-n)/2 induced from the hyperbolic metric on S. Denote again by E the underlying smooth complex vector bundle of V . Then a Fock field Φ, with (1, 0)-part fixed to be the Fuchsian Fock field in Example 3.13, corresponds to a harmonic higher complex structure (via Proposition 3.6) if and only if ∂(Φ * h S ) = 0. Indeed, the hermitian metric h S is diagonal and is given by h S = diag(g

(1-n)/2 S
, g

(3-n)/2 S , ..., g (n-1)/2 S
). The non-zero entries of (Φ 0,1 ) * h S are given by μk g k-1

S . One of the main results of [START_REF] Nolte | Canonical Maps from Spaces of Higher Complex Structures to Hitchin Components[END_REF] is that every equivalence class of higher complex structures (modulo higher diffeomorphisms) has a harmonic representative (unique up to the action of usual diffeomorphisms isotopic to the identity). In Section 6 below, we give the gauge-theoretic meaning of higher diffeomorphisms as special gauge transformations. Hence it seems that we can reduce Conjecture 4.14 to harmonic higher complex structures, in which the elliptic condition ∂(Φ * h S ) = 0 holds. We are very grateful to Alexander Nolte for his insight in this description.

4. In the case of an SL n (C)-Fock bundle (E, Φ, g) equipped with a hermitian structure h, we have two filtrations F and F * associated to (E, Φ) and (E, Φ * ) respectively by Proposition 3.8. They are transverse since

F k is h-orthogonal to F * n-k . Therefore by considering L k = F k ∩ F *
n-k , we get a line decomposition of E for which Φ is lower triangular, Φ * is upper triangular and h is diagonal. This line decomposition might help to find estimates. 5. Further evidence for the validity of the conjecture comes from a symplectic viewpoint. The Atiyah-Bott symplectic form on the space of all connections gives a presymplectic form on the space of appropriate Fock bundles. The gauge group action gives a moment map which is precisely given by F (A)+[Φ∧Φ * ] in this case. Then Conjecture 4.14 becomes equivalent to an infinite-dimensional symplectic reduction. The difficulty here comes from the fact that the presymplectic form has degenerate directions, in particular, the orbits of the higher diffeomorphism action. Along the complex gauge orbits, the form is non-degenerate though. This is work in progress.

Flat Fock bundles and the Hitchin component

In this section, Fock bundles with a flat canonical 3-term connection are linked to the Hitchin component. We show that the monodromy is always in the split real form, and assuming Conjecture 4.14, one then gets a map from Fock bundles to the Hitchin component.

Let (P, Φ, σ) be a G-Fock bundle equipped with a compatible positive hermitian structure ρ. Proposition 4.15. Suppose the canonical 3-term connection ∇ = Φ + d A + Φ * associated to the tuple (P, Φ, σ, ρ) as above is flat. Then the monodromy of ∇ lies in the split real form of the Lie algebra g.

Proof. We simply show that Φ

+ d A + Φ * is invariant under the involution τ = σρ = ρσ. Recall that σ(Φ) = -Φ. Hence τ (Φ) = ρ ○ σ(Φ) = ρ(-Φ) = Φ * . Since the canonical connection d A is unitary, we have ρ(d A ) = d A . Since d A is also σ-invariant, we get τ (d A ) = ρ(σ(d A )) = d A . Therefore, Φ + d A + Φ * is τ -invariant.
By [14, Proposition 6.1], the monodromy of the connection ∇ lies in the split real form of g. Proposition 4.16. Assume the main conjecture 4.14 is true. Then we get a map from the space of G-Fock bundles equipped with compatible hermitian structure to the Hitchin component.

Proof. Consider a G-Fock bundle (P, Φ, σ) together with a compatible hermitian structure ρ. The main conjecture associates a flat connection Φ + d A + Φ * which by the previous proposition has monodromy in the split real form.

We can continuously deform any Fock field Φ to a Fock field with vanishing (0, 1)part, which is a point in the Fuchsian locus by Proposition 3.14. Using the main conjecture, this gives a continuous path in the character variety for the split real form. Since the monodromy of any point in the Fuchsian locus is in the Hitchin component, the same has to be true for (P, Φ, σ).

Neighborhood of the Fuchsian locus

We prove the Main Conjecture 4.14 in a neighborhood of the Fuchsian locus. In the whole section, let (P, Φ, σ) be a G-Fock bundle equipped with a compatible positive hermitian structure ρ.

Linearized Equation

We show that the differential of the map from positive Fock fields to curvature F (A) + [Φ∧Φ * ], is an elliptic operator of order two and, in fact, is an isomorphism of appropriate Sobolev spaces. We compute the change in curvature as we infinitesimally conjugate Φ by a hermitian endomorphism.

Let (P, σ, ρ) be a principal G-bundle equipped with σ 0 -structure σ and compatible hermitian structure ρ. Define F to be the map P → Ω 2 (S, g P ) given by the curvature of the canonical 3-term connection:

F (Φ) ∶= F (A) + [Φ ∧ Φ * ].
(5.1)

Lemma 5.1. Let Φ t be a smooth path of positive Fock fields on a G σ,ρ -bundle with Φ 0 = Φ, and whose derivative at t = 0 is

Φ ∶= [Φ, η]
for some η ∈ Ω 0 (S, g σ,-ρ P ). Let A t be the path of connections obtained by the filling-in procedure of Theorem 4.6. We have

Ȧ = Qd A η,
where Q is the involution on Ω 1 (S, g P ) σ ≅ Im(ad Φ ) σ ⊕ Im(ad Φ * ) σ defined by -1 on Im(ad Φ ) σ and by 1 on Im(ad Φ * ) σ . Note that we used Corollary 4.5 here.

Proof. It suffices to check that the derivatives of d A Φ and d

A Φ * vanish at t = 0. One sees d dt d A Φ = d A Φ + [ Ȧ ∧ Φ] = -[Φ ∧ d A η] + [ Ȧ ∧ Φ] = [Φ ∧ ( Ȧ -d A η)]
and similarly

d dt d A Φ * = [Φ * ∧ ( Ȧ + d A η)].
The fact that ad 2 Φ = 0 and ad 2 Φ * = 0, implies that Ȧ = Qd A η indeed solves both of these equations.

We can now easily calculate the variation of curvature as we move the Fock field in the direction of η.

Theorem 5.2. The derivative of the map F from (5.1) is the differential operator L ∶ Ω 0 (S, g σ,-ρ P ) → Ω 2 (S, g σ,ρ P ) given by

Lη = d A Qd A η + [[Φ, η] ∧ Φ * ] -[Φ ∧ [Φ * , η]].
The operator L is elliptic, and extends to a continuous linear isomorphism of Sobolev spaces H l+2 (S, g σ,-ρ P ) → H l (S, Λ 2 T * S ⊗ g σ,ρ P ). for all l ∈ N, where H l denotes the Sobolev space with l square integrable derivatives. Proof. To compute the symbol of L, we only need to look at the highest order term d A Qd A . This is a composition of three operators, so its symbol is the composition of three symbols. The symbol σ d A of d A is given by the formula

σ d A (α)η = α ∧ η.
This is a map T * S ×Λ • T * S ⊗g P → Λ • T * S ⊗g P . Note that this does not actually depend on the connection d A . Since Q is an operator of order zero, the symbol of Q is just itself. Putting these together, we get the symbol of L σ L (α)η = α ∧ Q(αη).

The operator L is elliptic if this is an isomorphism from g σ,-ρ P to Λ 2 T * S ⊗ g σ,ρ P for all non-zero α. This is implied if -i 2 tr(ηα ∧ Q(αη)) is a definite form in η for all non-zero α. This is indeed true, because if we write αη = ξ + ξ * where ξ is in Im(ad Φ ), we get

-i 2 tr(ηα ∧ Q(αη)) = -i 2 tr((ξ + ξ * ) ∧ (-ξ + ξ * )) = i tr(ξ * ∧ ξ) = -2∥ξ∥ 2
, which is negative-definite on P by definition 4.10. Now we prove that L induces an isomorphism H 1 → H -1 . The essential point is that the bilinear form ∫ S tr(ηLη) is equivalent to the standard H 1 -norm (defined using any choice of metrics). Recall the pseudo-hermitian product given by Equation (4.4). We use integration by parts, and conjugation invariance of trace to write

-i 2 ∫ S tr(ηLη) = -i 2 ∫ S tr(ηd A Qd A η) + tr(η[[Φ, η] ∧ Φ * ]) -tr(η[Φ ∧ [Φ * , η]]) = -i 2 ∫ S -tr(d A η ∧ Qd A η) + tr([η, Φ * ] ∧ [Φ, η]) -tr([η, Φ] ∧ [Φ * , η]) = -i 2 ∫ S 2 tr(π Im ad Φ (d A η) * ∧ π Im ad Φ (d A η) + 2 tr([η, Φ * ] ∧ [Φ, η]) = 2∥π Im ad Φ (d A η)∥ 2 + 2∥[Φ, η]∥ 2 .
This is a norm on Ω 1 (S, g σ,-ρ ) which is the integral of the sum of a positive definite norm of the first derivatives of η, and a positive definite norm of η pointwise. This means it is equivalent to the standard H 1 -norm. Recall that H -1 (S, E ⊗ Λ 2 T * S) can be defined as the topological dual to H 1 (E) for any vector bundle E. The norms being equivalent means that L induces an isomorphism H 1 → H -1 . This implies that the induced maps H l → H l-2 are all isomorphisms for l ∈ N, l ≥ 1.

Application of the implicit function theorem

In this section we use standard techniques for nonlinear elliptic PDE to show that for Fock fields with small enough (0, 1)-part, i.e. near the Fuchsian locus, there is a hermitian structure such that the canonical connection is flat. We start by recalling the implicit function theorem: Theorem 5.3 (Implicit function theorem). Let W ⊂ X × Y be an open subset of a product of differentiable Banach manifolds. Let f ∶ W → Z be a continuously differentiable function to a third differentiable Banach manifold. Suppose that f (x, y) = z, and that df (x,y) restricts to an isomorphism from T y Y to T z Z. Then there is a function g from a neighborhood U of x to Y satisfying f (x, g(x)) = 0 for all x ∈ U . Furthermore, g is continuously differentiable.

We will apply this where X is the space of Fock fields for a principle bundle P equipped with σ and ρ, Y is the space of sections of g σ,-ρ P , W ⊂ X × Y is the subset of (ϕ, η) where e -η Φe η ∈ P, Z is the space of two-forms valued in g σ,ρ , and f is the map taking (ϕ, η) to the curvature of the canonical connection d A associated to the conjugated Fock field:

f ∶ { W → Ω 2 (S, g σ,ρ P ) (ϕ, η) ↦ F (e -η Φe η )
where F is the map from Equation (5.1). We need to equip all these spaces with differentiable Banach manifold structures such that the criteria of the implicit function theorem are satisfied. To do this we should understand the derivative of the map from Fock fields to curvature.

Let Φ ∈ Var(Φ) -σ be a tangent vector at Φ to the space of Fock fields. Let Ȧ be the corresponding variation in canonical connection. The derivative of d A Φ and d A Φ * must be zero, giving us two equations on Ȧ.

d A Φ + [ Ȧ ∧ Φ] = 0 d A Φ * + [ Ȧ ∧ Φ * ] = 0
By transversality, we know that ad Φ restricts to an isomorphism from Im(ad Φ * ) σ ⊂ Ω 1 (S, g P ) to Im(ad Φ ) -σ ⊂ Ω 2 (S, g P ). Let Y ∶ Im(ad Φ ) -σ → Im(ad Φ * ) σ denote the inverse of this map. We can express Ȧ ∈ Ω 1 (S, g P ) σ,ρ in terms of Y , using Corollary 4.5.

Lemma 5.4. The variation of the connection d A is given by

Ȧ = -Y (d A Φ) + Y (d A Φ) * .
It follows that the total change in the curvature F (Φ) is

dF Φ ( Φ) = -d A Y (d A Φ) + d A Y (d A Φ) * + [ Φ ∧ Φ * ] + [Φ ∧ Φ * ].
All we will use here is that this is a second order operator which varies continuously (in the operator norm topology) with respect to variations of Φ in the C 0 -topology. This is because the linear maps Y depend continuously on Φ.

Since dF Φ is a second order operator, it extends to a continuous map

H k (Var(Φ)) → H k-2 (Λ 2 T * S ⊗ g ρ,σ
) where H k denotes the Sobolev Hilbert space of sections with k square-integrable derivatives, where k ∈ N with k ≥ 2. The Sobolev embedding theorem tells us that in two dimensions, H k is in C 0 . If we equip P with the H k -topology, and Ω 2 (Sg σ,ρ ) with the H k-2 -topology, then F is continuously differentiable. A Sobolev inequality tells us that multiplication H k × H k → H k is continuous in dimension 2, so the map (Φ, η) ↦ e -η Φe η is continuous (and continuously differentiable). Finally, by Theorem 5.2 we know that the partial derivative of f with respect to η is an isomorphism. All the axioms of the implicit function theorem are satisfied, so we get the following: Proposition 5.5. Let k ≥ 2. The set of Fock fields Φ of class H k , such that there exists η ∈ H k (S, g σ,-ρ P ) with flat canonical connection associated to e -η Φe η , is open. Furthermore, the map from Φ to this solution η is differentiable.

Theorem 5.6.

There is an open neighborhood of the Fuchsian locus, namely T n * (S), which has a canonical map to the Hitchin component.

Of course it is the nature of the map that is interesting, not its mere existence.

Higher diffeomorphisms

In this section, we exhibit a gauge-theoretic interpretation for higher diffeomorphisms. These can be described by special λ-dependent gauge transformations acting on a family of flat 3-term connections λ -1 Φ + d A + λΨ. For Ψ = Φ * , this action does not change the associated point in the Hitchin component since a gauge transformation does not change the monodromy.

Special λ-dependent gauge transformations

Consider a G-Fock bundle (P, Φ, σ) equipped with a second Fock field Ψ. Assume the existence of a connection d A on P such that

A(λ) = λ -1 Φ + d A + λΨ
is flat for all λ ∈ C * . The space of all compatible triples (Φ, Ψ, d A ) on (P, σ) such that the associated connection is flat is denoted by C f l (P, σ).

Consider a 3-term infinitesimal gauge transformation η(λ) = λ -1 η -1 + η 0 + λη 1 where η -1 , η 0 , η 1 ∈ Ω 0 (S, g P ).

The action on A(λ) is given by

η(λ).A(λ) = dη(λ) + [A(λ), η(λ)] = λ -2 [Φ, η -1 ] + λ -1 (d A (η -1 ) + [Φ, η 0 ]) + d A (η 0 ) + [Φ, η 1 ] + [Ψ, η -1 ] + λ(d A (η 1 ) + [Ψ, η 0 ]) + λ 2 [Ψ, η 1 ]. (6.1) 
The action of η 0 being the usual complex gauge action, we consider η 0 = 0 here to concentrate on the new λ-dependent gauge action. In order to preserve the space of 3-term connections, the lowest and highest term in λ have to vanish. This gives that [Φ, η -1 ] = 0 and [Ψ, η 1 ] = 0. Hence η -1 ∈ Z(Φ) and η 1 ∈ Z(Ψ). The variation of Φ is then given by δΦ = d A (η -1 ). (6.2)

Similarly we get δΨ = d A (η 1 ) and δA = [η -1 , Ψ] + [η 1 , Φ]. Note that the variation δA, coming from the gauge transformation, is the same as the one induced from the filling-in procedure 4.6, since gauge transformations preserve curvature. Definition 6.1. A special λ-dependent gauge of type (P, Φ, Ψ) ∈ C f l (P, σ) is an element of Ω 0 (S,

g P ⊗ C[λ ±1 ]) of the form λ -1 η -1 + λη 1 such that η -1 ∈ Z(Φ) and η 1 ∈ Z(Ψ).
Note that the notion of special λ-dependent gauge depends explicitly on Φ and Ψ. Considering Fock fields up to these transformations gives equivalence classes, but this equivalence relation does not come from a group action.

In the unitary setting, where (P, Φ) is equipped with a compatible hermitian structure ρ and Ψ = Φ * = -ρ(Φ), we ask for η 1 = η * -1 in order to preserve ρ. Proposition 6.2. Variations coming from special λ-dependant gauge transformations are tangent to C f l (P, σ).

Proof. Let A(λ) ∈ C f l (P, σ). Since gauge transformations preserve curvature, the flatness of A(λ) remains. We have also already seen that the space of 3-term connections is preserved. It remains to show that Φ and Ψ stay Fock fields. It is enough to prove it for Φ. Let us show that σ negates the variation δΦ = d A (η -1 ). Since η -1 ∈ Z(Φ), it is negated by σ. The canonical connection d A being σ-invariant, we get that δΦ is negated by σ.

The only remaining point is that the nilpotency condition is preserved. This is a bit more delicate and needs Lemma 2.16. Consider a local chart in which Φ = F dz + Φ 2 dz, where F is a fixed principal nilpotent element. We have to show that δΦ = d A (η -1 ) ∈ Var(Φ). By Proposition (3.20) we know that Var

(Φ) ≅ Im(ad Φ ) ⊕ Z(Φ) K. The (1,0)- part of d A (η -1 ) is ∂η -1 + [A 1 , η -1 ]. We have ∂η -1 ∈ Z(F ) and Z(F ) ⊂ Im(ad F ) since Z(F ) describes the space generated by lowest weight vectors. From [η -1 , Φ] = 0, we get η -1 ∈ Z(F ), hence [A 1 , η -1 ] ∈ Im(ad η -1 ) ⊂ Im(ad F ) by Lemma 2.16. Therefore, locally there is R ∈ Ω 0 (S, g P ) such that [R, F ] = ∂η -1 + [A 1 , η -1 ]. We show that d A (η -1 ) -[R, Φ] ∈ Z(Φ) K. By definition of R this difference has no (1,0)-part. It is sufficient to prove ∂η -1 + [A 2 , η -1 ] -[R, Φ 2 ] ∈ Z(F ). We compute [F, ∂η -1 + [A 2 , η -1 ] -[R, Φ 2 ]] = [η -1 , [A 2 , F ]] -[Φ 2 , [R, F ]], (6.3) 
where we used [F, η -1 ] = 0 (hence also [F, ∂η -1 ] = 0), the Jacobi identity and [F, Φ 2 ] = 0. Now the identity d A Φ = 0 gives

[A 2 , F ] = ∂Φ 2 + [A 1 , Φ 2 ]. Together with [R, F ] = ∂η -1 + [A 1 , η -1 ] (from definition of R), we continue Equation (6.3): [η -1 , [A 2 , F ]] -[Φ 2 , [R, F ]] = [η -1 , ∂Φ 2 ] -[Φ 2 , ∂η -1 ] = 0,
where some cancellation happened and we use that [η -1 , Φ 2 ] = 0.

Remark. At first glance it might be surprising that the action is only defined on the space of flat 3-term connections. In fact, the condition d A Φ = 0 is needed in order to get a variation δΦ which preserves [Φ ∧ Φ] = 0, i.e. which satisfies [Φ ∧ δΦ] = 0. Indeed, since δΦ = d A (η -1 ) and [Φ, η -1 ] = 0, we get

[Φ ∧ δΦ] = [Φ ∧ d A (η -1 )] = [d A (Φ), η -1 ] = 0. The condition F (A) + [Φ ∧ Ψ] = 0 assures the preservation of d A (Φ) = 0: δ(d A (Φ)) = d A (d A (η -1 )) + [([η -1 , Ψ] + [η 1 , Φ]) ∧ Φ] = [F (A) + [Φ ∧ Ψ], η -1 ] = 0.
The variation δΦ = d A (η -1 ) seems to depend on the connection d A . We show that this is not really the case: Proposition 6.3. Up to usual gauge transformations, the variation δΦ = d A (η -1 ) does not depend on the Φ-compatible connection d A .

The main ingredient of the proof is Corollary 3.25 about the vanishing of brackets in Φ-cohomology.

Proof. If λ -1 Φ + d B + λΨ is another flat 3-term connection, then we prove that there exists a usual gauge transformation R such that d A (η -1 )d B (η -1 ) = [R, Φ]. This means that the variation of Φ in (6.2) does not depend on d A modulo gauge transformations.

Note that d A Φ = 0 and d B Φ = 0 implies [A -B, Φ] = 0, and also

d A (η -1 ) -d B (η -1 ) = [A -B, η -1 ].
Hence in the language of Φ-cohomology, A -B is a 1-cocycle and η -1 is a 0-cocycle. We have seen in Corollary 3.25 that the bracket of cohomology classes of Fock fields is always a coboundary. This gives the existence of R.

First variation formula

Now we restrict to the case of SL n (C)-Fock bundles (E, Φ, g). We prove that the induced infinitesimal action of special λ-gauge transformations on the higher complex structure is given by the infinitesimal action by higher diffeomorphisms.

Here we concentrate on the action on Φ and consider a λ-dependent gauge transformation λ -1 ξ (we slightly change notation to the previous subsection where ξ = η -1 ), where ξ ∈ Ω 0 (S, sl(E)) with [Φ, ξ] = 0. This implies that ξ is a polynomial in Φ, evaluated in various vector fields. Recall the variation of Φ from Equation (6.2):

δΦ = d A ξ.
Theorem 6.4. The variation on a Fock field Φ induced by a gauge transformation λ -1 ξ with ξ = Φ(v 1 )⋯Φ(v k ) is equivalent to the action of the Hamiltonian H = v 1 ⋯v k on the higher complex structure induced by Φ.

The proof is a direct computation using local coordinates and the condition d A Φ = 0.

Proof. The statement is local. Hence consider a coordinate system (z, z) on S and a gauge fixing in which the Fock field Φ is Φ = F dz +Q(F )dz, where F is a fixed principal nilpotent element and Q is a polynomial without constant term. We can decompose ξ = Φ(v 1 )⋯Φ(v k ) into monomials in F . So let us suppose that ξ = w k (z, z)F k . We then get

δΦ = d A ξ = dξ + [A, ξ] = (∂w k F k + w k [A 1 , F k ]) dz + ( ∂w k F k + w k [A 2 , F k ]) dz, where we used A = A 1 dz + A 2 dz. With Φ = Φ 1 dz + Φ 2 dz, we get δΦ 1 = ∂w k F k + w k [A 1 , F k ] and δΦ 2 = ∂w k F k + w k [A 2 , F k ]. (6.4) From Φ 2 = Q(F ) = µ 2 F + µ 3 F 2 + ... + µ n F n-1 , we get δΦ 2 = n ∑ k=2 δµ k F k-1 + µ 2 δF + µ 3 (δF F + F δF ) + ... + µ n n-2 ∑ ℓ=0 F ℓ δF F n-2-ℓ .
Hence using Equation (6.4) one has

n ∑ k=2 δµ k F k-1 = ∂w k F k + w k [A 2 , F k ] - n ∑ m=2 µ m m-2 ∑ ℓ=0 F ℓ (∂w k F k + w k [A 1 , F k ]) F m-2-ℓ . (6.5)
The flatness condition now gives

0 = d A Φ = -∂Φ 1 + ∂Φ 2 + [A 1 , Φ 2 ] + [Φ 1 , A 2 ] = n ∑ m=2 ∂µ m F m-1 + [A 1 , Q(F )] -[A 2 , F ].
We may thus deduce

[A 2 , F k ] = k-1 ∑ ℓ=0 F ℓ [A 2 , F ]F k-1-ℓ = kF k-1 n ∑ m=2 ∂µ m F m-1 + n ∑ m=2 k-1 ∑ j=0 µ m F j [A 1 , F m-1 ]F k-1-j .
(6.6) The last part of the expression needs some more manipulation:

k-1 ∑ j=0 F j [A 1 , F m-1 ]F k-1-j = k-1 ∑ j=0 m-2 ∑ ℓ=0 F j+ℓ [A 1 , F ]F m-2-ℓ F k-1-j = m-2 ∑ ℓ=0 F ℓ [A 1 , F k ]F m-2-ℓ .
Combining this last equation with Equations (6.6) and (6.5), we get

n ∑ k=2 δµ k F k-1 = ∂w k F k + kw k F k-1 n ∑ m=2 ∂µ m F m-1 -∂w k F k n ∑ m=2 (m -1)µ m F m-2 .
This gives exactly the first variation formula for higher complex structures. In order to see this, compare to the Poisson bracket expression (see [START_REF] Fock | Higher complex structures[END_REF]Section 3.3]

): n ∑ k=2 δµ k p k-1 = {w k p k , -p + µ 2 p + µ 3 p 2 + ... + µ n p n-1 } = ∂w k p k + kw k p k-1 n ∑ m=2 ∂µ m p m-1 -∂w k p k n ∑ m=2 (m -1)µ m p m-2 .
This completes the proof of the theorem.

Remark. For a higher complex structure with Beltrami differentials µ k = 0, for all k ∈ {2, ..., n}, the argument above can be simplified to

δµ 2 F + ... + δµ n F n-1 = ∂w k F k + w k [A 2 , F k ]
and the flatness condition provides that [A 2 , F k ] = ∂Φ 1 = 0.

Constant monodromy along paths of higher diffeomorphisms

In the previous subsection, we lifted infinitesimal higher diffeomorphisms to 3-term gauge transformations. Now, we show that under the right circumstances, a path of flat 3-term connections inducing higher diffeomorphic higher complex structures must be obtained from a path of 3-term gauge transformations. This shows that within the subset of higher complex structures where our main conjecture holds, monodromy is locally constant along higher diffeomorphism orbits. We prove this statement in the setting with hermitian structure, though it surely has an analogue for more general 3-term connections.

Proposition 6.5. Suppose λ -1 Φ t + d At + λΦ * t is a differentiable family of flat 3-term connections on a vector bundle E with compatible symmetric pairing and hermitian metric, and Φ t is a family of positive SL n (C)-Fock fields inducing a path of higher diffeomorphic higher complex structures. Then the 3-term connections λ -1 Φ t +d At +λΦ * t are all gauge equivalent.

Proof. The fact that the higher complex structures are higher diffeomorphic gives us a time dependant Hamiltonian h t ∶ T * S → C which satisfies

d dt Φ t = d At (h t (Φ t )) + [Φ t , η t ],
where η t is a path in Ω 0 (S, g σ P ). This follows from Theorem 6.4. Decompose η t into its hermitian and anti-hermitian parts η t = η -ρ t + η ρ t . If η -ρ t = 0, then we are done because the path of three term infinitesimal gauge transformations λ -1 h t (Φ t ) + η t + λ -1 h t (Φ t ) * induces the correct time derivative of Φ t , thus must induce the correct derivative of the whole 3-term family.

At each time t, the derivative of curvature F At +[Φ t ∧Φ * t ] with respect to a change in Φ t is a linear operator. We have just argued that the derivative of curvature if we change Φ by d At (h t (Φ t )) + [Φ t , η ρ t ] is zero, so the only thing that could be changing curvature is [Φ t , η -ρ t ]. The change in curvature induced by a hermitian gauge transformation of Φ is the operator L from theorem 5.2. Since we are assuming our connections to be flat, we have L(η -ρ t ) = 0. This implies η -ρ t = 0 because L has zero kernel. If we assume the main Conjecture 4.14, then Proposition 6.5 tells us that the map from Fock bundles to the Hitchin component factors through the projection to T n (S). Note the importance of the higher diffeomorphism group being connected. of the Hitchin component inside the character variety χ(π 1 S, G) for the complex Lie group G. For this, we do not require anymore the canonical connection d A to be σinvariant. We will see that d A is then determined by cotangent vectors to the space of higher complex structures. This also leads to a gauge-theoretic meaning of the µholomorphicity condition.

where π Im(Φ 1 ) is orthogonal projection onto Im(ad Φ 1 ). Let c Φ ∶ Im(ad Φ 1 ) → Im(ad Φ 2 ) denote the map which takes [Φ 1 , A] to [Φ 2 , A] for any A. Define c Φ * analogously. We see that [Φ 1 , A] has to be a fixed point of the following map:

(-π Im(Φ 1 ) ) ○ c Φ * ○ (-π Im(Φ * 1 ) ) ○ c Φ . The positive definiteness condition Φ ∈ P is precisely that c Φ , (and thus c Φ * ,) decreases norm. Orthogonal projections do not increase norm, so this composition must decrease norm. This implies that [Φ 1 , A] must be zero. We immediately get that [Φ, A] = [Φ * , B] = 0. The centralizers of Φ and Φ * have trivial intersection because they are nilpotent preserving opposite flags, so C and D are zero as well.

An equivalent way to phrase this lemma is as follows: for positive Fock field Φ we have Ω 1 (S, g P ) = Var(Φ) ⊕ Var(Φ * ),

where we used Var(Φ) = Im(ad Φ ) ⊕ Z(Φ) K from Proposition 3.20.

Recall from Section 3.3 the symplectic form ω = ∫ S tr α ∧ β on Ω 1 (S, g P ). Both subspaces Var(Φ) and Var(Φ * ) are maximal isotropic with respect to ω. Pointwise they give a decomposition of T * S ⊗g into two Lagrangian subspaces. Therefore, pairing with ω gives the duality Var(Φ) ≅ Var(Φ * ) * .

The space of covectors is related to the cohomology group H 1 (Φ). From Ω 1 (S, g P ) = Var(Φ)⊕Var(Φ * ) and Var(Φ) ⊂ ker ad Φ , we get ker ad Φ = Var(Φ)⊕(ker ad Φ ∩Var(Φ * )). Hence from Var(Φ) = Z(Φ) K ⊕ Im(ad Φ ) we deduce H 1 (Φ) ≅ Z(Φ) K ⊕ (ker ad Φ ∩Var(Φ * )).

(7.

2)

The latter can be identified with the space of covectors:

Proposition 7.3. The symplectic pairing induces an isomorphism between (Z(Φ) K) * and ker ad Φ ∩Var(Φ * ).

Proof. Both spaces have the same dimension rk(g). This follows from dim H 1 (Φ) = 2rk(g) (see Proposition 3.18) and Equation (7.2). Given a non-zero element x ∈ ker ad Φ ∩Var(Φ * ), there is z ∈ Ω 1 (S, g P ) such that ω(x, z) ≠ 0 since ω is non-degenerate. The symplectic pairing between ker ad Φ ∩Var(Φ * ) and Var(Φ * ) ⊕ Im(ad Φ ) is trivial, hence we can reduce to z ∈ Z(Φ) K by Lemma 7.2. Therefore, the map x ↦ ω(x, .) from ker ad Φ ∩Var(Φ * ) to (Z(Φ) K) * is injective, thus an isomorphism.

Combining this proposition with Equation (7.2), we get

H 1 (Φ) ≅ Z(Φ) K ⊕ (Z(Φ) K) * .
This shows that H 1 (Φ) describes variations of Φ and a covector modulo gauge transformations.

Proof. By definition, we have T Φ (P) = Var(Φ) ≅ Im(ad Φ )⊕Z(Φ) K. Corollary 7.5 shows that (ker ad Φ ∩ ker ad Φ * ) ρ , which is identified with the space of unitary Φ-compatible connections via Theorem 7.8, is dual to Z(Φ) K.

The generalized filling-in procedure 7.8 allows to describe a point d A ∈ Π in two different, but equivalent ways: First using the canonical base point d A 0 ∈ Π we can write d A = d A 0 + t where t ∈ (ker ad Φ ∩ ker ad Φ * ) ρ is a covector. The second description simply decomposes d A into its σ-invariant and σ-anti-invariant part:

d A = d A σ + A -σ .
Note that in general, neither d A σ nor A -σ are in Π. Proposition 7.6 shows that using the pairing with Z(Φ) K to parametrize d A ∈ Π gives the same result whether we use t or A -σ . This is why we also refer to A -σ as being the covector.

We formulate an extension of our main conjecture 4.14 including the data of a covector. Let (P, Φ) be a G-Fock bundle over S equipped with a hermitian structure ρ such that Φ ∈ P is positive. Denote by µ the g-complex structure on S induced by Φ and let t ∈ (Z(Φ) K) * be a covector. From Theorem 7.8 we know that there is a unique unitary Φ-compatible connection d A described by t. We need the following definition. Definition 7.10. A covector t is called µ-holomorphic if the associated connection d A has curvature F (A) ∈ Im(ad Φ ) ⊂ Ω 2 (S, g P ).

We will see below in Theorem 7.13 that this condition coincides with the usual µholomorphicity from Equation (2.2) in the case of SL n (C). For now, we show that this notion only depends on µ and t: Proposition 7.11. The condition F (A) ∈ Im(ad Φ ) only depends on t and the g-complex structure µ induced by Φ. We can now formulate the extension of our main conjecture, including the covector: All irreducible representations of sl 2 are highest weight representations. This means that for a given irreducible representation V , there is a highest weight vector v ∈ V /{0} with E.v = 0. Then acting successively with F generates all of V .

In our setting, the highest weight vector of V i is given by E i . Hence a basis adapted to the line decomposition (7.5) is given by

G i,j = ad i-j F (E i ) ∈ V i ∩ g 2j (7.6) 
where i ∈ {1, ..., n -1} and j ∈ {-i, -i + 1, ..., i -1, i}.

A nice property of this line decomposition is its behavior under the trace: tr(G i,j G k,ℓ ) = 0 if (k, ℓ) ≠ (i, -j).

In terms of Figure 7.1, the proposition says that the trace of a product of two elements of the basis is only non-zero if the two corresponding dots lie symmetric with respect to the middle axis. More details can be found in [START_REF] Abdesselam | Structure constants for simple Lie algebras from principal sl 2 -triple[END_REF] (in particular Section 4), where the Lie bracket is computed in the basis (G i,j ) using a graphical calculus.

Proof of Theorem 7.13

The proof of Theorem 7.13 is a nice but lengthy computation, using principally the Lie theory of the decomposition (7.5). Since Theorem 7.13 is a local statement, we can work in local coordinates. To do that, we fix an arbitrary complex structure on S. The general setting is the following: using a gauge transformation, we can fix Φ(z, z) = F dz + Q(F ) dz where Q(F ) = ∑ Finally, we put A σ = M 1 dz + M 2 dz where M i ∈ g σ . Since g σ ⊂ Im(ad F ), we can write M i = [F, N i ] with suitable N i ∈ g, where i = 1, 2.

We see that we found X up to an element of ker ad F . This choice does not matter since we compute the symplectic pairing with Z(Φ).

Step 2: Now we come back to Equation (7.9) using the explicit expression (7.11) for X: 

∑ j=0 F j BF k-1-j ][F ℓ-1 , E] = k-1 ∑ j=0 tr F j BF k-1-j [[F ℓ-1 , E], F ] = k-1 ∑ j=0 tr F j BF k-1-j [-H, F ℓ-1 ] = (2ℓ -2) k-1 ∑ j=0 tr F j BF k-1-j F ℓ-1
= (2ℓ -2)k tr BF k+ℓ-2 = (2ℓ -2)kt k+ℓ-1 (7.13) where we used F ℓ-1 ∈ g 2-2ℓ and the definition of t k+ℓ-1 . Therefore Equation (7.12), using Equation (7.9), becomes Step 3: The remaining term in Equation (7.8) can now be computed:

tr F k ∂C = ∂ tr(F k C) = 1 2k ∂ tr([F k , H]C) = 1 2k ∂ tr(F k [[E, F ], C]) = 1 2k ∂ tr(F k ([[C, F ], E] + [[E, C], F ])) = 1 2k ∂ tr(F k [[B, Q(F )], E]) = 1 2k ∂ ( n ∑ ℓ=2 tr(µ ℓ F k [[B, F ℓ-1 ], E])) = 1 2k ∂ ( n ∑ ℓ=2 µ ℓ tr([F k , B][F ℓ-1 , E])) .
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 319 The first Φ-cohomology group H 1 (Φ) describes variations of a G-Fock field Φ leaving the condition [Φ ∧ Φ] = 0 invariant, modulo gauge transformations.
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 320 [γ, Φ] to α adds tr([γ, Φ] ∧ β) = tr(γ[Φ ∧ β]) = 0. The same holds when adding a coboundary to β. Hence the symplectic form only depends on the cohomology classes. Denote by Var(Φ) the variations of Φ which both preserve [Φ ∧ Φ] = 0 and the nilpotency condition. The variations of Fock fields Var(Φ) are described by the direct sum Var(Φ) ≅ Im(ad Φ ) ⊕ Z(Φ) K,
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 4 Figure 4.1 illustrates the transversality condition; note that the figure shows the decomposition of Ω 1 (S, g P ) as a direct sum, not as a union.
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 4144 Figure 4.1: Decomposition of Ω 1 (S, g P ) for transverse Φ and Ψ.

Proof.

  The condition does clearly only depend on the isomorphism class of the Fock bundle since both Φ and F (A) get conjugated under a gauge transformation. To show independence from the choice of ρ, note that changing ρ changes d A by a coboundary term: the new middle term d A ′ is given by d A ′ = d A + [C, Φ] for some C ∈ Ω 0 (S, g P ) (see Theorem 4.6). The curvature change is thenF (A ′ ) = F (A) + d[C, Φ] + [A ∧ [C, Φ]] + 1 2 [[C, Φ] ∧ [C, Φ]].Modulo Im(ad Φ ), the second term equals [C, dΦ], the third terms equals [C, [A ∧ Φ]] (using the Jacobi identity) and the last term vanishes (using again the Jacobi identity and (ad Φ ) 2 = 0). Therefore F (A ′ ) -F (A) ≡ [C, dΦ + [A ∧ Φ]] = 0 mod Im(ad Φ ) using d A Φ = 0.
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 71 Figure 7.1: Line decomposition of sl n by a principal triple

n k=2 µ k (z, z)F k- 1 .

 1 Further put A -σ = B dz + C dz. From [A -σ ∧ Φ] = 0 we have [F, C] = [Q(F ), B].(7.7)

  k , B][F ℓ-1 , E]. (7.12)Using cyclicity of the trace and Jacobi identity, we gettr[F k , B][F ℓ-1 , E] = tr[F, k-1

tr M 1

 1 [C, F k ] + tr M 2 [F k , B] = tr[F k , B]X = n ∑ ℓ=2 k(∂µ ℓ )t k+ℓ-1 . (7.14) 

  2 (C) → G ad such that the Definition 3.11. If (P, Φ, σ) is a PSL 2 (C)-Fock bundle, then the induced G ad -Fock bundle is the triple (P ′ , Φ ′ , σ ′ ) where P ′ is the induced bundle P × PSL 2 (C) G ad , or alternatively

	diagram	
	PSL 2 (C)	G ad
	σ 0	σ 0
	PSL 2 (C)	G ad
	commutes.	

In the previous sections we have seen the conjectural link between Fock bundles and the Hitchin component. We believe that we can extend this link to a tubular neighborhood

Note that solutions η for a given Φ are isolated, but at this point we have not proven them to be unique.

Since the operator L is elliptic in the variable η, and continuously differentiable with respect to the C 0 -topology (thus also the H k -topology,) it can be approximated by its linearization for small continuous fluctuations of η. Standard elliptic regularity arguments then imply that if Φ is smooth, then η must be as well.

Solution in a neighborhood

Now we restrict to SL n (C) to get a link from a neighborhood of the Fuchsian locus in the moduli space of higher complex structures T n (S) to the Hitchin component.

Proposition 5.5 gives us a map from a neighborhood U ⊂ M n (S) of the Fuchsian locus in the space of higher complex structures to the Hitchin component. In Section 6 we will see that this map is locally constant along higher diffeomorphism orbits. Unfortunately, this is not quite enough to conclude that we have a canonical map from a neighborhood of the Fuchsian locus in T n (S) to the Hitchin component, because we can not guarantee that the intersection of U with higher diffeomorphism orbits is connected.

Luckily there is a convenient slice of the higher diffeomorphism action, namely the harmonic higher complex structures defined in [START_REF] Nolte | Canonical Maps from Spaces of Higher Complex Structures to Hitchin Components[END_REF]. Let HM n (S) denote the space of harmonic higher complex structures of order n on S. A harmonic higher complex structure amounts to a complex structure, and list of tensors (µ 3 , ..., µ n ) with µ k a section of K 1-n ⊗ K satisfying ∂(μ k g k-1 S ) = 0, where g S denotes the hyperbolic metric on S associated to the complex structure. Theorem 8.2 in [START_REF] Nolte | Canonical Maps from Spaces of Higher Complex Structures to Hitchin Components[END_REF] states that any higher complex structure modulo higher diffeomorphism allows a harmonic representative, unique up to isotopy:

M n (S)/Ham 0 (T * S) ≅ HM n (S)/Diff 0 (S).

There is a natural action of R * on higher complex structures by t ⋅ (µ 3 , ..., µ n ) = (tµ 3 , ..., t n-2 µ n ) coming from scalar multiplication by t in T * S. This action clearly preserves HM n (S). Let HM n * (S) ⊂ HM n (S) denote the subset for which there is a path of solutions to (4.5), for {(tµ 3 , ..., t n-2 µ n )| t ∈ [0, 1]} starting at the Fuchsian solution. Proposition 5.5 gives that this path of solutions is unique if it exists, so we have a natural map from HM n * (S) to the Hitchin component via evaluating at the end of the path. Proposition 5.5 also implies that HM n * (S) is open. Also, note that HM n * (S) is necessarily Diff 0 (S)-invariant because we can pull-back solutions by diffeomorphisms. We can define T n * (S) ⊂ T n (S) to be the quotient of HM n * (S) by Diff 0 (S). The map from HM n * (S) to the Hitchin component factors through T n * (S) because diffeomorphisms isotopic to the identity cannot change monodromy. Therefore, we have the following result:

Definition of covectors

The setting of our investigations is now the following. Consider a G-Fock bundle (P, Φ, σ) on the surface S equipped with a hermitian structure ρ. The main difference with the previous sections is that ρ is not supposed to commute with σ. We assume Φ ∈ P to be a positive Fock field (see Definition 4.10). This implies that Φ and Φ * = -ρ(Φ) are transverse.

We have seen in Proposition 3.20 that the tangent space to the space of Fock bundles modulo usual gauge transformations is given by Z(Φ) K. This motivates the following definition of a covector: Definition 7.1. A covector for a G-Fock bundle (P, Φ) is an element of (Z(Φ) K) * .

We will give several realizations of covectors. For SL n (C), we will see in Section 7.3 below the link to the cotangent bundle to higher complex structures. Lemma 7.2. For any Φ ∈ P we have:

The same statement holds for Ω 1 (S, g P ), where we use Im(ad Φ ) both for the subbundle and its sections. The proof uses a fixed point argument coming from a contraction.

Proof. We do the proof at a point p ∈ S, so we may as well choose an identification of (g P ) p with g, and a local coordinate so we get a basis dz, dz of T * S ⊗ C. Both vector spaces in the lemma have the same dimension, namely 2dim(g). All we have to show is that there is a direct sum on the right hand side.

Suppose we have a sum 

, A] + C = 0 Note that g is an orthogonal direct sum of Im(ad Φ 1 ) and Z(Φ * 1 ), and likewise for Im(ad Φ * 1 ) and Z(Φ 1 ). This means, for example, that

Canonical connection with covectors

We want to equip P with a unitary Φ-compatible connection d A , generalizing the fillingin procedure from Theorem 4.6, to get a canonical 3-term connection Φ + d A + Φ * . Denote by Π the space of all unitary connections which are Φ-compatible (solutions to d A Φ = 0). Note that such connections are automatically Φ * -compatible. Since Φ and Φ * are transverse, Π is non-empty and is modeled on ρ-invariant elements of ker ad Φ ∩ ker ad Φ * . We start by analysing the vector space (ker ad Φ ∩ ker ad Φ * ) ρ and show that it is a realization of the space of covectors.

Proposition 7.4. The symplectic pairing gives an isomorphism

Proof. Both spaces have the same dimension. Indeed the right hand side is of dimension dim Z(Φ) + dim Z(Φ * ) = 2rk(g). The left hand side can be identified with H 1 (Φ) which is of the same dimension by Proposition 3.18.

The symplectic pairing between ker ad Φ ∩ ker ad Φ * and Im(ad Φ )⊕Im(ad Φ * ) is trivial by the cyclicity of the Killing form. Since ω is non-degenerate and using Lemma 7.2, the map from ker ad ϕ ∩ ker ad Using this identification, we sometimes call an element of (ker ad Φ ∩ ker ad Φ * ) ρ a covector. In the case of SL n (C), the centralizer Z(Φ) = Z(Φ 1 ) is generated by the powers of Φ 1 . Hence a covector t ∈ (ker ad Φ ∩ ker ad Φ * ) ρ is uniquely described by

. This is similar to the formula for covectors to higher complex structures [START_REF] Thomas | Higher complex structures and flat connections[END_REF]Proposition 4.2].

Now we study the affine space Π of unitary Φ-compatible connections. For a connection d

Again we use the symplectic pairing with Z(Φ) K and define the map

Proposition 7.6. The map ψ is an affine map covering the linear map from Corollary 7.5. Hence it is an isomorphism.

Proof.

where we used that the pairing with Z(Φ) K does only depend on the cohomology class (since it pairs to zero with Im ad Φ ).

Proposition 7.7. Let A denote the space of all connections on P . The map A × Z(Φ) K → C given by (d A , x) ↦ ∫ S tr(A -σ x) is independent of the choice of σ (among σ 0 -structure negating Φ), and is gauge invariant.

Proof. For the first claim, we know from Proposition 3.23 that an infinitesimal variation of a σ 0 -structure negating Φ is described by H 0 (Φ). More precisely a variation δσ is described by δσ(x) = [ξ, x] for all x ∈ g where ξ ∈ H 0 (Φ) = Z(Φ). The change of

For the second claim, consider a gauge transformation η ∈ Aut(P ). The action on Φ and A -σ are given by η.Φ = ηΦη -1 and η.A -σ = ηA -η.σ η -1 where η.σ is the pull-back of σ along η. Note that η.σ is compatible with η.Φ. We distinguish two cases.

If η.σ = σ, i.e. η ∈ Aut(P, σ), the pairing stays unchanged since Z(ηΦη -1 ) = ηZ(Φ)η -1 and the Killing form is Ad-invariant. If η.Φ = Φ, we conclude by the first part since η.σ is then Φ-compatible. Both cases generate all gauge transformations since g σ is a maximal Lie subalgebra of g.

From all this, we get a canonical base point in Π, generalizing the filling-in procedure from Theorem 4.6.

Theorem 7.8. Consider a G-Fock bundle (P, Φ, σ) equipped with a hermitian structure ρ. If Φ ∈ P is positive, then there is a unique unitary Φ-compatible connection d A 0 such that A -σ 0 ∈ Var(Φ). This is independent of the choice of σ.

Proof. We start from uniqueness:

which is isotropic. By Proposition 7.6, ψ is an isomorphism, which gives uniqueness.

To show existence, consider d A 0 = ψ -1 ({0}). Then ∫ S tr(A -σ 0 ⋅) both vanishes on Z(Φ) K and on Im(ad Φ ) since A -σ 0 ∈ ker ad Φ . Hence A -σ 0 ∈ Var(Φ) ⊥ω = Var(Φ). Finally, the independence of the choice of σ follows directly from Proposition 7.7.

A more conceptual formulation of the previous theorem is given by: Corollary 7.9. The space of unitary connections d A on P such that d A Φ = 0 is naturally the dual space to T Φ (P)/Im(ad Φ ). Conjecture 7.12. Let (P, Φ) be a G-Fock bundle with a hermitian structure ρ such that Φ ∈ P is positive. Denote by µ the induced g-complex structure on S and consider a covector t ∈ (Z(Φ) K) * .

If t is µ-holomorphic and small, then there is a gauge transformation η ∈ Ω 0 (S, g -ρ P ) such that the associated 3-term connection associated to e -η Φe η and covector t is flat. Assuming Conjecture 7.12, we get a map from Fock bundles with compatible connection to the character variety by taking the monodromy of the flat connection Φ+d A +Φ * . We expect that the image of this map is a tubular neighborhood of the Hitchin component (which corresponds exactly to those Fock bundles with covector zero). This picture generalizes the work of Donaldson [START_REF] Donaldson | Moment maps in differential geometry[END_REF] and Trautwein [START_REF] Trautwein | The hyperkähler metric on the almost-Fuchsian moduli space[END_REF] on the space of almost-Fuchsian representations in the SL 2 (C)-case.

µ-holomorphicity

We are now giving the gauge-theoretic meaning of the µ-holomorphicity condition (2.2). For that we consider an SL n (C)-Fock bundle (E, Φ, g) with hermitian metric h and assume that Φ is positive. Denote by σ and ρ the involutions on sl(E) induced by g and h. Denote by µ the induced higher complex structure on S. Finally, let A -σ be a covector. This describes a 3-term connection Φ + d A + Φ * by Theorem 7.8.

Recall from the previous subsections that the pairing with Z(Φ) K parametrizes covectors. Since Z(Φ) = Z(Φ 1 ) is generated by powers of Φ 1 , we consider

where 2 ≤ k ≤ n and A -σ 1 denotes the (1, 0)-part of A -σ .

Theorem 7.13. Let (E, Φ, g) be an SL n (C)-Fock bundle with hermitian structure h and positive Φ. Denote by µ = (µ k ) 2≤k≤n the induced higher complex structure and let t = (t k ) 2≤k≤n be a covector data (7.3). Then the µ-holomorphicity condition

for all k ∈ {2, 3, ..., n}, is equivalent to the condition

where F (A) is the curvature of the unique unitary Φ-compatible connection described by the covector t.

We can make the condition more symmetric in Φ and Φ * . Since d A is unitary, its curvature is ρ-invariant. Hence F (A) ∈ Im(ad Φ ) is equivalent to F (A) ∈ Im(ad Φ ) ∩ Im(ad Φ * ). Another useful reformulation using Φ-cohomology reads [F (A)] = 0 ∈ H 2 (Φ).

From Proposition 3.24, we know that there is no σ-invariant Φ-cohomology. Hence it is sufficient to show that [F (A)

The symplectic pairing on Φ-cohomology induces an isomorphism H 2 (Φ) ≅ H 0 (Φ) * . Thus, an element in H 2 (Φ) is trivial if and only if its pairing with H 0 (Φ) = Z(Φ) is trivial. The centralizer Z(Φ) is generated (as vector space) by the elements Φ k 1 for 1 ≤ k ≤ n. We will see that the condition

gives the µ-holomorphicity condition for t k+1 . Before going to the general case, consider the example for n = 2.

Example 7.14. Fix an arbitrary complex structure on S and fix a standard basis (F, H, E) in sl 2 . We work in a gauge where Φ = F dz + µ 2 F dz. By Equation (7.3), we know that A -σ = t 2 E dz + µ 2 t 2 E dz. Since the only σ-invariant part of sl 2 is spanned by H, we can put A σ = aH dz + bH dz for some local functions a and b. From d A σ (Φ) = 0, we get 2b -2aµ 2 + ∂µ 2 = 0. This yields

which is the µ-holomorphicity condition for n = 2.

Interlude: Natural basis from principal sl 2 -triple

Consider a complex simple Lie algebra g. By a theorem of Kostant (see Theorem 2.9), we know that there is a unique principal sl 2 -triple in g up to conjugation. Fix (E, H, F ) such a triple. It induces two decompositions of g. First by weights of ad H :

Second by the action with the bracket, g becomes a sl 2 -module which can be decomposed into irreducible representations:

where V i is the irreducible representation of sl 2 of dimension 2i + 1 and n i ∈ N the multiplicities.

In the sequel we only consider g = sl n (C). Then, we know that n i = 1 for 1 ≤ i ≤ n -1 and n i = 0 otherwise. Using both decompositions, we get

Recall from Equation (7.4) that we want to compute tr

Using the above notations and the definition t k+1 = tr F k B we get

We analyze the different terms separately.

Step 1: We compute

where we used [C, F ] = [B, Q(F )], cyclicity of the trace and the Jacobi identity.

Combined with

where

Interlude: From the flatness equation d A σ (Φ) = 0, we get an important relation for X:

where we used the Jacobi identity. Therefore:

We can explicitly solve Equation (7.10) in X. From the line decomposition of sl n C (see Figure 7.1), we see that we should look for a solution of the form

using the Jacobi identity and F ℓ-1 ∈ g -2ℓ+2 . Therefore we find α ℓ = 1 2ℓ-2 , so

Putting Equations (7.8), (7.14) and (7.15) together, we get that the condition tr(

which is exactly the µ-holomorphicity condition.

Remark. It is surprising that in the proof above, we never used integration by parts. The statement is somehow pointwise true (without being a pointwise statement).

Higher diffeomorphism action on covectors

We extend the gauge-theoretic implementation of the action of higher diffeomorphisms on flat Fock bundles in Section 6.2 to the setting with covectors. In the case of SL n (C), we recover the variation formula of the covector data t k from the theory of higher complex structures.

Consider a G-Fock bundle (P, Φ, σ) with a hermitian structure ρ (not necessarily commuting with σ) such that Φ is positive. Use σ to decompose a unitary Φ-compatible connection d A = d A σ + A -σ , where A -σ is the covector.

Recall from Section 6 that a higher diffeomorphism is a special λ-dependent gauge transformation λ -1 ξ + λξ * where ξ ∈ Z(Φ). The variations of Φ and d A are given by δΦ

In the framework with covectors, we define the action of higher diffeomorphisms the same way. The only problem is that the variation δΦ = d A ξ does not preserve σ(Φ) = -Φ since ξ ∈ Z(Φ) is σ-anti-invariant but d A is not σ-invariant. Thus, higher diffeomorphisms also change σ.

There is way out to keep the same σ: we can use a usual gauge transformation η to make δΦ anti-invariant under σ. The infinitesimal gauge transformation λ -1 ξ + η + λξ * induces the variation

The first term is σ-anti-invariant, we wish to choose η which let vanish the rest. Then the action on Φ is simply given by δΦ = d A σ (ξ).

Proposition 7.15. There exists η ∈ Ω 0 (S, g P ) such that [A -σ , ξ] + [η, Φ] = 0.

Proof. This is an application of Corollary 3.25 stating that the bracket between cohomology classes is a coboundary. We have ξ ∈ Z(Φ) = H 0 (Φ) and A -σ ∈ ker ad Φ . Since ξ ∈ Z(Φ) the bracket [A -σ , ξ] only depends on the class [A -σ ] ∈ H 1 (Φ). In addition, the bracket is a coboundary which gives the existence of η.

Now we restrict attention to the case of an SL n (C)-Fock bundle (E, Φ, g) and compute explicitly the action on the covector data. Put ξ = Φ(v 1 )⋯Φ(v k ) which is associated to the Hamiltonian H = v 1 ⋯v k . Consider the infinitesimal gauge transformation λ -1 ξ + η + λξ * , where η is explicitly given by

Note that σ(η) = -η and that η = 0 if t k = 0 for all k (recall that t k = tr Φ k-1 1 A -σ 1 ). Proposition 7.16. The η is well-defined, i.e. does not depend on the order of the v i .

Proof. This will follow from Φ ∧ Φ = 0 and

Since the Φ(v i ) commute among themselves, η will not change under the exchange between v 1 and v 2 . In a similar way, you prove this for any exchange between v i and v i+1 . Hence η is invariant under any permutation.

Proposition 7.17. We have

Proof. Since the equation to prove is additive, we can assume the Hamiltonian to be H = v 1 ⋯v k . Then, the first term is

The flatness identity

As a consequence, we get δΦ = d A σ (ξ). (7.17)

In particular, the property σ(Φ) = -Φ is preserved. The variation of the middle term d A is given by (see also Equation (6.1)):

Thus, the variation of A -σ , which is important for the covector data, is given by

We can now state the variation formula of the differentials t k .

Proposition 7.18. The variation of t k under a Hamiltonian H = w ℓ p ℓ-1 is given by

This is in accordance to the computations from the classical perspective on higher complex structures. Before giving the proof which is a direct computation, let us see an example: Example 7.19. For n = 2, the µ-holomorphicity condition reads (-

One can check that the µ-holomorphicity is preserved.

Note that the µ-holomorphicity condition is preserved under the higher diffeomorphism action. This is because it is a gauge action, hence it preserves the flatness of the 3-term connection.

Proof of Proposition 7.18. We start in a gauge in which Φ 1 = F dz is a fixed principal nilpotent element (F will only change under the higher diffeomorphism action). Recall the definition t k = tr(F k-1 A -σ 1 ) and the notation B = A -σ 1 , from which we get δt k = tr (δ (F k-1 ) B + F k-1 δB) .

From Equation (7.18) and (7.17), we get The last line comes from the cancellation of two terms. Using cyclicity we get:

Hence the two terms cancel out.
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