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In this paper we propose a finite-time output-feedback control scheme for a class of nonlinear systems. The dynamic part of the controller consists in an extended order observer which is based on the higher-order sliding-mode exact differentiator. With such an observer, the states of the system are exactly estimated in finite-time, moreover, the additional state in the observer estimates exactly and in finite-time Lipschitz disturbances in the system. Such an estimation is used by the static part of the controller to compensate the disturbances. The static part of the controller can be chosen from a class of homogeneous controllers. The whole control scheme allows to recover in finite-time several useful properties of homogeneous systems despite the additional and uncertain nonlinear terms. The effect of the noise in the measurement is also studied.

Introduction

In control systems theory, there are several techniques to improve the robustness properties of a controlled dynamic system [START_REF] Slotine | Applied Nonlinear Control[END_REF][START_REF] Isidori | Nonlinear Control Systems[END_REF][START_REF] Sepulchre | Constructive Nonlinear Control[END_REF][START_REF] Khalil | Nonlinear Control[END_REF], for example, Lyapunov redesign, integral control, and disturbance observer-based control 1 (DOBC). The DOBC technique, also known as active disturbance rejection control, consists in identifying the disturbance and compensating it by means of the control action.

An interesting DOBC scheme is that proposed in [START_REF] Freidovich | Performance Recovery of Feedback-Linearization-Based Designs[END_REF], where one of the most important advantages of the DOBC technique is emphasized: A good disturbance estimation allows to recover the performance of the nominal controlled system. In that work, an extended-order high-gain observer is used to estimate the states of the system and the disturbance, which is assumed to be bounded with bounded derivative. The static part of the control consists in an exact linearizing state-feedback. The trajectories of the closed-loop system are ultimately bounded with a bound depending on the high-gain parameter of the observer. Thus, to reduce the ultimate bound, the high-gain must be increased.

In [START_REF] Ferreira | Robust control with exact uncertainties compensation: With or without chattering[END_REF], another DOBC scheme was proposed. There, the states and the disturbance are estimated in finite-time by means of a sliding-mode-based observer. The disturbance is assumed bounded and sufficiently differentiable. The static controller is linear, therefore, only exponential stability can be guaranteed (see, e.g., [START_REF] Ferreira De Loza | High-order slidingmode observer-based input-output linearization[END_REF] for a recount of input-output linearization based on sliding-mode techniques). In [START_REF] Iqbal | Robust feedback linearization using higher order sliding mode observer[END_REF] and [START_REF] Ferreira De Loza | High-order slidingmode observer-based input-output linearization[END_REF], the higher-order sliding-mode exact differentiator [START_REF] Levant | Higher-Order Sliding Modes, differentiation and output-feedback control[END_REF] is used to exactly estimate the states of the system and the uncertain terms (in finite-time). However, the assumptions on the uncertain terms considerably restrict the class of systems that can be controlled.

In this paper we propose a DOBC scheme for a class of nonlinear systems. As in [START_REF] Iqbal | Robust feedback linearization using higher order sliding mode observer[END_REF][START_REF] Ferreira De Loza | High-order slidingmode observer-based input-output linearization[END_REF], we use an extended-order higher-order sliding-mode observer to estimate exactly and in finite-time the states of the system and the matched external disturbances. Nonetheless, our proposal incorporates significant improvements with respect to the existent methods: the assumptions on the uncertain nonlinear terms of the system are less restrictive than in [START_REF] Iqbal | Robust feedback linearization using higher order sliding mode observer[END_REF][START_REF] Ferreira | Robust control with exact uncertainties compensation: With or without chattering[END_REF][START_REF] Ferreira De Loza | High-order slidingmode observer-based input-output linearization[END_REF], and this allows us to deal with a wider set of uncertainties; we prove that the static part of the controller can be chosen from a class of nonlinear homogeneous controllers, which in the state-feedback and the undisturbed case guarantee a robust closed-loop system with finite-time convergence of the trajectories to the origin by means of a continuous control action; in contrast with [START_REF] Freidovich | Performance Recovery of Feedback-Linearization-Based Designs[END_REF][START_REF] Ferreira | Robust control with exact uncertainties compensation: With or without chattering[END_REF][START_REF] Iqbal | Robust feedback linearization using higher order sliding mode observer[END_REF][START_REF] Ferreira De Loza | High-order slidingmode observer-based input-output linearization[END_REF] the proposed output-feedback controller guarantees zero steady-state error in finite-time despite uncertainties and disturbances. Hence, this scheme guarantees the recovery of the finite-time convergence provided by the state-feedback controllers mentioned in the previous item; unlike most of the existent DOBC schemes that use high-order sliding-mode differentiators, we provide a methodology that verifies Lyapunov stability of the origin of the closed-loop system; we investigate the robustness properties of the closed-loop system in presence of noise in the measured output; unlike [START_REF] Ferreira | Robust control with exact uncertainties compensation: With or without chattering[END_REF][START_REF] Ferreira De Loza | High-order slidingmode observer-based input-output linearization[END_REF] we analyse the case of uncertain control coefficient. Although the uncertain control coefficient is considered in [START_REF] Iqbal | Robust feedback linearization using higher order sliding mode observer[END_REF], its assumptions may be quite restrictive; one interesting advantage of the proposed scheme is that the domain of attraction and the convergence rate can be adjusted by only one parameter.

Paper organization: In Section 2 we describe the class of systems considered in this paper. Section 3 contains the main result whose proof is given in Section 4. In Section 5, the case of uncertain control coefficient is analysed. Two simulation examples are given in Section 6, one of them consists of a comparison example between our proposed controller and the scheme from [START_REF] Freidovich | Performance Recovery of Feedback-Linearization-Based Designs[END_REF]. Some final remarks are stated in Section 7. The definition of homogeneity and some auxiliary results are collected in the appendix.

Notation: Real numbers are denoted by R. R >0 denotes the set {x ∈ R : x > 0}, and analogously for the sign ≥. For x ∈ R n , the Euclidean norm is denoted by |x|, and an r-homogeneous norm (see Definition 3 in Appendix) by ∥x∥ r . For x, ρ ∈ R we denote ⌈x⌋ ρ = |x| ρ sign(x). The set of strictly increasing continuous functions α :

R ≥0 → R ≥0 with α(0) = 0 is denoted by K. The set of functions in K such that α(t) → ∞ as t → ∞ is denoted by K ∞ . A function β : R ≥0 × R ≥0 → R ≥0 is in the set of functions KL if for each fixed s ∈ R ≥0 , β(•, s) ∈ K,
and for each fixed r ∈ R ≥0 , β(r, •) is continuous, strictly decreasing, and lim s→∞ β(r, s) = 0. ◁

Problem statement

In this paper we consider the class of nonlinear systems that can be described by

ẋi = x i+1 , ẋn = f (t, x) + u + δ(t) , y = x 1 , i = 1, . . . , n -1 , (1) 
where

x(t) = [x 1 (t), . . . , x n (t)] ⊤ ∈ R n is the state, u(t) ∈ R is the control input, y(t) ∈ R is the measured output, f (t, x) ∈ R is an uncertain function, and δ(t) ∈ R is an unknown exogenous disturbance.
In a second stage we consider the presence of noise in the measured output, namely y = x 1 + ν, where ν is a Lebesgue-measurable and essentially bounded function. In Section 5, we study the case of uncertain control coefficient. (i) The uncertain function f : R ≥0 × R n → R satisfies the following: f (t, 0) = 0 for all t ∈ R ≥0 , it is piecewise-continuous and bounded in t, and it is locally Lipschitz in x, i.e. for any d ∈ R ≥0 there exists a constant

d 1 = d 1 (d) ∈ R ≥0 such that |f (t, x) -f (t, x ′ )| ≤ d 1 |x -x ′ | , ∀ t ∈ R ≥0 , ∀ x, x ′ ∈ D .
(ii) A model f : R ≥0 × R n → R for f is known, and it satisfies the following: it is a piecewise-continuous and bounded function in t, it is locally Lipschitz in x, and for any d ∈ R ≥0 there exists a constant

d 2 = d 2 (d) ∈ R ≥0 such that |f (t, x) -f (t, x)| ≤ d 2 |x| , ∀ t ∈ R ≥0 , ∀ x ∈ D . (iii) The disturbance δ is such that | δ(t)| ≤ ∆ for all t ∈ R ≥0 and a known constant ∆ ∈ R ≥0 .
Remark 1. Note that as in [START_REF] Freidovich | Performance Recovery of Feedback-Linearization-Based Designs[END_REF][START_REF] Iqbal | Robust feedback linearization using higher order sliding mode observer[END_REF][START_REF] Ferreira De Loza | High-order slidingmode observer-based input-output linearization[END_REF], the considered class of systems (1) is in the controllability canonical form. However, two of the main differences are: 1) we are not requiring the uncertain term f (t, x) to be continuously differentiable with Lipschitz derivatives, but only to be Lipschitz continuous; 2) the external disturbance δ is not assumed to be bounded.

In Assumption 1, the disturbance δ is assumed to be a function of time, nonetheless, this can be considered as a function of the state as well, if it can be guaranteed that for any gain γ ∈ R >0 of the controller designed in Section 3.2 the following holds: for any d ∈ R >0 there exists a known constant ∆ = ∆(d) ∈ R ≥0 such that ∂δ(t,x) ∂t + ∂δ (t,x) ∂x ẋ ≤ ∆ for all t ∈ R ≥0 and all x ∈ D, with D as in Assumption 1.

◁

The control objective is to stabilize in finite-time the origin of the system despite the disturbance δ and the uncertainty in f by means of a continuous control signal and by using only the output y as information for the controller.

Controller

State feedback nominal controller

Since homogeneity offers several advantages in dynamic systems, in this paper we consider homogeneous controllers. See Appendix for the definition and some properties of homogeneity. To construct the output-feedback controller we assume that a homogeneous controller is already known as stated below.

Assumption 2. A state feedback controller u 0 (x) is known and satisfies the following: u 0 is a locally Hölder continuous2 function; u 0 is an r c -homogeneous function such that the system ẋ1 = x 2 , ẋ2 = x 3 , . . . , ẋn = u 0 (x) ,

is r c -homogeneous of degree κ = -1 with weights r c = [n + 1, n, . . . , 2] ⊤ ; the origin of (2) is an asymptotically stable equilibrium point. ◁

Note that the asymptotic stability and the negative homogeneity degree of (2) guarantee that its origin is globally finite-time stable [START_REF] Bhat | Finite-time stability of homogeneous systems[END_REF][START_REF] Hong | On an Output Feedback Finite-Time Stabilisation Problem[END_REF]. Assumption 2 is not restrictive, in the sense that, a homogeneous continuous controller providing finite-time stability to (2) does exist (see, e.g., [2, Theorem 5.12]). There exist in the literature several explicit controllers satisfying Assumption 2, for example: for n = 2, the following controller was proposed in [START_REF] Bhat | Continuous Finite-Time Stabilization of the Translational and Rotational Double Integrators[END_REF],

u 0 (x) = -⌈x 2 ⌋ ρ -x 1 + 1 2-ρ ⌈x 2 ⌋ 2-ρ ρ 2-ρ ,
the homogeneity condition in Assumption 2 is satisfied with ρ = 1/2; in [START_REF] Cruz-Zavala | Improved convergence rate of discontinuous finite-time controllers[END_REF], a wide class of homogeneous controllers was proposed, a particular family of such controllers is

u 0 = -l n ⌈σ n ⌋ 1 n+1 , σ i = ⌈x i ⌋ n+1 r i + l i-1 σ i-1 , (3) 
with i = 1, . . . , n -1 and l 0 = 0 (for the selection of the gains l i ∈ R >0 , see the method given in [START_REF] Cruz-Zavala | Improved convergence rate of discontinuous finite-time controllers[END_REF]). Now, define the controller

u = u 0 (x) -f (t, x) -δ , (4) 
that can be considered as an exact state-feedback homogenization of (1). This way, the closed-loop (1), ( 4) equals (2) and therefore its origin is finite-time stable. However, we have the following obvious restrictions:

R1 the term δ(t) is unknown, hence we will opt for an identification mechanism to compensate for it;

R2 since the only available measurement is the output signal y (and the control signal u), then a state observer is required;

R3 the term f (t, x) is uncertain, thus, although a model f (t, x) is known, the control scheme must be able to deal with the uncertainty produced by the term f (t, x) -f (t, x).

To overcome these problems, we propose in the following section an output-feedback controller.

Output-feedback controller

According to restrictions R1 -R3, we propose the following modification of controller (4),

u = γu 0 (γ -1 x) -f (t, x) -δ , γ ∈ R >0 , (5) 
where x is the observed state, δ is an estimation of the disturbance δ, and γ is a gain to be adjusted. For state observation and disturbance identification we propose the following extended-order observer ẋi = -γ

p i k i ⌈x 1 -y⌋ q i + xi+1 , ẋn = -γ pn k n ⌈x 1 -y⌋ qn + γu 0 (γ -1 x) , (6) δ 
= -γk n+1 ⌈x 1 -y⌋ 0 ,
where p i = i n+1 and q i = n-i+1 n+1 for i = 1, . . . , n. Such an observer is based on the sliding mode differentiator proposed in [START_REF] Levant | Higher-Order Sliding Modes, differentiation and output-feedback control[END_REF]. Thus, the gains k i have to be chosen as in the following assumption.

Assumption 3. For (6), the gains k i , i = 1, . . . , n + 1, are such that the origin of the system

ẇi = -k i ⌈w 1 ⌋ q i + w i+1 , i = 1, . . . , n , ẇn+1 = -k n+1 ⌈w 1 ⌋ 0 -δ(t) , (7) 
is asymptotically stable for any function δ : R ≥0 → R which satisfies that | δ(t)| ≤ 1 for all t ∈ R ≥0 . ◁ Again, Assumption 3 is not restrictive since there exist the gains k i ∈ R >0 (and procedures to compute them) that accomplish such an assumption, see e.g. [START_REF] Levant | Higher-Order Sliding Modes, differentiation and output-feedback control[END_REF][START_REF] Sanchez | An SOS method for the design of continuous and discontinuous Dfferentiators[END_REF][START_REF] Cruz-Zavala | Levant's Arbitrary Order Exact Differentiator: A Lyapunov Approach[END_REF].

Before stating the main result, let us establish some notation. The closed-loop (1), ( 5) is given by ẋi

= x i+1 , i = 1, . . . , n -1 , ẋn = γu 0 (γ -1 x) + f (t, x, x) + δ -δ , (8) 
where f (t, x, x) := f (t, x) -f (t, x). Defining the following observation errors

e i = xi -x i , i = 1, . . . , n , e n+1 = δ -δ , (9) 
system ( 8) can be rewritten as follows

ẋi = x i+1 , i = 1, . . . , n -1 , ẋn = γu 0 (γ -1 [x + ē]) + f (t, x, x + ē) -e n+1 , (10) 
where ē := [e 1 , . . . , e n ] ⊤ . The observation error dynamics is given by ėi = -γ

p i k i ⌈e 1 ⌋ q i + e i+1 , i = 1, . . . , n -1 , ėn = -γ pn k n ⌈e 1 ⌋ qn + e n+1 -f (t, x, x + ē) , ( 11 
) ėn+1 = -γk n+1 ⌈e 1 ⌋ 0 -δ(t) .
Finally, define X := [x ⊤ , e ⊤ ] ⊤ with e := [e 1 , . . . , e n+1 ] ⊤ , and r = [n + 1, n, . . . , 2, n + 1, n, . . . , 1] ⊤ . Now we are ready to give the main result.

Theorem 1. Consider (1) in closed-loop with the output-feedback controller (5)- [START_REF] Bhat | Continuous Finite-Time Stabilization of the Translational and Rotational Double Integrators[END_REF]. Under Assumptions 1-3, for any a, ∆ ∈ R ≥0 there exists γ ∈ R >0 such that the origin of (10)-( 11) is finite-time stable with a domain of attraction D such that {X ∈ R 2n+1 : ∥X∥ r ≤ a} ⊂ D.

Proof. See Section 4.

Remark 2. It is clear from Theorem 1 that output-feedback controller (5)-( 6) guarantees semi-global stabilization of the origin, i.e., the domain of attraction can be enlarged as desired if the gain γ is suitably chosen. Indeed, what is verified in the proof of Theorem 1, is that there exist two functions α 1 , α 2 ∈ K ∞ such that the origin of (10)-( 11) is finite-time stable for all x ∈ R n and all e ∈ R n+1 such that

∥X∥ r ≤ α 1 (γ) α 2 (d 1 + d 2 )
, γ ≥ ∆ , with ∆, d 1 , and d 2 as in Assumption 1. Hence, the estimated domain of attraction can be increased by increasing the gain γ. ◁ Corollary 1. Under assumptions of Theorem 1, there exist two functions θ 1 , θ 2 ∈ KL and a constant c 0 ∈ R >0 such that, for all X(0) ∈ {X ∈ R 2n+1 : |X| ≤ a}, the inequality c 0 > (d 1 + d 2 )θ 2 (a, γ) holds, and the settling-time function T : R 2n+1 → R ≥0 of (10)-( 11) satisfies

0 ≤ T (X(0)) ≤ θ 1 (a, γ) c 0 -(d 1 + d 2 )θ 2 (a, γ) , (12) 
with d 1 and d 2 as in Assumption 1. ◁ Remark 3. Observe that, since θ 1 and θ 2 are class KL functions (see Section 1 for notation), they are decreasing in the second argument. Hence, the right-hand side of ( 12) is a decreasing function of γ. Therefore, the convergence time to the origin can be reduced by increasing the gain γ. ◁ Corollary 2. If in addition to the assumptions of Theorem 1, there exist d1

, d2 ∈ R ≥0 such that |f (t, x)| ≤ d1 , | f (t, x)| ≤ d2 , ∀ t ∈ R ≥0 , ∀ x ∈ R n ,
then there exists γ ∈ R >0 such that the origin of (10)-( 11) is globally finite-time stable. ◁

Noise in the output

Now suppose that the measured output is contaminated with noise, i.e.

y(t) = x 1 (t) + ν(t) , (13) 
where ν : R ≥0 → R is a Lebesgue-measurable function such that ess sup t∈R ≥0 |ν(t)| ≤ N for some N ∈ R ≥0 .

Corollary 3. Under assumptions of Theorem 1, system (10)-( 11), with y as in [START_REF] Freidovich | Performance Recovery of Feedback-Linearization-Based Designs[END_REF], is locally input-to-state stable with respect to the input ν, i.e. there exist some functions β ∈ KL, η ∈ K, and a constant Γ ∈ R >0 , such that for any ν and each

X(0) ∈ R 2n+1 satisfying N ≤ Γ and |X(0)| ≤ Γ, the solution ϕ(t; X(0), ν) of (10)-(11) satisfies |ϕ(t; X(0), ν)| ≤ β(|X(0)|, t) + η(N ) , ∀ t ∈ R ≥0 .

Performance recovery

In this section we verify that the closed-loop ( 8) is able to recover the performance of the nominal homogeneous system

ẋ1 = x2 , ẋ2 = x3 , . . . , ẋn = γu 0 (γ -1 x) . (14) 
To describe the ISS robustness of ( 14), let us consider its disturbed version given by

ẋ1 = x2 , ẋ2 = x3 , . . . , ẋn = γu 0 (γ -1 x) + g(t) , (15) 
where g : R ≥0 → R is a Lebesgue-measurable function such that |g(t)| ≤ ḡ for all t ∈ R ≥0 for some constant ḡ ∈ R ≥0 . The following result describes the ISS property of (15) with respect to the input g.

Lemma 1. Consider (15) with u 0 as in Assumption 2. There exist two functions

β 1 , β 2 ∈ KL such that for any γ ∈ R >0 , |x(t)| ≤ β 1 |x(0)|, t + β 2 ḡ, γ , ∀x(0) ∈ R n , ∀t ∈ R ≥0 . (16) 
The proof of this lemma is given in Section 4. From this lemma we can see that, the origin of ( 14) is globally asymptotically stable. Moreover, since ( 14) is r c -homogeneous of negative degree (see Assumption 2), its origin is finite-time stable. From these facts and from Theorem 1 we conclude that, for the solution x(t) of ( 14) and the solution x(t) of ( 8), there exists T ∈ R ≥0 such that |x(t) -x(t)| = 0 for all t ≥ T . However, this trivial conclusion is only for the steady-state, and it does not give information about the performance recovery during the transient phase.

On the other hand, Lemma 1 shows that, for any ḡ ∈ R ≥0 , β 2 ḡ, γ → 0 as γ → ∞. Thus, the effect of the disturbance g on the solution x(t) is reduced by increasing the gain γ.

In this sense, we can say that (15) recovers the performance of ( 14) by increasing the gain γ. Now, we show that (8) also has this property. Remark 4. According to Theorem 1 (see also Remark 2), for each a ∈ R >0 there exists γ * ∈ R >0 such that for all γ ≥ γ * the origin of (8) is finite-time stable. Hence, for each γ ≥ γ * and for each X 0 = [x ⊤ (0), e ⊤ (0)] ⊤ ∈ D there exists t 0 (γ, X 0 ) ∈ R >0 such that x(t) ∈ D and e(t) = 0 for all t ≥ t 0 . ◁ Theorem 2. Consider (8) and Remark 4. Under the assumptions of Theorem 1, for each γ ≥ γ * there exists

t 0 ∈ R >0 such that |x(t)| ≤ β 1 |x(t 0 )|, t + β 2 d 2 a, γ , ∀x(0) ∈ D, ∀t ≥ t 0 , (17) 
where d 2 is as in Assumption 1 and the functions β 1 , β 2 as in Lemma 1. ◁

Proof. The proof of this theorem is analogous to the proof of Lemma 1. We only have to clarify the following:

1. According to Remark 4, e(t) = 0 for all t ≥ t 0 . Thus, we can rewrite (8) (or, equivalently ( 4 Proofs

)) as follows ẋi = x i+1 , i = 1, . . . , n -1 , ẋn = γu 0 (γ -1 x) + f (t, x, x) , ∀ t ≥ t 0 . 10 

Proof of Theorem 1

Let us consider the auxiliary systems [START_REF] Chen | Disturbance-Observer-Based Control and Related Methods -An Overview[END_REF] and

żi = z i+1 , i = 1, . . . , n -1 , żn = u 0 (z + w) -w n+1 , (19) 
where w = [w 1 , . . . , w n ] ⊤ . First note that ( 7) is discontinuous, thus its solutions and its associated differential inclusion are considered as defined in [START_REF] Filippov | Differential Equations with Discontinuous Righthand Sides[END_REF]. Also note that the differential inclusion associated to ( 7) is r o -homogeneous of degree κ = -1 with r o = [n+1, n, . . . , 1] ⊤ [START_REF] Levant | Homogeneity approach to high-order sliding mode design[END_REF]. Hence, under Assumption 3, the origin of ( 7) is finite-time stable. Define the vector w = [w 1 , . . . , w n , w n+1 ] ⊤ . Observe that Assumption 2 guarantees that ( 19) is also finite-time stable for w ≡ 0, moreover, it is input-to-state stable (ISS) with respect to the input w [START_REF] Bernuau | Verification of ISS, iISS and IOSS properties applying weighted homogeneity[END_REF] (the ISS concept is recalled in Definition 4 in Appendix). Thus, according to [START_REF] Heemels | Input-to-state stability and interconnections of discontinuous dynamical systems[END_REF], the origin of the interconnected system ( 19), ( 7) is asymptotically stable. Now, it is easy to see that the differential inclusion associated to ( 19), ( 7) is r-homogeneous

of degree κ = -1 with r = [r ⊤ c , r ⊤ o ] ⊤ .
Therefore, its origin is finite-time stable [START_REF] Nakamura | Smooth Lyapunov functions for Homogeneous Differential Inclusions[END_REF][START_REF] Orlov | Finite Time Stability and Robust Control Synthesis of Uncertain Switched Systems[END_REF][START_REF] Levant | Homogeneity approach to high-order sliding mode design[END_REF]. Thus, according to [START_REF] Nakamura | Smooth Lyapunov functions for Homogeneous Differential Inclusions[END_REF][START_REF] Bernuau | On homogeneity and its application in sliding mode control[END_REF] there exists a smooth Lyapunov function V 0 : R 2n+1 → R ≥0 for ( 19), [START_REF] Chen | Disturbance-Observer-Based Control and Related Methods -An Overview[END_REF] such that it is r-homogeneous of some degree 3 m ∈ R >0 and its derivative along ( 19), ( 7) satisfies 4 V0 ≤ -W 0 (z, w), where the function

W 0 : R 2n+1 → R ≥0 is r-homogeneous of degree m + κ, strictly positive for all [z ⊤ , w ⊤ ] ⊤ ∈ R 2n+1 \ {0} and continuous for all [z ⊤ , w ⊤ ] ⊤ ∈ R 2n+1 .
Now, consider the change of coordinates

x i = γz i , i = 1, . . . , n , e j = γw j , j = 1, . . . , n + 1 . (20) 
For these new variables we obtain from ( 7) and ( 19) the dynamics

ẋi = x i+1 , i = 1, . . . , n -1 , ẋn = γu 0 (γ -1 [x + e n ]) -e n+1 , (21) ėi 
= -γ p i k i ⌈e 1 ⌋ q i + e i+1 , i = 1, . . . , n , ėn+1 = -γk n+1 ⌈e 1 ⌋ 0 -γ δ(t) . ( 22 
)
Note that for any γ ∈ R >0 , the origin of the interconnected systems ( 21)-( 22) is finite-time stable, and the function V : R 2n+1 → R ≥0 , given by

V (x, e) = V 0 (γ -1 x, γ -1 e) ,
is a Lyapunov function for ( 21)- [START_REF] Levant | Higher-Order Sliding Modes, differentiation and output-feedback control[END_REF]. Indeed, the derivative of V along ( 21)-( 22) is such that

V = ∂V ∂x ẋ + ∂V ∂e ė = ∂V 0 ∂z 1 γ γ ż + ∂V 0 ∂w 1 γ γ ẇ. Thus, V = V0 , and V ≤ -W (x, e) where W (x, e) = W 0 (γ -1 x, γ -1 e).
Now, we consider V as a Lyapunov function candidate for ( 10)- [START_REF] Ferreira De Loza | High-order slidingmode observer-based input-output linearization[END_REF]. The derivative of V along ( 10)-( 11) is such that

V ≤ -W (x, e) + ∂V ∂x n - ∂V ∂e n f (t, x, x + ē) .
3 Indeed, m must satisfy: m > max j∈{1,...,2n+1} r j to guarantee differentiability of V 0 and; m > max{-κ, 0} to have W 0 with a positive homogeneity degree. We assume that these conditions hold. 4 Since the right-hand side of ( 7) is discontinuous, the Lyapunov analysis for ( 19), [START_REF] Chen | Disturbance-Observer-Based Control and Related Methods -An Overview[END_REF] has to be done by considering the differential inclusion associated to [START_REF] Kawski | Stability and nilpotent approximations[END_REF], [START_REF] Chen | Disturbance-Observer-Based Control and Related Methods -An Overview[END_REF]. Thus, for each

[z ⊤ , w ⊤ ] ⊤ ∈ R 2n+1 , V0 = ∂V0(z,w) ∂(z,w) h ∈ R : h ∈ H(z, w)
, where H denotes the set-valued vector field of the differential inclusion associated to [START_REF] Kawski | Stability and nilpotent approximations[END_REF], [START_REF] Chen | Disturbance-Observer-Based Control and Related Methods -An Overview[END_REF]. Hence, V0 ≤ -W 0 (z, w) means max h∈H(z,w) ∂V0(z,w) ∂(z,w) h ≤ -W 0 (z, w), see [START_REF] Bacciotti | Liapunov Functions and Stability in Control Theory[END_REF].

Observe that for any γ ≥ ∆, W (x, e) is positive definite. By considering again [START_REF] Kellett | Smooth Lyapunov functions and robustness of stability for difference inclusions[END_REF] we have that (let us denote

V 0 (z, w) with V 0 ) V ≤ -W 0 (z, w) + ∂V 0 ∂z n 1 γ - ∂V 0 ∂w n 1 γ f (t, x, x + ē) , ≤ -W 0 (z, w) + 1 γ ∂V 0 ∂z n - ∂V 0 ∂w n | f (t, x, x + ē)| . ( 23 
)
Since W and the function (z, w) → ∂V 0 ∂zn -∂V 0 ∂wn are homogeneous of degrees m -1 and m -r n = m -2, respectively, Lemma 3 (see Appendix) ensures the existence of c 0 , c

1 ∈ R >0 such that, from (23), V ≤ -c 0 V m-1 m 0 + 1 γ c 1 V m-2 m 0 | f (t, x, x + ē)| . ( 24 
)
Let us now analyse the term | f (t, x, x + ē)|. Note that we can rewrite f as follows

f (t, x, x + ē) = f (t, x) -f (t, x + ē) , = [f (t, x) -f (t, x + ē)] + [f (t, x + ē) -f (t, x + ē)] . (25) 
Thus, according to Assumption 1, for any a ∈ R >0 there exists

d 1 , d 2 ∈ R ≥0 such that | f (t, x, x + ē)| ≤ d 1 |ē| + d 2 |x + ē| = γd 1 | w| + γd 2 |z + w| . Now, according to Lemma 3 (see Appendix), there exist c 2 , c2 ∈ R >0 such that |z + w| 2 = n i=1 |z i + w i | 2 ≤ n j=1 (c 2 V (j+1)/m 0 ) 2 ≤ n(c 2 V ρ/m 0 ) 2 , | w| 2 = n i=1 |w i | 2 ≤ n j=1 (c 2 V (j+1)/m 0 ) 2 ≤ n(c 2 V ρ/m 0 ) 2 ,
where ρ = (n + 1) if V 0 (z, w) ≥ 1, and ρ = 2 if V 0 (z, w) < 1. Thus,

| f (t, x, x + ē)| ≤ γ √ n(d 1 c2 V ρ/m 0 + d 2 c 2 V ρ/m 0 ) = γ(d 1 + d 2 )c 3 V ρ/m 0 , with c 3 = √ n max{c 2 , c2 }. Hence, from (24) we obtain V ≤ -c 0 V m-1 m 0 + c 1 c 3 (d 1 + d 2 )V m-2+ρ m 0 . ( 26 
)
Note that no constant in (26) depends on γ. Also note that in any case m -2 + ρ > m -1. Thus, since

-c 0 V m-1 m 0 + c 1 c 3 (d 1 + d 2 )V m-2+ρ m 0 = -1 2 c 0 V m-1 m 0 + c 1 c 3 (d 1 + d 2 )V m-2+ρ m 0 -1 2 c 0 V m-1 m 0 , it is clear that V ≤ -1 2 c 0 V m-1 m 0 (z, w) = -1 2 c 0 V m-1 m (x, e) if 1 2 c 0 V m-1 m 0 (z, w) ≥ c 1 c 3 (d 1 + d 2 )V m-2+ρ m 0 (z, w) . (27) 
Let us analyse [START_REF] Orlov | Finite Time Stability of Homogeneous Switched Systems[END_REF]. First note that (for

d 1 ̸ = 0 or d 2 ̸ = 0) (27) is equivalent to β -1 c 0 2c 1 c 3 (d 1 + d 2 ) ≥ V 1 m 0 (z, w) , (28) 
where β is a function of class K ∞ given by

β(s) = s n , s ≥ 1, s, s < 1. ( 29 
)
Now, Lemma 3 (see Appendix) ensures the existence of

c 4 ∈ R >0 such that V 1 m 0 (z, w) ≤ c 4 ∥[z ⊤ , w ⊤ ] ⊤ ∥ r , but Lemma 
4 (see Appendix) ensures that (by using [START_REF] Kellett | Smooth Lyapunov functions and robustness of stability for difference inclusions[END_REF])

∥[z ⊤ , w ⊤ ] ⊤ ∥ r ≤ 1 α(γ) ∥[x ⊤ , e ⊤ ] ⊤ ∥ r ,
where α is a function of class K ∞ given by

α(γ) = γ, γ ≤ 1, γ 1 n+1 , γ > 1. Thus, V 1 m 0 (z, w) ≤ c 4 α(γ) ∥[x ⊤ , e ⊤ ] ⊤ ∥ r , (30) 
and from [START_REF] Orlov | Finite Time Stability and Robust Control Synthesis of Uncertain Switched Systems[END_REF], we can see that ( 27) is satisfied for all x ∈ R n and all e ∈ R n+1 such that

∥[x ⊤ , e ⊤ ] ⊤ ∥ r ≤ α(γ) c 4 β -1 c 0 2c 1 c 3 (d 1 + d 2 )
.

Therefore, (since α ∈ K ∞ ) for any d 1 , d 2 , a ∈ R >0 , γ can always be chosen such that (27) holds.

Proof of Corollary 1

From ( 26) and [START_REF] Sanchez | An SOS method for the design of continuous and discontinuous Dfferentiators[END_REF] we have that

V ≤ -c 0 -c 1 c 3 (d 1 + d 2 )V ρ-1 m 0 V m-1 m 0 (z, w) ≤ -c 0 -c 1 c 3 (d 1 + d 2 )β c 4 α(γ) ∥[x ⊤ , e ⊤ ] ⊤ ∥ r V m-1 m (x, e) ,
with β as in [START_REF] Rosier | Homogeneous Lyapunov function for homogeneous continuous vector field[END_REF]. Thus, in the set

{X ∈ R 2n+1 : ∥X∥ r ≤ a}, V ≤ -c 0 -c 1 c 3 (d 1 + d 2 )β c 4 a α(γ) V m-1 m (x, e) ,
where c 0 -c 1 c 3 (d 1 + d 2 )β c 4 a α(γ) > 0. By direct integration over the interval [0, T (x(0), e(0))] (where T is the settling-time function) we obtain 

T (x(0), e(0)) ≤ m c 0 -c 1 c 3 (d 1 + d 2 )β c 4 a α(γ) V 1 m (x(0), e(0)) , ≤ m c 4 a α(γ) c 0 -c 1 c 3 (d 1 + d 2 )β c 4 a α(γ)

Proof of Corollary 2

The proof of this corollary consists in verifying that a neighbourhood of the origin is globally attractive. The proof is completed by proving that the radius of such a neighbourhood is inversely proportional to the the gain γ. This property and the local asymptotic stability from Theorem 1 guarantee the result.

We use the Lyapunov function from the proof of Theorem 1. According to the assumption of the corollary, from [START_REF] Mercado-Uribe | Discontinuous integral action for arbitrary relative degree in sliding-mode control[END_REF] we obtain | f (t, x, x + ē)| ≤ d := d1 + d2 . Thus, from [START_REF] Madoński | Survey on methods of increasing the efficiency of extended state disturbance observers[END_REF] we have that

V ≤ -c 0 V m-1 m 0 + d γ c 1 V m-2 m 0 . Since -c 0 V m-1 m 0 + c 1 V m-2 m 0 d γ = -1 2 c 0 V m-1 m 0 + c 1 V m-2 m 0 d γ -1 2 c 0 V m-1 m 0 , we have that, V ≤ -1 2 c 0 V m-1 m 0 if 2c 1 d γc 0 ≤ V 1 m 0 (z, w). Now, Lemma 3 (see Appendix) ensures the existence of c4 ∈ R >0 such that V 1 m 0 (z, w) ≥ c4 ∥[z ⊤ , w ⊤ ] ⊤ ∥ r , but Lemma 4 (see Appendix) ensures that ∥[z ⊤ , w ⊤ ] ⊤ ∥ r = ∥γ -1 [x ⊤ , e ⊤ ] ⊤ ∥ r ≥ 1 α(γ) ∥[x ⊤ , e ⊤ ] ⊤ ∥ r , where the function α ∈ K ∞ is given by α(γ) = γ 1 n+1 , γ ≤ 1, γ 1 2 , γ > 1. ( 31 
) Thus, V 1 m 0 (z, w) ≥ c 2 α(γ) ∥[x ⊤ , e ⊤ ] ⊤ ∥ r . Hence, since V 0 (z, w) = V (x, e), V ≤ - 1 2 c 0 V m-1 m (x, e) if ∥[x ⊤ , e ⊤ ] ⊤ ∥ r ≥ 2c 1 d c 0 c4 α(γ) γ = 2c 1 d c 0 c4 1 α(γ) , (32) 
where α is a function of class K ∞ given by

α(γ) = γ n n+1 , γ ≤ 1, γ 1 2 , γ > 1. (33) 
Therefore, there exists a globally attractive neighbourhood of the origin B, whose radius depends in inverse proportion to γ. Moreover, there is a γ ∈ R >0 such that B ⊂ D, with D as in Theorem 1.

Proof of Corollary 3

Since we are now considering the noisy output (13), the observation error dynamics is given by ėi = -γ p i k i ⌈e 1 -ν⌋ q i + e i+1 , i = 1, . . . , n -1 , ėn = -γ pn k i ⌈e 1 -ν⌋ qn + e n+1 -f (t, x, x + ē) , (34) ėn+1 = -γk n+1 ⌈e 1 -ν⌋ 0 -δ(t) .

Thus, the proof of the corollary consists in verifying the existence of a local ISS-Lyapunov function for the closed-loop (10), (34). First, let us define the auxiliary system ẇi = -k i ⌈w 1 -ν⌋ q i + w i+1 , i = 1, . . . , n , ẇn+1 = -k n+1 ⌈w 1 -ν⌋ 0 -δ(t) .

(35)

Note that for ν ≡ 0, (35) equals [START_REF] Chen | Disturbance-Observer-Based Control and Related Methods -An Overview[END_REF]. Now, we analyse the interconnection of the auxiliary systems ( 19), (35).

We have already mentioned in the proof of Theorem 1 that ( 19) is ISS with respect to the input w. Hence, according to [START_REF] Bernuau | Verification of ISS, iISS and IOSS properties applying weighted homogeneity[END_REF], there exists an r c -homogeneous function V 1 : R n → R of some degree m c ∈ R >0 , which is an ISS-Lyapunov function for [START_REF] Kawski | Stability and nilpotent approximations[END_REF]. Thus, there exists

α 1 ∈ K such that |z| ≥ α 1 (|w|) ⇒ V1 ≤ -W 1 (z) , (36) 
for some positive definite function W 1 : R n → R which is r c -homogeneous of degree m c + κ. In the same manner, according to [START_REF] Sanchez | An SOS method for the design of continuous and discontinuous Dfferentiators[END_REF], there exists an r o -homogeneous function V 2 : R n+1 → R of some degree m o ∈ R >0 , which is an ISS-Lyapunov function for (35). Hence, there exists

α 2 ∈ K such that |w| ≥ α 2 (N ) ⇒ V2 ≤ -W 2 (w) , (37) 
for some positive definite function W 2 : R n+1 → R which is r o -homogeneous of degree m o +κ.

Observe that m c and m o can be assumed such that m c = m o = m, for some m ∈ R >0 . Now, define the function

V 3 : R 2n+1 → R given by V 3 (z, w) = V 1 (z) + V 2 (w). Note that V 3 is positive definite and r-homogeneous of degree m with r = [r ⊤ c , r ⊤ o ] ⊤ . Also note that V3 = V1 + V2 .
From ( 36) and (37) we can see that |z| ≥ α 1 (|w|) ≥ α 1 (α 2 (N )). Thus, from the properties of class K functions (see, e.g. [START_REF] Kellett | Smooth Lyapunov functions and robustness of stability for difference inclusions[END_REF]), there exists

α 3 ∈ K such that [z ⊤ , w ⊤ ] ⊤ ≥ α 3 (N ) ⇒ V3 ≤ -W 1 (z) -W 2 (w) . (38) 
Observe that the function W 3 := W 1 + W 2 is positive definite and r-homogeneous of degree m + κ. Now we can repeat the procedure of the proof of Theorem 1 to deal with the term f by replacing W 0 with W 3 .

Finally, by using [START_REF] Kellett | Smooth Lyapunov functions and robustness of stability for difference inclusions[END_REF], we obtain from (38)

[x ⊤ , e ⊤ ] ⊤ ≥ γα 3 (N ) . (39) 
Hence, for any γ ∈ R >0 there exists a sufficiently small level of noise N such that the closedloop ( 10)-( 11) is ISS inside the domain determined by γ.

Proof of Lemma 1

Let us consider the auxiliary system

ż1 = z 2 , ż2 = z 3 , . . . , żn = u 0 (z) . ( 40 
)
Observe that Assumption 2 guarantees that (40) is finite-time stable, moreover, there exists a smooth Lyapunov function V 0 : R n → R ≥0 such that it is r-homogeneous of some degree m ∈ R >0 and its derivative along (40) satisfies V0 = -W 0 (z), where the function W 0 : R n → R ≥0 is r-homogeneous of degree m + κ, strictly positive for all z ∈ R n \ {0} and continuous for all z ∈ R n [START_REF] Rosier | Homogeneous Lyapunov function for homogeneous continuous vector field[END_REF]. Now, consider the change of coordinates xi = γz i , i = 1, . . . , n, and the function V : R n → R ≥0 , given by V (x) = V 0 (γ -1 x). The derivative of V along ( 14) is such

that V = ∂V (x) ∂ x ẋ = ∂V 0 (z) ∂z 1 γ γ ż = -W (x) where W (x) = W 0 (γ -1 x).
Hence, the derivative of V along ( 15) is given by

V = -W (x) + ∂V (x) ∂ xn g(t) = -W 0 (z) + ∂V 0 (z) ∂z n 1 γ g(t) ≤ -W 0 (z) + ∂V 0 (z) ∂z n 1 γ ḡ .
Since W 0 and the function z → ∂V 0 (z) ∂zn are homogeneous of degrees m -1 and m -r n = m -2, respectively, Lemma 3 (see Appendix) ensures the existence of c 0 , c

1 ∈ R >0 such that V ≤ -c 0 V m-1 m 0 (z) + c 1 V m-2 m 0 (z) 1 γ ḡ . Since -c 0 V m-1 m 0 (z) + c 1 V m-2 m 0 (z) ḡ γ = -(1 -µ)c 0 V m-1 m 0 (z) + c 1 V m-2 m 0 (z) ḡ γ -µc 0 V m-1 m 0 (z) for any µ ∈ (0, 1), we have that, V ≤ -(1 -µ)c 0 V m-1 m 0 (z) if c 1 V m-2 m 0 (z) ḡ γ ≤ µc 0 V m-1 m 0 (z). This condition is equivalent to c 1 ḡ γµc 0 ≤ V 1 m 0 (z). Now, Lemma 3 (see Appendix) ensures the existence of c 2 ∈ R >0 such that V 1 m 0 (z) ≥ c 2 ∥z∥ r , but Lemma 4 (see Appendix) ensures that ∥z∥ r = ∥γ -1 x∥ r ≥ 1 α(γ) ∥x∥ r ,
where the function α ∈ K ∞ is given by [START_REF] Sepulchre | Constructive Nonlinear Control[END_REF]. Thus, V

1 m 0 (z) ≥ c 2 α(γ) ∥x∥ r .
Hence, a sufficient condition to guarantee the inequality c 1 ḡ

γµc 0 ≤ V 1 m 0 (z) is that c 1 ḡ γµc 0 ≤ c 2 α(γ) ∥x∥ r . Equivalently (since V 0 (γ -1 x) = V (x)), V ≤ -(1 -µ)c 0 V m-1 m (x) if ∥x∥ r ≥ c 1 ḡ µc 0 c 2 α(γ) γ = c 1 µc 0 c 2 ḡ α(γ) , ( 41 
)
where α is a function of class K ∞ given by [START_REF] Sontag | New Characterizations of Input-to-State Stability[END_REF]. According to [START_REF] Bernuau | Verification of ISS, iISS and IOSS properties applying weighted homogeneity[END_REF], (41) guarantees the existence of a function β 1 ∈ KL and a function β2

∈ K ∞ such that |x(t)| ≤ β 1 |x(0)|, t + β2 ḡ α(γ) , ∀t ∈ R ≥0 . Finally, we take β 2 (ḡ, γ) = β2 ḡ α(γ) .

Uncertain control coefficient

In this section we consider (1) with a time-varying uncertain control coefficient, i.e.

ẋi = x i+1 , ẋn = f (t, x) + b(t)u + δ(t) , b(t) ∈ R >0 . ( 42 
)
We assume that a model b : R ≥0 → R >0 for b is known. We also assume that |b(t)| ≥ b and | b(t)| ≥ b for all t ∈ R ≥0 for some constant b ∈ R >0 . The output-feedback controller ( 5) is now modified as follows

u = (1/ b) γu 0 (γ -1 x) -f (t, x) -δ , ( 43 
)
where the observed state x and the disturbance estimation δ are provided by [START_REF] Bhat | Continuous Finite-Time Stabilization of the Translational and Rotational Double Integrators[END_REF].

Remark 5. Note that in (43), two important cases are covered:

(i) the case of constant and uncertain coefficient b;

(ii) the case of disturbances coupled to the input, i.e. ẋn = f (t, x) + b(t) u + δ(t) , or equivalently, δ(t) = b(t) δ(t). ◁

Let us introduce the following auxiliary system

żi = z i+1 , i = 1, . . . , n -1 , żn = u 0 (z + w) -w n+1 + c u 0 (z + w) -w n+1 , ẇi = -k i ⌈w 1 ⌋ q i + w i+1 , i = 1, . . . , n -1 , (44) ẇn 
= -k n ⌈w 1 ⌋ qn + w n+1 -c u 0 (z + w) -w n+1 , ẇn+1 = -k n+1 ⌈w 1 ⌋ 0 -δ(t) ,
where c : R ≥0 → R is a continuous function, and w := [w 1 , . . . , w n ] ⊤ . Note that for c = 0, (44) equals the nominal closed-loop ( 19), [START_REF] Chen | Disturbance-Observer-Based Control and Related Methods -An Overview[END_REF]. The following lemma establishes a robustness property of ( 19), [START_REF] Chen | Disturbance-Observer-Based Control and Related Methods -An Overview[END_REF].

Lemma 2. If assumptions 2 and 3 hold, then there exists C0 ∈ R >0 such that the origin of (44) is asymptotically stable for all c satisfying |c(t)| ≤ C0 for all t ∈ R ≥0 . ◁

Proof. We use the same arguments given in the proof of Theorem 1 to assure that there exists a smooth Lyapunov function V 0 : R 2n+1 → R ≥0 for ( 19), [START_REF] Chen | Disturbance-Observer-Based Control and Related Methods -An Overview[END_REF] such that it is r-homogeneous of some degree m ∈ R >0 and its derivative along (44) satisfies V0 ≤ -W 0 (z, w), where W 0 : R 2n+1 → R ≥0 is r-homogeneous of degree m + κ, strictly positive for all [z ⊤ , w ⊤ ] ⊤ ∈ R 2n+1 \ {0} and continuous for all [z ⊤ , w ⊤ ] ⊤ ∈ R 2n+1 . Therefore, according to Lemma 5 (see Appendix), there exists C0 ∈ R >0 such that V 0 is a Lyapunov function for (44) for all c such that |c(t)| ≤ C0 .

Note that the method to prove Lemma 2 provides, in general, a conservative bound C0 to verify asymptotic stability of the origin of (44): the proof is based on Lemma 5 (see Appendix) whose proof uses a quite restrictive bound for the derivative of the Lyapunov function; moreover, in such a general setting, it is not possible to choose the Lyapunov function that provides the largest bound C0 .

The main result of this section is that (43) does not destroy the robustness property of the nominal closed-loop stated in Lemma 2. Nonetheless, (43) retains the same stability properties described in Theorem 1. To state this result, let us introduce an assumption and some notation. Observe that Assumption 4 can be intuitively understood as a requirement of how well the model b must approximate b in order to maintain the stability properties of the auxiliary system (44).

The closed-loop of (42) with ( 43) is given by ẋi

= x i+1 , i = 1, . . . , n -1 , ẋn = cγu 0 (γ -1 x) + f (t, x) -c f (t, x) + δ -c δ . (45) 
Note that the last equation of (45) can be rewritten as follows

ẋn = γu 0 (γ -1 x) -[ δ -δ/c] + f (t, x, x) + c γu 0 (γ -1 x) -[ δ -δ/c] -f (t, x) , (46) 
where f (t, x, x) := f (t, x) -f (t, x). Consider the observation errors defined in [START_REF] Cruz-Zavala | Levant's Arbitrary Order Exact Differentiator: A Lyapunov Approach[END_REF] with the following modification

e n+1 = δ -δ/c . (47) 
Thus, (45) can be rewritten as

ẋi = x i+1 , i = 1, . . . , n -1 , ẋn = γu 0 (γ -1 [x + ē]) -e n+1 + f (t, x, x + ē)+ c γu 0 (γ -1 [x + ē]) -e n+1 -f (t, x + ē) , (48) 
where ē := [e 1 , . . . , e n ] ⊤ , and the observation error dynamics is given by ėi

= -γ p i k i ⌈e 1 ⌋ q i + e i+1 , i = 1, . . . , n -1 , ėn = -γ pn k i ⌈e 1 ⌋ qn + e n+1 -f (t, x, x + ē)- c γu 0 (γ -1 [x + ē]) -e n+1 -f (t, x + ē) , (49) ėn+1 
= -γk n+1 ⌈e 1 ⌋ 0 -d dt (δ/c) .
Theorem 3. Consider (42) in closed-loop with the output-feedback controller (43), [START_REF] Bhat | Continuous Finite-Time Stabilization of the Translational and Rotational Double Integrators[END_REF]. Assume that d dt δ(t)/c(t) ≤ ∆ c for all t ∈ R ≥0 for a constant ∆ c ∈ R ≥0 . Under assumptions 1-4, for any a, ∆ c ∈ R ≥0 there exists γ ∈ R >0 such that the origin of (48)-( 49) is finite-time stable with a domain of attraction D such that {X ∈ R 2n+1 : ∥X∥ r ≤ a} ⊂ D.

Proof. The proof of this theorem is analogous to the proof of Theorem 1. It is only required to consider the proof of Lemma 2. Remark 6. Recall that, for the case of perfectly known control coefficient, the signal δ is allowed to be unbounded with bounded derivative (see item (iii) in Assumption 1). However, for the case of uncertain coefficient, the condition d dt δ(t)/c(t) ≤ ∆ c in Theorem 3, in general requires boundedness of the disturbance δ, but observe that this restriction still allows a wide class of disturbances δ, for example, constant and sinusoid signals. Nonetheless, a very interesting case is when the disturbance is coupled to the input (see Remark 5). For such a case the external disturbance is the signal δ, and δ(t) = b(t) δ(t). Hence, the condition

d dt δ(t)/c(t) ≤ ∆ c is rewritten as d dt δ(t)/c(t) = d dt b(t) δ(t) ≤ ∆ c
, which is equivalent to ask the product bδ being of the form b(t) δ(t) = a + t 0 α(τ ) dτ for some constant a ∈ R and some integrable function α : R → R satisfying |α(t)| ≤ ∆ c for all t ∈ R ≥0 [START_REF] Mercado-Uribe | Discontinuous integral action for arbitrary relative degree in sliding-mode control[END_REF]. Thus, for this case, the disturbance δ is allowed to be unbounded with bounded derivative, and the controller exactly compensates it despite the uncertainty in the control coefficient, this property is illustrated in Example 1. 

◁ k 1 k 2 k 3 x 1 (0) x 2 (0) x1 (0) x2 (0) δ(0) 3.

Examples

In this section we show some examples to illustrate the results provided in previous sections.

For the simulations we use the explicit Euler method with an integration step of 1ms.

Example 1. Consider the following second order system

ẋ1 = x 2 , ẋ2 = f (t, x) + b(t) u + δ , f (t, x) = 1.1(sin(x 1 ) + |x 2 |) , (50) 
The model for f considered in this example is f (t, x) = sin(x 1 ) + x 2 , and the external disturbance δ(t) = 1 + cos(t) + t/5. First, we consider the control coefficient b(t) = 1, hence, δ(t) = δ(t). For this case, controller (5), ( 6) is as follows

u = γu 0 (γ -1 x) -f (t, x) -δ , ẋ1 = -γ 1 3 k 1 ⌈x 1 -x 1 ⌋ 2 3 + x2 , ẋ2 = -γ 2 3 k 2 ⌈x 1 -x 1 ⌋ 1 3 + γu 0 (γ -1 x) , δ = -γk 3 ⌈x 1 -x 1 ⌋ 0 .
For this example we choose u 0 given by (3), namely, u 0 (x) = -2⌈⌈x 2 ⌋ 3 2 + x 1 ⌋ 1 3 . For the simulation we use the parameters shown in Table 1. First we set γ = 2. In Fig. 1 we observe that the states of the observer converge in finite-time to the states of plant. In Fig. 2 we can see that the extended state of the observer identifies exactly the disturbance δ. 5 . We use the same controller as above, with γ = 2.

In Fig. 5 we observe that the states of the observer converge in finite-time to the states of the plant, and they converge to zero also in finite-time despite the disturbance and the uncertainties. It is important to highlight the fact that the disturbance δ is unbounded, but it is still compensated by the controller even when the control coefficient is uncertain, as guaranteed by Theorem 3.

To finalise this example, we consider the presence of noise in the measured output. Thus, for (13) we use ν(t) = 1 20 sign(sin(120πt)). We use the same disturbance, and the same control uncertain control coefficient b(t) = 1 + 1 5 sin(5t). In Fig. 6 the states of plant are shown. Observe that the states remain bounded close to the origin, making evident the robustness properties of the closed-loop. Note that this example was very challenging since we are considering an unstable plant with uncertainty in the nonlinear terms of the model, uncertainty in the control coefficient, external disturbances, and the presence of noise in the measurement. ◁ Example 2. In this example we consider the disturbed double integrator With the output y contaminated with noise, i.e. y = x 1 + ν. The disturbance is chosen as δ(t) = 1 + cos(3t). Our proposed controller (nonlinear-homogeneous) is

ẋ1 = x 2 , ẋ2 = u + δ , (51) 
u = γu 0 (γ -1 x) -δ , (52) ẋ1 = -γ 1 3 k 1 ⌈x 1 -x 1 ⌋ 2 3 + x2 , ẋ2 = -γ 2 3 k 2 ⌈x 1 -x 1 ⌋ 1 3 + γu 0 (γ -1 x) , δ = -γk 3 ⌈x 1 -x 1 ⌋ 0 , with u 0 (x) = -⌈⌈x 2 ⌋ 3 2 + x 1 ⌋ 1 3
and γ = 4. The observer gains are in Table 1. We also apply the control scheme proposed in [START_REF] Freidovich | Performance Recovery of Feedback-Linearization-Based Designs[END_REF] which is based on an extended high-gain observer and is given by u = M sat(ū/M ), where sat is the standard saturation function and

ū = u 0 (x) -δ , ẋ1 = -γk 1 (x 1 -x 1 ) + x2 , ẋ2 = -γ 2 k 2 (x 1 -x 1 ) + u 0 (x) , δ = -γ 3 k 3 (x 1 -x 1 )
, with u 0 (x) = -x 1 -x 2 and M = 10. To achieve a steady-state observation error (for ν = 0) such that |δ(t) -δ(t)| ≤ 0.5, we use the gain γ = 60. For the simulation we use the parameters shown in Table 1. Fig. 7 shows the states of (51) with the nonlinear and the linear controllers, respectively, for ν = 0. The clear advantage of the nonlinear scheme is that the states are driven to zero in finite-time. The control signals are shown in Fig. 8. There, we can see that the nonlinear homogeneous controller has less amplitude than the high-gain output-feedback, which reaches its saturation level. Now we simulate the two different closed-loops by using a noise signal ν = (1+sin(ωt))/10 with ω = 5. In this case the steady-state performance of the linear scheme seems to be better than the nonlinear one as it can be appreciated in Fig. 9 and Fig. 10. However, with ω = 50, although the amplitude of the steady-state errors are comparable with both controllers, see Fig. 11, the transient behaviour with the linear scheme is clearly deteriorated. Nonetheless, a major issue with the linear scheme is the control signal that exhibits a highfrequency oscillation between the saturation values of the controller, see Fig. 12.

It is important to mention that this is a simple comparison example and no general conclusion can be established from it, thus, a deeper study of comparison between these two control techniques is required. 

Conclusions

Through the DOBC strategy, we have proposed an output-feedback controller for a class of uncertain nonlinear systems. Such a controller provides an exact compensation of the disturbance in finite-time despite the uncertainty in the model. The scheme is a simple but fruitful application of: 1) ISS robustness properties of homogeneous controllers and; 2) finitetime and exactness of the sliding mode differentiator. The control scheme allows to recover in finite-time the nominal controlled system. From this point of view, many of the performance features of the nominal state feedback controller are unaffected by the output-feedback. The scheme allows us to design the gains of the controller and the observer independently, and only one parameter is used to adjust the closed-loop. Since the attraction domain of the closed-loop is not the whole state space, a direction of future work is to try to improve the scheme to obtain a global controller. Lemma 3 (See, e.g. [START_REF] Hong | On an Output Feedback Finite-Time Stabilisation Problem[END_REF]). Let v 1 and v 2 be real functions, continuous in R n and r-homogeneous of degree m 1 , m 2 , respectively, and v 1 be positive definite. Then, for any x ∈ R n , The proof for the lower bound is analogous. Lemma 5. Consider the r-homogeneous system ẋ = f (x) of degree κ ∈ R whose origin is asymptotically stable. If g : R n → R n is an r-homogeneous vector field of degree κ ∈ R, then there exists C ∈ R >0 such that the origin of the system ẋ = f (x) + c(t)g(x) is asymptotically stable for any continuous function c : R ≥0 → R such that |c(t)| ≤ C for all t ∈ R ≥0 . Moreover, if V : R n → R ≥0 is an r-homogeneous Lyapunov function (of some degree m ∈ R >0 ) for ẋ = f (x), then V is also a Lyapunov function for ẋ = f (x) + c(t)g(x), and there exists an r-homogeneous function W : R n → R ≥0 of degree m w := m + κ, which is continuous and positive definite, such that ∂V (x) ∂x f (x) + c(t)g(x) ≤ -W (x). ◁

c 1 v m 2 m 1 1 (x) ≤ v 2 (x) ≤ c 2 v
Proof. The derivative of V along the solutions of ẋ = f (x) is such that V ≤ -W 0 (x) for some continuous and positive definite function W 0 which is r-homogeneous of degree m w [START_REF] Bernuau | On homogeneity and its application in sliding mode control[END_REF]. Now, the derivative of V along the solutions of ẋ = f (x) + c(t)g(x) is such that V ≤ -W 0 (x) + c(t) ∂V (x) ∂x g(x) ,

hence, V ≤ -W 0 (x) + |c(t)| W (x) , W (x) := ∂V (x) ∂x g(x) .

(54)

Assumption 1 .

 1 Consider (1), and define the set D = {x ∈ R n : |x| ≤ d} for some d ∈ R >0 .

.

  

  The proof is completed by taking θ 1 (a, γ) = mc 4 a α(γ) , and θ 2 (a, γ) = c 1 c 3 β c 4 a α(γ) .

Assumption 4 .

 4 Consider (42) and (43) and define c(t) := b(t)/ b(t). Functions b and b are such that c(t) := c(t) -1, satisfies |c(t)| ≤ C0 for all t ∈ R ≥0 , with C0 as given in the proof of Lemma 2. ◁
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 1 Figure 1: Original and observed states of (50) with γ = 2.
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 23 Figure 2: Extended state of the observer with γ = 2.
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 45 Figure 4: Extended state of the observer with γ = 4.
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 6 Figure 6: Transient and steady-state phases of (50) with noise in the output.
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 7 Figure 7: States of (51) with the nonlinear-homogeneous and the high-gain output-feedback controllers (ν = 0).
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 8 Figure 8: Control signals of the nonlinear-homogeneous and the high-gain output-feedback controllers (ν = 0).
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 9 Figure 9: States of the system with the nonlinear-homogeneous and the high-gain outputfeedback controllers in presence of noise (ω = 5).

Figure 10 :

 10 Figure 10: Control signals of the nonlinear-homogeneous and the high-gain output-feedback controllers in presence of noise (ω = 5).

Figure 11 :

 11 Figure 11: States of the system with the nonlinear-homogeneous and the high-gain outputfeedback controllers in presence of noise (ω = 50).

Figure 12 :

 12 Figure 12: Control signals of the nonlinear-homogeneous and the high-gain output-feedback controllers in presence of noise (ω = 50).

m 2 m 1 1Lemma 4 . 1 α 1 min i r i ∥s∥ r , 1 /a ≥ 1

 141111 (x) ,where c 1 = min x∈E v 2 (x), c 2 = max x∈E v 2 (x), and E = {x ∈ R n : v 1 (x) = 1}. ◁ For s ∈ R m , and a ∈ R >0 , (a) ∥s∥ r ≤ ∥ 1 a s∥ r ≤ 1 α(a) ∥s∥ r ,where α, α are functions of class K ∞ given byα(a) = a 1 min i r i , a ≤ 1, a 1 max i r i , a > 1, α(a) = a 1 max i r i , a ≤ 1, a 1 min i r i , a > 1.◁Proof. The proof is straightforward from the definition of homogeneous norm, namely, i ∥s∥ r , a ≤ 1,(1/a) 1 max i r i ∥s∥ r , a > 1.

Table 1 :

 1 Observer gains and initial conditions.
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A function V : R n → R is called Hölder continuous with exponent α ∈ (0, 1], if for every compact set I ⊂ R n there exists L I ∈ R >0 such that |V (x) -V (y)| ≤ L I |x -y| α for all x, y ∈ I, see e.g.[14, p. 52].
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A Homogeneity

We recall briefly the definitions of Weighted Homogeneity, see e.g. [START_REF] Bacciotti | Liapunov Functions and Stability in Control Theory[END_REF]. Definition 1. Let Λ r ϵ = diag(ϵ r 1 , . . . , ϵ rn ) be a square diagonal matrix where r = [r 1 , . . . , r n ] ⊤ , r i ∈ R >0 , and ϵ ∈ R >0 . The components of r are called the weights of the coordinates. A function

A differential inclusion is r-homogeneous of degree κ if its vectorset field F is r-homogeneous of degree κ. ◁ Definition 3 (See e.g. [START_REF] Bacciotti | Liapunov Functions and Stability in Control Theory[END_REF]). Given a vector of weights r, a r-homogeneous norm is defined as a function from R n to R, and given by ∥x∥ r,p =

p , ∀x ∈ R n , for any p ≥ 1. ◁ Note that any r-homogeneous norm is a r-homogeneous function of degree m = 1. Since, for a given r, the r-homogeneous norms are equivalent [START_REF] Kawski | Stability and nilpotent approximations[END_REF], they are usually denoted as ∥ • ∥ r , without the specification of p.

Note that W is positive semidefinte and r-homogeneous of degree m w . From Lemma 3 there exist ϵ

for all ϵ 2 ∈ (0, ϵ 0 ) such that |c(t)| ≤ ϵ 0 -ϵ 2 ϵ 1 . The result follows by taking C = ϵ 0 -ϵ 2 ϵ 1 . Consider the system ẋ = f (x, d), x(t) ∈ R n , d(t) ∈ R m , where f is locally Hölder continuous. Let X(t; x(0), d) denote the solution of the system for the initial condition x(0) and for all t ∈ R ≥0 .

Definition 4 ([33, 1]). The system is called input-to-state stable (ISS), if for any Lebesguemeasurable and essentially bounded input d and any x(0) ∈ R n there exist functions β ∈ KL and γ ∈ K such that, for all t ∈ R ≥0 , |X(t; x(0), d)| ≤ β(|x(0)|, t) + γ ess sup τ ∈[0,t] |d(τ )| . ◁