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Abstract

A novel method based on waveguide modal analysis is presented to evaluate
the effectiveness in terms of frequency bandgaps of bounded periodic meta-
materials. The effect of the size of the bounded medium, i.e., the number of
periodic unit cells, on the frequency bandgaps predicted by Floquet-Bloch
theory in the infinite case is investigated and quantified. The waveguides
considered in this work have a bounded cross-section and an infinite longi-
tudinal axis simulated by Perfectly Matched Layers. Its useful area is made
of a bounded 1D or 2D-periodic matrix-inclusion metamaterial. In the 2D-
periodic case, an approach combining the waveguide modal analysis with
the Floquet-Bloch transform is further proposed. Applying the proposed
method, the SH-waves propagating in a waveguide are studied by using the
finite element method. The discrete spectrum of the waveguide and the
associated attenuated or trapped wave modes are calculated and analyzed,
which provides, within a semi-analytic framework, an exact characterization
regarding the attenuation coefficient and the frequency bandgaps of the stud-
ied bounded periodic medium. More particularly, effectiveness indicators are
defined to compare the width and the position of frequency bandgaps be-
tween the bounded and infinite cases as a function of the cell number. Last
but not least, the proposed method is also successfully applied to bounded
periodic media with local resonators to characterize their filtering and atten-
uation effectiveness, which shows its interest in such a case of great practical
interest.
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1. Introduction1

In order to reduce the induced damage from waves generated principally2

by ambient vibrations or earthquakes in structures (e.g., the ones designed3

before the implementation of seismic standards), a promising strategy is to4

reduce the amplitude of seismic waves by locally treating the subsoil to mod-5

ify its mechanical characteristics [1–13, among others]. Avilés and Sánchez-6

Sesma [14] show that it is possible to modify and reduce the seismic energy7

distribution for appropriately selected frequency ranges to limit the damage8

to the structure. In practice, the principal solution is the installation of mul-9

tiple rows of barriers between a vibration source and the area of protection.10

Among the various types of barriers, trenches, solid or hollow piles are often11

used. These kind of solutions is commonly called seismic metamaterials.12

Previous numerical and experimental works have been conducted in order13

to estimate the amplitude reduction or the shielding effectiveness as a func-14

tion of both the mechanical and geometric characteristics of the inclusion15

(e.g., diameter, shape, solid or hollow, material properties’ contrast between16

inclusion and soil matrix), the number of rows, the distance between two rows17

compared to the wavelength of the incomings waves [1, 6, 15–20, among oth-18

ers]. However, to measure the effectiveness of such a protection system, it is19

necessary to study the wave diffraction phenomena within a bounded domain20

made of periodic material [21].21

In practice, the dispersive characteristics of a periodic medium with re-22

spect to the propagation of elastic waves are usually studied within the frame-23

work of an infinite domain using the Floquet-Bloch (F-B) theory [17, 18, 22–24

26, among others]. The F-B transform makes it possible to reduce the anal-25

ysis of the behavior of an infinite periodic media to the modal analysis of a26

single elementary unit cell. In the published studies, the key point concerns27

the assessment of both the geometrical and mechanical parameters of the pe-28

riodic rows of pile/trench barriers on the apparition of filtering/attenuation29

frequency ranges (also named bandgaps). Therefore, due to the fact that30

actually, the number of periodic matrix-inclusion cells is limited to a finite31

number, the identified beneficial properties of the assumption of an infinite32

domain, such as the existence of frequency bandgaps and their characteris-33
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tics (e.g., width and center frequency), must be double-checked against the34

dimension of the bounded periodic domain [26–28].35

Several numerical parametric studies have been conducted in order to as-36

sess the differences between these two hypotheses [20, 29–31]. Previous works37

on soil media subjected to surface waves principally evaluate the effective-38

ness of a periodic medium as a function of the number of elementary cells or39

rows that compose the barriers by comparing the values of the attenuation40

in the frequency bandgaps [18, 25, 32, 33, among others]. They have been41

mostly focused on the direct use of the finite element method (FEM) or the42

boundary element method (BEM) to understand the isolation mechanism of43

wave barriers. Most of them can be qualified as measurement-based, i.e.,44

with a chosen recording zone separated by wave barriers from the sources,45

they define an amplitude reduction factor in terms of the ratio between sur-46

face displacement or acceleration amplitude with and without wave barriers.47

However, an issue with this factor is that it does not provide an exact char-48

acterization of wave barriers; for instance, it depends on the chosen studied49

zone and is generally not uniform, so an averaged amplitude reduction factor50

must be defined. Another issue concerns the meshing complexity associated51

with elastic properties discontinuities due to the barrier inclusions and the52

large size of the numerical model imposed by the number of propagated wave-53

lengths, which drastically increases the computation time. As an example,54

Jenson studied in [34] the vibrational response of finite 1-D and 2-D mass-55

spring periodic lattice structures subjected to periodic loadings. One of his56

results is to show the convergence of the response in the bandgap frequency57

range as a function of the unit cell number by considering the frequency58

response functions (FRF) of the structure recorded at the end of the finite59

periodic barrier. He studied, in the 1D case, a periodic structure composed60

of up to 10 unit cells and, in the 2D case, up to 7x7 unit cells. In the 2D61

case, only the case of loadings concentrated at a point is considered and the62

finite periodic structure is characterized by the FRF response at only one63

point located on the other side. Furthermore, the mass-spring framework of64

Jenson’s study cannot be easily extended to periodic structures exhibiting65

complex microstructural geometry.66

Thus, in order to assess for a bounded periodic metamaterial the ef-67

fectiveness of the analytically predicted frequency bandgaps using the F-B68

theory, a novel method based on the waveguide modal analysis is proposed69

in this work. The waveguides considered in this work have a bounded cross-70

section and an infinite longitudinal axis which is simulated with Perfectly71
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Matched Layers (PMLs) [35, 36, among others]. The waveguide modal anal-72

ysis method was initially developed and used to highlight modes trapped by73

irregularities [37–40] or to find defects in the propagation media [41, 42]. In74

this paper, this approach is extended and adapted to characterize a heteroge-75

neous bounded periodic medium, e.g., its discrete spectrum, and attenuated76

or trapped modes. Hence, in contrast to the measurement-based direct nu-77

merical modeling, the proposed approach provides exact characterization,78

within a semi-analytic framework, in terms of attenuation coefficient and79

bandgaps for the studied problem.80

Applying the proposed method, parametric studies can be carried out so81

as to quantitatively assess both the filtering and attenuation effectiveness of82

bounded periodic systems, which should converge to the modal solution of83

the F-B analysis when the system becomes infinite. Indeed, wave modes in84

a bounded periodic medium are calculated and characterized, and the effect85

of the latter’s size (i.e., the number of cells) on their attenuation or filtering86

is quantified regarding both the position and width of bandgaps compared87

with those of the corresponding infinite domain predicted by the F-B theory.88

Otherwise, in many practical applications, it is also important to limit the89

size of periodic cells (especially in the case of urban installations). However,90

Bragg scattering bandgaps have their frequency ranges directly linked to the91

size of periodic cells. Thus, to obtain bandgaps at frequencies much lower92

than those expected by the Bragg diffraction phenomenon, local resonance93

bandgaps were introduced [43], which have since aroused great interest, for94

instance, in the field of civil engineering for the design of metabarriers. The95

proposed waveguide-base modal analysis approach is also applied to bounded96

periodic media with local resonators to characterize their filtering and atten-97

uation effectiveness.98

The outline of the paper is as follows. In Section 2, after the definition of99

the model problem considered in this study and a brief introduction of the100

Floquet-Bloch theory, the modal analysis of waveguides is presented, and its101

extension to a bounded periodic domain is proposed. In Section 3, using the102

proposed waveguide-based approach, the numerical investigation of bounded103

1D-periodic media, i.e., periodic media with a periodicity in one direction,104

is conducted and compared to the infinite case. In Section 4, to study a 2D-105

periodic medium, i.e., a periodic medium with a periodicity in two directions,106

a new strategy to combine the F-B theory and the waveguide method is107

presented. Then again, parametric studies are carried out to characterize108

the studied bounded 2D-periodic medium. Finally, Section 5 applies the109
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proposed method to a bounded 1D-periodic matrix-inclusion medium with110

local resonators and shows its interest in this case of great practical utility.111

2. Model wave propagation problem and modal analysis of waveg-112

uides applied to bounded periodic media113

The model problem considered herein is the propagation of SH waves in114

an elastic medium Ω, which is governed by the following equation in the115

frequency domain:116

∇x ·
(
µ(x)∇xu(x)

)
= −ρω2u(x). (1)

where x = x1e1 + x2e2, u(x) ≡ uz(x) is the out-of-plane displacement re-117

duced to a scalar component, and µ(x) and ρ(x) are respectively the shear118

modulus and the density.119

In this study, it is assumed that the model problem Eq.(1) is defined in a120

2D periodic medium, infinite or bounded. More particularly, a medium with121

periodically located circular inclusions is considered without loss of generality122

(Figure 1).

(a)

(b) (c)

Figure 1: (a) A 2D-periodic medium with unit cells consisting of a matrix and a circular
inclusion; (b) Unit cell Q0 in physical space; (c) Corresponding reciprocal cell, the first
Brillouin zone Q0 in reciprocal space, on which the contour of the Brillouin irreducible
zone, Γ → X → M → Γ, is represented.

123

In the case of an infinite periodic medium, the analysis of its dispersion124

properties is usually performed using the F-B transform, which makes it125

possible to reduce the analysis of the behavior of an infinite periodic media to126

the modal analysis of a single unit cell, denoted Q0 hereafter (Figure 1(b) for127
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an example of Q0 composed of a matrix and an inclusion for the 2D studied128

case in the present work). Indeed, the F-B transform of a non periodic129

function u(x) defined on Ω reads as:130

UB(x,k) =
∑

{mj}∈Zd

u(x+
∑
j=1,d

mjgj)e
ik.(x+

∑
j=1,d mjgj) (2)

with {gj}j=1,d the basis of periodicity vectors of Ω, in the present work d = 1131

or 2. In Eq.(2), k ∈ Q0, is the Bloch wave vector that evolves in the reciprocal132

space limited to Q0 the Brillouin irreducible zone (Figure 1(c) for an example133

of Q0 for the 2D studied case in the present work).134

Applying the Floquet-Bloch transform Eq.(2) to Eq.(1) gives rise to the135

following eigenvalue problem:136

(∇x + ik) ·
(
µ(x)(∇x + ik)UB(x,k)

)
= −ρ(x)ω2UB(x,k) (3)

then, dispersion surfaces ω(k) can be obtained by solving this eigenvalue137

problem for the wave vector k ∈ Q0. Furthermore, if Eq.(3) is solved only138

for the wave vector k belonging to the contour of the irreducible Brillouin139

zone, dispersion curves are obtained instead [44].140

For the eigenvalue problem Eq.(3) defined on the unit cell Q0, it is gen-141

erally necessary to use numerical methods to calculate its solutions. Then,142

the dispersion curves of the medium under consideration can be plotted. In143

the present work, for a given value of k, the computed eigenvalue is ω2(k),144

solved using the commercial finite element code, Comsol-Multiphysics. The145

dispersion curves obtained from infinite periodic media will serve as reference146

results, useful for comparison studies with bounded periodic media.147

A real protection system exploiting a periodic medium is generally not148

infinite, and the modal characterization of such a bounded system cannot149

be done with the F-B transform approach. To characterize such a bounded150

system, surrounded by an infinite domain like the soil, a temporal analysis151

could be done. However, depending on the size of the bounded periodic152

medium to be considered and the number of cells, the numerical simulation153

becomes very expensive due to the fact that the element size must be refined154

with respect to the characteristic length of heterogeneities.155

Now, a method based on the waveguide modal analysis [37, 39, 40] is156

proposed. It provides a semi-analytic solution for the bounded system sur-157

rounded by an infinite domain. It allows a quantitative assessment of the158

filtering and attenuation effectiveness of bounded periodic systems, which159
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should converge to the modal solution of the F-B analysis when the system160

becomes infinite.161

The waveguides considered in this work are a system that allows waves to162

be guided and has a bounded cross-section and an infinite longitudinal axis.163

One of the methods to study this family of waveguides is the simulation of164

infinite media using Perfectly Matched Layers (PMLs) [35, 36, among others].165

The main idea is based on the fact that the modes obtained by modal analysis166

of a waveguide could describe both the behavior of the infinite medium and167

the defects included in a localized zone. Thanks to the use of the PMLs, it is168

possible to separate the modes corresponding to the behavior of the medium169

at infinity from those localized because trapped and/or attenuated due to170

the presence of local defects.171

Therefore, the first goal of this section is to distinguish the modes corre-172

sponding to the behavior of the infinite medium and those trapped and/or173

attenuated by a bounded periodic medium containing a finite number of cells.174

2.1. Elements of the spectral theory for waveguides including a specific zone175

of interest176

In this part, some basic elements of the spectral theory for partial differ-177

ential operators are provided. Let us consider the eigenvalue problem of a178

waveguide with a specific zone of interest governed by an equation of type:179

A(u) = λu (4)

where A is a self-adjoint linear operator. The specific zone is the one that180

contains irregularities and breaks the homogeneity of the waveguide. For the181

studied case defined by Eq.(1), we have λ = ω2 and A(u) = −1
ρ
∇x ·

(
µ(x)∇xu(x)

)
.182

The modal analysis of a waveguide allows the calculation of the spectrum183

of the operator A, denoted σ(A), which is the complement of the set of184

complexes ρ(A), the resolvent set of A, defined as:185

ρ(A) = {Λ ∈ C,A− ΛI is invertible}. (5)

For a bounded system, σ(A) is in fact the set of eigenvalues defined as:186

σ(A) = {λ ∈ C,Au = λu et u ̸= 0} (6)

However, for an open system like the waveguide, it is considered that A is187

an unbounded operator. Therefore, it is not always possible to have equality188
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for the eigenvalue system, but only a limit. This is the case of the essential189

spectrum of A, denoted σess(A) and defined below.190

Indeed, the spectrum σ(A) can be decomposed into two sets: σdisc(A) the191

discrete spectrum (i.e., the set consisting of all the isolated eigenvalues of the192

spectrum) and σess(A) the essential spectrum (i.e., the complement of σdisc193

in the spectrum):194

σess(A) = {λ ∈ C,A− λI is not a Fredholm operator of index 0} (7)

Then, the behavior of the waveguide is studied by separating σdisc(A)195

from σess(A). To accomplish this, the idea is to use the PMLs to represent196

the infinite waveguide. It consists of performing a change of geometric vari-197

ables to complex that directs the essential spectrum in the complex plane198

and reveals the discrete eigenvalues distributed on or around the real axis.199

Hence, the modal analysis of waveguides allows the differentiation between200

the discrete spectrum of the modes in the bounded domain, which is inter-201

esting for the study, and the essential spectrum of the modes in the PMLs,202

which represent the infinite medium (i.e., the geometrical configuration of203

the waveguide).204

The modes describing the solution of the wave propagation inside the205

PMLs are not considered in the following. The domain of interest being in206

the bounded domain, only the discrete spectrum modes are considered in the207

sequel.208

In this work, so as to perform the modal analysis of the studied waveg-209

uide, contrary to the usual definition of PMLs [35, 45], the properties in the210

subdomains represented by the PMLs are independent of the wave frequency211

[46]. This modification eliminates the frequency dependence of the mass and212

stiffness matrices, making modal analysis possible.213

2.2. Configuration of the bounded periodic matrix/inclusion medium with a214

waveguide approach215

As recalled before, in this work the approach is applied to quantitatively216

characterize a bounded periodic matrix/inclusion medium. The aim is to217

quantify the effect of the finiteness of the periodic medium on its filtering218

properties and to overcome the limitation of the F-B theory that is only219

capable of dealing with an infinite number of cells.220

For this purpose, a 1D waveguide model of a total length Ltot and with a221

finite number ncells of matrix/inclusion unit cells is defined (Figure 2). The222
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central part of the waveguide is the domain of interest of length Lu, also223

called the useful area, which is delimited on both sides by two PMLs of224

length LPML. The useful area is made up of ncells cells in its center and a225

marginal zone of length Lm on each side:226

Ltot = Lu + 2LPML , Lu = ncellsc+ 2Lm (8)

The role of the marginal zones between the edge of the bounded periodic227

medium and the PMLs is to limit the effects of the periodic medium on228

the PMLs. The different parameters, Ltot, Lu, Lm, and LPML, need to be229

adjusted and are presented below.230

Figure 2: 1D waveguide model composed of: 1) a useful area of length Lu, which contains,
at the center, ncells matrix-inclusion unit cells of size c consisting of a matrix (light grey)
and a circular inclusion (purple), and at each end, a marginal zone of length Lm; 2) two
PMLs (dark gray) of length LPML, with free boundary conditions (on red edges) and
clamped boundary conditions (on blue edges).

As stated above, the PMLs are used, and they are defined through the231

following change of variables to complex [39]:232

χθ(x1) =


−Lu

2
+ (x1 +

Lu

2
)eη

left
if x1 ≤ −Lu

2

x1 si |x1| <
Lu

2

+
Lu

2
+ (x1 −

Lu

2
)eη

right
si x1 ≥

Lu

2

(9)

where ηleft/right = ±iθ allows to choose the rotation of the essential spectrum233

in the complex plane. In the following, the two PMLs are said to be con-234

jugated if they are defined such that ηleft = ηright, while in the case where235

ηleft = ηright, they are said to be classical. In an arbitrary way having no236

impact on the results, we choose ηleft = −iθ. In what follows, the results237

are mainly obtained with conjugated PMLs, unless it is explicitly stated that238

classical PMLs are used.239

As previously mentioned, contrary to the usual properties of PMLs, the240

damping of the absorbing layer does not depend on the frequency (i.e., θ is241
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independent of the frequency). The change of variables in Eq.(9) modifies the242

differential operator of the problem Eq.(1) only in the PMLs. The resolution243

of the eigenvalue problem associated with the modified operator then consists244

of two parts, one giving the modal solutions of the finite problem, (i.e., in245

the area where the bounded periodic medium is located), and the other246

concerning the modal response of the PMLs.247

2.3. Spectrum and characteristic modes in a homogeneous waveguide248

In the following, for the numerical simulations, the geometry parameters249

and the material properties of the studied periodic media are given in Ta-250

ble I. They are chosen to be more in agreement with the Civil Engineering251

applications. For instance, inclusions are more rigid than the matrix, and c252

the unit cell’s size is equal to 1 m, which corresponds to what is feasible in253

practice.

c (m) R (m) µm (GPa) µi (GPa) ρm (kg/m3) ρi (kg/m
3)

1 0.346 0.233 30 1750 2400

Table I: Summary of the data used for the simulation of the 2D-periodic medium, where
subscripts “m” and “i” represent the soil matrix and the inclusions, respectively.

254

The Figure 3 represents the case of a uniform waveguide (i.e., a waveguide255

without any matrix-inclusion cells). The homogeneous material behavior is256

defined by the shear modulus µm and mass density ρm while the elastic257

inclusion by corresponding quantities µi and ρi (Table I). The dimensions258

chosen for this homogeneous waveguide are Ltot = 40 m, Lu = 20 m, and259

LPML = Lu/2 = 10 m. In the following, we choose to always have LPML =260

Lu/2. The solution of this homogeneous case serves as a reference to see the261

evolution of the behavior of the waveguide when a bounded periodic medium262

is added and to account for new phenomena.263

In summary, two types of modes are observed in the homogeneous waveg-264

uide. The first type groups the modes associated with complex eigenvalues265

belonging to σess(A) the essential spectrum of the operator A (displayed in266

black in the Figure 3), which is directed in the complex plane because of267

the definition of the PMLs. These modes evolve in the PMLs, and an exam-268

ple of them is given in the Figure 4(a). The change of variable to complex269

performed in PMLs modifies the geometry to model an infinite domain by a270

finite model. The parameter θ in Eq.(9) is, in fact, the angle made in the271
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complex plane by the first branch of the essential spectrum with the real axis272

(which corresponds to the spectrum in an infinite homogeneous domain).273

The second type groups are the modes associated with real eigenvalues274

(displayed in cyan in the Figure 3), and an example of them is shown in the275

Figure 4(b). These modes are propagative within the useful area without276

attenuation or reflection. They are evanescent in the PMLs because of their277

complex part. Indeed, without heterogeneity, waves propagate in the waveg-278

uide without attenuation or reflection, which results in real eigenvalues. For279

numerical simulation, an eigenvalue ω is considered a real number when its280

imaginary part is between −0.01 and 0.01.

0 500 1000 1500 2000 2500 3000 3500 4000 4500

-3000

-2000

-1000

0

1000

2000

3000

Figure 3: Spectrum of the homogeneous waveguide in the complex plane: σdisc with real
eigenvalues (cyan) and σess (black).

(a) (b)

Figure 4: Two types of modes in a homogeneous waveguide modeled using PMLs. (a)
Propagative mode contained in PMLs; (b) Propagative mode in the useful area without
reflection or attenuation.

281
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2.4. Parameters setup of waveguide models used for the characterization of282

bounded periodic media283

First, it is useful to get the dispersion curves for an infinite periodic284

medium in this 1D case using the F-B approach. The geometry parameters285

and the material properties of the unit cell defined in Table I are used. As286

the periodicity is only in the e1 direction and free edge conditions are applied287

on the horizontal boundaries, the Brillouin irreducible zone is reduced to a288

segment: −X → Γ → X (Figure 5(left)). The dispersion curves are obtained289

from the numerical solution of the eigenvalue problem (3), for k = ke1 with k290

evolving between −π
c
and −π

c
. Figure 5(right) thus presents the eigenvalues291

ω(k) calculated numerically on the unit cell. For each value of the Bloch292

wave vector k, the first six modes are calculated. It is noted the existence of293

frequency bands (in purple), for which there is no corresponding real wave294

vector k. These are frequency bandgaps of the periodic medium. The first295

one appears around 300 Hz in particular.296

Figure 5: Unit cell Q0 and associated Brillouin zone Q0 = −X → Γ → X (left) used to
obtain the dispersion curves (right). The periodicity conditions are drawn in blue, and
the edges in red are free edges.

Now, bounded periodic domains are considered, and it is expected that297

the presence of a finite number of periodically placed matrix-inclusion cells298

in the useful area (Lu) of the waveguide modifies the spectrum. Thus, to299

properly compare such a waveguide with the reference homogeneous waveg-300

uide, the parameters introduced previously must be chosen in an appropriate301

way. A key point here is to assess the effect of the marginal zone (Lm) on302

the obtained spectrum and characteristic modes of the waveguide.303

To study the influence of Lu, (i.e., the size of the useful area) on the304

evolution of the valid frequency domain, an example is first studied with305

a single unit cell to observe the spectrum and characteristic modes of the306

12



waveguide. For this example, the parameters are Lu = c, and Lm = 0m307

(Figure 6(a)). The parameters used for the geometry and properties are308

those of Table I. The eigenvalue solutions (ω) of the problem (Eq.(1)) for309

the waveguide are shown in the complex plane in the Figure 6, with the310

dispersion curves of the infinite periodic medium (cf. Figure 5) shown in red311

for comparison.312

0 1000 2000 3000 4000

-4000

-3000

-2000

-1000

0

1000

2000

3000

4000

-X

X

Figure 6: Study of a 1D waveguide model with Lu = c = 1 m and Lm = 0 m. (left) Model
definition; (right) Eigenvalue solutions showing lack of information on the low-frequency
propagative modes, and compared with the behaviour of the infinite periodic medium
solved with F-B approach (presented in red).

According to the obtained results, a first problem appears: due to the313

very short length of the model, (i.e., Lu is very small), the modal analysis of314

the waveguide does not give enough information in the low-frequency domain.315

Thus, the density of available modes in [0, 4500] rad/s the frequency range316

of interest is low compared to the homogeneous solution (Figure 3). Indeed,317

the longest wavelength taken into account by the waveguide model is of the318

same order of magnitude as Lu, which, in the current case, corresponds to319

the frequency of about 4000 rad/s. So the frequencies taken into account by320

this model are higher than the first two bandgaps considered here.321

It is, therefore, necessary to increase Ltot = 2 ·Lu the total length of the322

waveguide to reach the low-frequency range. For that, one of the solutions is323

to increase the length of the margins Lm between the PMLs and the bounded324

periodic medium so that Lu is close to the longest wavelength of interest. In325

the case of the waveguide with a single cell, this choice results in a value of326

Lm almost equal to the longest wavelength considered.327

However, when the number of cells increases (ncells), if it is chosen to328

keep Lm unchanged, the waveguide becomes longer and longer. This choice329

leads to obtaining many modes, which are not interesting because they evolve330

outside the bounded periodic medium and pollute the interpretation of the331
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results. It is, therefore, necessary to decrease Lm so that the size of the332

waveguide does not increase with the number of cells.333

Other ways around this problem are out of scope for this paper but in334

summary, for the setup of the numerical waveguide model, the final solution335

adopted is to keep the length Ltot = 2 ·Lu constant, large enough to analyze336

up to a large number of cells, while to adapt the length Lm according to the337

number of cells. Another advantage of such a setup is that the frequency338

domain in which all waveguides evolve (with different numbers of inclusions)339

is identical, so the comparison is easier. Thus in the following, it is proposed340

to use a waveguide of the same length, the one already defined for the study of341

the homogeneous waveguide in the previous section, whatever the considered342

number of cells.343

Then the case of a single cell is studied again with this setup, and the344

obtained spectrum is represented in the Figure 7. As expected, the same345

essential spectrum, now represented by magenta dots, is obtained (Figure 3).346

Indeed, the existence of a single cell far away from the PMLs does not signif-347

icantly disturb the essential spectrum. As the essential spectrum represents348

the behavior of the waves in the PMLs (i.e., at infinity), they are not taken349

into account in the following analysis of the attenuated frequency bands. It350

is rather the analysis of the other modes, associated with the discrete spec-351

trum and concentrated around the real axis, will highlight the attenuation352

and the convergence to the bandgaps predicted by the F-B theory for the353

infinite periodic network.
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Figure 7: Spectrum (left) and its zoom around the real axis (right) of the studied waveguide
with a single unit cell, compared with the dispersion curves (in red) of the corresponding
infinite periodic medium obtained by F-B analysis.

354

Within the discrete spectrum, the modes associated with a complex eigen-355

value with a nonzero imaginary part, displayed in blue or black in the Fig-356

ure 7, are attenuated and show two types of behavior, illustrated in the357
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(a) (b)

Figure 8: Two types of modes in the discrete spectrum of a waveguide with a single
inclusion. (a) Mode attenuated by the presence of an inclusion; (b) Mode reflected by the
presence of the inclusion.

Figure 8. The discrimination between these two types of modes is set to a358

value of the imaginary part equal to 20 rad/s. This value corresponds to359

95% attenuation of signal over a distance of 4c. The Figure 8(a) presents360

a mode attenuated by the presence of the matrix-inclusion that still propa-361

gates in the medium (displayed in blue in the Figure 7). The eigenfrequency362

of this mode is ω = 1338 + 5.45i rad/s. The Figure 8(b) shows a mode not363

transmitted after the inclusion, as its eigenvalue has a rather large imaginary364

part (displayed in black in the Figure 7) The eigenfrequency corresponding365

to this mode is ω = 1497 + 10.5i rad/s. Such a mode can be considered as a366

mode reflected by the matrix-inclusion cell.367

A comparison between the discrete spectrum and the dispersion curves of368

the infinite periodic medium shows that the study of a bounded medium with369

only one cell does not agree at all with the modeling of an infinite medium370

(Figure 7), which is quite normal. Indeed, only the first passband, between371

0 and 1200 rad/s, is completely recovered by the real discrete eigenvalues.372

Otherwise, nearly all the other eigenvalues in σdisc are complex numbers and373

do not give rise to well-distinguished bandgaps. Now the main idea is to use374

this waveguide model to determine the minimum number of matrix-inclusion375

cells needed to recover the bandgaps behavior of the infinite medium within376

the frequency range of interest considered.377

In practice, the number of periodic matrix-inclusion cells is limited to378

a finite number. For instance, modifying soils in a dense urban area can379

be costly due to various constraints. It is thus of significant interest to380

evaluate with precision for a bounded periodic metamaterial the effectiveness381

of the analytically predicted frequency bandgaps using Floquet-Bloch theory382
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regarding their position and bandwidth.383

3. Quantitative analysis of effective properties of bandgaps of 1D384

bounded periodic media385

The parametric study using numerical models based on the above-mentioned386

principle is now presented. The influence of the number of periodically placed387

cells on the wave modes is analyzed. The results are compared with those of388

the corresponding infinite domain obtained by considering only the unit cell389

using the F-B transform.390

3.1. Parametric study setup, analysis of discrete spectra, and characteriza-391

tion of modes392

As explained in the previous section, in order to consider identical fre-393

quency ranges (i.e. corresponding to comparable wavelengths), the length of394

the waveguide Lu is determined by the largest number of cells considered in395

this study. Thus, with the choice of a periodic cell of side c = 1 m and a396

maximum number of eighteen inclusions, the useful zone is chosen of length397

Lu = 20 m. The length of each PML is chosen to equal half the total length398

of the useful area Lu, LPML = 10 m, in all models in order to limit the399

number of modes of the essential spectrum calculated. A consequence of400

keeping the waveguide length constant is that the size of the margins varies401

according to the number of cells to be considered. The material properties402

and parameters of the elementary cells are defined in Table I.403

In the following, the modal analysis of the waveguide, including a bounded404

periodic medium and, in particular, its discrete spectrum, is compared to405

the dispersion curves obtained theoretically for the corresponding infinite406

periodic medium (Figure 5). The results for four values of the number of407

cells, 3, 9, 15, and 18, are presented in Figure 9.408

As for the 1-cell case (Figure 7), the computed eigenvalues are repre-409

sented in the complex plane: the real eigenvalues are shown in cyan, the410

complex ones with an imaginary part less than 20 rad/s in blue, and the411

other complex ones in black. The essential spectrum of the model without412

inclusions is represented by magenta dots. Systematically, the figures on the413

right are enlargements of those on the left of the area around the axis of the414

reals, and so, in particular, they do not display most of the modes of the415

essential spectrum. The dispersion curves predicted by the F-B theory of the416

corresponding infinite periodic medium are plotted here in red.417
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Figure 9: Parametric study on the influence of the number of cells on the eigenvalue
spectrum and comparison with the dispersion curves (in red) obtained with the F-B theory
for the corresponding infinite periodic medium. Spectrum (left) and its zoom around the
real axis (right) of the studied waveguides with 3, 9, 15, and 18 unit cells. The real
eigenvalues of the discrete spectrum are displayed in cyan. The complex eigenvalues with
an imaginary part smaller than 20 rad/s are displayed in blue, and the others in black.
The essential spectrum of the model without inclusions is displayed with magenta dots.
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Again from Figure 9, as expected, the larger the number of cells, the418

fewer the modes with real eigenvalues (cyan) or complex eigenvalues with a419

small imaginary part (blue) in the frequency bandgaps predicted by the F-B420

theory. The modes associated with a complex eigenvalue that remain in the421

bandgaps are either a reflected mode concentrated in the margins between the422

PML and the edge of the bounded periodic medium (Figure 8(b)) or a mode423

with a decreasing amplitude into the periodic media like the one displayed424

on the Figure 10. Identifying the type between both of these modes cannot425

be done without analyzing their shapes.

Figure 10: Mode attenuated into the periodic media (case with 3 inclusions). The imagi-
nary part is equal to 17.9 rad/s (left) and to 15.1 rad/s (right).

Figure 11: Trapped modes in bounded periodic media with respectively (left) 9 and (right)
15 inclusions.

426

Moreover, the imaginary parts of the complex modes of the discrete spec-427

trum increase with the number of cells. Thus, the type of modes that are428

only attenuated but still able to propagate to the other side of the bounded429

periodic medium, observed in the case with a small number of cells (Figure 8430

(a)), is less present in the case with a larger number of cells. For instance,431

in the case of five cells, such modes are no longer visible among the calcu-432

lated ones. Thus, the complex modes of the discrete spectrum within the433

18



bandgaps are all like the modes shown in (Figure 8(b)) and in Figure 10,434

i.e.,“stopped” or “reflected” by the bounded periodic medium. Hence, the435

waveguide’s behavior approaches that of an infinite medium in terms of band436

gaps when the number of inclusions increases. For the two modes shown in437

Figure 10, the values of the eigenfrequencies are ω = 1749 + 17.9i rad/s and438

ω = 2128 + 15.1i rad/s.439

Furthermore, the increase in the number of cells also makes it possible to440

observe the appearance of trapped modes in the bounded periodic medium.441

Two examples in the cases with respectively nine and fifteen cells are given442

in Figure 11. These modes are trapped in the bounded periodic medium;443

in other words, they are propagative modes in the corresponding infinite444

periodic medium. The corresponding eigenfrequencies are ω = 2096 rad/s445

(9 cells) and ω = 2097 rad/s (15 cells). In the spectrum, the eigenvalues446

of these trapped modes are always real, whatever the model of PML used447

in the numerical model, conjugate or classical. Hence, the analysis of the448

spectrum obtained with the classical PMLs makes it possible to differenti-449

ate them from the propagative modes obtained outside frequency bandgaps450

because these bandgaps are associated with complex eigenvalues. The Fig-451

ure 12 presents the spectrum obtained for the case with nine cells using452

the model with the classical PMLs. Thanks to this change in the defini-453

tion of the PML, some trapped modes (cyan) are distinguished close to the454

border of frequency bandgaps (especially several modes that appear around455

2100 rad/s). However, it is no longer possible with this definition to dis-456

tinguish the propagative modes outside the frequency bandgaps from the457

attenuated and reflected modes by the periodic medium. In other words,458

using conjugate PLMs in these models highlights the complex modes that459

are interesting because they are in the forbidden frequency bands.460

3.2. Convergence and effectiveness analysis: Number of cells necessary to461

validate the periodicity hypothesis462

The Figure 13(left) summarizes the previous results by representing only463

the real modes as a function of the number of inclusions. The curve corre-464

sponding to the infinite case shows the dispersion curves obtained using the465

F-B transform, the red curves shown in any previous spectrum figure and466

projected onto the horizontal line when the kBloch-axis is compressed to one467

point. It should be noted that when the number of cells is small, the large468

frequency bands with no real modes cannot be “identified” as a frequency469
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Figure 12: Spectrum obtained with non-conjugated PMLs (left) and a zoom (right) around
the real axis to highlight the trapped modes for the case of 9 inclusions.

Figure 13: Real modes (cyan) and weakly attenuated modes (blue) as a function of the
number of cells with (left) real modes only and (right) real and weakly attenuated modes

bandgap. Indeed, it will show that complex modes with a small attenua-470

tion coefficient (the imaginary part of the eigenvalue) exist in these bands471

(Figure 13(right)).472

In Figure 13(left), the y-axis on the right shows the equivalence of the473

size of the periodic medium in terms of wavelength. The chosen reference474

wavelength, λ0 = 0.525 m, corresponds to the wave propagating in the matrix475

at the lowest frequency of the first frequency bandgap of the infinite periodic476

medium, which is ω0 = 1204rad/s.477

For the numerical models considered here, two frequency bands are pre-478

dicted in the infinite case. For the i-th bandgap (i = 1, 2), its position is479

defined by ωinf
i the frequency at its middle and W inf

i its width (cf. Fig-480

ure 5). Then the values obtained numerically on a bounded medium, ωi481

and Wi, are compared to these reference values (ωinf
i ,W inf

i ) by using two482
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“effectiveness” indicators Iω and IW defined as follows:483

Iω =
1

N

N∑
i=1

ϵωi
, with ϵωi

=
|ωi − ωinf

i |
ωinf
i

(10a)

484

IW =
1

N

N∑
i=1

ϵWi
, with ϵWi

=
|Wi −W inf

i |
W inf

i

(10b)

The evolution of these effectiveness indicators as a function of the number485

of cells, by counting only the real modes, is given in the Figure 14. For486

these examples, N = 2. Thus, it could be concluded that when the size487

of the bounded periodic medium is greater than four times the reference488

wavelength, i.e., containing about nine cells, its behavior regarding the first489

two frequency bandgaps begins to reach that of the infinite medium. In490

other words, the effectiveness in terms of bandgaps predicted for the infinite491

medium is almost recovered by such a bounded medium. These results are492

in agreement with previous works [20, 30, 31, among others].

Figure 14: Evolution of the effectiveness indicators on (left) the position (average fre-
quency) and (right) the width of frequency bandgaps by counting the real modes alone.

493

As already indicated, the previous analysis is not appropriate when the494

bounded domain contains only very few cells because the observed large495

frequency bands with no real mode cannot be considered as a frequency496

bandgap. Therefore, an improved approach is proposed below to perform a497

more qualitative analysis of effectiveness for bounded periodic media.498

The idea consists of considering the complex modes with an imaginary499

part lower than a certain threshold in addition to the real ones. The Fig-500

ure 13(right) shows the real modes and the complex modes with an imaginary501
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Figure 15: Evolution of the effectiveness indicator on (left) the average frequency and
(right) the width of frequency bandgaps by counting real modes and weakly attenuated
modes.

part smaller than 20 rad/s (displayed in blue); the latter lets part of the wave502

propagate through the bounded periodic medium. It can be seen that this503

analysis is more relevant because large frequency bands without modes are504

no longer observed in cases with very few cells. Hence, it allows us to better505

compare the effectiveness of bounded periodic media to the infinite one by506

taking into account the weakly attenuated modes.507

Concerning the calculation of the effectiveness indicators, the width Wi508

is obtained by looking for the maximum difference between two successive509

weakly attenuated modes, the blue points, and the identified interval also510

gives the average frequency ωi.511

The evolution of the effectiveness indicators by counting both real and512

weakly attenuated complex modes as a function of the number of cells is513

given on the Figure 15. It highlights the fact that it converges to the values514

obtained for the infinite medium when the number of cells increases. The515

indicators on the average position (εωi
and Iω) are smaller than the ones516

on the width (εWi
and IW ) of the bandgaps. Thus, from twelve cells, the517

indicator on the position is lower than 5% while that on the width is around518

15%. For the position, the indicator goes down to 0.2% for fifteen cells if we519

consider each band separately, and the indicator on the width is lower than520

2% for this number of cells.521
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4. Quantitative analysis of effective properties of bandgaps of 2D522

bounded periodic media523

The waveguide modal analysis presented above allows the study of bounded524

periodic media only in the e1 direction but not the consideration of 2D peri-525

odicity. In order to analyze 2D-periodic barriers, infinite in the e2 direction526

and bounded in the e1 direction, it is possible nevertheless to prescribe the527

F-B conditions on the horizontal boundaries, which were assumed to be free528

of stresses in the previous modeling (Figure 5). Thus, the previously imple-529

mented waveguide models are extended to 2D-periodic media by adding a530

second direction of periodicity along e2. By adding periodicity conditions on531

the horizontal boundaries, the new waveguide models contain infinite cells532

in the e2 direction while remaining with a finite number of cells in the e1533

direction. The Figure 16 presents the problem thus defined.

Figure 16: 2D-periodic barrier and its waveguide model with a single row of cells shown in
dark gray (with inclusions in black), which is the elementary cell used for the F-B transform
Equation (11) and the periodicity conditions are applied on its horizontal boundaries (red
lines).

534

In this framework, the behavior of the waveguide is then governed by the535

following F-B equation:536

(∇x + ik) · (µ (∇x + ik)u) = −ρω2u. (11)

with k = k2e2.537

For the new waveguide models, the definition of the PMLs remains un-538

changed (see Eq.(9)) because it is not affected by the F-B transform and the539

change of variable in the PMLs is only on the x1 variable.540

23



In the following, the results obtained with the waveguide models are an-541

alyzed and compared with the frequency bandgaps of the corresponding infi-542

nite 2D-periodic medium, predicted by the F-B theory (Figure 17(c)). In this543

Figure, the Bloch wave number is presented in abscissa following the contour544

of the Brillouin irreducible zone M → Γ → X → M . In the same way as545

before, the dispersion curves are obtained from the numerical solution of the546

eigenvalue problem (Eq.(3)). It is remarked that, compared to the 1D peri-547

odic case (Figure 5), the first two bandgaps are narrower and move towards548

the higher frequency range.

(a)

(b)
(c)

Figure 17: Unit cell Q0 of the periodic medium in physical space and corresponding first
Brillouin zone Q0 in reciprocal space. (a) A unit cell corresponding to an infinite medium
in two directions; (b) A reciprocal cell on which the contour of the Brillouin irreducible
zone, Γ → X → M → Γ, is represented; (c) Dispersion curves highlighting bandgaps.

549

4.1. Analysis of discrete spectra, characterization of modes, and ability to550

reconstruct the 2D periodicity behavior551

Following the proposed approach, the combined waveguide and F-B modal552

analysis are performed for the set of k values sweeping the entire Brillouin553

zone
[−π

c
−π
c

]
in the ey direction in which the F-B conditions are applied.554

The obtained modes are then plotted to show the spectrum of each F-B555

waveguide.556

First, as presented previously for the case of 1D propagation, Figure 18557

shows the spectrum of a homogeneous waveguide without any inclusion. It558

can be seen that, compared to the previous 1D-periodic case, many more559

modes are obtained for the essential (black) and discrete (cyan) spectra.560

Indeed, each value of k in the Brillouin zone gives rise to a different spectrum.561
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Thus, the modes obtained should be more complex to analyse than in the562

1D case.
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Figure 18: Spectrum of the homogeneous waveguide in the complex plane: σdisc with
real eigenvalues (cyan) and σess (black); Dispersion curves (in red) obtained with the F-B
theory.

563

Moreover, contrary to the essential spectrum obtained in the 1D-periodic564

case (Figure 3), many modes belonging to the essential spectrum are very565

close to the real axis. Therefore, it would not be easy to distinguish them566

from the complex modes belonging to the discrete spectrum of waveguide567

models with inclusions.568

A parametric study on the number of cells similar to that carried out569

previously for the 1D case is set up. The number of cells ranges from one570

to eighteen cells. The spectrum results are given in Figure 19. It is noted571

immediately that the frequency bands defined by the real modes (in cyan)572

of the waveguide models coincide with the passbands defined by the propa-573

gating modes of the corresponding 2D infinite medium calculated with the574

F-B transform (in red). Therefore, it can be concluded that our waveguide575

models that consider only one of the infinite directions can be used to gradu-576

ally approach the bandgap solution of the corresponding 2D infinite periodic577

medium.578

As for the previously presented 1D-periodic waveguide models, the den-579

sity of real modes increases with the number of cells within theoretically580

predicted passbands.581

Inside the theoretically predicted bandgaps, as before, there are non-real582

modes, and their number depends on the number of cells. They are atten-583

uated modes (since they have a non-zero imaginary part). However, unlike584

the periodic 1D case, some complex modes close to the real axis always ap-585

pear, i.e., with a relatively small imaginary part, even when the number of586

cells increases. This is due to the periodicity in the e2 direction conserved587
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Figure 19: Parametric study on the influence of the number of cells on the eigenvalue
spectrum and comparisons with the dispersion curves (in red) obtained with the F-B
theory for the corresponding infinite 2D periodic medium. Spectrum (left) and its zoom
around the real axis (right) of the studied waveguides with respectively 3, 9, 12, and 18
cells. The real eigenvalues of the discrete spectrum are in cyan. The complex eigenvalues
with an imaginary part smaller than 20 rad/s are in blue, and the others are in black. The
essential spectrum without inclusions is displayed with magenta dots.

26



in our F-B waveguide models. An example of such a mode is given in Fig-588

ure 20(left). The real part of its eigenvalue is 1828.3 rad/s, and the imaginary589

part is equal to 15.2 rad/s for a value of k equal to 1.57. It is a mode of the590

essential spectrum. The behavior of this mode looks like a reflected mode591

despite its low imaginary part. Because of the periodicity in the e2 direction,592

and so the fact that the wave also propagates in the transverse direction e2,593

this mode is weakly influenced by the periodic medium’s size. Hence, it is a594

mode propagating in the direction e2 and localized in the margins between595

the bounded periodic medium and the PML. As the size of the margins de-596

creases when the number of cells increases, these modes move away from597

the real axis, but not as quickly as the other complex modes, “stopped” or598

attenuated by the bounded periodic medium. Note that the thinner the mar-599

gins, the more the essential spectrum is modified compared to the one of the600

homogeneous waveguide (represented by the pink points). However, it keeps601

the same smooth shape.602

To compare, Figure 20(right) represents a complex mode of the model603

with nine cells obtained for k = 2.51 m−1, for which the imaginary part of its604

eigenvalue is equal to about 23 rad/s and a real part equal to 1903 rad/s. In605

this case, the wavefront propagates along the e1 direction and is attenuated606

by the bounded periodic medium. This type of mode rapidly moves away607

from the real axis when the number of cells increases. It can be seen that,608

for waveguide models with a large number of cells, the only modes that stay609

close to the real axis in the theoretically predicted frequency bandgaps are610

those from the essential spectrum.

Figure 20: (left) Propagative mode in the direction e2 (case of 12 inclusions) and explaining
the modes inside the bandgaps; (right) Attenuated mode in the direction e1 (case of 9
inclusions).

611
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4.2. Convergence and effectiveness analysis: Number of cells necessary to612

validate the periodicity hypothesis613

As in the 1D analysis, Figure 21 displays the real modes as a function614

of the number of cells. The conclusions previously made for the 1D periodic615

waveguide models apply. For a small number of cells, the density of real616

modes is very low, which does not mean that large frequency bandgaps are617

obtained. When the number of cells increases, the analysis becomes relevant;618

thus a convergence study on the effectiveness of the considered bounded619

periodic media could be carried out.

Figure 21: Real modes versus the number of inclusions (2D model).

620

In the same way as before, Figure 22 presents the evolution of the effec-621

tiveness indicators given by the equations (10a) and (10b) as a function of622

the number of cells. For the model with only one cell, the indicators are not623

computed for the obvious reason that only one large “attenuated” frequency624

band, instead of two, is obtained in the ω interval considered. These figures625

show the decrease of the error committed by adding inclusions in the e1 di-626

rection. It is important to remark that the effectiveness indicators are better627

regarding the position of the frequency bandgaps (less than 5% from three628

cells in the e1 direction) than their width.629

It is also noted that the evolution of effectiveness indicators by counting630

the real and weakly attenuated complex modes like that done for the 1D631

periodic waveguide models is not presented here. Indeed, it is more compli-632

cated to distinguish the weakly attenuated complex modes from the complex633

modes of the essential spectrum, as already explained above. Indeed, the634

removal of the modes of the essential spectrum close to the real axis to take635

into account only the other complex modes linked to the useful zone (the636
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Figure 22: Evolution of the effectiveness indicators on (left) the position (average fre-
quency) and (right) the width of frequency bandgaps, by counting the real modes alone.

bounded periodic medium), i.e., those of the discrete spectrum, is for the637

moment possible but at the price of manual sorting, which is laborious. Nev-638

ertheless, such a study is possible if more quantitative characterization is639

required with the development of more automatic tools.640

5. Application to locally resonant metamaterials641

In this section, the previously proposed method is applied to analyze a642

bounded 1D- and 2D-periodic matrix-inclusion medium with local resonators643

or resonant metabarriers.644

In order to obtain frequency bandgaps at lower frequencies while keep-645

ing a reasonably small size of the periodic cells, as it is expected for seismic646

purposes, one of the main solutions is to use locally resonant metamaterials647

[9, 12, 17, 43, 47, 48, among others]. The local resonator conception cho-648

sen for this study was proposed in Liu et al.’s work [43] by using Helmholtz649

resonators made by a heavy mass inside a very soft intermediate layer (Fig-650

ure 23(a)). The dimensions and the materials properties for the soft interme-651

diate layer (µs, ρs) and for the heavy mass inside (µi, ρi) are given in Table652

II, the materials properties for the matrix (µm, ρm) being unchanged and653

already given in Table I.654

As in the previous cases, the dispersion curves for the infinite medium are655

obtained by applying the F-B theory to an FE model of the unit cell. They656

are represented in Figure 23(b) for the 1D-periodic model and in Figure 23(c)657

for the 2D-periodic one. It is important to note that, for the same cell size,658

the first frequency bandgap appears in a very low-frequency range, around659
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(a)

(b) (c)

Figure 23: Locally resonant material made of Helmholtz resonator. (a) Unit cell (left),
dispersion curves obtained by the F-B theory in the infinite case (b) with 1D-periodicity
and (c) 2D-periodicity.

c (m) R (m) r (m) µs (GPa) µi (GPa) ρs (kg/m
3) ρi (kg/m

3)
1 0.346 0.260 0.0015 210 1200 7850

Table II: Summary of the data used for the simulation of the 2D-periodic medium with
local resonators, where subscripts “s” and “i” represent the intermediate soft layer and
the central heavy mass, respectively.

200 rad/s, instead of 2000 rad/s in the case considered in the previous sections660

(i.e. without local resonators).661

A parametric study is performed by modifying, as previously, the number662

of cells, going from three to eighteen cells, in the waveguide. The results of663

the 1D-periodic case are presented in Figure 24. As in the heretofore studied664

case, the real modes do not appear in the theoretically predicted bandgaps665

for the infinite reference case and some attenuated modes exist inside those666

bandgaps for the smaller number of cells. However, it is important to note667

that there are less attenuated modes than in the case of Bragg scattering668

models.669

The Figure 25 summarizes the analysis of bandgaps by representing only670

the real modes and weakly attenuated modes as a function of the number671

of cells, and the same conclusions as for the Bragg scattering are obtained.672

The higher the number of cells, the higher the effectiveness of the waveguide673

with periodic media, and also it could be considered that the first frequency674

bandgap predicted for the infinite case is recovered with 18 cells.675

As the frequency of the first bandgap appears at a much lower frequency676

range, the density of points used to characterize the effectiveness of such677
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Figure 24: Parametric study on the influence of the number of cells on the eigenvalue
spectrum and comparisons with the dispersion curves (in red) obtained with the F-B
theory for the corresponding infinite 1D-periodic medium. Spectrum (left) and its zoom
around the real axis (right) of the studied waveguides with respectively 3, 9, 12, and 18
cells. The real eigenvalues of the discrete spectrum are in cyan. The complex eigenvalues
with an imaginary part smaller than 20rad/s are in blue, and the others in black. The
essential spectrum without inclusions is displayed with magenta dots.
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Figure 25: Real modes (cyan) and weakly attenuated modes (blue) as a function of the
number of cells.

3 5 9 12 16 18

10
1

10
2

Figure 26: Evolution of the effectiveness indicator on (left) the average frequency and
(right) the width of frequency bandgaps by counting real modes and weakly attenuated
modes.

a bounded periodic media decreases. It would be useful to take a longer678

waveguide. However the same trend as in the Bragg scattering is visible: the679

more cells, the smaller the difference between infinite and finite cases. Thus,680

efficiency indicators are plotted on Figure 26 for the unique bandgap visible681

around 200 rad/s. It appears that the central frequencies are well evaluated682

for a number of cells greater than 12. The indicator is there around 2% and683

it is remarked that the effectiveness of the width of the bandgap also follows684

the same trend. The indicator only goes down to 10% for the highest number685

of cells (i.e. 18 cells).686

As in the Section 4, the model 1D-periodic is then studied with a 2D-687

periodicity by applying F-B conditions on the horizontal boundaries of the688
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model. The spectrum of this model is shown on Figure 27 for a different689

number of unit cells. The red curves represent the 2D-periodic dispersion690

curves (Figure 23(c)). These results allow to recover the same behaviour as691

in the previous studies. The weakly attenuated modes inside the frequency692

bandgap disappear when the number of unit cells increases. Nevertheless,693

this tool (especially the way the modes are sorted) must be improved in order694

to have a way to quantify the effectiveness in the case of 2D-periodicity.695

6. Conclusions696

In this article, a method to quantitatively characterize the behaviours re-697

garding acoustic waves of bounded 1D- and 2D-periodic metamaterials made698

with a matrix and circular inclusions have been presented. This approach699

allows a complementary analysis to the classical Floquet-Bloch approach ded-700

icated to infinite periodic media. The proposed method is based on waveg-701

uide modal analysis. By using PML, it is possible to isolate the effects of702

the bounded metamaterial without dealing with boundary conditions. Two703

different types of metabarriers (i.e. with and without local resonators) were704

numerically analysed so as to assess the induced wave amplitude attenuation.705

The findings reveal that a minimum number of cells is necessary to fit706

the theoretically predicted bandgaps obtained with the Floquet-Bloch theory.707

This minimum number of cells depends on the criteria defined in terms of708

wave attenuation by the bounded periodic medium. The waveguide modal709

analysis confirm that depending on the size of the bounded periodic medium,710

more or less attenuated complex modes can exist in the frequency bandgaps711

theoretically predicted.712

Finally, the obtained results also indicate that in the locally resonant713

systems the first frequency bandgap appears in a very low-frequency range714

compared to the same configuration but without local resonators.715
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Figure 27: Parametric study on the influence of the number of cells on the eigenvalue
spectrum and comparisons with the dispersion curves (in red) obtained with the F-B
theory for the corresponding infinite 2D periodic medium. Spectrum (left) and its zoom
around the real axis (right) of the studied waveguides with respectively 3, 9, 12, and 18
cells. The real eigenvalues of the discrete spectrum are in cyan. The complex eigenvalues
with an imaginary part smaller than 20rad/s are in blue, and the others in black. The
essential spectrum without inclusions is displayed with magenta dots.
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