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Abstract6

This paper deals with the optimization of piezoelectric patches positioning on a beam attached to an inac-

cessible system. Based on the electro-mechanical coupling coefficients, which are calculated from the mode

shapes curvatures, the problem is to provide an optimal positioning of the piezoelectric patches in order to

target the modes sensitive to beam boundary conditions. Following the theoretical description of a beam

instrumented with collocated piezoelectric patches, a placement optimization strategy is proposed. This

strategy lies on the definition of utility functions, based on modal weights and modal sensitivities, calcu-

lated from the coupling coefficient. An experimental validation of the method is performed on a concrete

case study corresponding to real-time implant stability monitoring. A beam is temporarily rigidly fixed to

the implant during its insertion into the bone cavity to allow impaction by the surgeon. The positions of the

sensors on the beam are optimized to focus on the beam’s modes carrying information on the bone-implant

interface, the biomechanical issue being the real-time maximization of implant stability. The originality of

the approach lies on the sensor placement optimization on the beam connected to the implant to maximize or

minimize simultaneously the amplitude of several modes on the frequency response function at resonances,

depending on their sensitivity to the bone-implant interface. The results show very good performance of the

piezoelectric placement strategy proposed in this paper, paving the way for new applications of piezoelectric

patches design and placement on structures.

Keywords: electro-mechanical coupling, piezoelectric patch optimization, mode observability, smart device,

boundary conditions monitoring, bone-implant coupling

1. Introduction7

Piezoelectric ceramic transducers bonded to flexible structures are widely employed in the context of8

dynamic measurements. They offer the advantage to be used as sensors or actuators due to to their property9

to convert mechanical strains into electrical voltage and vice versa. The modal electro-mechanical coupling10
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factors (MEMCF) [1, 2] associated to one piezoelectric patch and one mode of vibration of the structure is11

determinant for vibration reduction control [3].12

In the literature, there are several examples of multi-modal control, either active or passive with shunted13

piezoelectric patches on beams [4, 5, 6] and plates [7, 8, 9]. For these applications, the piezoelectric patches14

are generally uniformly distributed on the structure, considering that every mode has the same weight15

and the optimization concerns the associated electric circuit. However, in specific applications, the design16

constraints limit the number of sensor/actuator patches over the structure. Therefore, another strategy for17

vibration reduction lies in the optimization of the placement and the design of the piezoelectric patch on18

the structure, as presented in the exhaustive review of Gupta et al. [10]. Among the different criteria used19

in the literature, maximizing the degree of mode controllability and observability are of particular interest.20

For instance, Ducarne et al. [11] proposed a parametric study on the placement and geometry of the patches21

in order to maximize the electro-mechanical coupling coefficient of one specific mechanical vibration mode,22

to which the shunt is tuned. Others authors studied the same problematic of placement optimization, by23

considering active control [12, 13]. Moreover, Halim and Moheimani [14] addressed the notions of both24

spatial and modal controllability, to find the optimal locations of piezoelectric transducers on the plate. The25

procedure is based on the concept of the spatial H norm, used to describe the spatial structural response26

of the system in an average sense. The optimization relies on the simultaneous vibration reduction over the27

entire structure, while maintaining modal controllability and observability of the selected vibration modes.28

In this paper, the specific issue of optimizing the observability of a set of modes sensitive to the beam29

boundary conditions is addressed. Lots of vibro-acoustic applications are concerned by this issue, and among30

them, this paper focus on a biomedical application. In the orthopedic field, several methods are under31

development to assist and guide the surgeon during implant insertion into the bone, in order to achieve an32

optimal implant stability, corresponding to maximizing implant surrounding stresses while avoiding bone33

fracture risk. Among the different techniques, vibration measurement have proven to be efficient to monitor34

implant insertion into the bone [15, 16, 17]. Nevertheless, the fixation of sensors or probes on the implant35

and/or the bone is incompatible with a clinical application [18]. Therefore, several authors studied directly36

the vibrations of a square shape structure, named ancillary, and used by the surgeon to insert the implant into37

the bone [19, 20], which can easily be equipped with sensors and allow a good accessibility for measurement.38

This structure has one free extremity and another one bonded to the implant during its insertion. Due to39

this fixation, a previous study by our group showed that specific modes of vibration of this square beam40

structure carry information on the bone-implant system, and in particular on the system rigidity [20]. The41
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issue is then to propose an optimization approach for piezoelectric patch positioning on the square beam42

structure, in order to maximize or minimize the observability of the modes, depending on their sensitivity43

to the implant stability.44

Several authors studied the piezoelectric placement optimization in order to target specific modes of45

interest. For instance, Rosi et al. [21] developed a similar transducer optimization approach for reducing46

the radiated sound power of thin plates produced by a set of modes. In the field of structural health47

monitoring, the position of the collocated piezoelectric transducers can be optimized in order to detect48

damage in thin plate-like structures based on the minimization of the Bayes risk [22]. Interestingly, not only49

the position but also the local beam stiffness could be adjusted by using the feedback voltage output from the50

piezoelectric sensors to tune the natural vibration of mode shape sensitive to the existence of a crack [23, 24].51

In these examples, the criteria of mode selection differs from the sensitivity to beam boundary conditions.52

Moreover, in our study, the piezoelectric patches are not shunted since they are used as sensors and not for53

control purpose. As only the position of the patch on the beam is studied, no optimization algorithm are54

needed, contrary to what is often done for passive control applications [25, 26, 27]. Eventually, methods for55

boundary force measurement in beam-like structures have been investigated in the literature by displacement56

measurement [28] or distributed sensor measurement [29]. However, the issue of our application is to monitor57

implant stability throughout specific resonance frequency rather than boundary forces measurement.58

The originality of the present paper comes from the use of an optimization method, based on the modal59

electro-mechanical coupling factor (MEMCF), in order to maximize the observability of a subset of modes60

sensitive to the beam boundary conditions, related to the implant stability for the considered case study.61

The choice of this application comes from the need to maximize the initial fixation of orthopedic implants62

during their insertion into the bone, which is one of the main biomechanical issues related to this surgery.63

Since this fixation is tricky to maximize for the surgeon without creating a bone fracture, some quantitative64

methods are underdevelopment to measure in real time implant stability. Some of them are based on the65

vibro-acoustic characterization of the bone-implant system [17, 30, 20]. In particular, the results of [20],66

which showed that the implant stability is correlated to specific resonance frequencies of the surgical tool67

used to insert the implant, named “ancillary” and assimilated to a beam with one free extremity and the68

other one bounded to the implant being inserted. To improve the vibration measurement method for implant69

stability characterization by focusing on specific modes of interest, optimal patches positions are determined70

hereafter on the beam which has one free extremity and the other bounded to the implant being inserted.71

The paper is organized in two main sections. Section 2 is dedicated to the description of the smart72
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beam electromechanical behavior and to the transducers position optimization strategy based on mode73

observability. In particular, the modal electromechanical coupling between the patch and the beam and the74

utility functions chosen for the optimization of a subset of modes are defined. In Section 3, an experimental75

validation of the optimization strategy for implant insertion monitoring is carried out.76

2. Equations of the smart device77

2.1. Geometry and kinematics78

Figure 1: a) Geometry of the beam and connection with the inaccessible system b) Piezoelectric patches positions and numbering
on the beam and c) A section containing i-th patches couple and the associated electric circuit with Vi the potential difference
measured by each patches couple i

Consider an elastic beam of length ℓ with a rectangular section b × h (Fig. 1a), on which piezoelectric79

layers are bonded at np segments along its longitudinal axis x. The beam is fixed at x1 = ℓ to an external80

mechanical system. At a segment x ∈ [ai, bi] (i = 1..np), the beam is sandwiched between two identical81

piezoelectric patches of thickness hp which are put symmetrically at the upper and the lower surfaces of the82

beam (i.e at z = h/2 and z = −h/2) (Fig. 1b). Each couple of piezoelectric layers is polarized along −ez83

(Fig. 1c) and thus form a pure bending sensor/actuator.84

We assume the piezoelectric layers have the same width b with the beam’s section. Each piezoelectric85

layer is covered on both its upper and lower surfaces by electrodes which are equipotential surfaces. The86
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electric field E assumed to be constant, uniform and parallel to the transverse direction ez, is : Ez = −V/hp,87

where V the voltage applied between the electrodes. The purely elastic part of the beam is grounded.88

In this study, all forces acting along ey are neglected, the system may be described by a 1D Euler-89

Bernouilli model in the plane (x, z). Moreover, by assuming that the longitudinal and rotation of the beam90

are negligible, only flexural movement is considered. All components of the displacement field at a point of91

coordinates (x, y, z) may expressed in terms of the transverse displacement w(x) of the beam’s neutral axis:92

ux(x, y, z, t) = −zw′(x, t) (1)

uy(x, y, z, t) = 0 (2)

uz(x, y, z, t) = w(x, t) (3)

2.2. Consitutive law and governing equations93

By using the Euler-Bernoulli beam model, the transverse stress σzz and the shear strain ϵxz are negligible.94

Consequently, the only non-zero strain component is: ϵxx = u′
x = −zw′′ and the full piezoelectric constitutive95

equation (see Appendix A) reduces to:96

σxx = Y ϵxx − e31Ez, (4)

Dz = e31ϵxx + ε33Ez. (5)

At a point located in the elastic beam (i.e. for z ∈ [−h/2, h/2]): Y = Yb, ρ = ρb, e31 = 0 and ε33 = 0.97

Otherwise, in the piezoelectric patches, the mechanical parameters are denoted by ρ = ρp and Y = Yp. Since98

piezoelectric ceramics are transversely isotropic, the elastic parameter Yp is an in-plane Young modulus99

obtained from the corresponding complete elasticity tensor c using the following relation (see Appendix A:100

Yp =
(c11 − c12)((c11 + c12)c33 − 2c213)

c11c33 − c213
(6)

In the following, the extended Hamilton principle will be used for obtaining the equations of motion and101

continuity conditions [31]. See Appendix B for more details.102

2.2.1. Equations in a segment containing i-th patch (x ∈ [ai, bi])103

With the presence of the upper and lower piezoelectric patches, the beam has three layers and the kinetic104

variation δT ∗ may be expressed by:105
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δT ∗ =

∫ bi

ai

(∫ b/2

−b/2

∫ H/2

−H/2

ρ(δẇ) ẇ dydz

)
dx =

∫ bi

ai

m̄ δẇ ẇdx, (7)

where H = h/2 + hp and m̄ = b(ρbh+ 2ρphp) which is effective mass par unit length of the beam.106

Similarly, by recalling that the electric potential is fixed (δE = 0) and by substituting Eqs. (1-5) into107

(B.10), the potential variation δW ∗
e reads:108

δW ∗
e =

∫ bi

ai

(∫ b/2

−b/2

∫ H/2

−H/2

(−δϵxx σxx) dydz

)
dx (8)

=

∫ bi

ai

δw′′ (−D w′′ + GV ) dx, (9)

where109

D =

∫ b/2

−b/2

∫ H/2

−H/2

Y z2 dydz = Yb
bh3

12
+ Yp

bhp(3h
2 + 6hhp + 4h2

p)

6
, (10)

G =

∫ b/2

−b/2

∫ H/2

−H/2

e31z

hp
dydz = e31 b(h+ hp) = b (h+ hp) d31Yp, (11)

are a bending stiffness and a coupling coefficient, respectively.110

Then, integrating δW ∗
e by parts twice with respect to x gives:111

δW ∗
e =

∫ bi

ai

δw (−D w′′ + GV )
′′

dx− [δw′ (−D w′′ + GVi)]
bi
ai

+
[
δw (−D w′′ + GVi)

′
]bi
ai

(12)

=

∫ bi

ai

δwM ′′dx− [δw′M ]
bi
ai

+ [δwM ′]
bi
ai

(13)

where M := −D w′′ + GV is the bending moment in the beam.112

If we only consider a distributed transverse load p(x, t) applied to the beam, the virtual work of external113

force is:114

δW ∗
ext =

∫ bi

ai

δw p dx. (14)

In order to add the non conservative effects due to the internal damping of the beam, an extended Hamilton115

principle approach has to be used:116
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∫ t2

t1

(δT ∗ + δW ∗
e + δWext + δWnc) = 0 (15)

where δWnc is the work expended by the the non conservative actions. In the case of internal damping of117

the beam, we suppose the existence of a linear velocity dependent action and this term reads:118

δWnc = −
∫ ℓ

0

ηwδẇdx (16)

Finally, by applying the extended Hamilton’s principle, the equations of motion reads:119

m̄ẅ + ηẇ −M ′′ = p (17)

along with the following continuity conditions, where Jf(x)K = f(x+)− f(x−) is a jump function:120

JwK = 0, (continuity of displacement), (18)

Jw′K = 0, (continuity of rotation), (19)

JD w′′ + GViK = 0, (continuity of moment), (20)

J(D w′′ + GVi)
′K = 0, (continuity of shear force). (21)

As the piezoelectric patch is very thin with respect to the beam, the flexural rigidity D and the mass per121

unit length m̄ of the beam, can be considered as uniform in [0, ℓ]. In addition, the strain may be regarded122

as uniform over its thickness ϵxx = −zmw′′ where zm = (h + hp)/2 is the coordinate of center line of the123

piezoelectric patch. The charge Qi of the i-th patch is defined as the free electric contained electrode area124

[11]:125

Qi = b

∫ bi

ai

−Dz dx = b

∫ bi

ai

(e31zmw′′ − ε33Ez) dx (22)

= G(w′(bi)− w′(ai)) + CiVi (23)

where Ci = ε33b(bi − ai)/hp. If the piezoelectric segment is left open-circuited, then Qi = 0 and:126
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CiVi = −G(w′(bi)− w′(ai)) (24)

2.2.2. Equation for the whole domain (x ∈ [0, ℓ])127

For describing the behavior of the beam with length ℓ with np patches, one may use the same expression128

of the equation (17), with a more general formulation of bending moment:129

M = −Dw′′ +

np∑
i=1

GVi(H(x− ai) +H(x− bi)), x ∈ [0, ℓ]. (25)

where H(.) denotes the Heaviside function.130

Moreover, considering the beam with one free extremity and the other mechanically connected to another131

mechanical system, the boundary conditions at x1 = 0 and x1 = ℓ are:132

w′′(0) = 0, (no bending moment on the free end), (26)

w′′′(0) = 0, (no shear force on the free end), (27)

D w′′(ℓ) = Mext, (bending moment imposed by the external mechanical system), (28)

D w′′′(ℓ) = Text, (shear force imposed by the external mechanical system). (29)

2.3. Modal expansion133

The harmonic motion of the beam may be expressed by N short-circuit eigenmodes ωk, ϕk(x) (i = 1..N):134

w(x, t) =

N∑
k=1

ϕk(x)qk(t) (30)

where qk(t) is a time-dependant function. ωk, ϕk(x) may solved from by Eq. (17) with p = 0 and V = 0:135

−ω2
km̄ϕk +Dϕ

(4)
k = 0 (31)

where (4) represents the fourth derivative with respect to the coordinate x. The modes ϕk are orthogonal136

and may be normalized by:137
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∫ ℓ

0

ϕj(x)ϕk(x) = δjk (32)

By substituting (30) into (25), (17) , and multiplying the results by ϕj , one obtains N equations (j = 1..N):138

m̄q̈j(t) + ω2
j m̄qj(t) + ηj q̇j −

np∑
i=1

gijVi = Fj (33)

where Fj =
∫ ℓ

0
ϕjp(x, t) dx.139

The value of the coupling coefficient gij of the patch i with respect to the mode j is defined by:140

gij(ai, bi) = G
∫ bi

ai

ϕj
′′(x)dx = G

(
ϕ′
j(bi)− ϕ′

j(ai)
)

(34)

Similarly, substituting (30) into (24) leads to np equations (i = 1..np):141

CiVi +

N∑
j=1

gijqj(t) = 0 (35)

By seeking the harmonic solutions under the forms:142

qj(t) = q̃j(ω)e
iωt, Vi(t) = Ṽi(ω)e

iωt, Fj(t) = F̃j(ω)e
iωt, (36)

the final system of modal equations (Eqs. 37, 38) reads:143

− ω2m̄q̃j + ω2
j m̄q̃j + iωηj q̃j −

np∑
i=1

gij Ṽi = F̃j , (j = 1..N) (37)

CiṼi +

N∑
j=1

gij q̃j = 0, (i = 1..np) (38)

2.4. Optimization of the transducers positions144

In this section, an optimization procedure is described for positioning the piezoelectric patch on a struc-145

ture so that the measurement of specific modes is maximized. The aim is to find the utility function that146

represents the piezoelectric patch sensitivity as a function of the specific modes of interest. More specifically,147

we intend to find the optimal placement ai for the patch such as the coupling gij between the i-th patch148

and the j-th mode is maximized.149
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2.4.1. Modal sensitivity150

We compute q̃j from Eq. (37), then inject the result into Eq. (38). By neglecting the quadratic terms151

with respect to the coupling term gij , we obtain the so called sensor equation for each patch i:152

Ṽi = −
N∑
j=1

gijF̃j

Cim̄(ω2
j − ω2 + iωηj/m̄)

(39)

In our case the external force is a point force applied at a specific point of the beam xf , with amplitude153

F̃0(ω), i.e. p̃(x, ω) = F0(ω)δ(x− xf ). This means that:154

F̃j =

∫ ℓ

0

p̃(x, ω)ϕj(x)dx =

∫ ℓ

0

F̃0(ω)δ(x− xf )ϕj(x)dx = F̃0ϕj(xf ) (40)

then the voltage measured on each piezo is:155

Ṽi = −
N∑
j=1

gij
F̃0(ω)ϕj(xf )

Cim̄(ω2
j − ω2 + iωηj/m̄)

(41)

Finally, we can define the transfer function at the i-th patch as:156

Hi(ω) =
Ṽi(ω)

F̃0(ω)
= −

N∑
j=1

gijϕj(xf )

Cim̄(ω2
j − ω2 + iωηj/m̄)

(42)

This transfer function is at the core of the optimization process.157

The contribution of the j-th mode to the frequency response function Eq. (42) is:158

Gij(ω) =

∣∣∣∣∣ gijϕj(xf )

Cim̄(ω2
j − ω2 + iωηj/m̄)

∣∣∣∣∣
In order to estimate the sensitivity of each piezo patch i to mode j, with respect to the position ai, we can159

introduce the following norm ∥.∥∞, that in our case corresponds to evaluating the contribution of the j-th160

mode at resonance frequency ωj :161

κij = ∥Gij(ωj)∥∞ =

∣∣∣∣gijϕj(xf )

Ciiωjηj

∣∣∣∣ (43)

For each given patch i, a normalised form of modal sensitivity to mode j is given by:162
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Mij =
κij

max
j=1..N

κij
(44)

where Mij represents the control authority of the i-th patch fixed over the j-th mode. Since the aim is to163

maximize the sensitivity of the piezoelectric sensor in regard to the detection of one or several mode(s) rather164

than using the patch as an actuator to control the mode(s), in this paper, it is named modal sensitivity in165

comparison with notion of modal controllability used in Halim and Moheimani [14].166

2.4.2. Definition of a new utility function167

Different utility functions can be defined starting from the concept of modal sensitivity. The idea is to168

obtain modal filtering, which is achieved by adding a weight in the optimization for specific modes. In this169

way it is possible to “see” or “hide” a mode [21]. To this end we define a vector ξ of modal weights, whose170

the component ξj corresponds to weight of the j-th mode:171

ξj =


1 if the j-th mode has to be seen

−1 if the j-th mode has to be hidden

0 if the j-th mode is not relevant

(45)

Then, for each value of ai, bi of the transducer and assuming that xf is fixed, the utility function is172

defined as:173

F(ai, bi, xf ) =

N∑
j=1

ξjMij(ai, bi, xf ) (46)

and the optimal positions
{
âi, b̂i

}
is defined by:174

{
âi, b̂i

}
= argmax(F(ai, bi, xf )) (47)

Several transducers can be optimized at the same time, by choosing local maxima of the transfer function.175

In this case, constraints on transducers sizes have to be considered to avoid the overlap of two patches. The176

practical application of the method will be detailed in the case study presented in Section 3.177

3. Case study : optimal transducers positioning for implant stability monitoring178

The optimization method described in Section 2.4 is applied to a square beam named ancillary hereafter,179

and connected to an inaccessible mechanical system corresponding to an orthopedic implant into a bone180

mimicking phantom (Fig. 2). The ancillary is a part fixed to the implant during the surgery in order to181
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enable the surgeon to apply hammer impact at one of its extremity, leading to implant insertion. The aim182

of this case study is to present and validate a procedure of piezoelectric patches placement optimization183

for monitoring the stability of an implant which is not directly accessible for vibration measurement. The184

optimization principle lies on focusing on specific modes of vibration of the ancillary, which are sensitive to185

implant stability into the bone, and to hide modes which are not of biomechanical interest.186

3.1. Geometry187

A stainless steel beam of square section was designed with the geometrical and material properties given188

in Table C.4 (see Appendix C.1). The bottom threaded extremity was rigidly fixed in the implant and the189

top extremity was kept free. The implant was a cementless femoral stem made of titanium alloy (TiAl6Al4V)190

and coated with hydroxyapatite (CERAFIT RMIS, Ceraver, Roissy, France). The implant was fully inserted191

into a bone mimicking phantom (ORTHObones, 3B Scientific, Hamburg, Germany) embedded in polymer192

resin in order to enable clamping to the vibration table, similarly as what was done in [20, 32].193

Figure 2: Experimental case study configuration. The same notations as the ones shown in Figure 1 are indicated : accessible
instrumented length ℓ, axis directions and coordinates origin O. The ancillary (a) corresponds to the accessible part, the
implant (femoral stem) (b) and the bone (femur) (c) represent the inaccessible part.

3.2. Optimization algorithm194

The experimental optimization approach consists in the following successive steps described in Fig. 3:195

1. Modal characterization of the ancillary without piezoelectric sensors. The modes of vibration196

of the ancillary are measured in the frequency range [0.4 12.8] kHz by Experimental Modal Analysis197
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(EMA). The experimental mode shapes ϕe
j , the resonance frequencies fj = 2πωj and the damping198

coefficients βj = ηj/m̄ are retrieved.199

2. Piezoelectric patches placement optimization. Different utility functions are defined from Eq.200

(46) based on the modal sensitivity Mij calculated for each position ai of piezo i and mode j. Con-201

sidering the information carried by each mode j on the implant stability, a vector ξ is defined. For202

each utility function F , the optimal piezoelectric patch position {âi, b̂i} is determined by Eq. (47).203

One patch is associated with one utility function and np patches are used.204

3. Piezoelectric patches placement validation: The amplitude ratios at ωj are calculated between205

the frequency response functions Hi, measured successively with each piezoelectric patch i. The results206

are compared with what was expected from the definition of each utility function F .207

Figure 3: Experimental procedure for piezoelectric patches placement optimization and protocol validation.

3.3. Modal characterization of the ancillary208

Modal analysis measurements. The ancillary modal features were determined by performing EMA following209

the same protocol described in [20] and shown in Fig. 4. Only the mode shapes oscillating along ez, were210

measured, since the properties of the mode shapes along ey were shown to not evolve with implant insertion211

into the bone in a previous study [20]. The structure was excited by hammer impacts (modal hammer212

8204, Brüel & Kjaer, Naerum, Denmark) at 13 locations xf equally spaced of 10 mm beginning at 5 mm213

from the ancillary top surface. At each location, the structure was excited 5 times along ez (see Fig. 4).214

The z-accelerations consecutive to each impact were recorded by a tri-axial accelerometer (365A01PCB215

Piezotronics, Depew, NY, USA) glued at the ancillary top extremity, as shown in Fig. 4. The excitation216

impact was lower than 50N to ensure it does not modify the implant position and consequently the boundary217
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conditions of the beam during the modal features measurement. A dedicated data acquisition module (BK218

Connect, Brüel & Kjaer, Naerum, Denmark) with a sampling rate of 51.2 kHz was used to record the219

acceleration signals during 0.25 s. We assume that the weight of the accelerometer (1 g) and the weight and220

rigidity of the piezoelectric patches do not influence the structure dynamic behavior.221

a

Figure 4: a) Picture and b) scheme of the Experimental Modal Analysis set-up with ℓ =125 mm.

Modes selection. An example of two frequency response functions (frf ) measured in the range [0.4 12.8]222

kHz for an impact at xf = 5 mm along ez, is presented in Fig. 5. The two frf correspond to two different223

implant insertion stages, one at beginning of insertion (in grey) and one for the implant fully seated (in224

black). The choice to show frf corresponding to an impact location at xf = 5 mm is explained because it is225

a good compromise to see all the modes on the frequency range [0.4 12.8] kHz, due to the proximity to the226

free extremity, where the mode shapes are close.227

Five modes were selected from the frf of implant fully inserted, for the patch placement optimization228

analysis, denoted A, B, C, D and E hereafter. Table 1 gathers the modal features of the five selected modes229

obtained for the implant fully seated : resonance frequency f and damping factor β, calculated for each230

resonance frequency with the 3 dB method. The resonance frequencies of modes A and B are in good231

agreement with what was found in [20]. These two resonance frequencies increase during implant insertion232

into the bone and reach values of 2.6 kHz and 3.3 kHz once the implant fully seated, which corresponds to233

the behavior of modes 2Y and 2Yb, identified in [20].234

Mode shapes. The experimental modal shapes ϕe
j of the five selected modes presented in Table 1 and in Fig.

5 are shown in Fig. 6. The five modes are of bending nature, with either two nodes (modes A, B and C) are
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Figure 5: Frequency response functions, frf, measured by the accelerometer for an impact at xf = 5 mm along ez at beginning
(in grey) and end (in black) of implant insertion. The letters from A to E indicate the modes selected for the patch placement
optimization analysis.

Mode # A B C D E
f (Hz) 2609 3391 4160 6157 10956
β (-) 2.19 1.20 1.74 1.86 0.64

Table 1: Names and modal features (resonance frequency f , damping factor β) of the modes selected for the piezoelectric
patches placement optimization procedure.

three nodes for higher resonance frequencies (modes D and E). This result confirms that mode A and B

correspond to modes 2Y and 2Yb in [20]. Each mode shape ϕe
j was normalized by its Euclidean norm ||.||2.

Each discrete experimental mode shape ϕe
j , was fitted using the general equation of normal beam shapes

adapted from Eq. (31):

ϕ
(4)
j =

ω2
j m̄

D
ϕj (48)

where λ
(4)
j = ω2

j m̄/D. Hence, the general solution of Eq. (48) is given by:235

ϕj = C1 sin(λjx) + C2 cos(λjx) + C3 sinh(λjx) + C4 cosh(λjx) (49)

where the constant C1,2,3,4 are determined from the boundary conditions expressed by Eq. (26) to (29). In236

our case study, considering a free end at x = 0, the bending moment and shear force were both equal to237

zero at this end (Eq. (26) and Eq. (27)) which gives C1 = C3 and C2 = C4. Then, for each mode j, the238

values of C1 and C2 were determined using an error minimization algorithm in Matlab. The mode shapes239

were fitted in order to further calculate the coupling coefficient gij from the mode shape curvature ϕj
′′ (Eq.240

34), which requires a continuous shape.241

3.4. Piezoelectric patches placement optimization242

This section is dedicated to the definition of one or more utility function(s) F aiming at finding patches243

positions âi (i = 1..np) on the ancillary such as a combination of modes ϕj (j = 1..N) are visible or hidden244
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Figure 6: Experimental (o) and fitted (-) mode shapes ϕj of modes A to E, vibrating along ez .

when measuring the frequency response function Hi by the piezoelectric patch i. The choice to see or hide245

one or several mode(s) is based on the mode resonance frequency sensitivity to the implant position into246

the bone, corresponding to the so-called ”inaccessible part”. The modes ϕj considered for the optimization247

analysis are modes #A, B, C, D and E.248

Piezoelectric patch properties. The piezoelectric transducers that are used for resonance frequency functions249

measurement are square shaped with a length b = h = 10 mm and a thickness hp = 0.2 mm. The geometry is250

fixed and constant over the patches. The detailed properties or given in Table C.5 in the Appendix C.2. The251

same configuration as presented in Section 2.1 and Fig. 1 with two piezoelectric patches put symmetrically252

at the upper and lower surfaces of the beam is considered hereafter.253

Modal sensitivity. As described in Section 2.4, the normalized modal sensitivity Mij defined by Eq. (44)254

is calculated for each mode j and patch i by varying the position ai of the patch. As the length ℓ of the255

instrumented beam is 125 mm and the patches are 10 mm length, ai ∈ [0-115] mm, in order to avoid the256

patch to exceed the accessible part of the structure. The spatial resolution for varying the position ai of the257

patch and calculating Mij is 1 mm.258

For each mode j, the results show at least one minimum and maximum on the modal sensitivity function259

Mij (see Fig. 7) depending on the patch position ai. The higher frequency modes D and E (6157 Hz and260

10956 Hz, respectively) have two local maxima which offer two possibilities for patch placement whereas261

lower frequency modes A, B and C (2609 Hz, 3391 Hz and 4160 Hz, respectively) only hold one maximum.262
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Figure 7: Modal sensitivities Mij depending on the patch position ai on the ancillary calculated for each mode A to E.

Choice of transducers positions. The strategy employed for the definition of a utility function F is to use263

one transducer associated to multiple modes, as explained in the section 2.4.2. Different utility functions264

can be defined, each function being associated with an optimal patch position {âi, b̂i}, defined by Eq. (47).265

The comparison of the frf measured at the beginning of implant insertion and once the implant is fully266

seated (see Fig. 5) shows that 4 modes (namely, modes #A, B, C and E) over the 5 selected for the study,267

are sensitive to implant stability with a frequency shift of more than 150 Hz to higher frequencies between268

the beginning and end of implant insertion. The sensitivity of the modes A and B is in good agreement269

with what was obtained in [20].270

From these results and in order to demonstrate the performance of the optimization method, three271

examples of utility functions F are defined with Eq. (46), for which the modal weights ξj associated to each272

mode j are shown in Table 2. Considering these examples, each utility function F is associated with one273

position âi of the patch i such as:274

• F1 : The resulting position â1 of the patch assumes to be the best compromise to see all the modes275

A to E on the frequency response function (ξj=1). This configuration acts as a reference case, which276

will allow the comparison with other configurations where modes should be filtered (F2, F3), in order277

to evaluate the efficiency of the optimization method.278

• F2 : The resulting position â2 of the patch assumes to be the best compromise to hide mode D (ξ4=-1)279

while letting the other modes visible (ξj ̸=4=1). This configuration enables to focus only on the modes280
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sensitive to implant insertion (namely, modes A, B, C and E), since the resonance frequency of mode281

D has shown to not significantly change during implant insertion (see Fig. 5).282

• F3 : The resulting position â3 of the patch assumes to be the best compromise to filter mode C (ξ3=-1)283

while ensuring visibility of mode B (ξ2=1). The other modes are not concerned by the optimization284

configuration (ξ1,4,5=0). This configuration enables to focus on the tracking of the resonance frequency285

of mode B for implant insertion monitoring, by avoiding confusing with mode C, due to their close286

resonance frequencies.287

Modes A B C D E {âi, b̂i} (mm)
F1 1 1 1 1 1 {40, 50}
F2 1 1 1 -1 1 {78, 88}
F3 1 1 -1 1 1 {91, 101}

Table 2: Modal weights ξj defined for the utility functions F1,2,3 and resulting optimal piezoelectric positions â1, â2, â3. The
reference case corresponding to F1 is highlighted in bold.

Figure 8b shows the three utility functions F1, F2, F3 calculated for the weight coefficients ξj defined in288

Table 2. The modal sensitivities Mij are represented in Fig. 8a for j = 1..5. For each utility function, only289

one maximum is identified, corresponding to the position âi of the piezoelectric patch defined by Eq. (47).290

Note that to avoid overlap, for each patch i, we verified that |âi − âi+1| > b, in order to allow the bounding291

of the 3 transducers on the same beam.292

3.5. Validation of optimization placement protocol293

The structure has been assembled following the optimization procedure described in the previous section.294

The piezoelectric patches have been bonded on the surface of the beam using a one-component silver-filled295

epoxy resin (Elecolit 3043, Panacol, Germany) cured at 160°C during 30 min. The resulting smart ancillary296

is shown in Fig. 9.297

To assess the validity of the patches placement optimization procedure, a frequency analysis was per-298

formed in order to compare the frequency response functions Hi measured by each patch i. To do so, the299

ancillary was excited by a modal hammer, impacting the structure at xf = 5 mm along ez. The choice300

of the position of the source xf is explained by the similarity of the mode shapes near the free extremity301

(see Fig. 6), which provides optimization results independent of xf . However, as shown in Eq. (42), it302

would have been possible to study and optimize the position of the excitation source xf in the calculation303

of the utility functions F . The system dynamic response was measured successively by one of the three304

piezoelectric patches, the two others being short-cut during the acquisition time. The sampling frequency305
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Figure 8: a) Modal sensitivities Mij as a function of the patch position ai calculated for j = 1..5 (namely, modes A to E) and
b) corresponding utility functions F1,2,3 calculated for ξ =[1 1 1 1 1], ξ =[1 1 1 -1 1] and ξ =[0 1 -1 0 0], respectively, with the
optimal positions âi corresponding to the maximum of each utility function F .

Figure 9: Image of the instrumented ancillary equipped with piezoelectric patches #1, #2, #3 bonded at locations â1 = 40
mm, â2 = 78 mm and â3 = 91 mm, calculated from the optimization procedure described in Section 3.4

and the acquisition time were the same as for the modal characterization, leading to a frequency resolution306

df = 4 Hz.307

The frequency response function H1 obtained by the piezoelectric patch #1, placed such as the utility308

function allow the visibility of all the set of modes A to E, is compared with H2 measured by the piezoelectric309
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patch #2 in Fig. 10a and with H2 measured by the piezoelectric patch #3 in Fig. 10b. The amplitudes at310

resonances measured by the three piezoelectric patches are given in Table 3 together with the amplitude’s311

variation at resonance obtained for patch #2 and patch #3 with respect to the reference patch #1.312

Figure 10: a) Comparison of the frequency response functions H1 and H2 measured by the piezoelectric patch #1 and the
piezoelectric patch #2 and b) comparison of H1 and H3 measured by the piezoelectric patch #1 and the piezoelectric patch
#3. A zoom on the target modes by the utility functions F2 and F3 is included in the graphs.

Modes A B C D E
patch #1 (V/N) 0.898 0.467 0.231 0.427 0.330
patch #2 (V/N) 0.851 (-5.24%) 0.337 (-27.8%) 0.136 (-41.3%) 0.060 (-85.9%) 0.386 (+17.0%)
patch #3 (V/N) 0.600 (-33.2%) 0.152 (-67.4%) 0.054 (-76.8%) 0.234 (-45.2%) 0.156 (-52.7%)

Table 3: Amplitudes at resonances of modes A to E measured by patches #1, #2, #3 together with the percentage of amplitude’s
decrease at resonance indicated in brackets, with regard to measurements from patch #1. The patch #1 corresponds to the
reference case and is highlighted in bold.

The amplitude decrease of 85.9% of mode D measured by the piezoelectric patch #2 with regard to313

patch #1, validates the position optimization procedure since the utility function F2 aimed to hide mode314

D. Similarly, the frequency measurement with the patch #3 leads to a decrease of 76.9% of the amplitude315

of the mode C with regard to patch #1, which was expected by the utility function F3. Nevertheless,316

the unintended associated decrease of the amplitude of mode B show the limitation of the utility function,317

defined by weight coefficient ξj and patch position ai. This unintended decrease is explained by the strong318

similarity between the shapes of mode B and C (see Fig. 6). Therefore, another condition based on a319

minimum visibility of the modes associated with ξj=1 should be implemented in the utility function to320

ensure mode visibility. It could also be relevant to study the effect of the geometrical parameters of the321

piezoelectric patch as the length b or the thickness hp, both implied in the calculation of the coupling322

coefficient gij and therefore Mij .323
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4. Conclusion and discussions324

This paper proposes a method for optimizing the positioning of piezoelectric patches on a beam attached325

to an unreachable structure. The issue of maximizing the observability on the frequency response function326

of a set of modes, which is sensitive to the beam boundary conditions, was addressed. For that purpose,327

an optimization strategy was developed, based on the definition of utility functions, expressed in terms of328

modal weight and in terms of the so-called modal observability, for which the expression has been exhibited.329

It has been shown that the modal observability depends on the electro-mechanical coupling coefficient,330

calculated from the patches geometrical and material properties, and the beam mode shapes curvatures.331

The originality of the paper comes from the use of the modal electro-mechanical coupling factor (MEMCF)332

to optimize sensors placement on the beam in order to improve beam boundary condition monitoring. An333

original application for implant stability measurement was proposed.334

In the particular case developed in this paper, one piezoelectric patch is associated to several modes,335

whose the observability has to be improved. Therefore, the optimal piezoelectric patches positions are the336

result of a compromise obtained from the utility functions, aiming at improving the observability of a set337

of modes sensitive to beam boundary conditions, while minimizing the observability of the modes which are338

not sensitive to them. In the experimental case study, the particular issue of monitoring implant stability339

by means of a smart beam was investigated. The smart beam, which is basically a tool used by the surgeon340

to insert the implant, was equipped with patches for which the placement was determined to optimize the341

mode observability on the FRF, depending on the sensitivity to the stability, that was demonstrated in342

a previous study [20]. The mode observability measured by the position-optimized patches was in good343

agreement with what was expected from the utility functions definition. The amplitude of the modes that344

should be hidden on the FRF because they are not sensitive to implant stability decreased up to 85% with345

regard to the reference position. The results of this study open the path towards the conception of a smart346

tool optimized for the real-time monitoring of implant stability during the insertion of an implant by the347

surgeon.348

However, since the optimization strategy is based on the modal observability and in particular the349

coupling coefficient, the positions strongly depend on the mode shapes curvatures. For low frequency350

modes, the placement possibilities are limited because of the few number of nodes, and therefore close mode351

shapes will tend for close piezoelectric patches positions. Moreover, another drawback of the study is that352

optimization of the dimensions of the piezoelectric patches was not studied, whereas the electro-mechanical353

coefficient also depends on the thickness or the length of the patch. This aspect was studied in [11] and354
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could be easily implemented in the strategy proposed in this paper. Another way of optimization, would be355

to use specific forms of piezoelectric patches, enabling accurate boundary force measurement, as proposed in356

[33]. Nevertheless, this method is more complex to implement regarding both the piezoelectric patch design357

and the post-processing analysis.358

The method proposed in this paper is particularly adapted for applications where mode shapes change359

with boundary conditions, as it relies on mode shape curvatures. It could be applied for other configurations360

of beam-like structures with bending modes that should be tuned, based on the modal observability concept.361

Also, a relevant perspective will be to investigate the placement optimization of the excitation source, and362

in particular, by using one of the piezoelectric patch as an actuator. This outlook is of particular interest363

concerning the biomedical application presented in the case study, since it would lead to an automation364

of the measurement by preventing from the use of a modal hammer as a source of excitation that is not365

convenient in a clinical environment. Then, as investigated by several authors [23, 24, 6], another strategy366

approach could be to use of a network of sensors along the beam with different control signals to tune specific367

modes. The main advantage of this approach would be to conceive one unique beam for several applications.368
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Appendix A. Constitutive equations of piezoelectric materials374

Constitutive equations. Assuming a linear piezoelectric material, the 3D constitutive equations may be

written in matrix form as follows [34]: σ

D

 =

c −eT

e ε


 ϵ

E

 (A.1)

where σ = (σxx, σyy, σzz, σyz, σxz, σxy)
T is the stress vector; D = (Dx, Dy, Dz)

T is the electric displacement

vector; ϵ = (ϵxx, ϵyy, ϵzz, 2ϵyz, 2ϵxz, 2ϵxy)
T is the strain vector; and E = (Ex, Ey, Ez)

T is the electric field

vector. The matrices c, e, ε are the matrices with elastic, electro-mechanic and dielectric constant entries.

c =



c11 c12 c13 0 0 0

c21 c22 c23 0 0 0

c31 c32 c33 0 0 0

0 0 0 c44 0 0

0 0 0 0 c55 0

0 0 0 0 0 c66


, e =


0 0 0 0 e15 0

0 0 0 e24 0 0

e31 e32 e33 0 0 0

 , ε =


ε11 0 0

0 ε22 0

0 0 ε33

 , (A.2)

Alternatively, the equation (A.1) may be written by: ϵ

D

 =

 s d

dT ε


σ

E

 (A.3)

where s := c−1 is the compliance matrix and d := seT contains the piezoelectric constants. Note that375

Yb = 1/s11.376

Appendix B. Extended Hamilton principle377

Energy density function. The total stored energy density in a unit volume of material is the sum of the

mechanical work and of the electrical work [31]:

dWe(ϵ,D) = (dϵ)Tσ + (dD)TE (B.1)

Note that for a conservative system, We =
∫ (ϵ,D)

(0,0)
dWe which leads to the constitutive equation:

σ =
∂We

∂ϵ
, and E =

∂We

∂D
(B.2)
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The coenergy density function is defined by:

W ∗
e (ϵ,E) = ETD −We(ϵ,D) (B.3)

By calculating the total differential of dW ∗
e and by using the (A.1), we can express W ∗

e as:

W ∗
e (ϵ,E) =

1

2
ETεE + ϵTeE − 1

2
ϵT cϵ (B.4)

It follows that:

ϵ =
∂W ∗

e

∂σ
, and S =

∂W ∗
e

∂E
(B.5)

Hamilton’s principle. We assume the admissibility requirements which impose that the virtual displacements

δu must be compatible with the the kinematic of the system, and the admissible flux linkage variation δλ

must be compatible with Kirchhoff’s voltage rule. The Hamilton’s principle reads [2]:∫ t2

t1

(δT ∗ + δW ∗
e + δWext) = 0 (B.6)

where

T ∗ =
1

2

∫
Ω

ρu̇T u̇ dV (B.7)

W ∗
e =

1

2

∫
Ω

(
ETεE + 2ϵTeE − ϵT cϵ

)
dV (B.8)

and which follows that:

δT ∗ =

∫
Ω

ρδu̇T u̇ dV (B.9)

δW ∗
e =

∫
Ω

(
δETD − δϵTσ

)
dV (B.10)

The term δWext represents the virtual work of the external forces and of the external applied currents:

δWext =

∫
Ω

δuTfvdV +

∫
Sf

δuTfsdS −
∫
Sq

δϕT q̄dS, (B.11)

where fv is the volume force, fs is the surface forces applied on Sf , q̄ is surface charge density applied on378

Sq.379

Appendix C. Properties of the ancillary and the piezoeletric patches380

Appendix C.1. Ancillary381
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Properties of the ancillary
Coefficient Value Description
A 10× 10 mm2 Section of the ancillary
h 10mm Thickness
ℓ 125mm Length of the ancillary (squared

part only)
Yb 193GPa Young’s modulus
ρ 8000 kgm−3 Density
µ 0.3 Poisson’s ratio

Table C.4: Dimensions and mechanical properties of the ancillary

Appendix C.2. Piezoelectric patches382

Properties of the piezoelectric ceramic
Coefficient Value Description
hp 0.2mm Thickness
b 10mm Length
d31 −180× 10−12 C/N Coupling coefficient
Yp 62.3GPa In-plane Young’s Modulus
ρp 7800 kgm−3 Density
µp 0.35 Poisson’s ratio

Table C.5: Dimensions and mechanical properties of the piezoelectric ceramic element
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