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Abstract

In the context of better evaluating the energy balance between the ground surface and the
urban thermal environment, the ground diffusivity is a crucial parameter. The aim of this
paper is to indirectly measure this property of an heterogeneous ground by solving an inverse
problem. The conjugate gradient method with adjoint problem formulation was applied to
solve the inverse problem with temperature measurements taken at different depths obtained
in an experiment reported in the literature. Results show that the inverse problem solution
was stable and effective. Estimated values of thermal diffusivity obtained in this works were
in accordance with literature values. The reliability of the mathematical model with the
estimated thermal diffusivity values was addressed with measurements different from those
used for the inverse analysis.

Key words: inverse heat conduction problem; heat equation; thermal diffusivity; con-
jugate gradient method; urban ground.

1 Introduction
In accordance with the recent statistics, the global urbanization rate is above 50% and it is

expected to further increase in the future. The speed and scale of urbanization has a crucial effect
on the urban thermal environment. One of the serious issues in terms of global warming are the
urban heat islands (UHI). It has several consequences on outside comfort, microclimate and on
building energy needs [1–4]. The heat flux from the urban material is one of the reasons for UHI
development. Ground heat flux is a key determinant of the temperature of the ground surface
and it couples the energy transfer process at the surface with the energy transfer processes in
the ground [5–7]. An introduction to the challenges for elaborating an accurate representation of
the physical phenomena can be found in [8]. For the physical modelling, the thermal properties
of the ground, such as thermal conductivity, volumetric heat capacity, or more globally the
thermal diffusivity, are crucial parameters on ground heat flux and energy balances according
to [9]. Consequently, knowledge of accurate values of these properties of the ground is highly
important.

The thermal diffusivity of ground can be determined by direct measurements on samples, as
presented in [10, 11] for instance. However, such measurements are particular to the samples
and sometimes destructive. An alternative solution to retrieve the properties is to solve a
parameter estimation problem with in-situ measurements [12, 13]. It consists of finding the
material properties that minimizes the difference between experimental observations obtained
by in-situ measurements and the model predictions. Several works from the literature focusing
on ground diffusivity estimation will be mentioned in the following. Note that most of the
approaches are based on one-dimensional heat transfer equation.

One of the first analytical method for the in-situ estimation considers the first harmonic
of daily waves, as widely discussed in [14]. This amplitude method assumes that the thermal
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diffusivity does not depend on depth or time. In addition, the temperature at the upper bound-
ary is described by a sinusoidal function on a daily basis. A modified version of the amplitude
method was proposed by [15]. Moreover, the so-called Arctangent method [16] was proposed
considering two harmonics. Similarly, the Logarithmic method was developed by [17] considering
four harmonics and in [18] it was used to determine the thermal diffusivity. All these proposed
methods assumed a constant diffusivity. Thus, it can be applied to a single layer by considering
a homogeneous medium, such as in [19]. However, grounds are naturally heterogeneous and this
fact is reflected on their physical properties.

In order to indirectly measure heterogeneous thermal diffusivities, the inverse problem proce-
dures must rely on temperatures measured at different ground locations. Inverse problems based
on actual experimental data are in general complicated since solutions are affected by both mea-
surement and model errors. Thus, most of the works devoted to the estimation of heterogeneous
ground thermal properties were based on simulated measurements [20–22]. Some studies indeed
considered actual measurements such as [23, 24]. In [23] the Levenberg–Marquardt method was
used to solve the inverse problem. Although the results of the method were accurate, they are
limited to laboratory experiments and need to be validated for real field experiments. In [24],
the thermal conductivity was considered as dependent on ground types and moisture content.
It was assumed three ground layers: top (10 cm), mid or transition (15 cm) and deep (1.35 m).
The Shuffled Complex Evolution method was used for solving the inverse problem. Authors have
determined that the inverse approach based on field data was able to estimate hydraulic and
thermal properties. Results for the deep layers were satisfying. However, authors concluded that
further investigations were required to gain confidence on the values estimated for the param-
eters of the top layers. Considering the above cited studies and since the estimation methods
of ground thermal diffusivity with real data are poorly studied, more research is still needed on
this issue.

The objective of this work is to apply the conjugate gradient method with adjoint prob-
lem formulation for estimating the thermal diffusivity of a heterogeneous ground using actual
temperature measurements at different depths from the surface [19]. Several works are avail-
able in the literature on the use of this method for the solution of inverse problems in heat
transfer [20, 25–31]. O.M. Alifanov [28] and his group in the Moscow Aviation Institute have
demonstrated the iterative regularization character of the conjugate gradient method with ad-
joint problem formulation, particularly when the stopping criterion of the iterative procedure is
selected based on Morozov’s Discrepancy Principle [28, 29].

This paper is structured as follows: Section 2 presents the description of the physical model,
the inverse problem method and its algorithm. Section 3 discusses a case study starting from the
known parameters of the model. Then, the practical identifiability is demonstrated. Next, results
of the parameter estimation problem are presented. Finally, comparison of model predictions
with additional data is shown.

2 Methodology
The solution of the inverse problem by using the conjugate gradient method with adjoint

problem formulation for estimating the thermal diffusivity of a heterogeneous ground consists of
the following basic steps: (i) direct problem formulation that describes the Physical Phenomena;
(ii) inverse problem formulation; the solution of auxiliary problems, known as (iii) sensitivity
problem and (iv) adjoint problem is required for the minimization of the objective functional;
(v) gradient equations; (vi) the iterative procedure; and (vii) computational algorithm. The
detailed description of each steps are outlined below.
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2.1 Description of Physical Model

The physical problem considers one-dimensional non-stationary heat transfer in grounds de-
fined by the spatial domain Ω x = [0, L], where L

[
m

]
is the ground depth and Ω t = [0, t f ] is the

time domain, where t f

[
s

]
is the time horizon for investigating the phenomena. The physical

problem can be formulated as:
ρc ρ

∂T

∂t
= ∂

∂x

(
κ

∂T

∂x

)
, (1)

where ρ
[
kg · m−3 ]

is the density, c ρ
[
J · kg−1 · K−1 ]

is the specific heat, κ
[
W · m−1 · K−1 ]

is
the thermal conductivity, T

[
K

]
is the temperature of the ground depending on spatial x and

time t variables.
The thermal properties vary depending on the ground depth, as shown in Figure 1. A total

of N layers is considered for the geometry. It is thus assumed that:

ρ ≈ ρ 0 , c ρ ≈ c 0 , κ = κ( x ) .

that is, with the objective of estimating the thermal diffusivity of each layer, the effective
densities and heat capacities of each layer are assumed constant, while the thermal conductivities
vary spatially.

Note that the value of thermal diffusivity, α
[
m2 · s−1 ]

, in Section 3 is calculated as:

α = κ

ρ 0 c 0
.

As the heat transfer coefficient and radiation flux are not defined experimentally, considering
Robin boundary conditions imply additional unknown parameters (such as the surface heat
transfer coefficients, the material absorptivity, etc.) and thus the inverse problem become more
complex to solve. Here, to reduce the number of unknown parameters, we propose to use directly
the measured data at the surface and at the depth of x = L as Dirichlet boundary conditions:

T = T 0(t), ∀t ∈ Ω t , x = 0 , (2a)

T = T ∞(t), ∀t ∈ Ω t , x = L . (2b)

The initial condition is:

T = T in(x), ∀x ∈ Ω x , t = 0 . (3)

The above-mentioned equations (1) to (3) define the direct or forward problem, so that the
distribution of temperature T (x, t) can be computed when the physical properties, geometry,
number of ground layers, initial and boundary conditions are known.

2.2 Dimensionless formulation

This section presents the dimensionless form of equations (1)–(3). The following dimensionless
variables are defined:

t∗ = t

t ref
, x∗ = x

L
,

U = T

T ref
, U 0 = T 0

T ref
, U ∞ = T ∞

T ref
U in = T in

T ref
,

3



Figure 1. Illustration of the physical model.

and the dimensionless coefficients:

k = κ

κ ref
, Fo = κ ref · t ref

ρ · c ρ · L2 .

Thus, the heat equation (1) is re-written as:

∂U

∂t∗ = Fo
∂

∂x∗

(
k(x∗) ∂U

∂x∗

)
, (4)

with the Dirichlet–type boundary conditions:

U(0, t∗) = U 0(t∗) , U(1, t∗) = U ∞(t∗) , (5)

and the initial condition:
U(x∗, 0) = U in(x∗) . (6)

2.3 Inverse Problem

This section presents the methodology to solve the inverse problem in terms of the dimension-
less variables defined above. However, for the sake of clarity, the superscript ∗ is omitted. In the
inverse problem, the objective is to retrieve the thermal diffusivity of each layer, i.e., estimate
the function k(x) . For this, the unknown function k(x) is parameterized using a general linear
form given by:

k(x) =
N∑

i=1
ki ϕi(x), (7)

where

ϕi(x) =

 1 , xi ≤ x ≤ xi+1 ,

0 , otherwise.
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Therefore, the objective of the inverse problem is to estimate N unknown parameters ki, i ={
1, ..., N

}
, in the vector:

k =
(

k1, k2, ... kN

)
.

The following objective function is minimized to retrieve the parameter vector k, using additional
information from the experimental values of the temperature measured with M sensors:

S
(
k

)
=

M∑
m=1

∫ tf

0

(
U(xm, t, k) − Ym(t)

)2

σ2
m(t) dt, (8)

where Ym(t) are the measured values of temperature at the M measurement positions xm, and
U(xm, t, k) is the solution of direct problem (4)–(6) evaluated at the same measurement positions
xm with a given k. The measurements are supposed to be uncorrelated, with known variance
given by the function σ2

m(t) varying in time for the sensor m .
Auxiliary sensitivity and adjoint problems are solved in order to minimize the objective func-

tion (8). The solution of the sensitivity problem is the directional derivative of the temperature
U(x, t) in the direction of the perturbation of the unknown parameters [28, 31]. The solution of
the adjoint problem is a Lagrange multiplier needed for the computation of the gradient equation
[28, 31].

2.3.1 Sensitivity Problem

The sensitivity problem can be obtained by assuming that the temperature U(x, t) is per-
turbed by ∆U(x, t), when the thermal conductivity k(x) is perturbed by ∆k(x). By replacing
U(x, t) by U(x, t)+∆U(x, t) and k(x) by k(x)+∆k(x) in the direct problem (4)–(6), and then by
subtracting the direct problem from the resulting expressions, we obtain the following sensitivity
problem:

∂∆U

∂t
= Fo

∂

∂x

(
k(x)∂∆U

∂x

)
+ Fo

∂

∂x

(
∆k(x)∂U

∂x

)
, (9a)

∆U(0, t) = 0 , ∆U(1, t) = 0 , ∆U(x, 0) = 0 . (9b)

2.3.2 Adjoint Problem

In order to obtain the adjoint problem, we use the following extended objective function:

S
(

k
)

=
M∑

m=1

∫ 1

0

∫ tf

0

(
U(x, t, k) − Ym(t)

)2

σ2
m(t) · δ(x − xm) dt dx

+
∫ 1

0

∫ tf

0
λ(x, t)

(
Fo

∂

∂x

(
k(x)∂U

∂x

)
− ∂U

∂t

)
dt dx,

(10)

where δ is the Dirac delta function, λ(x, t) is the Lagrange multiplier. An expression for
∆S(k) of the function S(k) can be obtained by perturbing U(x, t) by ∆U(x, t), and k(x) by
∆k(x) in equation (10). By replacing U(x, t) by U(x, t) + ∆U(x, t), k(x) by k(x) + ∆k(x) and
S(k) by S(k) + ∆S(k) in (10), subtracting equation (10) from the resulting expression, and
neglecting second-order terms, we obtain the following expression:

∆S
(

k
)

=
M∑

m=1

∫ 1

0

∫ tf

0
2

(
U(x, t, k) − Ym(t)

)
σ2

m(t) ∆U(x, t) · δ(x − xm) dt dx

+
∫ 1

0

∫ tf

0
λ(x, t)

(
Fo

∂

∂x

(
∆k(x)∂U

∂x

)
+ Fo

∂

∂x

(
k(x)∂∆U

∂x

)
− ∂∆U

∂t

)
dt dx,

(11)
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The second integral on the right-hand side of equation (11) is simplified with integration
by parts and by utilizing the boundary and initial conditions of the sensitivity problem. The
following expression results:

∆S
(

k
)

=
∫ 1

0

∫ tf

0

(
∂λ

∂t
+ Fo

∂

∂x

(
k(x)∂λ

∂x

)
+ 2

M∑
m=1

U(x, t, k) − Ym(t)
σ2

m(t) · δ(x − xm)
)

∆U dt dx

+
∫ tf

0
λ Fo ∆k(x) ∂U

∂x

∣∣∣∣1
x=0

dt −
∫ 1

0
λ ∆U

∣∣∣∣
t=tf

dx −
∫ 1

0

∫ tf

0
∆k(x) Fo

∂λ

∂x

∂U

∂x
dt dx.

(12)

The boundary value problem for the Lagrange multiplier λ(x, t) is obtained by allowing the
first three integral terms on the right-hand side of (12) to vanish. Thus, the following adjoint
problem results:

∂λ

∂t
+ Fo

∂

∂x

(
k(x)∂λ

∂x

)
+ 2

M∑
m=1

U(x, t, k) − Ym(t)
σ2

m(t) · δ(x − xm) = 0 , (13a)

λ(0, t) = 0 , λ(1, t) = 0 , λ(x, tf ) = 0 . (13b)

2.3.3 Gradient Equations

In the limiting process used to obtain the adjoint problem (13), the following integral term
remains on the right-hand side of equation (12):

∆S
(

k
)

= −
∫ 1

0

∫ tf

0
Fo

∂λ

∂x

∂U

∂x
dt∆k(x) dx.

By definition, the directional derivative of S
(

k
)

in the direction of the vector ∆k is given
by the scalar product of the gradient vector ∇S

(
k

)
and the direction ∆k(x). By using this

definition and the above equation, the following expression is obtained for the gradient direction:

∇S(k) = −
∫ tf

0
Fo

∂λ

∂x

∂U

∂x
dt, (14)

2.3.4 The iterative procedure

The iterative procedure is now written by taking into account the parameterization of the
function k(x) in terms of constant by parts basis functions (equation 7). Starting from an initial
guess k0, the iterative procedure for the estimation of the unknown vector at iteration n + 1 is
[13, 31]:

kn+1 = kn + βnαn, (15)

where
αn = −∇Sn + γnαn−1, (16)

and

βn =

M∑
m=1

∫ tf

0

[Ym(t) − U(xm, t, kn)]
σ2

m(t) ∆U(xm, t, αn) dt

M∑
m=1

∫ tf

0

[∆U(xm, t, αn)]2

σ2
m(t) dt

, (17)

where ∆U(xm, t, αn) is the solution of the sensitivity problem (9) by making ∆kn = αn.

By using Polak–Ribiere’s version [32] of the conjugate gradient method, the conjugation
coefficient is given by:
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γn =

∫ 1

0
∇Sn[∇Sn − ∇Sn−1] dx∫ 1

0
[∇Sn−1]2 dx

, (18)

with γ0 = 0 for n = 0. The iterative procedure is applied until a stopping criterion is satisfied.
In this work, the following stopping criteria proposed by Dennis and Schnabel [33] was used:

∥kn+1 − kn∥ < ε1, (19)
and

S
(

kn )
< ε2, (20)

where ε1 is user-defined tolerance and ∥ · ∥ is the Euclidean norm. The first criterion (19)
evaluates the change in the unknown parameters between two iterations. The second crite-
rion (20) assess the objective function. The tolerance ε2 is set using Morozov’s discrepancy
principle [13, 28, 29, 31], considering the standard deviation σm(t) of the measurements as a
priori known. Thus, the tolerance ε2 is obtained from (8), by assuming:∣∣ U(xm, t, k) − Ym(t) | ≈ σm(t),

and thus ε2 = M tf .

2.3.5 The Algorithm

The computational algorithm of the conjugate gradient method with adjoint problem for-
mulation for the estimation of the unknown parameter vector k can be given by the following
steps.

Algorithm 1 Algorithm for the conjugate gradient method with adjoint problem.
Require: k0 (initial guess), Y (measured temperatures)
Ensure: kest (estimated value)

1: Set n = 0 and k 0

2: while ∥kn+1 − kn∥ > ε1 or S
(

kn+1 )
> ε2 do

3: Compute the direct problem (4)–(6) for given k n

4: Solve the adjoint problem (13)
5: Compute the gradient vector ∇S

(
k

)
from Eq. (14)

6: Compute the conjugation coefficients γn, with γ0 = 0 from Eq. (18)
7: Compute the direction of descent αn from Eq. (16)
8: By setting △kn = αn, compute sensitivity problem (9)
9: Compute the search step size βn from Eq. (17)

10: Compute the new estimate kn+1 from Eq. (15)
11: Evaluate the stopping criteria with Eqs. (19) and (20)
12: n = n + 1
13: end while

3 Case study

3.1 Description

The objective is to estimate the thermal diffusivity of the different layers of the ground. In the
first case examined here, the total depth is L = 75 cm. The experimental data were provided
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Figure 2. Time variation of the boundary conditions.

by [19], from experiments at a parking lot located within the IFSTTAR Institute in Bouguenais,
France. The parking lot structure was composed of 5 cm thick layer of asphalt concrete pavement,
and a ballast layer under it. Thermocouples were installed to measure the temperature at
different ground depths. The measurements at the surface x = 0 and at the bottom x = L
were used as prescribed temperature boundary conditions for the direct problem (2). Their time
variations given as T0(t) and T ∞(t) are shown in Figure 2. The M = 11 sensors were positioned
at x m ∈

{
1 , 2 , 3 , 4 , 5 , 6 , 10 , 15 , 24 , 34 , 50

}
cm . Regarding the initial condition, it was

obtained by interpolating the values of temperatures at each measurement positions at t = 0 .
In [19] the ground thermal properties were not measured directly during the experiments.

According to the authors, the first layer characteristics were obtained using the temperature
measurements at x = 0 cm and x = 1.5 cm with the amplitude method [34]. The obtained
value of the thermal diffusivity, considered as a priori information in our work, was αapr =
1.16 · 10−6 m2 · s−1. Note that it has been determined as a constant diffusion coefficient for the
first 24 cm of the ground. The following mean values for density and specific heat of the dry
asphalt concrete were used ρ 0 = 2050 kg · m−3 and c 0 = 920 J · kg−1 · K−1, taken from [35].

The initial experiments from [19] were done during 144 h (on June 6 - 12, 2004) in the
parking lot of 2500 m2 flat bare asphalt square. During the whole measurement period, only
one natural rain was observed on June 10, and short drizzles on June 8 and 9. The sprinkler
system to simulate rain events was adjusted previously (on June 3 and 4), so that all the water
fell within the instrumented squared area. Then, starting from June 7 - 11 two simulated rain
events were performed each day at different times after the asphalt had completely dried out.
They lasted from 20 to 40 min. Conditions on the other days were sunny with cumulus clouds.
June 6 was a clear sky day. Since in our model, the phase change of moisture was not taken
into account, the estimation procedure was carried out up to t f = 28 h (just before the first
rain event). The reliability of the model with estimated parameters will be evaluated including
the remaining period, i.e., for times in the interval

[
28 , 144

]
h .

The total uncertainty for each measured temperature at the point x m was computed by the
following formula [36] :

σ m =
√

σ2
meas + σ2

pos , ∀ m ∈
{

1 , . . . , M
}

, (21)

where σmeas = 0.1 ◦C is the sensor measurement uncertainty and σpos is the sensor location
uncertainty, which is given by following formula:

σpos = ∂T

∂x

∣∣∣∣
x = x m

· δx , (22)
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where δx = 0.01 m is the position uncertainty and ∂T

∂x
is obtained at the sensor locations

using the numerical model. The quantity σ m varied in time. Note that to solve the parameter
estimation problem, the values of position uncertainty σpos was obtained using αapr. The Figures
6, 7 and 8 exhibit the total uncertainty interval in gray color given by the the standard deviation.
Here, experimental errors as sensor measurement and position uncertainties, are assumed as
independent and normally distributed.

3.2 Practical identifiability

It is important to analyze the sensitivity coefficients before attempting to solve the parameter
estimation problem, in order to evaluate the identifiability of the unknowns. Different approaches
exist for the computation of sensitivity coefficients. In our case, the central finite-difference
approximation was used, that is,

Xpij ≈ Ti(k1 , k2 , ... , kj + εkj , ... , kN ) − Ti(k1 , k2 , ... , kj − εkj , ... , kN )
2 ∆k

kj ,

where ∆k = 10−2.
The sensitivity coefficients were obtained using known model parameters (κ = 2 .19 W · m−1 · K−1

using thermal diffusivity from [19] given ρ 0 and c 0 ), for each 11 sensor locations. Figures 3(a)
- 3(d) present the time-dependent variations of the sensitivity coefficients at each sensor loca-
tion. The sensitivity of the parameter k is larger for the sensors located far from the bound-
aries because of the Dirichlet-type boundary condition of the model. The temperature being
prescribed, the diffusivity is less influenced near the boundaries. We can conclude that the
measurements are more sensitive to the parameters in the middle of the domain. Moreover, as
in the middle of the domain a sensitivity coefficient has larger magnitudes, we can identify the
parameter with better precision [37].

3.3 Results of the Parameter Estimation Problem

The inverse problem was solved using the conjugate gradient method with adjoint problem
formulation presented in Section 2.3.5. Numerical solutions of the forward, sentivity and adjoint
problems were obtained using the Dufort–Frankel scheme [38]. The dimensionless space and
time discretizations used were ∆x = 10−2 and ∆t = 10−4 , respectively. The estimated thermal
diffusivity was found from:

αest = κest

ρ 0 c 0
.

The conjugate gradient method is known to be sensitive to the initial guess used in the iterative
procedure. Thus, different initial guesses were considered to solve the parameter estimation
problem, as summarized in Table 2. In the first case, the thermal diffusivity used as initial
guess is constant over the whole domain. The constant is taken around the a priori thermal
diffusivity obtained from the investigations carried out in [19]. Preliminary testes, obtained
with the constant initial guesses of cases αin,0 to αin,4, all resulted in linear variations of the
thermal diffusivity with the ground depth. Therefore, new initial guesses were tested, with a
linear decrease of the thermal diffusivity, in cases αin,5 to αin,8. The values used in these linear
variations were obtained from the thermal diffusivity obtained in case αin,3, which resulted in
the least value of the objective function with constant initial guess.

Two stopping criteria were used for the iterative procedure to solve the parameter estimation
problem. As shown in Figures 4(a) and 4(b) the iterative process was stopped after reaching
the tolerance ε1 = 10−5, given by the first stopping criterion (19). It should be noted that the
value of tolerance (ε2 = 308) given by the second stopping criterion (20) was not reached for all
the initial guesses as shown in Figure 4(c) and Figure 4(d). Thus the estimated results did not

9



0 4 8 12 16 20 24 28

-3

-2

-1

0

1

2

3

4

5
10

-4

(a)

0 4 8 12 16 20 24 28

-3

-2

-1

0

1

2

3

4

5
10

-4

(b)

0 4 8 12 16 20 24 28

-3

-2

-1

0

1

2

3

4

5
10

-4

(c)

0 4 8 12 16 20 24 28

-3

-2

-1

0

1

2

3

4

5
10

-4

(d)

Figure 3. Sensitivity coefficients for a sensor at: (a) xm = 1, 2, 3 cm, (b) xm = 4, 5, 6 cm,
(c) xm = 10, 15, 24 cm, (d) xm = 34, 50 cm.

satisfy the discrepancy principle, probably because the standard deviations of the measurements
are not exactly known from a calibration procedure.

Table 2 provides the number of iterations needed for the estimation procedure. It ranges
between 8 and 21 iterations. Thus, the algorithm converges fast and the computational time
to solve the inverse problem is around 3 minutes. The CPU time has been calculated, using
Matlab platform on a computer with Intel(R) Core(TM) i9-10900 CPU @ 2.80GHz and 32 GB
of RAM.

The estimated diffusivity is presented in Figures 4(e) and 4(f) for the constant and linearly
decreasing initial guesses, respectively. The results obtained with both initial guesses are con-
sistent and exhibit a higher diffusivity for the first 15 cm and then a decreasing diffusivitiy for
deeper layers. As shown in from Figure 4(c) and Figure 4(d), the lowest value of the objective
function corresponds to the initial guess αin,5 (see Table 1). Thus, the estimated values of the
thermal diffusivities obtained with the initial guess αin,5 were used for the results presented
below. The Table 2 shows range of the estimated thermal diffusivity.

The thermal diffusivity was estimated along the ground depths obtained with different num-
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Figure 4. Variation of the change in the unknown parameters between two iterations: (a)
constant initial guess, (b) space varying initial guess. Variation of the objective function with
the algorithm’s iterations: (c) constant initial guess, (d) space varying initial guess. Spatial
variation of the a priori known and estimated heat diffusivity with: (e) constant initial guess,
(f) space varying initial guess.
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Figure 5. (a) Variation of the change in the unknown parameters between two iterations. (b)
Spatial variation of the a priori known and estimated heat diffusion coefficients according to
the number of layers N .

Table 1. Initial guess and number of iterations to solve the parameter estimation problem.

Initial guess, mm 2 . s −1 N iterations Objective Function

αapr 1 .16 −− −−

αin,0 1 .06 10 1524.20

αin,1 0 .95 15 1171.77

αin,2 0 .85 21 939.29

αin,3 0 .64 12 910.21

αin,4 0 .53 8 1218.71

αin,5 0.95 − 0.71x 13 761.85

αin,6 0.95 − 0.56x 18 777.84

αin,7 1.06 − 0.85x 11 776.80

αin,8 1.06 − 0.99x 9 768.63

Table 2. Estimated thermal diffusivity.

Material depth of the ground, x [cm] Literature α, [mm 2 . s −1] αest, [mm 2 . s −1]

dry asphaltic pavement 0 − 5 1 .15 − 1 .41 [39] 1 .10 − 1 .41

different types of soil > 5 0 .138 − 1 .72 [35, 40] 0 .36 − 1 .04

bers of layers N ∈
{

101 , 51 , 21
}

, with layer thicknesses of
{

0.75 , 1.5 , 3.75
}

cm , respectively.
Figure 5(a) shows the number of iterations needed for stopping iterative process: 13 iterations
were needed for N = 101 and N = 51, whereas 16 iterations were required for N = 21. From
Figure 5(b) it can be noticed that the spatial distribution of α est does not significantly vary
with N . We can also notice that the thermal diffusivity coefficient estimated here differs from
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Figure 6. Computed, a priori and measured values of temperature at several sensor locations.

the estimations of [19], denoted as a priori in Figure 5(b). However, our estimates were within
the range of values reported in the literature. For the asphalt layer (x ∈

[
0 , 5

]
cm), the diffu-

sivity reported in [39, 41] is within
[
0.44 , 1.44

]
mm 2 . s −1 . Regarding the soil (x > 5 cm), the

diffusivity values were between 0.138 [35] and 1.72 mm 2 . s −1 [40].
After the estimation procedure, the direct problem was solved with the estimated values

of the thermal diffusivities, as well as with the a priori known parameter. The correspond-
ing temperatures computed at six measurement positions and the respective measurements are
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Figure 7. Difference between computed and measured temperature values at sensor locations.

compared in Figures 6(a) - 6(f). These figures reveal that the temperatures computed with the
thermal diffusivities after the solution of the inverse problem agree with the measurements at
least as well as with the temperatures computed with the a priori known parameter. However,
with the solution of the inverse problem the agreement between temperatures computed with

14



the estimated thermal diffusivities and measurements has significantly improved for positions
x m = 3, 24, 34 and 50 cm. Similar conclusions appear from the analysis of Figures 7(a) - 7(f),
which present the temperature residuals at the same measurement positions of Figures 6(a) -
6(f). The residuals are defined by the differences between measurements and temperatures com-
puted with estimated thermal diffusivities. Note that all residuals would be within the standard
deviations of the measurements (gray area in the figures) if the discrepancy principle is verified,
which tends to be the case at x m =

{
3 , 50

}
cm. For the other sensors, some local discrepancies

appear probably because of other uncertainties not accounted for in the mathematical model
and in the solution of the inverse problem. However, the residuals are still centered around zero
and quite small, that is, less than 1 ◦C.

Moreover, the Table 3 represents the mathematical analysis between the measured and com-
puted values of the temperature with estimations and a priori known values at each measurement
point. The Root mean squared error (RMSE) is calculated as the following equation:

RMSE m =
√∑

t(Ym(t) − U(xm, t, k))2

|t|
.

The Table 3 shows that the RMSE of the computed values of the temperature with estimations
is significantly lower than the a priori known values, except the x m =

{
1 , 10 , 15

}
cm. Conse-

quently, in the most part of the region estimated values of the thermal diffusivities gives more
accurate results than a priori known values.

Table 3. RMSE between the measured and computed values of the temperature with estimations
and a priori known values.

x m , cm 1 2 3 4 5 6 10 15 24 34 50

RMSEest , ◦ C 0.7321 0.6344 0.1827 0.3606 0.3883 0.4953 0.5325 0.4595 0.3584 0.3096 0.1383

RMSEapr , ◦ C 0.5801 0.6523 0.4534 0.7584 0.7747 0.9629 0.4830 0.4582 0.5599 0.5769 0.4449

3.4 Comparison of model predictions with additional data

The purpose of this section is to address the reliability of the mathematical model with the
estimated parameters, by using measurements that were not considered for the inverse problem
solution. As mentioned in Section 3.1, the inverse problem has been solved with measurements
within

[
0 , 28

]
h , just before the rain events. Now, the reliability is addressed by also comparing

measured and computed temperatures in
[
28 , 144

]
h , as shown by Figure 8. The rain events

are marked by green dots in Figure 8. An analysis of these figures reveal that the proposed
pure conduction model could also accurately predict the measurements at the points closer to
the top surface, where the largest temperature variations took place. Note that the constant
diffusivity proposed by the authors [19] provides acceptable results for the layers in depth higher
than x m = 15 cm.

The agreement between the computed temperatures and the measurements gets worse for
sensors distant from the ground top surface. However, even at these deep positions the tem-
peratures computed with the parameters after the solution of the inverse problem are in much
better agreement with the measurements than the temperatures computed with the a priori
known thermal diffusivity. Therefore, with the parameters estimated in this work, the proposed
pure conduction model could appropriately predict the ground behavior even when discrete rain
events took place.
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Figure 8. Evaluation of the model reliability by comparing predicted and measured temperature
for the time interval
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28 , 144

]
h .
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4 Conclusion
In this paper, an inverse heat conduction problem was solved to indirectly measure thermal

diffusivity spatial variation of an heterogeneous ground. The conjugate gradient method with
adjoint problem formulation was applied for the solution of the inverse problem. Actual experi-
mental data from a controlled experiment was used for the inverse analysis. The results obtained
in this paper revealed that the applied method converged fast after only few iterations. However
the discrepancy principle was not satisfied, but yet the estimated value of the thermal conductiv-
ity is better than the first study in the literature. Obtained values of thermal diffusivity were in
agreement with values reported in the literature. The reliability of the calibrated model was also
examined with measurements different from those used for the solution of the inverse problem.
An overall good reliability was observed, with small discrepancies between computed and mea-
sured temperatures near the surface (around 1.6 ◦C), where the ground behavior mostly interact
with the surrounding environment and is most important for micro-climate predictions. Future
works should focus on estimating other important parameters in the urban heat balance. Partic-
ularly, knowing precisely the thermal diffusivity of the ground, Dirichlet boundary condition
can be changed to Robin boundary condition to estimate the surface heat transfer coefficient and
the solar absorptivity. The proposed methodology can be applied to determine such parameters
that may vary with time (due to the wind velocity dependency). Moreover, having measured
values of humidity, developed methodology can be extended for inverse heat and mass transfer
problem to estimate ground moisture diffusivity.

17



Nomenclature

Latin letters

c ρ , c 0 specific heat capacity [J/(m 3.K)]

L ground depth [m]

t f final time [s]

T temperature [K]

t time [s]

x space coordinate [m]

U dimensionless temperature [ − ]

Fo Fourier number [ − ]

k dimensionless heat conductivity [ − ]

Greek letters

κ thermal conductivity [W/(m.K)]

α thermal diffusivity [m 2/s]

ρ , ρ 0 density [kg/m 3]

σm total standard deviation [ ◦C]

σmeas measurement standard deviation [ ◦C]

σpos sensor location standard deviation [ ◦C]

δx sensor position uncertainty [m]

Subscripts and superscripts

∗ dimensionless parameter

apr a priori parameter value

est estimated parameter value
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