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Abstract

In this paper we propose a finite-time output-feedback control scheme for a class of
nonlinear systems. The dynamic part of the controller consists in an extended order
observer which is based on the higher-order sliding-mode exact differentiator. With
such an observer, the states of the system are exactly estimated in finite-time, more-
over, the additional state in the observer estimates exactly and in finite-time Lipschitz
disturbances in the system. Such an estimation is used by the static part of the con-
troller to compensate the disturbances. The static part of the controller can be chosen
from a class of homogeneous controllers. The whole control scheme allows to recover in
finite-time several useful properties of homogeneous systems despite the additional and
uncertain nonlinear terms. The effect of the noise in the measurement is also studied.

Keywords: Nonlinear systems, Homogeneous systems, Sliding mode control, Distur-
bance rejection, Lyapunov methods.

1 Introduction

In control systems theory, there are several techniques to improve the robustness properties of
a controlled dynamic system [32, 18, 31, 21], for example, Lyapunov redesign, integral control,
and disturbance observer-based control1 (DOBC). The DOBC technique, also known as active
disturbance rejection control, consists in identifying the disturbance and compensating it by
means of the control action.

*Corresponence: T. Sanchez, 2055 Camino a la Presa San José, San Luis Potośı, 78216 Mexico.
tonametl.sanchez@ipicyt.edu.mx

1For recent surveys of this technique see e.g. [24, 7]
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An interesting DOBC scheme is that proposed in [13], where one of the most important
advantages of the DOBC technique is emphasized: A good disturbance estimation allows to
recover the performance of the nominal controlled system. In that work, an extended-order
high-gain observer is used to estimate the states of the system and the disturbance, which is
assumed to be bounded with bounded derivative. The static part of the control consists in
an exact linearizing state-feedback. The trajectories of the closed-loop system are ultimately
bounded with a bound depending on the high-gain parameter of the observer. Thus, to
reduce the ultimate bound, the high-gain must be increased.

In [10], another DOBC scheme was proposed. There, the states and the disturbance are
estimated in finite-time by means of a sliding-mode-based observer. The disturbance is as-
sumed bounded and sufficiently differentiable. The static controller is linear, therefore, only
exponential stability can be guaranteed (see, e.g., [11] for a recount of input-output lineariza-
tion based on sliding-mode techniques). In [17] and [11], the higher-order sliding-mode exact
differentiator [22] is used to exactly estimate the states of the system and the uncertain terms
(in finite-time). However, the assumptions on the uncertain terms considerably restrict the
class of systems that can be controlled.

In this paper we propose a DOBC scheme for a class of nonlinear systems. As in [17, 11],
we use an extended-order higher-order sliding-mode observer to estimate exactly and in
finite-time the states of the system and the matched external disturbances. Nonetheless, our
proposal incorporates significant improvements with respect to the existent methods:

� the assumptions on the uncertain nonlinear terms of the system are less restrictive than
in [17, 10, 11], and this allows us to deal with a wider set of uncertainties;

� we prove that the static part of the controller can be chosen from a class of nonlinear
homogeneous controllers, which in the state-feedback and the undisturbed case guaran-
tee a robust closed-loop system with finite-time convergence of the trajectories to the
origin by means of a continuous control action;

� in contrast with [13, 10, 17, 11] the proposed output-feedback controller guarantees
zero steady-state error in finite-time despite uncertainties and disturbances. Hence,
this scheme guarantees the recovery of the finite-time convergence provided by the
state-feedback controllers mentioned in the previous item;

� unlike most of the existent DOBC schemes that use high-order sliding-mode differen-
tiators, we provide a methodology that verifies Lyapunov stability of the origin of the
closed-loop system;

� we investigate the robustness properties of the closed-loop system in presence of noise
in the measured output;

� unlike [10, 11] we analyse the case of uncertain control coefficient. Although the uncer-
tain control coefficient is considered in [17], its assumptions may be quite restrictive;

� one interesting advantage of the proposed scheme is that the domain of attraction and
the convergence rate can be adjusted by only one parameter.
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Paper organization: In Section 2 we describe the class of systems considered in this paper.
Section 3 contains the main result whose proof is given in Section 4. In Section 5, the case of
uncertain control coefficient is analysed. Two simulation examples are given in Section 6, one
of them consists of a comparison example between our proposed controller and the scheme
from [13]. Some final remarks are stated in Section 7. The definition of homogeneity and
some auxiliary results are collected in the appendix.

Notation: Real numbers are denoted by R. R>0 denotes the set {x ∈ R : x > 0},
and analogously for the sign ≥. For x ∈ Rn, the Euclidean norm is denoted by |x|, and
an r-homogeneous norm (see Definition 3 in Appendix) by ∥x∥r. For x, ρ ∈ R we denote
⌈x⌋ρ = |x|ρ sign(x). The set of strictly increasing continuous functions α : R≥0 → R≥0 with
α(0) = 0 is denoted by K. The set of functions in K such that α(t) → ∞ as t → ∞ is
denoted by K∞. A function β : R≥0 × R≥0 → R≥0 is in the set of functions KL if for
each fixed s ∈ R≥0, β(·, s) ∈ K, and for each fixed r ∈ R≥0, β(r, ·) is continuous, strictly
decreasing, and lims→∞ β(r, s) = 0. ◁

2 Problem statement

In this paper we consider the class of nonlinear systems that can be described by

ẋi = xi+1 , ẋn = f(t, x) + u+ δ(t) , y = x1 , i = 1, . . . , n− 1 , (1)

where x(t) = [x1(t), . . . , xn(t)]
⊤ ∈ Rn is the state, u(t) ∈ R is the control input, y(t) ∈ R

is the measured output, f(t, x) ∈ R is an uncertain function, and δ(t) ∈ R is an unknown
exogenous disturbance.

In a second stage we consider the presence of noise in the measured output, namely
y = x1+ν, where ν is a Lebesgue-measurable and essentially bounded function. In Section 5,
we study the case of uncertain control coefficient.

Assumption 1. Consider (1), and define the set D = {x ∈ Rn : |x| ≤ d} for some d ∈ R>0.

(i) The uncertain function f : R≥0 × Rn → R satisfies the following: f(t, 0) = 0 for all
t ∈ R≥0, it is piecewise-continuous and bounded in t, and it is locally Lipschitz in x,
i.e. for any d ∈ R≥0 there exists a constant d1 = d1(d) ∈ R≥0 such that

|f(t, x)− f(t, x′)| ≤ d1|x− x′| , ∀ t ∈ R≥0, ∀x, x′ ∈ D .

(ii) A model f̄ : R≥0 × Rn → R for f is known, and it satisfies the following: it is a
piecewise-continuous and bounded function in t, it is locally Lipschitz in x, and for any
d ∈ R≥0 there exists a constant d2 = d2(d) ∈ R≥0 such that

|f(t, x)− f̄(t, x)| ≤ d2|x| , ∀ t ∈ R≥0, ∀x ∈ D .

(iii) The disturbance δ is such that |δ̇(t)| ≤ ∆ for all t ∈ R≥0 and a known constant ∆ ∈ R≥0.

Remark 1. Note that as in [13, 17, 11], the considered class of systems (1) is in the control-
lability canonical form. However, two of the main differences are: 1) we are not requiring the
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uncertain term f(t, x) to be continuously differentiable with Lipschitz derivatives, but only to
be Lipschitz continuous; 2) the external disturbance δ is not assumed to be bounded.

In Assumption 1, the disturbance δ is assumed to be a function of time, nonetheless, this
can be considered as a function of the state as well, if it can be guaranteed that for any gain
γ ∈ R>0 of the controller designed in Section 3.2 the following holds: for any d ∈ R>0 there
exists a known constant ∆ = ∆(d) ∈ R≥0 such that

∣∣∂δ(t,x)
∂t

+ ∂δ(t,x)
∂x

ẋ
∣∣ ≤ ∆ for all t ∈ R≥0

and all x ∈ D, with D as in Assumption 1. ◁

The control objective is to stabilize in finite-time the origin of the system despite the
disturbance δ and the uncertainty in f by means of a continuous control signal and by using
only the output y as information for the controller.

3 Controller

3.1 State feedback nominal controller

Since homogeneity offers several advantages in dynamic systems, in this paper we consider
homogeneous controllers. See Appendix for the definition and some properties of homogene-
ity. To construct the output-feedback controller we assume that a homogeneous controller is
already known as stated below.

Assumption 2. A state feedback controller u0(x) is known and satisfies the following:

� u0 is a locally Hölder continuous2 function;

� u0 is an rc−homogeneous function such that the system

ẋ1 = x2, ẋ2 = x3, . . . , ẋn = u0(x) , (2)

is rc−homogeneous of degree κ = −1 with weights rc = [n+ 1, n, . . . , 2]⊤;

� the origin of (2) is an asymptotically stable equilibrium point. ◁

Note that the asymptotic stability and the negative homogeneity degree of (2) guarantee
that its origin is globally finite-time stable [5, 16]. Assumption 2 is not restrictive, in the
sense that, a homogeneous continuous controller providing finite-time stability to (2) does
exist (see, e.g., [2, Theorem 5.12]). There exist in the literature several explicit controllers
satisfying Assumption 2, for example:

� for n = 2, the following controller was proposed in [6],

u0(x) = −⌈x2⌋ρ −
⌈
x1 +

1
2−ρ

⌈x2⌋2−ρ
⌋ ρ

2−ρ
,

the homogeneity condition in Assumption 2 is satisfied with ρ = 1/2;

2A function V : Rn → R is called Hölder continuous with exponent α ∈ (0, 1], if for every compact set
I ⊂ Rn there exists LI ∈ R>0 such that |V (x)− V (y)| ≤ LI |x− y|α for all x, y ∈ I, see e.g. [14, p. 52].
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� in [8], a wide class of homogeneous controllers was proposed, a particular family of such
controllers is

u0 = −ln ⌈σn⌋
1

n+1 , σi = ⌈xi⌋
n+1
ri + li−1σi−1 , (3)

with i = 1, . . . , n− 1 and l0 = 0 (for the selection of the gains li ∈ R>0, see the method
given in [8]).

Now, define the controller
u = u0(x)− f(t, x)− δ , (4)

that can be considered as an exact state-feedback homogenization of (1). This way, the
closed-loop (1), (4) equals (2) and therefore its origin is finite-time stable. However, we have
the following obvious restrictions:

R1 the term δ(t) is unknown, hence we will opt for an identification mechanism to com-
pensate for it;

R2 since the only available measurement is the output signal y (and the control signal u),
then a state observer is required;

R3 the term f(t, x) is uncertain, thus, although a model f̄(t, x) is known, the control scheme
must be able to deal with the uncertainty produced by the term f(t, x)− f̄(t, x̂).

To overcome these problems, we propose in the following section an output-feedback
controller.

3.2 Output-feedback controller

According to restrictions R1−R3, we propose the following modification of controller (4),

u = γu0(γ
−1x̂)− f̄(t, x̂)− δ̂ , γ ∈ R>0 , (5)

where x̂ is the observed state, δ̂ is an estimation of the disturbance δ, and γ is a gain to
be adjusted. For state observation and disturbance identification we propose the following
extended-order observer

˙̂xi = −γpiki ⌈x̂1 − y⌋qi + x̂i+1 ,
˙̂xn = −γpnkn ⌈x̂1 − y⌋qn + γu0(γ

−1x̂) , (6)
˙̂
δ = −γkn+1 ⌈x̂1 − y⌋0 ,

where pi =
i

n+1
and qi =

n−i+1
n+1

for i = 1, . . . , n. Such an observer is based on the sliding
mode differentiator proposed in [22]. Thus, the gains ki have to be chosen as in the following
assumption.

Assumption 3. For (6), the gains ki, i = 1, . . . , n+1, are such that the origin of the system

ẇi = −ki ⌈w1⌋qi + wi+1 , i = 1, . . . , n ,

ẇn+1 = −kn+1 ⌈w1⌋0 − ˙̄δ(t) ,
(7)

is asymptotically stable for any function δ̄ : R≥0 → R which satisfies that | ˙̄δ(t)| ≤ 1 for all
t ∈ R≥0. ◁
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Again, Assumption 3 is not restrictive since there exist the gains ki ∈ R>0 (and procedures
to compute them) that accomplish such an assumption, see e.g. [22, 30, 9].

Before stating the main result, let us establish some notation. The closed-loop (1), (5) is
given by

ẋi = xi+1 , i = 1, . . . , n− 1 ,

ẋn = γu0(γ
−1x̂) + f̃(t, x, x̂) + δ − δ̂ ,

(8)

where f̃(t, x, x̂) := f(t, x)− f̄(t, x̂). Defining the following observation errors

ei = x̂i − xi , i = 1, . . . , n , en+1 = δ̂ − δ , (9)

system (8) can be rewritten as follows

ẋi = xi+1 , i = 1, . . . , n− 1 ,

ẋn = γu0(γ
−1[x+ ē]) + f̃(t, x, x+ ē)− en+1 ,

(10)

where ē := [e1, . . . , en]
⊤. The observation error dynamics is given by

ėi = −γpiki ⌈e1⌋qi + ei+1 , i = 1, . . . , n− 1 ,

ėn = −γpnkn ⌈e1⌋qn + en+1 − f̃(t, x, x+ ē) , (11)

ėn+1 = −γkn+1 ⌈e1⌋0 − δ̇(t) .

Finally, define X := [x⊤, e⊤]⊤ with e := [e1, . . . , en+1]
⊤, and r = [n + 1, n, . . . , 2, n +

1, n, . . . , 1]⊤. Now we are ready to give the main result.

Theorem 1. Consider (1) in closed-loop with the output-feedback controller (5)-(6). Under
Assumptions 1-3, for any a,∆ ∈ R≥0 there exists γ ∈ R>0 such that the origin of (10)-(11)
is finite-time stable with a domain of attraction D such that {X ∈ R2n+1 : ∥X∥r ≤ a} ⊂ D.

Proof. See Section 4.

Remark 2. It is clear from Theorem 1 that output-feedback controller (5)-(6) guarantees
semi-global stabilization of the origin, i.e., the domain of attraction can be enlarged as desired
if the gain γ is suitably chosen. Indeed, what is verified in the proof of Theorem 1, is that
there exist two functions α1, α2 ∈ K∞ such that the origin of (10)-(11) is finite-time stable
for all x ∈ Rn and all e ∈ Rn+1 such that

∥X∥r ≤
α1(γ)

α2(d1 + d2)
, γ ≥ ∆ ,

with ∆, d1, and d2 as in Assumption 1. Hence, the estimated domain of attraction can be
increased by increasing the gain γ. ◁

Corollary 1. Under assumptions of Theorem 1, there exist two functions θ1, θ2 ∈ KL and
a constant c0 ∈ R>0 such that, for all X(0) ∈ {X ∈ R2n+1 : |X| ≤ a}, the inequality
c0 > (d1 + d2)θ2(a, γ) holds, and the settling-time function T : R2n+1 → R≥0 of (10)-(11)
satisfies

0 ≤ T (X(0)) ≤ θ1(a, γ)

c0 − (d1 + d2)θ2(a, γ)
, (12)

with d1 and d2 as in Assumption 1. ◁
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Remark 3. Observe that, since θ1 and θ2 are class KL functions (see Section 1 for notation),
they are decreasing in the second argument. Hence, the right-hand side of (12) is a decreasing
function of γ. Therefore, the convergence time to the origin can be reduced by increasing the
gain γ. ◁

Corollary 2. If in addition to the assumptions of Theorem 1, there exist d̄1, d̄2 ∈ R≥0 such
that

|f(t, x)| ≤ d̄1 , |f̄(t, x)| ≤ d̄2 , ∀ t ∈ R≥0, ∀x ∈ Rn ,

then there exists γ ∈ R>0 such that the origin of (10)-(11) is globally finite-time stable. ◁

3.3 Noise in the output

Now suppose that the measured output is contaminated with noise, i.e.

y(t) = x1(t) + ν(t) , (13)

where ν : R≥0 → R is a Lebesgue-measurable function such that ess supt∈R≥0
|ν(t)| ≤ N for

some N ∈ R≥0.

Corollary 3. Under assumptions of Theorem 1, system (10)-(11), with y as in (13), is locally
input-to-state stable with respect to the input ν, i.e. there exist some functions β ∈ KL,
η ∈ K, and a constant Γ ∈ R>0, such that for any ν and each X(0) ∈ R2n+1 satisfying N ≤ Γ
and |X(0)| ≤ Γ, the solution ϕ(t;X(0), ν) of (10)-(11) satisfies

|ϕ(t;X(0), ν)| ≤ β(|X(0)|, t) + η(N) , ∀ t ∈ R≥0 .

3.4 Performance recovery

In this section we verify that the closed-loop (8) is able to recover the performance of the
nominal homogeneous system

˙̄x1 = x̄2, ˙̄x2 = x̄3, . . . , ˙̄xn = γu0(γ
−1x̄) . (14)

To describe the ISS robustness of (14), let us consider its disturbed version given by

˙̄x1 = x̄2, ˙̄x2 = x̄3, . . . , ˙̄xn = γu0(γ
−1x̄) + g(t) , (15)

where g : R≥0 → R is a Lebesgue-measurable function such that |g(t)| ≤ ḡ for all t ∈ R≥0 for
some constant ḡ ∈ R≥0. The following result describes the ISS property of (15) with respect
to the input g.

Lemma 1. Consider (15) with u0 as in Assumption 2. There exist two functions β1, β2 ∈ KL
such that for any γ ∈ R>0,

|x̄(t)| ≤ β1

(
|x̄(0)|, t

)
+ β2

(
ḡ, γ
)
, ∀x̄(0) ∈ Rn, ∀t ∈ R≥0 . (16)
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The proof of this lemma is given in Section 4. From this lemma we can see that, the
origin of (14) is globally asymptotically stable. Moreover, since (14) is rc−homogeneous of
negative degree (see Assumption 2), its origin is finite-time stable. From these facts and from
Theorem 1 we conclude that, for the solution x̄(t) of (14) and the solution x(t) of (8), there
exists T ∈ R≥0 such that |x̄(t) − x(t)| = 0 for all t ≥ T . However, this trivial conclusion is
only for the steady-state, and it does not give information about the performance recovery
during the transient phase.

On the other hand, Lemma 1 shows that, for any ḡ ∈ R≥0, β2

(
ḡ, γ
)
→ 0 as γ → ∞.

Thus, the effect of the disturbance g on the solution x̄(t) is reduced by increasing the gain γ.
In this sense, we can say that (15) recovers the performance of (14) by increasing the gain
γ. Now, we show that (8) also has this property.

Remark 4. According to Theorem 1 (see also Remark 2), for each a ∈ R>0 there exists
γ∗ ∈ R>0 such that for all γ ≥ γ∗ the origin of (8) is finite-time stable. Hence, for each
γ ≥ γ∗ and for each X0 = [x⊤(0), e⊤(0)]⊤ ∈ D there exists t0(γ,X0) ∈ R>0 such that x(t) ∈ D
and e(t) = 0 for all t ≥ t0. ◁

Theorem 2. Consider (8) and Remark 4. Under the assumptions of Theorem 1, for each
γ ≥ γ∗ there exists t0 ∈ R>0 such that

|x(t)| ≤ β1

(
|x(t0)|, t

)
+ β2

(
d2a, γ

)
, ∀x(0) ∈ D, ∀t ≥ t0 , (17)

where d2 is as in Assumption 1 and the functions β1, β2 as in Lemma 1. ◁

Proof. The proof of this theorem is analogous to the proof of Lemma 1. We only have to
clarify the following:

1. According to Remark 4, e(t) = 0 for all t ≥ t0. Thus, we can rewrite (8) (or, equivalently
(10)) as follows

ẋi = xi+1 , i = 1, . . . , n− 1 ,

ẋn = γu0(γ
−1x) + f̃(t, x, x) , ∀ t ≥ t0 .

(18)

2. Finally, from Assumption 1, |f̃(t, x, x)| ≤ d2|x|, and from Remark 4, |x(t)| ≤ a for all
t ≥ t0. Hence, |f̃(t, x, x)| ≤ d2a for all t ≥ t0.

4 Proofs

4.1 Proof of Theorem 1

Let us consider the auxiliary systems (7) and

żi = zi+1 , i = 1, . . . , n− 1 ,
żn = u0(z + w̄)− wn+1 ,

(19)
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where w̄ = [w1, . . . , wn]
⊤. First note that (7) is discontinuous, thus its solutions and its asso-

ciated differential inclusion are considered as defined in [12]. Also note that the differential in-
clusion associated to (7) is ro−homogeneous of degree κ = −1 with ro = [n+1, n, . . . , 1]⊤ [23].
Hence, under Assumption 3, the origin of (7) is finite-time stable.

Define the vector w = [w1, . . . , wn, wn+1]
⊤. Observe that Assumption 2 guarantees that

(19) is also finite-time stable for w ≡ 0, moreover, it is input-to-state stable (ISS) with respect
to the input w [4] (the ISS concept is recalled in Definition 4 in Appendix). Thus, according
to [15], the origin of the interconnected system (19), (7) is asymptotically stable.

Now, it is easy to see that the differential inclusion associated to (19), (7) is r−homogeneous
of degree κ = −1 with r = [r⊤c , r⊤o ]

⊤. Therefore, its origin is finite-time stable [26, 28, 23].
Thus, according to [26, 3] there exists a smooth Lyapunov function V0 : R2n+1 → R≥0 for

(19), (7) such that it is r−homogeneous of some degree3 m ∈ R>0 and its derivative along
(19), (7) satisfies4 V̇0 ≤ −W0(z, w), where the function W0 : R2n+1 → R≥0 is r−homogeneous
of degree m + κ, strictly positive for all [z⊤, w⊤]⊤ ∈ R2n+1 \ {0} and continuous for all
[z⊤, w⊤]⊤ ∈ R2n+1.

Now, consider the change of coordinates

xi = γzi , i = 1, . . . , n ,
ej = γwj , j = 1, . . . , n+ 1 .

(20)

For these new variables we obtain from (7) and (19) the dynamics

ẋi = xi+1 , i = 1, . . . , n− 1 ,
ẋn = γu0(γ

−1[x+ en])− en+1 ,
(21)

ėi = −γpiki ⌈e1⌋qi + ei+1 , i = 1, . . . , n ,

ėn+1 = −γkn+1 ⌈e1⌋0 − γ ˙̄δ(t) .
(22)

Note that for any γ ∈ R>0, the origin of the interconnected systems (21)-(22) is finite-time
stable, and the function V : R2n+1 → R≥0, given by

V (x, e) = V0(γ
−1x, γ−1e) ,

is a Lyapunov function for (21)-(22). Indeed, the derivative of V along (21)-(22) is such
that V̇ = ∂V

∂x
ẋ + ∂V

∂e
ė = ∂V0

∂z
1
γ
γż + ∂V0

∂w
1
γ
γẇ. Thus, V̇ = V̇0, and V̇ ≤ −W (x, e) where

W (x, e) = W0(γ
−1x, γ−1e).

Now, we consider V as a Lyapunov function candidate for (10)-(11). The derivative of V
along (10)-(11) is such that

V̇ ≤ −W (x, e) +

(
∂V

∂xn

− ∂V

∂en

)
f̃(t, x, x+ ē) .

3Indeed, mmust satisfy: m > maxj∈{1,...,2n+1} rj to guarantee differentiability of V0 and; m > max{−κ, 0}
to have W0 with a positive homogeneity degree. We assume that these conditions hold.

4Since the right-hand side of (7) is discontinuous, the Lyapunov analysis for (19), (7) has to be done
by considering the differential inclusion associated to (19), (7). Thus, for each [z⊤, w⊤]⊤ ∈ R2n+1,

V̇0 =
{

∂V0(z,w)
∂(z,w) h ∈ R : h ∈ H(z, w)

}
, where H denotes the set-valued vector field of the differential inclusion

associated to (19),(7). Hence, V̇0 ≤ −W0(z, w) means maxh∈H(z,w)
∂V0(z,w)
∂(z,w) h ≤ −W0(z, w), see [2].
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Observe that for any γ ≥ ∆, W (x, e) is positive definite. By considering again (20) we have
that (let us denote V0(z, w) with V0)

V̇ ≤ −W0(z, w) +

(
∂V0

∂zn

1

γ
− ∂V0

∂wn

1

γ

)
f̃(t, x, x+ ē) ,

≤ −W0(z, w) +
1

γ

∣∣∣∣∂V0

∂zn
− ∂V0

∂wn

∣∣∣∣ |f̃(t, x, x+ ē)| . (23)

Since W and the function (z, w) 7→
∣∣∣∂V0

∂zn
− ∂V0

∂wn

∣∣∣ are homogeneous of degrees m − 1 and

m− rn = m− 2, respectively, Lemma 3 (see Appendix) ensures the existence of c0, c1 ∈ R>0

such that, from (23),

V̇ ≤ −c0V
m−1
m

0 + 1
γ
c1V

m−2
m

0 |f̃(t, x, x+ ē)| . (24)

Let us now analyse the term |f̃(t, x, x+ ē)|. Note that we can rewrite f̃ as follows

f̃(t, x, x+ ē) = f(t, x)− f̄(t, x+ ē) ,
= [f(t, x)− f(t, x+ ē)] + [f(t, x+ ē)− f̄(t, x+ ē)] .

(25)

Thus, according to Assumption 1, for any a ∈ R>0 there exists d1, d2 ∈ R≥0 such that

|f̃(t, x, x+ ē)| ≤ d1|ē|+ d2|x+ ē| = γd1|w̄|+ γd2|z + w̄| .

Now, according to Lemma 3 (see Appendix), there exist c2, c̄2 ∈ R>0 such that

|z + w̄|2 =
n∑

i=1

|zi + wi|2 ≤
n∑

j=1

(c2V
(j+1)/m
0 )2 ≤ n(c2V

ρ/m
0 )2 ,

|w̄|2 =
n∑

i=1

|wi|2 ≤
n∑

j=1

(c̄2V
(j+1)/m
0 )2 ≤ n(c̄2V

ρ/m
0 )2 ,

where ρ = (n+ 1) if V0(z, w) ≥ 1, and ρ = 2 if V0(z, w) < 1. Thus,

|f̃(t, x, x+ ē)| ≤ γ
√
n(d1c̄2V

ρ/m
0 + d2c2V

ρ/m
0 ) = γ(d1 + d2)c3V

ρ/m
0 ,

with c3 =
√
nmax{c2, c̄2}. Hence, from (24) we obtain

V̇ ≤ −c0V
m−1
m

0 + c1c3(d1 + d2)V
m−2+ρ

m
0 . (26)

Note that no constant in (26) depends on γ. Also note that in any case m− 2 + ρ > m− 1.
Thus, since

−c0V
m−1
m

0 + c1c3(d1 + d2)V
m−2+ρ

m
0 = −1

2
c0V

m−1
m

0 +
(
c1c3(d1 + d2)V

m−2+ρ
m

0 − 1
2
c0V

m−1
m

0

)
,

it is clear that V̇ ≤ −1
2
c0V

m−1
m

0 (z, w) = −1
2
c0V

m−1
m (x, e) if

1
2
c0V

m−1
m

0 (z, w) ≥ c1c3(d1 + d2)V
m−2+ρ

m
0 (z, w) . (27)
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Let us analyse (27). First note that (for d1 ̸= 0 or d2 ̸= 0) (27) is equivalent to

β−1

(
c0

2c1c3(d1 + d2)

)
≥ V

1
m
0 (z, w) , (28)

where β is a function of class K∞ given by

β(s) =

{
sn, s ≥ 1,
s, s < 1.

(29)

Now, Lemma 3 (see Appendix) ensures the existence of c4 ∈ R>0 such that

V
1
m
0 (z, w) ≤ c4∥[z⊤, w⊤]⊤∥r ,

but Lemma 4 (see Appendix) ensures that (by using (20))

∥[z⊤, w⊤]⊤∥r ≤
1

α(γ)
∥[x⊤, e⊤]⊤∥r ,

where α is a function of class K∞ given by

α(γ) =

{
γ, γ ≤ 1,

γ
1

n+1 , γ > 1.

Thus,

V
1
m
0 (z, w) ≤ c4

α(γ)
∥[x⊤, e⊤]⊤∥r , (30)

and from (28), we can see that (27) is satisfied for all x ∈ Rn and all e ∈ Rn+1 such that

∥[x⊤, e⊤]⊤∥r ≤
α(γ)

c4
β−1

(
c0

2c1c3(d1 + d2)

)
.

Therefore, (since α ∈ K∞) for any d1, d2, a ∈ R>0, γ can always be chosen such that (27)
holds.

4.2 Proof of Corollary 1

From (26) and (30) we have that

V̇ ≤ −
[
c0 − c1c3(d1 + d2)V

ρ−1
m

0

]
V

m−1
m

0 (z, w)

≤ −
[
c0 − c1c3(d1 + d2)β

(
c4

α(γ)
∥[x⊤, e⊤]⊤∥r

)]
V

m−1
m (x, e) ,

with β as in (29). Thus, in the set {X ∈ R2n+1 : ∥X∥r ≤ a},

V̇ ≤ −
[
c0 − c1c3(d1 + d2)β

(
c4a
α(γ)

)]
V

m−1
m (x, e) ,

where c0 − c1c3(d1 + d2)β
(

c4a
α(γ)

)
> 0. By direct integration over the interval [0, T (x(0), e(0))]

(where T is the settling-time function) we obtain

T (x(0), e(0)) ≤ m

c0 − c1c3(d1 + d2)β
(

c4a
α(γ)

)V 1
m (x(0), e(0)) ,

≤
m c4a

α(γ)

c0 − c1c3(d1 + d2)β
(

c4a
α(γ)

) .
The proof is completed by taking θ1(a, γ) = mc4

a
α(γ)

, and θ2(a, γ) = c1c3β
(
c4

a
α(γ)

)
.
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4.3 Proof of Corollary 2

The proof of this corollary consists in verifying that a neighbourhood of the origin is globally
attractive. The proof is completed by proving that the radius of such a neighbourhood is
inversely proportional to the the gain γ. This property and the local asymptotic stability
from Theorem 1 guarantee the result.

We use the Lyapunov function from the proof of Theorem 1. According to the assumption
of the corollary, from (25) we obtain |f̃(t, x, x+ ē)| ≤ d̄ := d̄1 + d̄2. Thus, from (24) we have
that

V̇ ≤ −c0V
m−1
m

0 + d̄
γ
c1V

m−2
m

0 .

Since −c0V
m−1
m

0 + c1V
m−2
m

0
d̄
γ

= −1
2
c0V

m−1
m

0 + c1V
m−2
m

0
d̄
γ
− 1

2
c0V

m−1
m

0 , we have that, V̇ ≤

−1
2
c0V

m−1
m

0 if 2c1d̄
γc0

≤ V
1
m
0 (z, w). Now, Lemma 3 (see Appendix) ensures the existence of

c̄4 ∈ R>0 such that V
1
m
0 (z, w) ≥ c̄4∥[z⊤, w⊤]⊤∥r, but Lemma 4 (see Appendix) ensures that

∥[z⊤, w⊤]⊤∥r = ∥γ−1[x⊤, e⊤]⊤∥r ≥ 1
α(γ)

∥[x⊤, e⊤]⊤∥r, where the function α ∈ K∞ is given by

α(γ) =

{
γ

1
n+1 , γ ≤ 1,

γ
1
2 , γ > 1.

(31)

Thus, V
1
m
0 (z, w) ≥ c2

α(γ)
∥[x⊤, e⊤]⊤∥r. Hence, since V0(z, w) = V (x, e),

V̇ ≤ −1

2
c0V

m−1
m (x, e) if ∥[x⊤, e⊤]⊤∥r ≥

2c1d̄

c0c̄4

α(γ)

γ
=

2c1d̄

c0c̄4

1

α̂(γ)
, (32)

where α̂ is a function of class K∞ given by

α̂(γ) =

{
γ

n
n+1 , γ ≤ 1,

γ
1
2 , γ > 1.

(33)

Therefore, there exists a globally attractive neighbourhood of the origin B, whose radius
depends in inverse proportion to γ. Moreover, there is a γ ∈ R>0 such that B ⊂ D, with D
as in Theorem 1.

4.4 Proof of Corollary 3

Since we are now considering the noisy output (13), the observation error dynamics is given
by

ėi = −γpiki ⌈e1 − ν⌋qi + ei+1 , i = 1, . . . , n− 1 ,

ėn = −γpnki ⌈e1 − ν⌋qn + en+1 − f̃(t, x, x+ ē) , (34)

ėn+1 = −γkn+1 ⌈e1 − ν⌋0 − δ̇(t) .

Thus, the proof of the corollary consists in verifying the existence of a local ISS-Lyapunov
function for the closed-loop (10), (34). First, let us define the auxiliary system

ẇi = −ki ⌈w1 − ν⌋qi + wi+1 , i = 1, . . . , n ,

ẇn+1 = −kn+1 ⌈w1 − ν⌋0 − ˙̄δ(t) .
(35)

12



Note that for ν ≡ 0, (35) equals (7). Now, we analyse the interconnection of the auxiliary
systems (19), (35).

We have already mentioned in the proof of Theorem 1 that (19) is ISS with respect to
the input w. Hence, according to [4], there exists an rc−homogeneous function V1 : Rn → R
of some degree mc ∈ R>0, which is an ISS-Lyapunov function for (19). Thus, there exists
α1 ∈ K such that

|z| ≥ α1(|w|) ⇒ V̇1 ≤ −W1(z) , (36)

for some positive definite function W1 : Rn → R which is rc−homogeneous of degree mc + κ.
In the same manner, according to [30], there exists an ro−homogeneous function V2 :

Rn+1 → R of some degree mo ∈ R>0, which is an ISS-Lyapunov function for (35). Hence,
there exists α2 ∈ K such that

|w| ≥ α2(N) ⇒ V̇2 ≤ −W2(w) , (37)

for some positive definite functionW2 : Rn+1 → R which is ro−homogeneous of degreemo+κ.
Observe that mc and mo can be assumed such that mc = mo = m, for some m ∈ R>0.

Now, define the function V3 : R2n+1 → R given by V3(z, w) = V1(z) + V2(w). Note that
V3 is positive definite and r−homogeneous of degree m with r = [r⊤c , r⊤o ]

⊤. Also note that
V̇3 = V̇1 + V̇2.

From (36) and (37) we can see that |z| ≥ α1(|w|) ≥ α1(α2(N)). Thus, from the properties
of class K functions (see, e.g. [20]), there exists α3 ∈ K such that∣∣[z⊤, w⊤]⊤

∣∣ ≥ α3(N) ⇒ V̇3 ≤ −W1(z)−W2(w) . (38)

Observe that the function W3 := W1 +W2 is positive definite and r−homogeneous of degree
m+ κ. Now we can repeat the procedure of the proof of Theorem 1 to deal with the term f̃
by replacing W0 with W3.

Finally, by using (20), we obtain from (38)∣∣[x⊤, e⊤]⊤
∣∣ ≥ γα3(N) . (39)

Hence, for any γ ∈ R>0 there exists a sufficiently small level of noise N such that the closed-
loop (10)-(11) is ISS inside the domain determined by γ.

4.5 Proof of Lemma 1

Let us consider the auxiliary system

ż1 = z2, ż2 = z3, . . . , żn = u0(z) . (40)

Observe that Assumption 2 guarantees that (40) is finite-time stable, moreover, there exists
a smooth Lyapunov function V0 : Rn → R≥0 such that it is r−homogeneous of some degree
m ∈ R>0 and its derivative along (40) satisfies V̇0 = −W0(z), where the function W0 : Rn →
R≥0 is r−homogeneous of degree m+ κ, strictly positive for all z ∈ Rn \ {0} and continuous
for all z ∈ Rn [29]. Now, consider the change of coordinates x̄i = γzi, i = 1, . . . , n, and the
function V : Rn → R≥0, given by V (x̄) = V0(γ

−1x̄). The derivative of V along (14) is such
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that V̇ = ∂V (x̄)
∂x̄

˙̄x = ∂V0(z)
∂z

1
γ
γż = −W (x̄) where W (x̄) = W0(γ

−1x̄). Hence, the derivative of

V along (15) is given by

V̇ = −W (x̄) +
∂V (x̄)

∂x̄n

g(t) = −W0(z) +
∂V0(z)

∂zn

1

γ
g(t) ≤ −W0(z) +

∣∣∣∣∂V0(z)

∂zn

∣∣∣∣ 1γ ḡ .
Since W0 and the function z 7→

∣∣∣∂V0(z)
∂zn

∣∣∣ are homogeneous of degrees m− 1 and m− rn =

m− 2, respectively, Lemma 3 (see Appendix) ensures the existence of c0, c1 ∈ R>0 such that

V̇ ≤ −c0V
m−1
m

0 (z) + c1V
m−2
m

0 (z)
1

γ
ḡ .

Since −c0V
m−1
m

0 (z) + c1V
m−2
m

0 (z) ḡ
γ
= −(1 − µ)c0V

m−1
m

0 (z) + c1V
m−2
m

0 (z) ḡ
γ
− µc0V

m−1
m

0 (z) for

any µ ∈ (0, 1), we have that, V̇ ≤ −(1 − µ)c0V
m−1
m

0 (z) if c1V
m−2
m

0 (z) ḡ
γ
≤ µc0V

m−1
m

0 (z). This

condition is equivalent to c1ḡ
γµc0

≤ V
1
m
0 (z).

Now, Lemma 3 (see Appendix) ensures the existence of c2 ∈ R>0 such that V
1
m
0 (z) ≥

c2∥z∥r, but Lemma 4 (see Appendix) ensures that

∥z∥r = ∥γ−1x̄∥r ≥
1

α(γ)
∥x̄∥r ,

where the function α ∈ K∞ is given by (31). Thus, V
1
m
0 (z) ≥ c2

α(γ)
∥x̄∥r. Hence, a sufficient

condition to guarantee the inequality c1ḡ
γµc0

≤ V
1
m
0 (z) is that c1ḡ

γµc0
≤ c2

α(γ)
∥x̄∥r. Equivalently

(since V0(γ
−1x̄) = V (x)),

V̇ ≤ −(1− µ)c0V
m−1
m (x̄) if ∥x̄∥r ≥

c1ḡ

µc0c2

α(γ)

γ
=

c1
µc0c2

ḡ

α̂(γ)
, (41)

where α̂ is a function of class K∞ given by (33). According to [4], (41) guarantees the
existence of a function β1 ∈ KL and a function β̄2 ∈ K∞ such that

|x̄(t)| ≤ β1

(
|x̄(0)|, t

)
+ β̄2

(
ḡ

α̂(γ)

)
, ∀t ∈ R≥0 .

Finally, we take β2(ḡ, γ) = β̄2

(
ḡ

α̂(γ)

)
.

5 Uncertain control coefficient

In this section we consider (1) with a time-varying uncertain control coefficient, i.e.

ẋi = xi+1 , ẋn = f(t, x) + b(t)u+ δ(t) , b(t) ∈ R>0 . (42)

We assume that a model b̄ : R≥0 → R>0 for b is known. We also assume that |b(t)| ≥ b and
|b̄(t)| ≥ b for all t ∈ R≥0 for some constant b ∈ R>0. The output-feedback controller (5) is
now modified as follows

u = (1/b̄)
(
γu0(γ

−1x̂)− f̄(t, x̂)− δ̂
)
, (43)

where the observed state x̂ and the disturbance estimation δ̂ are provided by (6).
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Remark 5. Note that in (43), two important cases are covered:

(i) the case of constant and uncertain coefficient b;

(ii) the case of disturbances coupled to the input, i.e. ẋn = f(t, x) + b(t)
(
u + δ̄(t)

)
, or

equivalently, δ(t) = b(t)δ̄(t). ◁

Let us introduce the following auxiliary system

żi = zi+1 , i = 1, . . . , n− 1 ,

żn = u0(z + w̄)− wn+1 + c̃
(
u0(z + w̄)− wn+1

)
,

ẇi = −ki ⌈w1⌋qi + wi+1 , i = 1, . . . , n− 1 , (44)

ẇn = −kn ⌈w1⌋qn + wn+1 − c̃
(
u0(z + w̄)− wn+1

)
,

ẇn+1 = −kn+1 ⌈w1⌋0 − ˙̄δ(t) ,

where c̃ : R≥0 → R is a continuous function, and w̄ := [w1, . . . , wn]
⊤. Note that for c̃ = 0,

(44) equals the nominal closed-loop (19), (7). The following lemma establishes a robustness
property of (19), (7).

Lemma 2. If assumptions 2 and 3 hold, then there exists C̃0 ∈ R>0 such that the origin of
(44) is asymptotically stable for all c̃ satisfying |c̃(t)| ≤ C̃0 for all t ∈ R≥0. ◁

Proof. We use the same arguments given in the proof of Theorem 1 to assure that there exists
a smooth Lyapunov function V0 : R2n+1 → R≥0 for (19), (7) such that it is r−homogeneous
of some degree m ∈ R>0 and its derivative along (44) satisfies V̇0 ≤ −W0(z, w), where
W0 : R2n+1 → R≥0 is r−homogeneous of degree m + κ, strictly positive for all [z⊤, w⊤]⊤ ∈
R2n+1 \ {0} and continuous for all [z⊤, w⊤]⊤ ∈ R2n+1. Therefore, according to Lemma 5 (see
Appendix), there exists C̃0 ∈ R>0 such that V0 is a Lyapunov function for (44) for all c̃ such
that |c̃(t)| ≤ C̃0.

Note that the method to prove Lemma 2 provides, in general, a conservative bound C̃0

to verify asymptotic stability of the origin of (44): the proof is based on Lemma 5 (see
Appendix) whose proof uses a quite restrictive bound for the derivative of the Lyapunov
function; moreover, in such a general setting, it is not possible to choose the Lyapunov
function that provides the largest bound C̃0.

The main result of this section is that (43) does not destroy the robustness property of
the nominal closed-loop stated in Lemma 2. Nonetheless, (43) retains the same stability
properties described in Theorem 1. To state this result, let us introduce an assumption and
some notation.

Assumption 4. Consider (42) and (43) and define c(t) := b(t)/b̄(t). Functions b and b̄ are
such that c̃(t) := c(t)− 1, satisfies |c̃(t)| ≤ C̃0 for all t ∈ R≥0, with C̃0 as given in the proof
of Lemma 2. ◁

Observe that Assumption 4 can be intuitively understood as a requirement of how well
the model b̄ must approximate b in order to maintain the stability properties of the auxiliary
system (44).
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The closed-loop of (42) with (43) is given by

ẋi = xi+1 , i = 1, . . . , n− 1 ,

ẋn = cγu0(γ
−1x̂) + f(t, x)− cf̄(t, x̂) + δ − cδ̂ .

(45)

Note that the last equation of (45) can be rewritten as follows

ẋn = γu0(γ
−1x̂)− [δ̂ − δ/c] + f̃(t, x, x̂) + c̃

(
γu0(γ

−1x̂)− [δ̂ − δ/c]− f̄(t, x̂)
)
, (46)

where f̃(t, x, x̂) := f(t, x) − f̄(t, x̂). Consider the observation errors defined in (9) with the
following modification

en+1 = δ̂ − δ/c . (47)

Thus, (45) can be rewritten as

ẋi = xi+1 , i = 1, . . . , n− 1 ,

ẋn = γu0(γ
−1[x+ ē])− en+1 + f̃(t, x, x+ ē)+

c̃
(
γu0(γ

−1[x+ ē])− en+1 − f̄(t, x+ ē)
)
,

(48)

where ē := [e1, . . . , en]
⊤, and the observation error dynamics is given by

ėi = −γpiki ⌈e1⌋qi + ei+1 , i = 1, . . . , n− 1 ,

ėn = −γpnki ⌈e1⌋qn + en+1 − f̃(t, x, x+ ē)−
c̃
(
γu0(γ

−1[x+ ē])− en+1 − f̄(t, x+ ē)
)
, (49)

ėn+1 = −γkn+1 ⌈e1⌋0 − d
dt
(δ/c) .

Theorem 3. Consider (42) in closed-loop with the output-feedback controller (43), (6). As-
sume that

∣∣ d
dt

(
δ(t)/c(t)

)∣∣ ≤ ∆c for all t ∈ R≥0 for a constant ∆c ∈ R≥0. Under assumptions
1-4, for any a,∆c ∈ R≥0 there exists γ ∈ R>0 such that the origin of (48)-(49) is finite-time
stable with a domain of attraction D such that {X ∈ R2n+1 : ∥X∥r ≤ a} ⊂ D.

Proof. The proof of this theorem is analogous to the proof of Theorem 1. It is only required
to consider the proof of Lemma 2.

Remark 6. Recall that, for the case of perfectly known control coefficient, the signal δ is
allowed to be unbounded with bounded derivative (see item (iii) in Assumption 1). However,
for the case of uncertain coefficient, the condition

∣∣ d
dt

(
δ(t)/c(t)

)∣∣ ≤ ∆c in Theorem 3, in
general requires boundedness of the disturbance δ, but observe that this restriction still allows
a wide class of disturbances δ, for example, constant and sinusoid signals. Nonetheless, a
very interesting case is when the disturbance is coupled to the input (see Remark 5). For
such a case the external disturbance is the signal δ̄, and δ(t) = b(t)δ̄(t). Hence, the condition∣∣ d
dt

(
δ(t)/c(t)

)∣∣ ≤ ∆c is rewritten as
∣∣ d
dt

(
δ(t)/c(t)

)∣∣ = ∣∣ d
dt

(
b̄(t)δ̄(t)

)∣∣ ≤ ∆c, which is equivalent

to ask the product b̄δ̄ being of the form b̄(t)δ̄(t) = a +
∫ t

0
α(τ) dτ for some constant a ∈ R

and some integrable function α : R → R satisfying |α(t)| ≤ ∆c for all t ∈ R≥0 [25]. Thus,
for this case, the disturbance δ̄ is allowed to be unbounded with bounded derivative, and
the controller exactly compensates it despite the uncertainty in the control coefficient, this
property is illustrated in Example 1. ◁
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k1 k2 k3 x1(0) x2(0) x̂1(0) x̂2(0) δ̂(0)
3.1 5.7 1.1 5 5 0 0 0

Table 1: Observer gains and initial conditions.

6 Examples

In this section we show some examples to illustrate the results provided in previous sections.
For the simulations we use the explicit Euler method with an integration step of 1ms.

Example 1. Consider the following second order system

ẋ1 = x2 , ẋ2 = f(t, x) + b(t)
(
u+ δ̄

)
, f(t, x) = 1.1(sin(x1) + |x2|) , (50)

The model for f considered in this example is f̄(t, x) = sin(x1) + x2, and the external dis-
turbance δ̄(t) = 1 + cos(t) + t/5. First, we consider the control coefficient b(t) = 1, hence,
δ(t) = δ̄(t). For this case, controller (5), (6) is as follows

u = γu0(γ
−1x̂)− f̄(t, x̂)− δ̂ ,

˙̂x1 = −γ
1
3k1 ⌈x̂1 − x1⌋

2
3 + x̂2 ,

˙̂x2 = −γ
2
3k2 ⌈x̂1 − x1⌋

1
3 + γu0(γ

−1x̂) ,
˙̂
δ = −γk3 ⌈x̂1 − x1⌋0 .

For this example we choose u0 given by (3), namely, u0(x) = −2⌈⌈x2⌋
3
2 + x1⌋

1
3 . For the

simulation we use the parameters shown in Table 1. First we set γ = 2. In Fig. 1 we observe
that the states of the observer converge in finite-time to the states of plant. In Fig. 2 we can
see that the extended state of the observer identifies exactly the disturbance δ.

0

5

10

0 2 4 6 8 10
−5

0

5

10

7.2

x1
x1

x2
x2

time

Figure 1: Original and observed states of (50) with γ = 2.

Now we set γ = 4. In Fig. 3 and Fig. 4 we observe that the convergence time is reduced
in comparison with the simulation with γ = 2.
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Figure 2: Extended state of the observer with γ = 2.
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Figure 3: Original and observed states of (50) with γ = 4.

Now, we consider the case with twenty percent of uncertainty in the control coefficient,
namely b(t) = 1 + 1

5
sin(5t). Recall that δ(t) = b(t)δ̄(t). The model for the control coefficient

is taken as b̄ = 1, thus c(t) = b(t). Hence,
∣∣ d
dt

δ(t)
c(t)

∣∣ < 6
5
. We use the same controller as above,

with γ = 2.
In Fig. 5 we observe that the states of the observer converge in finite-time to the states

of the plant, and they converge to zero also in finite-time despite the disturbance and the
uncertainties. It is important to highlight the fact that the disturbance δ̄ is unbounded, but
it is still compensated by the controller even when the control coefficient is uncertain, as
guaranteed by Theorem 3.

To finalise this example, we consider the presence of noise in the measured output. Thus,
for (13) we use ν(t) = 1

20
sign(sin(120πt)). We use the same disturbance, and the same con-

trol uncertain control coefficient b(t) = 1 + 1
5
sin(5t). In Fig. 6 the states of plant are shown.

Observe that the states remain bounded close to the origin, making evident the robustness
properties of the closed-loop. Note that this example was very challenging since we are con-
sidering an unstable plant with uncertainty in the nonlinear terms of the model, uncertainty
in the control coefficient, external disturbances, and the presence of noise in the measurement.
◁

Example 2. In this example we consider the disturbed double integrator

ẋ1 = x2 , ẋ2 = u+ δ , (51)
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Figure 4: Extended state of the observer with γ = 4.
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Figure 5: Original and observed states of (50) with uncertain control coefficient.

With the output y contaminated with noise, i.e. y = x1 + ν. The disturbance is chosen as
δ(t) = 1 + cos(3t). Our proposed controller (nonlinear-homogeneous) is

u = γu0(γ
−1x̂)− δ̂ , (52)

˙̂x1 = −γ
1
3k1 ⌈x̂1 − x1⌋

2
3 + x̂2 ,

˙̂x2 = −γ
2
3k2 ⌈x̂1 − x1⌋

1
3 + γu0(γ

−1x̂) ,
˙̂
δ = −γk3 ⌈x̂1 − x1⌋0 ,

with u0(x) = −⌈⌈x2⌋
3
2 + x1⌋

1
3 and γ = 4. The observer gains are in Table 1.

We also apply the control scheme proposed in [13] which is based on an extended high-gain
observer and is given by u = M sat(ū/M), where sat is the standard saturation function and

ū = u0(x̂)− δ̂ ,
˙̂x1 = −γk1(x̂1 − x1) + x̂2 ,
˙̂x2 = −γ2k2(x̂1 − x1) + u0(x̂) ,
˙̂
δ = −γ3k3(x̂1 − x1) ,

with u0(x) = −x1 − x2 and M = 10. To achieve a steady-state observation error (for ν = 0)
such that |δ(t)− δ̂(t)| ≤ 0.5, we use the gain γ = 60.
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Figure 7: States of (51) with the nonlinear-homogeneous and the high-gain output-feedback
controllers (ν = 0).

For the simulation we use the parameters shown in Table 1. Fig. 7 shows the states of
(51) with the nonlinear and the linear controllers, respectively, for ν = 0. The clear advantage
of the nonlinear scheme is that the states are driven to zero in finite-time. The control signals
are shown in Fig. 8. There, we can see that the nonlinear homogeneous controller has less
amplitude than the high-gain output-feedback, which reaches its saturation level.

Now we simulate the two different closed-loops by using a noise signal ν = (1+sin(ωt))/10
with ω = 5. In this case the steady-state performance of the linear scheme seems to be
better than the nonlinear one as it can be appreciated in Fig. 9 and Fig. 10. However,
with ω = 50, although the amplitude of the steady-state errors are comparable with both
controllers, see Fig. 11, the transient behaviour with the linear scheme is clearly deteriorated.
Nonetheless, a major issue with the linear scheme is the control signal that exhibits a high-
frequency oscillation between the saturation values of the controller, see Fig. 12.

It is important to mention that this is a simple comparison example and no general conclu-
sion can be established from it, thus, a deeper study of comparison between these two control
techniques is required. ◁
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Figure 8: Control signals of the nonlinear-homogeneous and the high-gain output-feedback
controllers (ν = 0).
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Figure 9: States of the system with the nonlinear-homogeneous and the high-gain output-
feedback controllers in presence of noise (ω = 5).

7 Conclusions

Through the DOBC strategy, we have proposed an output-feedback controller for a class
of uncertain nonlinear systems. Such a controller provides an exact compensation of the
disturbance in finite-time despite the uncertainty in the model. The scheme is a simple but
fruitful application of: 1) ISS robustness properties of homogeneous controllers and; 2) finite-
time and exactness of the sliding mode differentiator. The control scheme allows to recover in
finite-time the nominal controlled system. From this point of view, many of the performance
features of the nominal state feedback controller are unaffected by the output-feedback. The
scheme allows us to design the gains of the controller and the observer independently, and
only one parameter is used to adjust the closed-loop. Since the attraction domain of the
closed-loop is not the whole state space, a direction of future work is to try to improve the
scheme to obtain a global controller.
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feedback controllers in presence of noise (ω = 50).
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A Homogeneity

We recall briefly the definitions of Weighted Homogeneity, see e.g. [2].

Definition 1. Let Λr
ϵ = diag(ϵr1 , . . . , ϵrn) be a square diagonal matrix where r = [r1, . . . , rn]

⊤,
ri ∈ R>0, and ϵ ∈ R>0. The components of r are called the weights of the coordinates. A func-
tion f : Rn → R is r−homogeneous of degree m ∈ R if f (Λr

ϵx) = ϵmf(x), ∀x ∈ Rn, ∀ϵ ∈ R>0.
The vector field f : Rn → Rn, f = [f1(x), . . . , fn(x)]

⊤, is r−homogeneous of degree κ ∈ R
if fi (Λ

r
ϵx) = ϵκ+rifi(x), i = 1, 2, . . . , n, ∀x ∈ Rn, ∀ϵ ∈ R>0. A dynamic system ẋ = f(x),

x ∈ Rn, is r−homogeneous of degree κ if f is r−homogeneous of degree κ. ◁

Definition 2. (See e.g. [27, 23, 3]) A vector-set field F ⊂ Rn is r−homogeneous of de-
gree κ if the identity F (Λr

ϵx) = ϵκΛr
ϵF (x) holds for any ϵ ∈ R>0, this is equivalent to

the invariance of the differential inclusion ẋ ∈ F (x) with respect to the transformation
Gϵ : (t, x) 7→ (ϵ−κt,Λr

ϵx). A differential inclusion is r−homogeneous of degree κ if its vector-
set field F is r−homogeneous of degree κ. ◁

Definition 3 (See e.g. [2]). Given a vector of weights r, a r−homogeneous norm is defined

as a function from Rn to R, and given by ∥x∥r,p =
(∑n

i=1 |xi|
p
ri

) 1
p
, ∀x ∈ Rn, for any p ≥ 1.

◁

Note that any r−homogeneous norm is a r−homogeneous function of degree m = 1.
Since, for a given r, the r−homogeneous norms are equivalent [19], they are usually denoted
as ∥ · ∥r, without the specification of p.
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Lemma 3 (See, e.g. [16]). Let v1 and v2 be real functions, continuous in Rn and r−homogeneous
of degree m1,m2, respectively, and v1 be positive definite. Then, for any x ∈ Rn,

c1v
m2
m1
1 (x) ≤ v2(x) ≤ c2v

m2
m1
1 (x) ,

where c1 = minx∈E v2(x), c2 = maxx∈E v2(x), and E = {x ∈ Rn : v1(x) = 1}. ◁

Lemma 4. For s ∈ Rm, and a ∈ R>0,

1
α(a)

∥s∥r ≤ ∥ 1
a
s∥r ≤ 1

α(a)
∥s∥r ,

where α, α are functions of class K∞ given by

α(a) =

{
a

1
mini ri , a ≤ 1,

a
1

maxi ri , a > 1,
α(a) =

{
a

1
maxi ri , a ≤ 1,

a
1

mini ri , a > 1.

◁

Proof. The proof is straightforward from the definition of homogeneous norm, namely,

∥ 1
a
s∥r =

(
m∑
i=1

| 1
a
si|p/ri

)1/p

≤

{
(1/a)

1
mini ri ∥s∥r, 1/a ≥ 1,

(1/a)
1

maxi ri ∥s∥r, 1/a < 1,

hence,

∥ 1
a
s∥r ≤

{
(1/a)

1
mini ri ∥s∥r, a ≤ 1,

(1/a)
1

maxi ri ∥s∥r, a > 1.

The proof for the lower bound is analogous.

Lemma 5. Consider the r−homogeneous system ẋ = f(x) of degree κ ∈ R whose origin is
asymptotically stable. If g : Rn → Rn is an r−homogeneous vector field of degree κ ∈ R, then
there exists C ∈ R>0 such that the origin of the system ẋ = f(x) + c(t)g(x) is asymptotically
stable for any continuous function c : R≥0 → R such that |c(t)| ≤ C for all t ∈ R≥0. Moreover,
if V : Rn → R≥0 is an r−homogeneous Lyapunov function (of some degree m ∈ R>0) for
ẋ = f(x), then V is also a Lyapunov function for ẋ = f(x) + c(t)g(x), and there exists an
r−homogeneous function W : Rn → R≥0 of degree mw := m + κ, which is continuous and

positive definite, such that ∂V (x)
∂x

(
f(x) + c(t)g(x)

)
≤ −W (x). ◁

Proof. The derivative of V along the solutions of ẋ = f(x) is such that V̇ ≤ −W0(x) for
some continuous and positive definite function W0 which is r−homogeneous of degree mw [3].
Now, the derivative of V along the solutions of ẋ = f(x) + c(t)g(x) is such that

V̇ ≤ −W0(x) + c(t)
∂V (x)

∂x
g(x) , (53)

hence,

V̇ ≤ −W0(x) + |c(t)|W̃ (x) , W̃ (x) :=

∣∣∣∣∂V (x)

∂x
g(x)

∣∣∣∣ . (54)
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Note that W̃ is positive semidefinte and r−homogeneous of degree mw. From Lemma 3 there
exist ϵ0, ϵ1 ∈ R>0 such that

V̇ ≤ −ϵ0∥x∥mw
r + |c(t)|ϵ1∥x∥mw

r ≤ −
(
ϵ0 − |c(t)|ϵ1

)
∥x∥mw

r . (55)

Thus,
V̇ ≤ −ϵ2∥x∥mw

r , (56)

for all ϵ2 ∈ (0, ϵ0) such that |c(t)| ≤ ϵ0−ϵ2
ϵ1

. The result follows by taking C = ϵ0−ϵ2
ϵ1

.

Consider the system ẋ = f(x, d), x(t) ∈ Rn, d(t) ∈ Rm, where f is locally Hölder
continuous. Let X(t;x(0), d) denote the solution of the system for the initial condition x(0)
and for all t ∈ R≥0.

Definition 4 ([33, 1]). The system is called input-to-state stable (ISS), if for any Lebesgue-
measurable and essentially bounded input d and any x(0) ∈ Rn there exist functions β ∈ KL
and γ ∈ K such that, for all t ∈ R≥0,

|X(t;x(0), d)| ≤ β(|x(0)|, t) + γ
(
ess supτ∈[0,t]|d(τ)|

)
.

◁
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