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In this note, we consider a class of homogeneous second order systems which contains two relevant sub-classes: the first one in a controller form and the second one in an observer form. For both of them, we provide necessary and sufficient conditions on the gain parameters to guarantee oscillatory or non-oscillatory behavior of the solutions. This is in the same spirit of tuning of second order linear systems, where the gains can be designed to obtain an overdamped, critically damped or underdamped behavior. The analysis of all the cases is performed in a unified framework based on a search for invariant sets which are analogous to the invariant eigenspaces of linear systems.

Introduction

Homogeneity has proven to be useful for the analysis and design of nonlinear control systems [START_REF] Polyakov | Generalized Homogeneity in Systems and Control[END_REF]. For example, since linear systems are a special case of homogeneous systems, the latter ones are useful to approximate a wider set of nonlinear systems by keeping relevant nonlinear characteristics from the original one [START_REF] Zubov | Methods of A. M. Lyapunov and their applications[END_REF][START_REF] Hahn | Stability of Motion[END_REF][START_REF] Hermes | Nilpotent Approximations of Control Systems and Distributions[END_REF][START_REF] Andrieu | Homogeneous Approximation, Recursive Observer Design, and Output Feedback[END_REF][START_REF] Zavala-Río | Global finite-time stability characterized through a local notion of homogeneity[END_REF]. Other interesting feature of homogeneous systems are: local properties turn out to hold globally; in case of asymptotic stability of the origin, the homogeneity degree determines the type of convergence: exponential, finite-time, and nearly-fixed-time [START_REF] Hahn | Stability of Motion[END_REF][START_REF] Kawski | Homogeneous stabilizing feedback laws[END_REF][START_REF] Hong | On an Output Feedback Finite-Time Stabilisation Problem[END_REF][START_REF] Bacciotti | Liapunov Functions and Stability in Control Theory[END_REF][START_REF] Nakamura | Smooth Lyapunov functions for Homogeneous Differential Inclusions[END_REF].

On the other hand, the aims of the process of tuning the gains of a control system are, in general, twofold: to guarantee some kind of stability and to guarantee a desired or an acceptable performance. Regarding nonlinear homogeneous control systems, most of the works found in the literature are devoted to: the study of general properties, e.g. the existence of homogeneous controllers [START_REF] Kawski | Stability and nilpotent approximations[END_REF][START_REF] Hermes | Differential Equations, Stability and Control, chapter Homogeneous coordinates and continuous asymptotically stabilizing feedback controls[END_REF][START_REF] Sepulchre | Homogeneous Lyapunov functions and necessary conditions for stabilization[END_REF][START_REF] Grüne | Homogeneous State Feedback Stabilization of Homogenous Systems[END_REF], the existence of homogeneous Lyapunov functions [START_REF] Rosier | Homogeneous Lyapunov function for homogeneous continuous vector field[END_REF][START_REF] Nakamura | Smooth Lyapunov functions for Homogeneous Differential Inclusions[END_REF], and robustness [START_REF] Bernuau | Verification of ISS, iISS and IOSS properties applying weighted homogeneity[END_REF]; synthesis of controllers [START_REF] Orlov | Finite Time Stability and Robust Control Synthesis of Uncertain Switched Systems[END_REF][START_REF] Levant | Homogeneity approach to high-order sliding mode design[END_REF][START_REF] Cruz-Zavala | Homogeneous High Order Sliding Mode design: A Lyapunov approach[END_REF][START_REF] Polyakov | Robust stabilization of MIMO systems in finite/fixed time[END_REF]; synthesis of observers and differentiators [START_REF] Levant | Higher-Order Sliding Modes, differentiation and output-feedback control[END_REF][START_REF] Qian | Recursive observer design, homogeneous approximation, and nonsmooth output feedback stabilization of nonlinear systems[END_REF][START_REF] Andrieu | Homogeneous Approximation, Recursive Observer Design, and Output Feedback[END_REF][START_REF] Moreno | Arbitrary-order fixed-time differentiators[END_REF]; or construction of Lyapunov functions [START_REF] Sanchez | Design of Lyapunov functions for a class of homogeneous systems: Generalized forms approach[END_REF][START_REF] Efimov | Homogeneous Lyapunov Functions: From Converse Design to Numerical Implementation[END_REF]. However, most of the results that drive the problem of gain design are only to guarantee some stability properties. Thus, in general, there is a lack of results on the gain selection that provide guaranteed behavior of the trajectories.

The aim of this paper is to go in the performance direction. We show, by means of two relevant structures of second order nonlinear homogeneous systems, that it is possible to select the parameters of the system in order to obtain a guaranteed behavior of the trajectories, indeed, in a very similar way as it is done for linear systems. In particular, we provide necessary and sufficient conditions on the gain parameters to guarantee oscillatory or non-oscillatory behavior of the solutions. The analysis of all the cases is performed in a unified framework based on a search for invariant sets which are analogous to the invariant eigenspaces of linear systems. This simple analysis allows us to obtain the design conditions and a sort of characteristic function (which coincides with the characteristic polynomial in the linear case). It is important to mention that such an achievement has not been possible by means of the approach of generalized eigenvalues for homogeneous systems (see, e.g., [START_REF] Nakamura | Asymptotic stability analysis for homogeneous systems using homogeneous eigenvalues[END_REF]), nor by the approach of the projected dynamics on the homogeneous sphere (see, e.g., [START_REF] Hahn | Stability of Motion[END_REF]ch. III]).

Paper organization: In Section 2 we provide the preliminary definitions and results. In Section 3 we study the Controller form, and the Observer form is studied in Section 4. Finally, in Section 5, we provide some concluding remarks.

Notation: Real numbers are denoted as R. R >0 denotes the set {x ∈ R : x > 0}, analogously for the sign ≥. For x ∈ R n , |x| denotes the Euclidean norm. For x ∈ R, p ∈ R >0 , we use the notation ⌈x⌋ p := |x| p sign(x) and ⌈x⌋ 0 := sign(x).

Fundamentals

In this section, we recall the definition of weighted homogeneity, we describe the class of systems treated in the paper, and we state a result, which is the basic tool for the developments in sections 3 and 4.

Weighted Homogeneity

Definition 1 (See, e.g., [START_REF] Kawski | Stability and nilpotent approximations[END_REF]). Given a set of coordinates (x 1 , x 2 , . . . , x n ) for R n , let Λ r ϵ denote the family of dilations characterized by the square diagonal matrix Λ r ϵ = diag(ϵ r 1 , . . . , ϵ rn ), where r = [r 1 , . . . , r n ] ⊤ , r i ∈ R >0 , and ϵ ∈ R >0 . The components of r are called the weights of the coordinates. Thus:

a function V : R n → R is r-homogeneous of degree m ∈ R if V (Λ r ϵ x) = ϵ m V (x) for all x ∈ R n and all ϵ ∈ R >0 ; a vector field f : R n → R n , is r-homogeneous of degree µ ∈ R if f (Λ r ϵ x) = ϵ µ Λ r ϵ f (x) for all x ∈ R n and all ϵ ∈ R >0 .
A system ẋ = f (x) is r-homogeneous of degree µ ∈ R if its vector field f is r-homogeneous of degree µ. In case f is r-homogeneous and discontinuous, its associated Filippov differential inclusion preserves the homogeneity, see [START_REF] Nakamura | Smooth Lyapunov functions for Homogeneous Differential Inclusions[END_REF] for more details.

Description of the class of systems

Consider the system ẋ1 = k 11 ⌈x 1 ⌋ p 11 + k 12 ⌈x 2 ⌋ p 12 , ẋ2 = k 21 ⌈x 1 ⌋ p 21 + k 22 ⌈x 2 ⌋ p 22 , (1) 
with k ij ∈ R, i, j ∈ {1, 2}. Let us denote the state vector as (

x = [x 1 x 2 ] ⊤ ∈ R 2 .
Condition (2) guarantees that (1) is r-homogeneous of degree µ ∈ R, where r = [r 1 r 2 ] ⊤ and µ are such that for any r 1 ∈ R >0 ,

r 2 = (p 21 -p 11 + 1)r 1 , µ = (p 11 -1)r 1 . (3) 
System (1) belongs to the class of generalized forms studied in [START_REF] Sanchez | Design of Lyapunov functions for a class of homogeneous systems: Generalized forms approach[END_REF] and contains two relevant sub-classes discussed in Section 3 and Section 4. Now we give the result that constitutes the foundation for the rest of the paper.

Lemma 1. Consider (1) with (2) and (3).

The set

S α = {x ∈ R 2 : x 2 = -α⌈x 1 ⌋ r 2 r 1 } is positively invariant for (1) if k 12 ̸ = 0 and α ∈ R is a solution of the equation |α| 1+p 12 -k 11 k 12 α + r 1 r 2 k 22 k 12 ⌈α⌋ p 22 -r 1 r 2 k 21 k 12 = 0 . ( 4 
)
2. The set

S β = {x ∈ R 2 : ⌈β⌋ r 2 r 1 x 2 = -⌈x 1 ⌋ r 2 r 1 } is positively invariant for (1) if k 21 ̸ = 0 and β ∈ R is a solution of the equation |β| 1+p 21 -k 22 k 21 β + r 2 r 1 k 11 k 21 ⌈β⌋ p 11 -r 2 r 1 k 12 k 21 = 0 . (5) 

The sets

S 1 = {x ∈ R 2 : x 2 = 0} and S 2 = {x ∈ R 2 : x 1 = 0} are positively invariant for (1) if k 21 = k 12 = 0.
Proof. The proof of the third item is obvious since (1) is fully decoupled. The proof for the first two items is as follows.

(1) Let s : R 2 → R be given by s

(x) = α⌈x 1 ⌋ r 2 r 1 + x 2 .
Observe that the condition s(x) = 0 describes the set S α . To verify that S α is positively invariant we take the derivative of s along (1), i.e.

1 ṡ = r 2 r 1 α|x 1 | r 2 r 1 -1 (k 11 ⌈x 1 ⌋ p 11 + k 12 ⌈x 2 ⌋ p 12 ) + k 21 ⌈x 1 ⌋ p 21 + k 22 ⌈x 2 ⌋ p 22 .
1 To compute ṡ we use the facts: ⌈x⌋ a ⌈x⌋ b = |x| a+b ; |x| a ⌈x⌋ b = ⌈x⌋ a+b ; ∂ ∂x ⌈x⌋ a = a|x| a-1 for a > 1.

Since for s(x) = 0 we have that (

x 2 = -α⌈x 1 ⌋ r 2 r 1 , ṡ| s=0 = r 2 r 1 α|x 1 | r 2 r 1 -1 k 11 ⌈x 1 ⌋ p 11 + k 12 ⌈-α⌈x 1 ⌋ r 2 r 1 ⌋ p 12 +k 21 ⌈x 1 ⌋ p 21 + k 22 ⌈-α⌈x 1 ⌋ r 2 r 1 ⌋ p 22 , = r 2 α r 1 |x 1 | r 2 r 1 -1 k
) 2 
The proof is analogous to the proof of the first item by choosing the function s : R 2 → R given by s

(x) = ⌈x 1 ⌋ r 2 r 1 + β r 2 r 1 x 2 .
Observe that for the case r 1 > r 2 , the functions s used for the proof are not differentiable for x 1 = 0. Although this technical issue does not affect the analysis, we can equivalently choose the functions s given by s

(x) = α r 1 r 2 x 1 + ⌈x 2 ⌋ r 1 r 2 and s(x) = x 1 + β⌈x 2 ⌋ r 1 r 2 ,
respectively, which are differentiable for all x ∈ R 2 and produce the same results.

Remark 1. Observe that, in Lemma 1, (4) and (5) are equivalent (and consequently, S α = S β ) by means of the relation α = ⌈β⌋ -r 2 r 1 for α ̸ = 0, β ̸ = 0. The two different ways to express the condition stated through items 1 and 2 of Lemma 1 give the flexibility to choose the most convenient one for the analysis where the stated criterion is to be involved. For instance, in Section 4, (4) becomes a monic polynomial equation. It is also important to mention that for the linear case (i.e., p 11 = p 12 = p 21 = p 22 = 1 in (1)) the sets S α (resp., S β ) constitute the eigenspaces of the system, and (4) (resp., (5)) becomes the characteristic equation by means of the change of variable α = (k 11 -λ)/k 12 (resp., β = (k 22 -λ)/k 21 ).

Corollary 1.

1. If α ∈ R is a solution to (4), then for any initial condition x(0) ∈ S α the trajectories of (1) converge to the origin if and only if

k 11 < k 12 ⌈α⌋ p 12 . (6) 
2. If β ∈ R is a solution to (5), then for any initial condition x(0) ∈ S β the trajectories of (1) converge to the origin if and only if

k 22 < k 21 ⌈β⌋ p 21 . (7) 
Proof. [START_REF] Andrieu | Homogeneous Approximation, Recursive Observer Design, and Output Feedback[END_REF] The proof is straightforward by substituting

x 2 = -α⌈x 1 ⌋ r 2 r 1 in the first equation of (1) to obtain ẋ1 = (k 11 -k 12 ⌈α⌋ p 12 )⌈x 1 ⌋ p 11 . (2) By substituting ⌈β⌋ r 2 r 1 x 2 = -⌈x 1 ⌋ r 2 r 1 in the second equation of (1) we obtain ẋ2 = (k 22 -k 21 ⌈β⌋ p 21 )⌈x 2 ⌋ p 22 .
In the following sections we particularize the results shown in this section for two relevant cases of (1) in order to characterize their transient response.

Controller form

In this section we consider (1) with k 11 = 0, k 12 = 1, p 12 = 1. To simplify the notation we rename some parameters as follows:

k 21 = -k 1 , k 22 = -k 2 , p 21 = a and p 22 = b. Thus, (1) is rewritten as ẋ1 = x 2 , ẋ2 = -k 1 ⌈x 1 ⌋ a -k 2 ⌈x 2 ⌋ b . (8) 
For this case, (2) can be reduced to

a ∈ R ≥0 , b = 2a 1 + a , (9) 
guaranteeing that ( 8) is r-homogeneous of degree µ = a -b with r = [b, a] ⊤ for a > 0, and of degree µ = -1 with r = [2, 1] ⊤ for a = 0. Observe that:

if a = 1, then b = 1 and µ = 0 ((8) is linear); if a ∈ (0, 1), then 1 > b > a and µ < 0; if a > 1, then min{a, 2} > b > 1 and µ > 0.
Now, let us use Lemma 1 and Corollary 1 to study the existence of positively invariant sets of [START_REF] Cruz-Zavala | Strict Lyapunov functions for homogeneous finite-time second-order systems[END_REF]. Since k 12 = 1, we can use (4) to search for the constant α for S α . Note that to guarantee convergence of trajectories to the origin over S α , the constant α must satisfy [START_REF] Bhat | Finite-time stability of homogeneous systems[END_REF], which in this case reduces to the condition 0 < α. Under this restriction, (4) can be rewritten as follows for a > 0,

P (α) := α 2 -b a k 2 α b + b a k 1 = 0 , α ∈ R >0 . ( 10 
)
Remark 2. For the case a = b = 0, (8) is discontinuous. 2 In this case, and under the restriction 0 < α, (4) can be rewritten as

P 0 (α) := α 2 -2k 2 + 2k 1 = 0 , α ∈ R >0 . (11) 
Observe that (besides the linear case) this is the only case for (8) such that (4) is a polynomial of degree two.

We recall in the following lemma some stability properties3 of (8).

Lemma 2 ([12, 19, 6, 29, 34, 4, 8]). Consider (8) with (9) and any

k 1 , k 2 ∈ R >0 .
1. If a > 0, then the origin of the system is asymptotically stable. Moreover, (a) if a = 1, then the origin is exponentially stable;

(b) if a ∈ (0, 1), then the origin is finite-time stable;

(c) if a > 1, then the origin is nearly-fixed-time stable.

2. If a = 0 and k 1 > k 2 , then the origin of the system is finite-time stable.

We are now ready to give the main result of this section. 4Theorem 1. Consider (8) with (9) and k 1 > 0. Define

κ := 2a b -(2+b) k b a 1 . (12) 
1. For a > 0:

(a) there exist two different solutions

α 1 , α 2 ∈ R >0 to (10) if and only if k 2 > κ.
Moreover, for i = 1, 2,

S α i = {x ∈ R 2 : x 2 = -α i ⌈x 1 ⌋ a b } , (13) 
are positively invariant sets of (8);

(b) there exist two real solutions α 1 , α 2 ∈ R >0 to (10) (and two positively invariant sets S α i ) which coincide, i.e.

α 1 = α 2 = √ bk 1 (and consequently S α 1 = S α 2 ), if and only if k 2 = κ; (c) if κ > k 2 ≥ 0,
then there is no real solution for [START_REF] Grüne | Homogeneous State Feedback Stabilization of Homogenous Systems[END_REF]. Moreover, there is no α i ∈ R ≥0 such that (13) is a positively invariant set of (8);

(d) if k 2 = 0, then the function V : R 2 → R, given by

V (x) = k 1 1+a |x 1 | 1+a + 1 2 |x 2 | 2 , ( 14 
)
is a first integral of (8).

2. For a = 0:

(a) if k 1 > k 2 > 0, then there is no α ∈ R >0 such that S α = {x ∈ R 2 : x 2 = -α⌈x 1 ⌋ 1 2 } is a positively invariant set for (8); (b) if k 2 = 0, then (14) is a first integral of (8). Corollary 2.
1. If a > 0 and k 2 ≥ κ, then for any x(0) ∈ R 2 \ {0} the trajectories of (8) do not oscillate around the origin as they converge to the origin.

2. If a > 0 and κ > k 2 > 0, or a = 0 and k 1 > k 2 > 0, then for any x(0) ∈ R 2 \ {0} the trajectories of (8) oscillate around the origin as they converge to the origin.

3. If a ≥ 0 and k 2 = 0, then for any x(0) ∈ R 2 \{0} the trajectories of (8) exhibit sustained oscillations satisfying the equation V (x(t)) = V (x(0)) ∀t ≥ 0 with V given by [START_REF] Hermes | Differential Equations, Stability and Control, chapter Homogeneous coordinates and continuous asymptotically stabilizing feedback controls[END_REF].

The proofs of Theorem 1 and Corollary 2 are given in Section 3.2.

x 2 x 1 k 2 >k -2 -1 0 1 2 -2 -1 0 1 2 S a 1 S a 2 -2 -1 0 1 2 -2 -1 0 1 2 x 2 x 1 k 2 =k S a 1 = S a 2 -2 -1 0 1 2 -2 -1 0 1 2 x 2 x 1 k 2 <k x 2 x 1 k 2 =0 -2 -1 0 1 2 -2 -1 0 1 2 Figure 1: Phase portraits of (8) with a = 1/2, k 1 = 2, and different values of k 2 .
Remark 3. Note that for a = 1 (8) is linear, thus (by means of the change of variable α = -λ), [START_REF] Grüne | Homogeneous State Feedback Stabilization of Homogenous Systems[END_REF] coincides with the characteristic polynomial of the system, therefore, each S α i corresponds to one of the eigenspaces of the system. Also, from items (a) and (b) in the first part of Theorem 1, we obtain k 2 ≥ κ = 2 √ k 1 , which is the standard condition to guarantee that the characteristic polynomial of the system has only real roots.

In Fig. 1 we show the phase portraits of (8) with a = 1/2, k 1 = 2 and k 2 = 4 3 κ, κ, 1 3 κ, 0. The parameters α 1 and α 2 of the positively invariant sets were numerically computed. In accordance with Theorem 1 and Corollary 2, the positively invariant sets are shown for the cases where k 2 ≥ κ, and the oscillatory behaviors of the trajectories are exhibited for the cases where κ > k 2 ≥ 0.

Gain design example

Consider the controlled double-integrator shown in Fig. 2. The problem is to design the controller in the block C such that the output y(t) ∈ R tracks a constant reference r ∈ R. We define the error variable e = r -y, and recalling [START_REF] Efimov | Homogeneous Lyapunov Functions: From Converse Design to Numerical Implementation[END_REF], consider the controller C described by

u = k 1 ⌈e⌋ a + k 2 ⌈ ė⌋ b , a > 0, b = 2a 1 + a , k 1 > 0 . ( 15 
)
Such a controller can be regarded as a (nonlinear) proportional-derivative type controller.

Observe that two relevant aspects about the design of the parameters of ( 15) are: the type Corollary 3. Consider the system in Fig. 2 with (15).

1. For any k 1 , k 2 ∈ R >0 and any r ∈ R we have that:

(a) if a = 1, then the error e exponentially converges to zero;

(b) if a ∈ (0, 1), then the error e converges to zero in finite time;

(c) if a > 1, then the error e asymptotically converges to zero, and for any c ∈ R >0 there exists T c ∈ R >0 such that |e(t)| ≤ c for all t ≥ T c for any e(0) ∈ R.

2. Moreover, defining 5 ζ c := k 2 /κ, with κ as given in ( 12):

(a) if 0 < ζ c < 1, then the response of the system is underdamped;

(b) if 1 < ζ c
, then the response of the system is overdamped;

(c) if ζ c = 1, then the response of the system is critically damped;

(d) if ζ c = 0, then the response of the system is undamped.

Proof. The proof of item 1 is straightforward from Lemma 2 by noting that ( 8) is the statespace representation of the error dynamics of the system in Fig. 2 in closed-loop with (15) if we define the states x 1 = e and x 2 = ė. The item 2 is deduced in the following reasoning. From Corollary 2 we know that if κ > k 2 > 0 (equivalently 0 < ζ c < 1), then the trajectories of (8) oscillate as they converge to the origin. This implies that (by considering that (8) represents the error dynamics of the system in Fig. 2 in closed-loop with ( 15)) the output y converges to r oscillating around it, hence, the response of the system is underdamped . In contrast, if k 2 > κ (equivalently 1 < ζ c ), then the item (a) in the first part of Theorem 1 guarantees that (due to the existence of positively invariant sets) the trajectories of (8) do not oscillate as they converge to the origin. Consequently, the output y is not oscillating as it converges to r, thus, the response of the system is overdamped . For k 2 = κ (equivalently ζ c = 1), which is the boundary case 5 Observe that the terminology used in Corollary 3 is stated by analogy with the standard second order linear system (such an analogy is clarified in the proof of the corollary). Indeed, for the linear case (a = 1), ζ c coincides with the damping ratio of the system, thus, we recall that the response of such a linear system is classically said to be: between the underdamped and the overdamped cases, we say that the response of the system is critically damped. Finally, from item (d) in Theorem 1 we can see that the output y does not converge to r, but exhibits sustained oscillations.

underdamped if 0 < ζ c < 1; overdamped if 1 < ζ c ; and critically damped if ζ c = 1.
To show the claimed behaviors of the response of the system, we consider two cases for the simulation.

The first one is with y(0) = ẏ(0) = 0 and the reference r = 1. For this case we choose the controller with a = 1/2. Fig. 3 shows the simulations with k 1 = 2, for the cases k 2 = 4 3 κ, κ, 1 3 κ, 0. The second one is with y(0) = ẏ(0) = 0 and the reference r = 10. For this case we choose the controller with a = 2. Fig. 4 shows the simulations with k 1 = 2, for the cases k 2 = 4 3 κ, κ, 1 3 κ, 0. We can see in Fig. 3 and Fig. 4 the type of responses stated in Corollary 3.

Proofs of Theorem 1 and Corollary 2

Proof of Theorem 1. The main part of the proof comes from Lemma 1, we only have to search for the values of k 1 , k 2 ∈ R >0 that allow [START_REF] Grüne | Homogeneous State Feedback Stabilization of Homogenous Systems[END_REF] to have some solution α ∈ R >0 .

k 1 =2 k 2 a k 1 =1 a * a 1 a 2
Figure 5: Graphical example of ( 16) for a > 1.

1. First, note from (10) that, for fixed k 1 and k 2 , P (α) = 0 if there exists α such that

k 2 = a b α 2-b + k 1 1 α b .
Hence, we proceed by considering k 2 as a function of α given by

k 2 (α) = a b α 2-b + k 1 1 α b , (16) 
(a graphical illustration of the functional relation stated through [START_REF] Hong | On an output feedback finite-time stabilization problem[END_REF] is shown in Fig. 5 

min α∈R >0 k 2 (α) = k 2 (α * ) = a b (bk 1 ) 2-b 2 + k 1 1 (bk 1 ) b 2 = a + 1 b b/2 k 2-b 2 1 = κ .
This analysis guarantees that for any k 1 ∈ R >0 there exist α 1 , α 2 ∈ R >0 , which are solutions of [START_REF] Grüne | Homogeneous State Feedback Stabilization of Homogenous Systems[END_REF] if and only if k 2 ≥ κ. Moreover,

α 1 ̸ = α 2 for k 2 > κ and α 1 = α 2 = α * for k 2 = κ.
This concludes the proof for the items (a)-(c) in the first part of Theorem 1. The item (d) is proven by verifying that the function V given by ( 14) is constant along the solutions of ( 8) with k 2 = 0. This is done by taking the derivative of V along the solutions of (8), i.e.

V = k 1 ⌈x 1 ⌋ a x 2 + x 2 (-k 1 ⌈x 1 ⌋ a ) = 0 .
2. For item (a) of the second part of the theorem, note from (11) that, P 0 (α) = 0 if and only if α 2 = 2(k 2 -k 1 ), which has no real solution for k 1 > k 2 > 0. The proof of item (b) is the same as that of item (d) in the first part of the theorem.

Proof of Corollary 2.

(1) For this case, Lemma 2 guarantees that the origin of ( 8) is asymptotically stable. The fact that the trajectories of the system do not oscillate around the origin is guaranteed by the existence of the positively invariant sets stated in Theorem 1.

(2) The case a = 0 in Corollary 2 is the standard behaviour of the Twisting algorithm [START_REF] Levant | Sliding order and sliding accuracy in sliding mode control[END_REF][START_REF] Levant | Higher-Order Sliding Modes, differentiation and output-feedback control[END_REF]. For the case a > 0, first note that: for any x ∈ {x ∈ R 2 : x 1 ≥ 0 , x 2 > 0} we have that ẋ1 > 0 and ẋ2 < 0; and for any x ∈ {x ∈ R 2 : x 1 ≤ 0 , x 2 < 0} we have that ẋ1 < 0 and ẋ2 > 0. Additionally, for x 1 ̸ = 0 and x 2 = 0 we have that ẋ2 = -k 1 ⌈x 1 ⌋ a , which implies that the vector field points toward the set {x ∈ R 2 \ {0} : x 1 x 2 ≥ 0}. Hence, for any initial condition x(0) ∈ {x ∈ R 2 \ {0} : x 1 x 2 ≥ 0}, the trajectories of the system go into the set {x ∈ R 2 : x 1 x 2 < 0} in finite time. The rest of the proof consists in verifying that for any initial condition x(0) ∈ {x ∈ R 2 : x 1 > 0, x 2 = 0} the trajectories converge in finite time to the set {x ∈ R 2 : x 1 = 0, x 2 < 0} (resp. for any initial condition x(0) ∈ {x ∈ R 2 : x 1 < 0, x 2 = 0} the trajectories converge in finite time to the set {x ∈ R 2 : x 1 = 0, x 2 > 0}). To show this, we prove below that the trajectories cross the sets in [START_REF] Hermes | Nilpotent Approximations of Control Systems and Distributions[END_REF] for any α ∈ R >0 , therefore, they reach in finite time the set {x ∈ R 2 : x 1 = 0, x 2 ̸ = 0}. We perform the analysis on the set {x ∈ R 2 :

x 1 > 0, x 2 ≤ 0}, the analysis on {x ∈ R 2 : x 1 < 0, x 2 ≥ 0} is analogous. 1. Consider the case a ≥ 1. Suppose that s(x) = x 2 + α⌈x 1 ⌋ a b ≥ 0, hence -x 2 ≤ α⌈x 1 ⌋ a b and -|x 1 | ≤ -1 α b/a |x 2 | b a . Thus, ṡ = -k 1 ⌈x 1 ⌋ a -k 2 ⌈x 2 ⌋ b + a b α|x 1 | a b -1 x 2 , = -k 1 |x 1 | a + k 2 |x 2 | b -a b α|x 1 | a b -1 |x 2 | , ≤ -k 1 1 α b |x 2 | b + k 2 |x 2 | b -a b α 1 α a-b a |x 2 | a-b a |x 2 | , ≤ -k 1 1 α b |x 2 | b + k 2 |x 2 | b -a b α b a |x 2 | 2a-b a , ≤ -1 α b a b b a k 1 -b a k 2 α b + α 2 |x 2 | b ≤ -ϵ|x 2 | b , where ϵ = 1 α b a b P (α)
. Since k 2 < κ, we can see from [START_REF] Grüne | Homogeneous State Feedback Stabilization of Homogenous Systems[END_REF] that P (α) > 0 and ϵ > 0 for all α ∈ R >0 . Hence, s ṡ ≤ -ϵ|x 2 | b |s|, confirming that s = 0 is attractive and is reached in finite time for any initial condition x(0) ∈ {x ∈ R 2 : s > 0, x 1 > 0, x 2 < 0}. Since the sets S α i in [START_REF] Hermes | Nilpotent Approximations of Control Systems and Distributions[END_REF] are not positively invariant, the trajectories cross s = 0 in finite time.

Thus, for any x * ∈ {x ∈ R 2 : x 2 < 0, x 1 = 0} there exist T ∈ R >0 and x 0 ∈ {x ∈ R 2 : x 1 > 0, x 2 = 0} such that the solution of (8) with initial condition x 0 satisfies x(T ) = x * .

2. For the case a ∈ (0, 1) the analysis is completely analogous by means of the function s given by s(x

) := x 1 + α -b a ⌈x 2 ⌋ b a . ( 3 
) Theorem 1 guarantees that V , given by ( 14), is a first integral of (8) if k 2 = 0. Hence, V (x(t)) = V (x(0)) for all t ≥ 0, therefore, any level set of the positive definite radially unbounded continuous function V is an invariant set of (8).

Observer form

We consider in this section the subclass of (1) with k 12 = 1, p 12 = 1, and k 22 = 0. To simplify the notation we rename the following parameters:

k 11 = -k 1 , k 21 = -k 2 , p 11 = a and p 21 = b. Hence, (1) is rewritten as ẋ1 = -k 1 ⌈x 1 ⌋ a + x 2 , ẋ2 = -k 2 ⌈x 1 ⌋ b . (17) 
From [START_REF] Arnold | Ordinary Differential Equations[END_REF] we have that the exponents a and b satisfy the relation

b ∈ R ≥0 , a = 1 + b 2 , (18) 
which guarantees that ( 17) is an r-homogeneous system of degree µ = a -1 with weights r = [1, a] ⊤ . Observe that: if b = 1, then a = 1 and µ = 0 ((17) is linear); if b ∈ (0, 1), then max 1 2 , b < a < 1 and µ < 0; if b > 1, then 1 < a < b and µ > 0; if b = 0, then a = 1/2 and µ = -1.

For the case b = 0, ( 17) is a discontinuous system, which is known as Super-Twisting algorithm [START_REF] Levant | Sliding order and sliding accuracy in sliding mode control[END_REF][START_REF] Levant | Robust Exact Differentiation via Sliding Mode Technique[END_REF][START_REF] Levant | Higher-Order Sliding Modes, differentiation and output-feedback control[END_REF][START_REF] Moreno | Strict Lyapunov functions for the Super-Twisting algorithm[END_REF] if k 1 , k 2 ∈ R >0 . We use now Lemma 1 and Corollary 1 to study the existence of positively invariant sets of [START_REF] Kawski | Stability and nilpotent approximations[END_REF]. Since k 12 = 1, we can use (4) to search for the constant α for S α . Note that to guarantee convergence of trajectories to the origin over S α , the constant α must satisfy [START_REF] Bhat | Finite-time stability of homogeneous systems[END_REF], which in this case is equivalent to the condition -α < k 1 . Thus, (4) can be rewritten as follows

P (α) := α 2 + k 1 α + 1 a k 2 = 0 . ( 19 
)
Let us recall, in the following lemma, some stability properties of [START_REF] Kawski | Stability and nilpotent approximations[END_REF].

Lemma 3 ([20, 16, 42, 24, 41, 30, 25, 1, 35, 38]). Consider [START_REF] Kawski | Stability and nilpotent approximations[END_REF] with [START_REF] Kawski | Homogeneous stabilizing feedback laws[END_REF]. For any k 1 , k 2 ∈ R >0 the origin of the system is asymptotically stable. Moreover, 1. if b = 1, then the origin is exponentially stable;

2. if b ∈ [0, 1), then the origin is finite-time stable;

3. if b > 1, then the origin is nearly-fixed-time stable.

We are now ready to give the main result of this section.

Theorem 2. Consider (17) with (18) and k 2 > 0. Define

κ := 2 1 a k 2 . ( 20 
)
1. The constants

α 1 = -1 2 k 1 + k 2 1 -4 a k 2 and α 2 = -1 2 k 1 -k 2 1 -4
a k 2 are real solutions for [START_REF] Levant | Sliding order and sliding accuracy in sliding mode control[END_REF], if and only if k 1 > κ. Moreover, for i = 1, 2,

S α i = {x ∈ R 2 : x 2 = -α i ⌈x 1 ⌋ a } ( 21 
)
are positively invariant sets of (17).

2. The real solutions α 1 , α 2 of (19) (and consequently the positively invariant sets S α i ) coincide, i.e. α 1 = α 2 = -k 1 /2 (and S α 1 = S α 2 ), if and only if k 1 = κ.

3. If 0 ≤ k 1 < κ there is no real solution for [START_REF] Levant | Sliding order and sliding accuracy in sliding mode control[END_REF]. Moreover, there is no α ∈ R ≤0 such that (21) is a positively invariant set of (17).

4.

If k 1 = 0, then the function V : R 2 → R, given by

V (x) = k 2 1+b |x 1 | 1+b + 1 2 |x 2 | 2 , ( 22 
)
is a first integral of [START_REF] Kawski | Stability and nilpotent approximations[END_REF]. Now, let us state an important consequence of this theorem (the proof of Theorem 2 is given afterwards) Corollary 4.

1. If k 1 ≥ κ, then for any x(0) ∈ R 2 \ {0} the trajectories of (17) do not oscillate around the origin as they converge to the origin.

2. If 0 < k 1 < κ, then for any x(0) ∈ R 2 \ {0} the trajectories of (17) oscillate around the origin as they converge to the origin.

3. If k 1 = 0, then for any x(0) ∈ R 2 \ {0} the trajectories of (17) exhibit sustained oscillations satisfying the equation V (x(t)) = V (x(0)) ∀t ≥ 0 with V given by [START_REF] Levant | Homogeneity approach to high-order sliding mode design[END_REF].

Remark 4. Note that for b = 1 ( 17) is linear, and (19) coincides with its characteristic polynomial. Moreover, each S α i corresponds to one of the eigenspaces of its vector field. Also, from items 1 and 2 in Theorem 2, we obtain the standard condition k 1 ≥ κ = 2 √ k 2 to guarantee that the characteristic polynomial of the system has only real roots.

Proof. The proof of Theorem 2 is analogous to the proof of Theorem 1. Note that it is even simpler since we can explicitly compute the roots of [START_REF] Levant | Sliding order and sliding accuracy in sliding mode control[END_REF]. Although the proof of Corollary 4 is completely analogous to the proof of Corollary 2, we give the following clarifying statement for the second part of the corollary.

Consider [START_REF] Kawski | Stability and nilpotent approximations[END_REF], note that: for x ∈ {x ∈ R 2 : x 1 > 0 , x 2 ≤ 0} we have that ẋ1 < 0 and ẋ2 < 0; and for x ∈ {x ∈ R 2 : x 1 < 0 , x 2 ≥ 0} we have that ẋ1 > 0 and ẋ2 > 0. Moreover, for x 1 = 0 and x 2 ̸ = 0 we have that ẋ1 = x 2 . Hence, for any initial condition x(0) ∈ {x ∈ R 2 : x 1 x 2 ≤ 0}, the trajectories of the system go into the set {x ∈ R 2 : x 1 x 2 > 0}. The rest of the proof follows the same procedure as in the proof of Corollary 2.

In Fig. 6 we show the phase portraits of ( 17) with b = 1/2, k 2 = 3/8 and k 1 = 4 3 κ, κ, 1 3 κ, 0. We can observe the oscillatory behaviors of the trajectories claimed in Theorem 2 and Corollary 4 for the case 0 ≤ k 1 < κ. For the cases k 1 ≥ κ the positively invariant sets are shown.

Gain design example

In this example we consider the system shown in Fig. 7. The problem consists in designing the controller in C such that the output y(t) ∈ R tracks a reference r(t) = γ 1 t + γ 2 , with γ 1 , γ 2 ∈ R, despite the unknown constant disturbance d ∈ R. We consider the controller C such that (recalling (18))

u = k 1 ⌈e⌋ a + k 2 t 0 ⌈e(τ )⌋ b dτ, b ∈ R ≥0 , a = 1 + b 2 , k 2 > 0 (23) 
where e(t) = r(t) -y(t). Note that (23) can be considered as a (nonlinear) proportionalintegral type controller. The following corollary describes the different types of convergence and the transient behavior of the tracking error. Corollary 5. Consider the system in Fig. 7 and the controller (23). Some simulations of the closed-loop system in Fig. 7 can be seen in Fig. 8 and Fig. 9 for zero initial conditions, the control parameters b = 1/2, k 2 = 2, k 1 = 4 3 κ, κ, 1 3 κ, 0, a reference r(t) = 2t + 1, and a constant disturbance d = 1/3.
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Conclusion

From our point of view, the contribution in this paper can be discussed in two different directions. The first one is about the procedural nature of the results: they provide useful criteria to choose the gains of two classes of homogeneous systems in order to guarantee the type of transient response of the system. This is done in a way which is analogous to that for standard second order linear systems. The second one is about the theoretical properties of homogeneous systems: the results in this paper verify that the studied systems have a sort of characteristic function that can be regarded as a generalization of the characteristic polynomial for the case of linear systems.

A natural future work is to extend this methodology to higher order systems, and to obtain the complete characterization (or classification) of singular points of planar homogeneous systems. We hope that this research direction be helpful to close the gap between the design of linear control systems and the nonlinear ones.
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 2 Figure 2: Block diagram of the controlled double-integrator.
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 3 Figure 3: Responses of the system in Fig. 2 with controller (15) for k 1 = 2 and a = 1/2.
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 4 Figure 4: Responses of the system in Fig. 2 with controller (15) for k 1 = 2 and a = 2.
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 2 and b = 4/3). Since 2 > b > 0, it is clear that: k 2 (α) ∈ R >0 for any k 1 ∈ R >0 and any α ∈ R >0 ; k 2 (α) has an asymptote at α = 0 and k 2 (α) → ∞ as α → ∞. Now, d dα k 2 (α) = a b (2 -b)α 1-b -k 1 b 1 α b+1 = 0 if and only if α = α * := √ bk 1 . Hence, we find that (16) has a global minimum at α * , i.e. (since 2 -b = b/a),
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 6 Figure 6: Phase portraits of (17) with b = 1/2, k 2 = 3/8, and different values of k 1 .
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 78 Figure 7: Block diagram of the controlled disturbed single-integrator.

1 . 2 t0

 12 For any k 1 , k 2 ∈ R >0 and any γ 1 , γ 2 , d ∈ R we have that: (a) if b = 1, then the error e exponentially converges to zero; (b) if b ∈ [0, 1), then the error e converges to zero in finite time; (c) if b > 1, then the error e asymptotically converges to zero, and for any c ∈ R >0 there exists T c ∈ R >0 such that |e(t)| ≤ c for all t ≥ T c for any e(0) ∈ R. 2. Moreover, defining ζ o := k 1 /κ, with κ as given in (20): (a) if 0 < ζ o < 1, then the error response is underdamped; (b) if 1 < ζ o , then the error response is overdamped; (c) if ζ o = 1, then the error response is critically damped; (d) if ζ o = 0, then the error response is undamped. Proof. Item 1 is a consequence of Lemma 3, we only have to define x 1 = e, and x 2 = -k ⌈e(τ )⌋ b dτ -d + ṙ to obtain (17) as a state-space representation of the error dynamics of the closed-loop system. Observe that r -ḋ = 0. The item 2 is deduced by means of a reasoning analogous to that in the proof for item 2 of Corollary 3, but considering the results in Theorem 2 and Corollary 4.

Figure 9 :

 9 Figure 9: Damped and undamped responses of the system in Fig. 7 with controller (23).

  The exponents p ij ∈ R ≥0 are such that the following equations hold p 12 p 21 = p 11 p 22 , (p 11 -1)(p 12 + 1) = (p 22 -1)(p 21 + 1).

  11 ⌈x 1 ⌋ p 11 -k 12 ⌈α⌋ p 12 ⌈x 1 ⌋ ⌋ p 21 -k 22 ⌈α⌋ p 22 ⌈x 1 ⌋ 11 ⌈x 1 ⌋ p 11 -k 12 ⌈α⌋ p 12 ⌈x 1 ⌋ ⌋ p 21 -k 22 ⌈α⌋ p 22 ⌈x 1 ⌋ αk 11 -r 2 r 1 k 12 |α| 1+p 12 + k 21 -k 22 ⌈α⌋ p 22 ⌈x 1 ⌋ p 21 . Hence, ṡ| s(x)=0 = 0 if -r 2 r 1 k 12 |α| 1+p 12 + r 2 r 1 αk 11 -k 22 ⌈α⌋ p 22 + k 21 = 0, which can be equivalently rewritten as (4).

			r 2 r 1	p 12
	+k 21 ⌈x 1 r 2 r 1	p 22 .
	From (2) and (3) we have that r 2 r 1 p 12 = p 11 and r 2 r 1 -1 + p 11 = p 21 , thus,
	ṡ| s=0 = r 2 α r 1 |x 1 | +k 21 ⌈x 1 r 2 r 2 r 1 -1 k r 2 r 1 r 1 p 22 ,	p 12
	= r 2 r 1	

If moreover, k 1 > k 2 > 0, (8) is known as Twisting algorithm[START_REF] Levant | Sliding order and sliding accuracy in sliding mode control[END_REF][START_REF] Levant | Higher-Order Sliding Modes, differentiation and output-feedback control[END_REF].

Recall that the origin of a system ẋ = f (x), x ∈ R n , is said to be nearly-fixed-time stable if it is Lyapunov stable, and for any a ∈ R >0 there exists T (a) ∈ R ≥0 such that any solution x(t; x 0 ) of the system satisfies |x(t; x 0 )| ≤ a for all t ≥ T (a) independently of the initial condition x(0) = x 0 ∈ R n[START_REF] Polyakov | Consistent Discretization of Finite-Time and Fixed-Time Stable Systems[END_REF].

Recall that a first integral of a system is a function which is constant along each solution of the system[2, p. 125].