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Abstract

It is well known that knowledge of thermophysical parameters is a leading strategy to
research effects of energy transfer in soils. The present article proposes an inverse analysis
for numerical solving of nonlinear heat transfer problem to determine the thermophysical
properties of two different soil types: sand and chernozem. First, estimation of thermo-
physical parameters is performed using temperature data from experimental set-up, which is
two-chambered container for two soil types. Second, numerical algorithm is based on implicit
Euler scheme for discretization, Newton method to solve nonlinear system of equations and
Levenberg-Marquardt method to minimize nonlinear estimator with Tikhonov’s regulariza-
tion technique. Simulations have been efficiently carried out for two different soil types,
showing that the reliability of the model is satisfying with a discrepancy between numerical
predictions and experimental observations remaining within the measurement error.

Key words: inverse problem, heat transfer, thermophysical properties, soil, Levenberg-
Marquardt method

Nomenclature

T temperature,
[
K
]

x horizontal space coordinate ,
[
m
]

L total length of the container ,
[
m
]

ξ position of the contact surface ,
[
m
]

tf total duration of the experiment ,
[
h
]

k heat conductivity ,
[
W . m −1 . K −1 ]

cm specific heat capacity ,
[
J · kg−1 · K−1 ]

ρm material density ,
[
kg ·m−3 ]

hm heat transfer coefficient ,[
W · m −2 · K −1 ]

T L
∞ ambient temperature on the left bound-

ary,
[
K
]

T R
∞ ambient temperature on the right bound-

ary,
[
K
]

Pm vector of coefficients ,
[
−
]

Y vector of measurements ,
[
K
]

T (Pm) vector of numerical solutions,
[
K
]

J sensitivity matrix,
[
−
]

σT total uncertainty,
[
K
]

1 Introduction
Soil thermophysical characteristics play main role in land surface processes modeling due to

great effect on a vast range of chemical, physical and biological processes for energy distribution
at multiple soil layers. Thermophysical properties determine the movement of heat in soils
and influence how energy is partitioned in the soil profile. The knowledge of these quantities is
crucial in different branches of engineering, environmental and earth science disciplines and most
importantly for energy balance impact. The use and capabilities of energy geostructures in the
context of both soil source heat pump systems and underground thermal energy storage systems
(UTES) are addressed in [1]. The UTES often used for integration with a nuclear power plant.
The success of the UTES is largely dependent on surrounding soil conditions [2]. In the work of [3]
the thermal influence of the water filled pipe to the soil excess of 4 m during 4 months period [3].
This fact leads to suggestion that geothermal heat flow and heat loss determinations from buried
pipelines and cables need careful consideration of environmental interactions. In [4], authors
highlight the importance of high thermal conduction characteristic of soil for radioactive waste
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disposal at great depth. In [5], authors describes cases when fluctuations in soil temperature,
thermal diffusivity and ground heat flux are used as earthquake precursors. Lunt et al. proposed
improvements for building thermal performance by choosing artificial soils with different thermal
conductivity properties [6]. Last, the soil thermal conductivity is always viewed as one of the
most important thermophysical characteristics because of the impact on the soil heat balance [7,
8]. All these research illustrate the necessity of knowing precisely soil thermal physical properties

Precise estimation of soil thermophysical properties is always arduous due to the direct in-situ
measurement difficulties, impact of density [9], porosity and interactions with moisture [10–12].
In spite of progress made in techniques for soil heat flux measurement, direct measurement still
remains relatively expensive, destructive, labour intensive, time consuming and impractical for
large scale applications or computer simulations due to space and time variability in parameters.
Therefore, thermal properties are often estimated by solving inverse heat transfer problem.
Such procedure aims at retrieving the properties that minimizes the difference between the
mathematical model predictions and temperature measurement data obtained at different depths
in the soil. Mathematically speaking, the inverse heat transfer problems are ill-posed. Since
problem is ill-posed, specific attention to the choice of the inverse problem method should be
made [13, 14].

Despite possible mathematical proofs of solution existence and uniqueness, inverse problem
are very sensitive to error in the measured input data. Thus, the solution of an inverse problem
requires special stabilization techniques, commonly known as regularization methods. In fact,
the ill-posed inverse problem is not really solved, but an approximate solution is obtained based
on an approximate well-posed regularized problem. A. N. Tikhonov introduced a pioneering
approach to problem-solving, particularly highlighted in [15]. He was the first mathematician
to articulate a comprehensive methodology that relied on the creation of specialized algorithms
known as regularizing operators. Building upon this theoretical framework, A. N. Tikhonov
put forth the Variational Regularization Method, incorporating a numerically small parameter.
This theoretical approach has since gained widespread adoption in numerous practical research
in the world. Subsequently, in [16], this overarching method served as a foundation for the ad-
vancement of diverse approaches and algorithms, including those employed in various iterative
methods. Which lead to Alifanov’s new method - iterative regularization technique, based on
gradient methods first proposed and justified in [17–19]. The notable aspect of this approach is
that it eliminates the need for an extra regularization parameter. Instead, the iteration number
itself assumes this role directly. This assertion holds true for nearly all gradient algorithms,
including the highly effective conjugate gradient method with its superlinear convergence rate.
Adopting the iterative regularizatrion method another approach to solve ill-posed heat transfer
problem created - Beck’s sequential technique, where regularization is obtained from the av-
eraging properties of least squares and from the measurements taken at future time steps [20].
Similarly more recently, stochastic simulation techniques are becoming very popular for the so-
lution of inverse problems [21]. These simulation techniques generate samples of a statistical
distribution and inference on the distribution is obtained through inference on the samples. A
very common approach for the solution of inverse problems, dealing with the estimation of the
parameters P with the measurements Y , is to find a point estimate that maximizes the likeli-
hood probability density. This can be accomplished through the minimization of the maximum
likelihood objective function. There are plenty of minimization methods. In [22–24], authors use
Conjugate Gradient method (CGM) with adjoint problem for the thermal contact conductance
and source parameter determination, which is given as function with the noise. In contrast,
advantage of the work [25] is that it uses CGM without involvement an adjoint problem, but the
method still requires calculation of the gradient direction coefficient and a search step length.
In order to avoid this downside Levenberg-Marquardt method can be used, which allows
automatic control of the damping parameter. Method were successfully used in several re-
searches [26–29] for heat and mass transfer problems. The main drawbacks of these works are
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use of synthetic data for measurements and application of finite difference approach for sensi-
tivity analysis, which leads to additional computational costs to achieve desired approximation
order.

The aim of this work is to determine the thermophysical properties of two different soil
types, which are sand and chernozem. In this research, we propose inverse analysis for numeri-
cal solving of nonlinear heat transfer problem. The algorithm is based on the backward Euler
time advancement scheme for the direct problem solution and Levenberg-Marquardt itera-
tive algorithm to minimize the least square estimator with Tikhonnov’s regularization, which
modifies objective function by the addition of a penalty term. The Levenberg-Marquardt
method is the combination of the steepest-descent and Gauss-Newton methods. Estimation
of thermophysical parameters is performed using the temperature data obtained from exper-
imental set-up and computation of the sensitivity coefficients by direct differentiation of the
governing equations. In addition, the discrepancy principle is used to stop iterative procedure
for Levenberg-Marquardt method. Experimental set-up is two-chambered container for two
soil types. Experimental observations help us solve the parameter estimation problem and eval-
uate the reliability of the calibrated model. First set of experimental data is used for estimation
of parameters. Another set is used for comparison of numerical results to experimental data
which leads to the robustness of analysis.

The paper is organized as follows. Section 2 presents the governing equation with boundary
conditions. It follows with the description of the Levenberg-Marquardt method, with the
presentation of the initial boundary problems to determination of sensitivity coefficients and
with the general strategy to solve nonlinear inverse problem used in article. Then, in section
3 numerical problem is described. The Newton method is used to solve direct nonlinear heat
transfer problem. In section 4 the experimental set-up is detailed with description of total
uncertainty of the observations. Finally, the section 5 presents estimated parameters, sensitivity
coefficients.

2 Mathematical model
The problem involves heat transfer through the constructed two-chamber container filled with

the two types of soil. Figure 1 schematically shows the container. The side faces are thermally
insulated while the lateral ones are in contact with the environment (air). Thus, the transfer is
assumed as one dimensional.

2.1 Governing equations

The one-dimensional nonlinear heat diffusion transfer equation is considered in a two layer
container with different soils. The physical process are observed for the time domain Ω t : t ∈
[0, tf ], where tf

[
h
]

is the total duration of the experiment. The space interval Ω x : x ∈ [0, L]
is illustrated in Figure 1, where L

[
m
]

and ξ
[
m
]

are total length of the two-chamber container
and position of the contact surface, respectively. The temperature is defined as:

T : [0, L]× [0, tf ]→ R. (1)

The governing nonlinear equation of heat diffusion transfer is:

cm (T ) ρm (T ) ∂T

∂t
= ∂

∂x

(
km (T ) ∂T

∂x

)
, (2)

where cm
[
J · kg−1 · K−1 ] is the specific heat capacity, ρm

[
kg ·m−3 ] is the material density and

km
[
W ·m−1 · K−1 ] is the thermal conductivity, index m = 1, 2 shows the type of the material,

1−sand, 2−black soil, respectively . If the thermophysical properties may be assumed as constant
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as first order hypothesis, it is assumed here that these coefficients vary with temperature. The
following temperature dependencies are used:

cm (T ) = cm,0 + cm,1T,

ρm (T ) = ρm,0 + ρm,1T,

km (T ) = km,0 + km,1T + km,2T 2 + km,3T 3.

(3)

The initial conditions of the problem is computed considering a linear interpolation between the
measured temperatures and considered as a function of space:

T (x, t = 0) = T0 (x) (4)

On the front side and end side surfaces of the container, a Fourier/Robin boundary condition
is assumed: (

km (T ) ∂T

∂x

) ∣∣∣∣∣
x=0 , t

=
(

hm (T )
(
T − T L

∞ (t)
) ) ∣∣∣∣∣

x=0 , t

,

(
km (T ) ∂T

∂x

) ∣∣∣∣∣
x=L , t

=
(
−hm (T )

(
T − T R

∞ (t)
)) ∣∣∣∣∣

x=L , t

,

(5)

where T L
∞ (t) and T R

∞ (t) are ambient temperatures, hm
[
W · m −2 · K −1 ] is heat transfer coef-

ficient, which is also function of a temperature depends on the type of the material:

hm (T ) = hm,0 + hm,1T (6)

Assuming the surface between two layers in perfect contact, continuity conditions on the tem-
perature and the heat flux are expressed as follows:

T (ξϵ , t) = T (ξ + ϵ , t) ,(
km(T ) ∂T

∂x

) ∣∣∣∣∣
ξ−ϵ , t

=
(

km(T ) ∂T

∂x

) ∣∣∣∣∣
ξ+ϵ , t

, ϵ → 0 .
(7)

(a) (b)

Figure 1. Experimental set-up illustration with appropriate boundary conditions position (a),
scheme of the sensor locations along the container (b).

2.2 Nonlinear inverse problem

For the nonlinear inverse problem considered of interest in our research, the temperature-
varying thermophysical properties of the soil are regarded as unknown. The additional experi-
mental data obtained from transient temperature measurements Y n

x∗ at times tn , n ∈ {1, 2, . . . , Nt}
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and at the locations x∗ = 0, ξ, L are used for the estimation of the coefficients defining the func-
tions km(T ), cm(T ), ρm(T ) and hm(T ). Given equations (3) and (6), a total of 20 coefficients
are unknown:

Pm = (km,0, km,1, km,2, km,3, cm,0, cm,1, ρm,0, ρm,1, hm,0, hm,1), m = 1, 2. (8)

The measurement errors, ε, are assumed to be additive, which are Gaussian errors with zero
means:

Y = T (Pm) + ε. (9)

where T (P ) is the solution of the mathematical formulation (2), obtained with the vector of
parameters Pm, that is:

T t = [T1(Pm), T2(Pm), . . . , TNt(Pm)]. (10)

It is assumed that measurements are uncorrelated with the constant variance. Thus, the esti-
mation of 20 unknown parameters, Pm = (pm,j), j = 1, . . . , 10, m = 1, 2 (e.g. p2,5 = c2,0), can
be achieved by the minimization of the following cost function, which is in our case ordinary
least squares norm with addition of Tikhonov’s regularization:

SOLS (Pm) = [Y − T (Pm)]t [Y − T (Pm)] + α [P prior − P ]t [P prior − P ] (11)

Here, α is the regularization parameter. The values chosen for the regularization parameter
α influence the stability of the solution as the minimization is performed. For α → 0, exact
matching between estimated and measured temperatures is obtained with the minimization of
SOLS (Pm) and the inverse problem solution becomes unstable because of its ill-posed nature.
On the other hand, for large valuse of α, when the second term in Eq. (11) is dominant, the
parameters P tend to become constant. Therefore, instabilities on the solution can be alleviated
by proper selection of the value of α. Tikhonov [16] recommended that α should be selected
so that the minimum value of the first term of the objective function would be equal to the
sum of the squares of the errors expected for the measurements, which is known as Morozov’s
discrepancy principle [30]. Also, the use of so-called L-curve [14] appears as a useful technique
for the selection of the regularization parameter. Since the norms of the solution and the residual
is important, it is natural to plot these two quantities versus each other as a curve:(

∥Y − T (Pm) ∥2 , ∥P prior − P ∥2
)

(12)

This is L-curve, which is illustrated in Figure 2 for both types of soils.
To minimize the objective function (11) the Levenberg-Marquardt method is used. This

technique uses both Gauss-Newton and steepest descent approaches to converge to an optimal
solution.

P ⋆ : def= arg min SOLS (Pm) (13)

For the simplicity in the explanation, derivation are first performed here by considering mea-
surements of one single sensor:

Y t = [Y0, Y1, . . . , YNt ] (14)

To minimize the objective function (11), we need to equate to zero the derivatives of SOLS (P )
with respect to each of the unknown parameters pm,j .

∇SOLS (Pm) = −2JT [Y − T (Pm)] − 2α [P prior − P ] = 0 (15)

where J is the sensitivity matrix:

J =
[

∂T T (Pm)
∂Pm

]T

= 0 (16)
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Due to nonlinearity of inverse problem, the sensitivity matrix has some functional dependence
on the vector of unknown parameters Pm. The solution then requires an iterative procedure,
which is obtained by using a Taylor series expansion around current solution P s

m at iteration
s for the vector of estimated temperatures T (Pm):

T (Pm) ≈ T (P s
m) + Js (Pm − P s

m

)
(17)

where T (P s
m) and Js are the estimated temperature and the sensitivity matrix calculated at

iteration s. To obtain the vector of unknown parameters Pm, equation (17) is substituted
in (15). After algebraic rearrangements the following iterative equation is derived to obtain the
vector of unknown parameters Pm:

P s+1
m = P s

m+
[
JT J + α I

]−1[
JT (Y − T (P s

m)) + α [P prior − P ]
]

(18)

where I is the identity matrix. The iterative procedure given by (18) is called the Gauss
method. Such method is actually an approximation for the Newton-Raphson method. We
should note that the identifiability condition has to be satisfied to use (18), which is:

|JT J | ≠ 0 (19)

The following criteria were used to stop the iterative procedure:

SOLS

(
P s+1

m

)
< ε (20)

where ε is prescribed tolerance. The criterion given by (20) can be conveniently selected by using
Morozov’s dicrepancy principle. This principle relies on the fact that the expected minimum
values of the objective function (11) is obtained when the differences between measured and
estimated temperatures are of the same order of magnitude of the measurement errors. The
tolerance ε based on Morozov’s discrepancy principle is thus obtained by assuming:

|Y n − T n(P s+1
m )| ≈ σn, (21)

where σn is the standard deviation of the measurement error at time tn. If the measurements are
uncorrelated and with a constant standard deviation, i.e. σn = σ = constant, we can substitute
equation (21) into equation (11), which consequently gives us:

SOLS

(
P s+1

m

)
< Ntσ

2 (22)

2.3 Sensitivity coefficients

For the determination of the sensitivity coefficients involved in the computation of the sen-
sitivity matrix (16), an initial-boundary value problem is developed for each parameter by
differentiating the original direct problem (2) - (6) with respect to the unknown coefficients.

θm,j = ∂T

∂pm,j
, j = 1, . . . , 10, m = 1, 2. (23)

In our case we obtain 20 sensitivity equations for all the unknown parameters, but for the sake
of simplicity let us write them for governing equation in general form:

cm (T ) ρm (T ) ∂θm,j

∂t
= ∂

∂x

(
km (T ) ∂θm,j

∂x

)
+ F (θm,j , T ) , (24)
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Figure 2. L-curve for standard-form Tikhonov regularization for the first material (a) and the
second material (b).

where F (θm,j , T ) is expressed as follows:

F (θm,j , T ) = −∂cm (T )
∂pm,j

ρm (T ) ∂T

∂t
− ∂ρm (T )

∂pm,j
cm (T ) ∂T

∂t
+ ∂

∂x

(
∂km (T )
∂pm,j

∂T

∂x

)
, (25)

with initial condition:
θm,j (x, t = 0) = 0 (26)

In case of boundary conditions, we get next conditions for sensitivity problem. Good way of
presenting them in a synthetic way:(

km (T ) ∂θm,j

∂x

) ∣∣∣∣∣
x=0 , t

=
(

hm (T ) θm,j + ∂hm (T )
∂pm,j

(
T − T L

∞ (t)
)
− ∂km (T )

∂pm,j

∂T

∂x

) ∣∣∣∣∣
x=0 , t

,

(
km (T ) ∂θm,j

∂x

) ∣∣∣∣∣
x=L , t

=
(
−hm (T ) θm,j −

∂hm (T )
∂pm,j

(
T − T R

∞ (t)
)
− ∂km (T )

∂pm,j

∂T

∂x

) ∣∣∣∣∣
x=L , t

,

(27)
where derivatives of the physical properties with respect to parameters can be easily obtained
just following rules for differentiation. Firstly, system of equations (24) - (27) are discretized
using backward Euler time advancement scheme. Secondly, obtained three-diagonal system of
linear algebraic equations (SLAE) with unknown θm,j is solved using Thomas’ method.

2.4 Strategy to solve IHTP

The strategy to solve the inverse heat transfer problem is to split into two subproblems
Eqs. (2) - (7) according to each container. For both subproblems, the measurement data Y n

x∗

from the sensor at x∗ = ξ is used as Dirichlet condition Tξ. This is motivated by the following
First, it can be remarked that, estimation of thermophysical properties of both containers

from the same measurement data is not possible. Indeed, the sensitivity coefficients would be
linearly dependent, as will be demonstrated in Section 5 for the case study under investigations.
For instance k 1 , 0 and k 2 , 0 have linearly dependent sensitivity coefficients. Then, for each
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Figure 3. Flow chart of parameter estimation algorithm

container subproblem, some sensitivity coefficient can be linearly dependent as for instance k 1 , 0
and c 1 , 0 from Table 4. Thus, to satisfy condition (19), for each subproblem, the parameters
are estimated in different time intervals. Namely, ten time intervals are considered for the first
container denoted as t ∈ [ (j−1)·tf

10 ,
j·tf

10 ], j =
{

1, . . . , 10,
}
. Figure 3 shows schematically the

procedure of estimation. For the sake of clarity the flow chart doesn’t illustrate time intervals
and measurement position for the all parameters.

In addition, the algorithm 1 presents the computational strategy based on the Levenberg-
Marquardt method. Note that, the algorithm converges quite fast due to the explicit cal-
culation of the damping parameter. Thus, the Levenberg-Marquardt method tends to the
steepest descent method given by equation (18).
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Algorithm 1 The computational algorithm for the proposed version of the Levenberg-
Marquardt method.

1: Input: a priori estimates for parameters P s=0
m and experimental data Y n

x∗

2: Output: All thermophysical parameters after convergence of SOLS

(
P s

m

)
3: while SOLS

(
P s

m

)
> ε do

4: Solve the direct problem given (2)-(5) using P s
m to get T (P s

m) at t ∈ [0, tf ].
5: for j ← 1 to 10 do
6: Compute the sensitivity matrix by solving equations (24)-(27) to get θm,j = ∂T

∂pm,j
at

t ∈ [ (j−1)·tf

10 ,
j·tf

10 ], m = 1, 2,

7: Compute the new estimate P s+1
m (18) for each time interval and sensor position.

8: Calculate SOLS

(
P s+1

m

)
from Eq. (11).

9: Replace s by s + 1
10: end

3 Numerical problem
In order to describe numerical schemes a uniform discretization is used for space and time

intervals Ωx ⇝ Ωhx , Ωt ⇝ Ωht :

Ωhx =
Nx⋃
i=0

[xi, xi+1], xi+1 − xi = ∆x, ∀i ∈ {1, 2, . . . , Nx}.

Ωht =
Nt⋃

n=0
[tn, tn+1], tn+1 − tn = ∆t = const > 0, ∀n ∈ {1, 2, . . . , Nt}.

The choice of the time and space step affects on the dicretization error. The values Nt and Nx

are chosen according to the computational cost requirements. (x, t) coordinates on the plane
intersect mesh/grid points/nodes. Thus the approximate solution of the direct problem is defined
at the mesh nodes. The values of the T (x, t) after discretization are written as T n

i :def= T (tn, xi).
First, problem (2) is discretized using the backward Euler time advancement scheme in

combination with the second-order accurate centered finite difference formula:

ρm

(
T n+1

i

)
cm

(
T n+1

i

) T n+1
i − T n

i

∆t
= 1

∆x

(
km

(
T n+1

i+ 1
2

)
T n+1

i+1 − T n+1
i

∆x
− km

(
T n+1

i− 1
2

)
T n+1

i − T n+1
i−1

∆x

)
,

(28)
where T n+1

i± 1
2

= T n+1
i±1 +T n+1

i

2 . In case of boundary and initial conditions we obtain next schemes:

t0 = 0 : T 0
i = T0 (xi) ,

x0 = 0 : km

(
T n+1

1
2

)
T n+1

1 − T n+1
0

∆x
= hm

(
T n+1

0

) (
T n+1

0 − T L,n+1
∞

)
,

xNx = L : km

(
T n+1

Nx− 1
2

)
T n+1

Nx
− T n+1

Nx−1
∆x

= −hm

(
T n+1

Nx

) (
T n+1

Nx
− T R,n+1

∞

)
,

(29)

Due to the physical properties dependencies of temperature, we have nonlinearity. Thus to
obtain solution we’ll use iterative Newton’s method, but before that let us rewrite the difference
equation system (28) in the form:

F
(
T n+1

i+1 , T n+1
i , T n+1

i−1

)
≡ ∆t

(∆x)2 ·
(

km

(
T n+1

i+ 1
2

)(
T n+1

i+1 − T n+1
i

)
− km

(
T n+1

i− 1
2

)(
T n+1

i − T n+1
i−1

))
−

− ρm

(
T n+1

i

)
cm

(
T n+1

i

) (
T n+1

i − T n
i

)
= 0,

(30)
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Let U s = (T s,n+1
i+1 , T s,n+1

i , T s,n+1
i−1 ), where s - iteration number. Then U0 is an initial approxi-

mation of the system (30). After applying Newton’s method for the system (30), the following
approximation of the unknown grid function was obtained:

∂F (U s)
∂T n+1

i+1
(T s+1,n+1

i+1 − T s,n+1
i+1 ) + ∂F (U s)

∂T n+1
i

(T s+1,n+1
i − T s,n+1

i )+

+∂F (U s)
∂T n+1

i−1
(T s+1,n+1

i−1 − T s,n+1
i−1 ) + F (U s) = 0,

(31)

Expanding the brackets, the tridiagonal system will be given for (31):

As
i

(
T n+1

i+1

)s+1
+ Bs

i

(
T n+1

i

)s+1
+ Cs

i

(
T n+1

i−1

)s+1
= Ds

i , (32)

where coefficients are equal:

As
i = ∂F (U s)

∂T n+1
i+1

, Bs
i = ∂F (U s)

∂T n+1
i

, Cs
i = ∂F (U s)

∂T n+1
i−1

,

Ds
i = −F (U s) + Ai

(
T n+1

i+1

)s
+ Bi

(
T n+1

i

)s
+ Ci

(
T n+1

i−1

)s
.

(33)

After expanding the equation (30), the corresponding derivatives are found:

∂F (U)
∂T n+1

i+1
= ∆t

(∆x)2

∂km

(
T n+1

i+ 1
2

)
∂T n+1

i+1
·
(
T n+1

i+1 − T n+1
i

)
+ km

(
T n+1

i+ 1
2

) , (34)

∂F (U)
∂T n+1

i

= ∆t

(∆x)2

∂km

(
T n+1

i+ 1
2

)
∂T n+1

i

·
(
T n+1

i+1 − T n+1
i

)
− km

(
T n+1

i+ 1
2

)−

− ∆t

(∆x)2

∂km

(
T n+1

i− 1
2

)
∂T n+1

i

·
(
T n+1

i − T n+1
i−1

)
+ km

(
T n+1

i− 1
2

)−

−
∂cm

(
T n+1

i

)
∂T n+1

i

ρm

(
T n+1

i

) (
T n+1

i − T n
i

)
−

−
∂ρm

(
T n+1

i

)
∂T n+1

i

cm

(
T n+1

i

) (
T n+1

i − T n
i

)
− ρm

(
T n+1

i

)
cm

(
T n+1

i

)
,

(35)

∂F (U)
∂T n+1

i−1
= − ∆t

(∆x)2

∂km

(
T n+1

i− 1
2

)
∂T n+1

i−1
·
(
T n+1

i − T n+1
i−1

)
− km

(
T n+1

i− 1
2

) , (36)

Similarly, the boundary conditions will be disclosed. Taking into account the dependence of
thermal conductivity and heat transfer coefficients on temperature, let us consider left boundary
condition from (29) and rewrite it as:

H
(
T n+1

0 , T n+1
1

)
≡ km

(
T n+1

1
2

)
T n+1

1 − T n+1
0

∆x
hm(T n+1

0 )
(
T n+1

0 − T L,n+1
∞

)
= 0. (37)

Using Newton’s method, the corresponding equation is found:

∂H(T n+1,s
0 , T n+1,s

1 )
∂T n+1

0

(
T n+1,s+1

0 − T n+1,s
0

)
+ ∂H(T n+1,s

0 , T n+1,s
1 )

∂T n+1
1

(
T n+1,s+1

1 − T n+1,s
1

)
+

+ H(T n+1,s
0 , T n+1,s

1 ) = 0.

(38)
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Let’s expand the derivatives:

∂H(T n+1
0 , T n+1

1 )
∂T n+1

0
=

km

(
T n+1

1
2

)
∂T n+1

0
· T n+1

1 − T n+1
0

∆x
−

km

(
T n+1

1
2

)
∆x

−

−
∂hm

(
T n+1

0

)
∂T n+1

0

(
T n+1

0 − T L,n+1
∞

)
− hm(T n+1

0 ),

(39)

Similarly

∂H(T n+1
0 , T n+1

1 )
∂T n+1

1
=

km

(
T n+1

1
2

)
∂T n+1

1
· T n+1

1 − T n+1
0

∆x
+

km

(
T n+1

1
2

)
∆x

,
(40)

Using same procedures, you can apply Newton’s method for the other boundary condition.
Taking linearized solution of discrete problem (28) as an initial iteration for Newton’s

method and using Thomas’ method to solve (32) - (40) one can find solution of the nonlinear
problem.

4 Experimental design

(a) (b)

Figure 4. Containers with different soils (a), container’s backside with sensor cabels (b).

The experimental facility is created and used to obtain the data for finding thermophysical
properties of real soil. The setup is 3D printed a two-chamber container with interior mea-
surements 30 cm × 12 cm × 10 cm, built with 1 cm thick thermal insulated walls. A picture
of the experimental setup is shown in Figure 4. First chamber was filled with sand and the
second with chernozem. Containers’ front side is heated with lamps. In this research radiation
from the lamps is neglected due to dominance of convective and conduction regimes at lower
temperatures. The rear surface is influenced by the ambient temperature. The total sequence of
experimental data corresponds to 10 days and the physical domain is defined for x ∈ [0, ξ]×[ξ, L]
with ξ = 15 cm and L = 30 cm.

In case of sensors, two-chamber containter is monitored as shown in Figure 1. Two thermo-
couples (TC) are set on front and rear surfaces of the chamber. One sensor is set on the contact
between two materials x = ξ as illustrated on Figure 1. The position uncertainty is σx = 0.5 cm
on the x−axis. The outside temperatures of air are measured with a sensor placed close to
front and rear surfaces. Each sensor consecutively measure temperature every 10 min, which is
illustrated in Figure 5.
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The total uncertainty on the observations are evaluated through the propagation of the
uncertainties. For the temperature, the total uncertainty is computed according to:

σT =
√

σ2
m + σ2

x + σ2
t , (41)

where σm = 0.1 ◦C is the measurement sensor uncertainty, σx is the uncertainty due to the
sensor location and σt is the uncertainty due to the response time of the sensor. The last terms
are given by:

σx = ∂T

∂x
δx, σt = ∂T

∂t
δt, (42)

where δx = 0.5 cm and δt = 0.75 s are position uncertainty and the response time of the
sensor, respectively. The term ∂T

∂x in Eq.(42) is obtained at the location of the sensors using the
numerical solution. In case of ambient air this term is omitted. The second term ∂T

∂t is computed
using the measurements and a discrete second order finite difference scheme. The uncertainty
of the measurements compared to estimated temperature are shown in Figure 6 and Figure 9 in
the gray shadows.

The temperature at t = 0 is assumed to be interpolation of measured temperature. Thus,
first order polynomials of x ∈ [0, L] are fitted for each chamber of the container.

T 0 (x) =


(

Y 0
ξ −Y 0

0
)

·x
L + Y 0

0 , x ∈ [0, ξ],(
Y 0

L−Y 0
ξ

)
·x

L + Y 0
ξ , x ∈ [ξ, L].

(43)

These interpolation functions are used as initial conditions for numerical solution.

Figure 5. Measurement time variations of the left and the right ambient temperatures and the
temperature at x = ξ.

5 Results and discussion
The thermophysical properties estimation problem is solved using the algorithm described

in Section 2.4. The time and space steps are ∆t = 10 min and ∆x = 3.75 × 10−4 m. The a
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Table 1. The a initial and estimated values of the first material parameters

k1,0 k1,1 k1,2 k1,3 c1,0 c1,1 ρ1,0 ρ1,1 h1,0 h1,1

a priori values 0.33 0 0 0 0.19 0 1520 0 5 0

Estimated values 0.2313 1.4 · 10−4 9.5 · 10−5 −1.1 · 10−6 0.1782 0.0014 1413 3.1713 4.6896 0.0338

Table 2. The initial and estimated values of the second material parameters

k2,0 k2,1 k2,2 k2,3 c2,0 c2,1 ρ2,0 ρ2,1 h2,0 h2,1

a priori values 0.6 0 0 0 0.2 0 1600 0 5 0

Estimated values 0.6359 8.3 · 10−5 1.1 · 10−4 −1.2 · 10−6 0.1794 0.0021 1511 2.9314 4.9048 0.0375

Figure 6. Variation of the temperature from experimental observations (Y0, YL), the
temperature with a priori material properties (T ∗

0 , T ∗
L) and the estimated temperature (T0, TL)

at x∗ = 0 and x∗ = L.

Table 3. Correlation between the sensitivity coefficients for heat conductivity parameters of two
materials.

k1,0 k1,1 k1,2 k1,3

k1,0 1 −0.93 −0.94 0.92

k1,1 − 1 0.83 −0.81

k1,2 − − 1 −0.86

k1,3 − − − 1

k2,0 k2,1 k2,2 k2,3

k2,0 1 −0.92 −0.69 0.88

k2,1 − 1 0.81 −0.87

k2,2 − − 1 −0.79

k2,3 − − − 1

priori material properties are given from table values from Tables 1 and 2. The reliability of the
a priori values are well established in [31]. Then, the parameter estimation problem is solved
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Figure 7. Variation of the error between estimated and experimental observation temperatures
ε = Y n

x∗ − T n
x∗ at x∗ = 0 and x∗ = L.

Table 4. Correlation between the sensitivity coefficients.

(a) Same container

k1,0 c1,0

k1,0 1 0.79

c1,0 − 1

(b) Different containers

k1,0 k2,0

k1,0 1 0.87

k2,0 − 1

(a) (b)

Figure 8. The variation of the objective function with respect to iteration for the first (a) and
the second (b) materials.
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Figure 9. Comparison of the experimental observations (Y0, YL) and the temperature with
estimated parameters (T0, TL) at x∗ = 0 and x∗ = L for the additional 5 days.

considering the ten days of experiments. The obtained estimated results are reported in the
Tables 1 and 2. The value of the parameter is in accordance with the physical expectations.

The results from direct problem are then compared to the experimental observation data. The
respective measurements with uncertainty boundaries in two sensor locations x∗ = 0 and x∗ = L
and the temperature for a priori and estimated values from the direct problem are illustrated
in Figure 6. The estimation values were in satisfactory agreement for all points of observations
unlike a priori values. The discrepancy between numerical predictions and observations remains
in the uncertainty band of the measurements. At last day of observations there are some little
discrepancies for the temperature at x∗ = L. The residual error between the observations and
the numerical results are given in Figure 7 for the temperature at different sensor locations
respectively. As expected residuals are higher at the end of the experiments t ∈ [9, 10] d, which
indicate that some physical phenomena may be omitted in the mathematical model, particularly
during the sharp/quick increase in temperature.

The calculation of the sensitivity equations are realised using the numerical problems (24)-
(27) described in Section 2.3. The space and time discretization are the same as in the direct
problem. It is important to remark that the twenty parameters are theoretically identifiable
because the experimental design enables to obtain two observable experimental data at the
boundaries. First field divided to ten time intervals for the ten unknown parameters from first
material and second field in the same way divided for other ten unknown parameters for second
material. Without these constrictions for calculation time intervals for each parameter, the
theoretical identifiability could not be demonstrated.

The correlation between the sensitivity coefficients for some parameters which are calculated
in the same time interval are given in Tables 3 and 4. Thus due to linear dependency of
parameters it is impossible to calculate parameters in the same time intervals. The correlation
between unknown parameters is reduced by using different observation time steps and different
sensor locations for each coefficient like it was mentioned before. From practical point of view
all the unknown parameters are identifiable.

Figure 8 illustrates the variation of the objective function with respect to iteration from
the initial step until the convergence point of the criteria (22). Less than 10 iterations are
required for the algorithm to estimate the parameters. This is achieved due to steepest gradient
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property of Levenberg-Marquardt method for parameter estimation in (18). In addition, the
computational time of the direct problem also fast thanks to the convergence of the Newton’s
method. It is important to note that a priori values for the unknown parameters and for
the temperature in Newton’s method is crucial for the fast convergence. The regularization
parameter α from Eq. 11 which is found from L-curve is equal to 0.01. Figure 2 illustrates a
tradeoff-curve between temperature and parameters residuals. It can be seen that if too much
regularization or damping is imposed on the solution, then temperature residual will be too large.
On the other hand, if too little regularization is imposed, then the solution will be dominated
by the contributions from the data errors, hence parameter residual will be too large.

Last, the reliability of the model is evaluated. For this, the numerical predictions of the
model are compared against an extra-set of measurement data (not used to get the inverse
problem solution). The experimental data for the next five days t ∈

(
10 , 15

]
d are used.

Figure 9 shows the comparison of temperature using estimated thermophysical parameters with
experimental data. A very satisfying agreement is observed between the numerical predictions
and the observations, validating the reliability of the calibrated model.

6 Conclusion
The knowledge of the soil thermophysical properties is an important part of the assessment

of soil energy balance. This article is concerned with the estimation of these parameters such as
the thermal conductivity, the heat specific heat capacity, density and heat transfer coefficients of
two different materials, which are sand and chernozem. These parameters are assumed as non-
linear, i.e. varying with the temperature field. Real experiment was conducted, a two-chamber
container was constructed to obtain experimental data. It was monitored by five sensors: two
were placed on the rear ends of the container, two close to the rear ends to measure ambient
temperature and one located at the border of two soil materials. The experimental set up is
carried out during fifteen days. One side of the container is exposed to heat. Ten days data
are used to estimate unknown parameters and five days data are used to evaluate the reliability
of the model. The nonlinear direct problem was solved with finite-difference by using an im-
plicit discretization in time. The Newton’s method is used to solve nonlinear problem. The
Levenberg-Marquardt method is employed to solve the parameter estimation problem and
minimized the least square estimator with Tikhonov’s regularization. Selection of the regular-
ization parameter is made through L-curve technique, which helped to alleviate instabilities on
the solution of the ill-posed nature of the inverse problem. Proper use of regularization parame-
ter allowed us to avoid oscillations of the solution and increase a speed of the convergence of the
objective function. The sensitivity coefficients are computed by derivative-based approach with
direct differentiation of the governing equations which leads to solution additional sensitivity
equations for all parameters. It provides an accurate and continuous time-varying sensitivity
coefficients. The results highlight that the algorithm is efficient and fast to obtain the solution
of the inverse heat conduction problem. The estimated parameters are in accordance with a
priori values. Last, the experimental data for the first 10 days t ∈

[
0 , 9

]
d is used to solve

inverse problem and for the reliability the experimental data for next 5 days t ∈
[
10 , 15

]
d is

used. The reliability of the calibrated model is satisfying with a discrepancy between numerical
predictions and experimental observations remaining within the measurement error. Described
method allows nondestructive practical application for estimation of thermophysical properties
in real field problems. Further research should focus on extending the methodology for more
complex physical models including, coupled heat and mass transfer in porous materials and
implementation of the algorithm in real field conditions.
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