N
N

N

HAL

open science

A multi-port scattering matrix formalism for the
acoustic prediction in duct networks

Cyril Calmettes, Emmanuel Perrey-Debain, Emmanuel Lefrancois, Julien

» To cite this version:

Cyril Calmettes, Emmanuel Perrey-Debain, Emmanuel Lefrancois, Julien Caillet. A multi-port scat-
tering matrix formalism for the acoustic prediction in duct networks. Acta Acustica, 2023, 7, pp.13.

10.1051/aacus/2023013 . hal-04276144

Caillet

HAL Id: hal-04276144
https://hal.science/hal-04276144

Submitted on 15 Jan 2024

HAL is a multi-disciplinary open access
archive for the deposit and dissemination of sci-
entific research documents, whether they are pub-
lished or not. The documents may come from
teaching and research institutions in France or
abroad, or from public or private research centers.

L’archive ouverte pluridisciplinaire HAL, est
destinée au dépot et a la diffusion de documents
scientifiques de niveau recherche, publiés ou non,
émanant des établissements d’enseignement et de
recherche francais ou étrangers, des laboratoires
publics ou privés.


https://hal.science/hal-04276144
https://hal.archives-ouvertes.fr

Acta Acustica 2023, 7, 13
© The Author(s), Published by EDP Sciences, 2023
https://doi.org/10.1051 /aacus,/2023013

¢ Acta %
Acustica | |
o

Available online at:
https://acta-acustica.edpsciences.org

SCIENTIFIC ARTICLE OPEN @ ACCESS

A multi-port scattering matrix formalism for the acoustic prediction

in duct networks

Cyril Calmettes™” @, Emmanuel Perrey—Debainl’* , Emmanuel Lefrancois', and Julien Caillet?

! Université de technologie de Compiégne, Roberval (Mechanics, energy and electricity), Centre de recherche Royallieu,

CS 60319, 60203 Compiégne Cedex, France

2 Airbus Helicopters, Aéroport International Marseille Provence, 13725 Marignane, France

Received 28 July 2022, Accepted 7 April 2023

Abstract — Duct acoustic network modeling is commonly carried out using the transfer matrix formalism
which is limited to the low frequency range. The aim of this work is to extend it to higher frequencies by taking
into account the multi-mode acoustic propagation. The first step is to compute, via Finite Element Method
(FEM), the multi-port multi-modal scattering matrix of each element. The second step is to transform it into
a scattering matrix for the acoustic power, relying on assumptions which are often used for the study of
medium-to-high frequency broadband noise. The method is applied to typical elements such as expansion
chamber mufflers and air conditioning veins. In all cases, the power-flow model is compared to the FEM
solution in terms of Transmission Losses. It is concluded that this simplified model is a reliable tool for the
analysis of complex networks encountered in Heat and Ventilation Air Conditioning (HVAC) duct networks.

Keywords: Scattering matrix, acoustic duct network

1 Introduction

In helicopters, cabin and cockpit heating is performed
by taking hot air from engine compression stage. This heat
is mixed to ambient or external air into a Heat and
Ventilation Air Conditioning (HVAC) system through an
injector in order to reach the temperature set point. The
device produces a high frequency hot jet noise propagating
through the air distribution system before it radiates into
the cabin and cockpit. The whole architecture of the HVAC
can be rather complex, see for instance the illustration of a
typical cockpit air conditioning system in [1] (note this does
not include the heating and ventilating part). HVAC
systems are also encountered in many applications such
as buildings and in the transport industry. In an early phase
of designing HVAC duct networks, it is desirable to have a
simulation tool for the prediction of the noise radiated from
the terminal diffusers. For this purpose, HVAC systems are
usually described as a network of several sub-systems joined
by duct-like elements. Typical sub-systems are, for instance,
bends and sudden expansion/contraction, T-junctions, duct
or expansion chambers with acoustically treated walls and
terminal diffusers. Each sub-element can act as an obstacle
for the acoustic wave (i.e. the passive part) and also as a
source of noise (i.e. the active part) which generally stems
from the presence of a turbulent flow in the system.

*Corresponding author: emmanuel . perrey-debain@utc.fr

The development of simulation softwares has been the
subject of active research in the last decades and we can
notably cite [2, 3]. These can be regarded as “1-D” simula-
tions tools using either the transfer matrix [3] or the scatter-
ing matrix formalism [2] and are therefore limited to the
low-frequency range whereby only the plane wave mode is
allowed to propagate in the ducts. In order to alleviate
these limitations, a new active two-port scattering matrix
formalism has been developed recently using the acoustic
power as states variables instead of the acoustic pressure
[4]. The theory relies on the algorithm for network
equations developed earlier by Glav and Abom [5] whereas
scattering matrices as well as the source terms for each
sub-element are constructed e.g. from VDI 2081 [6] and
ASHRAE standards [7]. The method, although restricted
to a specific choice of acoustic sub-elements, offers an
efficient prediction tool for HVAC noise but ignores the
effect of reflections. In the wake of Cumming’s work [§],
the concept is extended by the same authors by construct-
ing the scattering matrix via ray tracing algorithms [9].
This allows to include both reflection and transmission
and to treat more accurately a variety of elements and good
results are obtained as long as the “high-frequency assump-
tion” remains valid, i.e. the number of propagating modes
must be sufficiently large (say at least 10 as shown in [8]).

Many HVAC systems, such as those installed in heli-
copters, comprise non-standard multi-ports duct compo-
nents involving complex geometries with or without
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absorbing liners. Moreover, the frequency spectrum of the
source can largely exceed the plane wave cut-off frequency.
Recall that this condition is reached as soon as the wave-
length becomes smaller than the diameter of the duct.
Thus, for a large part of the frequency range of interest,
waves are likely to propagate in a multi-modal context.
The propagation of high-order modes is accounted for in
many research papers dealing with silencers of cylindrical
shapes using the Mode Matching Methods [10, 11]. The
technique relies on the decomposition of the acoustic waves
in the silencer as a series of duct modes and the application
of appropriate continuity conditions at both ends of the
silencer. The whole system of equations which includes inci-
dent and reflected waves in the inlet and outlet ducts as
well as in the silencer can be condensed in order to build
the scattering matrix. Depending on the configuration,
modes can be obtained analytically by exploiting the circu-
lar symmetry of the silencer [11] or can be calculated
numerically when the silencer cross-section is elliptical
[10]. However, in order to treat components with arbitrary
geometries, the modal description is not valid anymore and
the use of classical 3D discretization techniques such as the
Finite Element Method (FEM) or the Boundary Element
Method (BEM) is unavoidable [12].

The idea of connecting finite element matrices with
modal representation of waves gave rise to the so-called
“hybrid methods” which have been the research topic of
many papers. In this regard, we can cite the work of Astley
[13] who presented a general formulation for the computa-
tion of acoustic waves in exterior domains. Later, Kirby
developed the technique for the propagation in acoustic
waveguides [14]. An interesting feature that these hybrid
methods just mentioned have in common is that finite
element stiffness and mass matrices are not modified and
could be built via any commercial software. Besides, the
global matrix is symmetric (and possibly complex-valued
if absorbing materials are present) regardless of the shape
of the component. Again, the global matrix can be con-
densed after elimination of the internal degrees of freedom
to obtain the scattering matrix.

It is the aim of the present paper to develop a scattering
matrix formalism for the acoustic power in duct networks.
The approach bears resemblance with [4] and [9] except
that the matrix is derived from a general multi-port
multi-modal scattering matrix (one application of the
concept can be found in [15]) constructed from the 3D finite
element discretization of each component of the network,
thus allowing to take into account arbitrary geometries,
with possibly the presence of absorbing materials, this is
explained in Sections 2 and 3. In Section 4, the problem is
then reformulated in terms of acoustic power by considering
a given distribution of uncorrelated incident modes. One
notes in passing that a somewhat similar idea is presented
in [16] except a diffuse acoustic field loading is applied
and the modal behavior is not considered. In the last
section, the method is applied to the case of a simplified
HVAC comprising Y-junctions, baffle-type silencers, and
terminal diffusers. We should point out that the effect of

air flow, either on the production or the propagation of
acoustic waves (for the latter this not a major issue since
the flow velocity is usually small in most HVAC systems)
is neglected in this work and this could be the subject for
further work.

2 Theory of the scattering matrices for
N-ports acoustic systems

The theory of scattering matrices for acoustic systems,
as illustrated in Figure 1 is briefly reminded here. Each port
labeled [ = 1, ..., N consists of a straight duct with rigid
walls and we introduce the associated local coordinate
system (z, y;, 2;) where x; refers to the duct axis at port I
We call M, the number of propagating acoustic duct modes
and the acoustic pressure can be written as the modal series
(convention exp(jwt)):

M,
P ynz) =Y by 21) (Af exp (=jkixr) + B exp (ki xi)).

7 W

Here, it is understood that ¢,; stands for the mode shape,
k;; the (real-valued and positive) wavenumber of the duct
mode propagating along the z; direction, which is deliber-
ately defined as pointing toward the acoustic system, and
A! (vesp. B!) are the amplitudes of the incoming (resp.
outgoing) waves. Here, mode shapes are function of the
transverse coordinates (y;, z) and satisfy classical orthogo-
nality properties and are normalized such that

¢i,l(yl7Zl)¢il,l(yl7zl)dr = 51‘,/7 (2)

I

with dI" = dydz.

It is convenient for the subsequent analysis, to recast the
previous equation in the compact form (here, 2; = 0 corre-
sponds to the entrance of the system):

P = gIT(AI + Bl)a at X = Ov (3)

where the column vector ®; contain the mode shape func-
tions at port I Similarly, the acoustic velocity v;, calcu-
lated along the z; direction can be recovered via the
Euler equation:

jp,0v; = ——, at x; =0, 4

JP 10 ox; I (4)
and, using the orthogonality properties (2), it has the
alternative form

1 k;

U = EQ?\P[(AI — Bl) where \If/ = p_[ (5)

and k; = diag(..., ki, ...) is a diagonal matrix contain-
ing the duct acoustic wavenumbers. By exploiting the
fact that the physical mechanisms taking place in the
acoustic system are linear and time-invariant, we call S
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Figure 1. Illustration of an acoustic system S with N ports.

the scattering matrix which links incoming and outgoing
waves:

=s| : | (6)

The matrix is composed of block diagonal matrices R; = S,
which correspond to reflection of waves at port [ and block
matrices S; ;7 account for the transmission from port {' to
port [

Si1 Si2 Sy Sin
So1 Sao So, San
S 7
Sii Sio Sii
Snvi Swe Sy

At port [, the total acoustic power is

1

W= [ Re(papar=wi—w; @
I,

where acoustic power due to incoming and outgoing
waves are obtained from

1
—BlUB. (9

1
W =_—AlUA, o

%% and W, =

For purposes of subsequent analysis, it is convenient to

rewrite the last term using incoming waves and the scatter-
ing matrix of the system:

] N
;= Y Z Z S ‘PISI A (10)
/=1 1"=1
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Figure 2. Acoustic system with N ports.

3 Construction of the scattering matrix using
the finite element method

3.1 Formulation

The construction of the scattering matrix is achieved
via the finite element discretization of the acoustic system.
The latter is modeled as a three-dimensional cavity Q of
arbitrary shape filled with air which includes the presence
of bulk reacting sound absorbing materials which can be
treated using classical equivalent fluid models (see Fig. 2).
A locally reacting wall with complex-valued impedance
Z(w), noted I'y is also considered in the formulation. In
the cavity, the acoustic pressure p must obey the following
wave equation (see [17] for instance):

1 ?
A\vA s v/ +—p=0. 11
<p p) Kp 0 ( )

Here, the fluid density p and the bulk modulus K = pc?
must be viewed as functions of angular frequency @ and
spatial coordinates (z, y, 2).

After integration by parts, the weak formulation
becomes (¢ stands for the test function):

/VP VPV 40 o / PTaa + / P4 ar =
Q Iz

N
jo Y / qudT. (12)
=1 YT

To ease the demonstration, the acoustic pressure in the cav-
ity is written with interpolating functions V;, which results
from the assembly process, and

px,y,z ZN (x,,z

where Ng correspond to the number of nodes of the finite
element mesh (here classical T10 quadratic elements are
used) and the column vector p contains the value of the

= NTp, (13)
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acoustic pressure at nodes. At port [, the same notation is
used for the quantities of interest so we put

pl = N,Tp,, v = N’II‘VI7 and Ql = (I);FNI (14)

Applying the previous notation to the variational form (12)
leads to the algebraic system

N
Gp = ZF[(B[ — A[) (15)
=1
where
N - VNT NNT NNT
G:/udﬁ—aﬁ/—d!)—i—jw/ N,
Q P o K , Z
(16)
and
r,:j/ NN} @, ¥, dI. (17)
I

Applying standard orthogonality properties and by multi-
plying by the quantity jk;;/p, yields

L/p; = j%(A +B)). (18)
Once assembled, the algebraic system takes the form of

symmetric matrix (the vector py contains the value of the
pressure in the domain Q except at the ports):

G Gy G I 0 0 o
: . : 0o . 0 :
G Gw  Gya 0 0 Ty Py
Gar Gay  Gaa 0 0 0 Pa -
rr o o 0 —¥ 0 0 B,
0 . 0 0 0o . 0 :
0o 0 T, o0 0 0 —juy/) \By
r, o0 0
0o 0
0 0 Ty A
0 0 0 : (19)
]\Ill 0 0 AN
0o . 0
0 0 ¥y

The scattering matrix is constructed by solving the previous
system for each incoming mode with unit amplitude.

3.2 Numerical examples

In this section, two acoustic systems are considered, one
concerns a parallel baffle-type silencer, the second is a
1-port system which simulates the radiation of acoustic
waves from a flanged duct. These will serve to construct a

Figure 3. FEM model of baffle silencer housed in a rectangular
duct.

o
_______
-

Reflexion / Transmission Coefficient

500 1000 1500 2000 2500 3000
Frequency [Hz]

Figure 4. Coefficients of the scattering matrix, measured
(gray) and computed (black).

simplified HVAC system as shown in the next section.
The dissipative silencer is placed in a rigid rectangular duct
of size 10 cm X 20 cm. It consists of a parallelepiped made of
glass wool supported on both sides by two rigid plates.
Parameters such as the density and bulk modulus are
obtained thanks to the Johnson-Champoux-Allard model
and properties of the glass wool are taken from [18]: tortu-
osity o = 1, resistivity ¢ = 14,066 N s m™*, porosity ® =
0.954, viscous and thermal characteristics A = 91.2 pm and
A = 1824 pm. Air parameters are: air mass density p =
1.213 kg m?, speed of sound ¢ = 342.2 m s~', dynamic
viscosity u = 1.84 x 107° kg m~' s', heat capacity ratio
y = 1.4, and Prandtl number Pr = 0.71 (see Fig. 3).
Coefficients of the scattering matrix are compared to
measurements carried out by R. Binois [18, 19]. Results of
Figure 4 show the transmitted plane wave B} at port 2
for a given incident plane wave at port 1, with 4} = 1.
The reflected coefficients Bj, B}, and B: are also shown.
Note the first transverse mode is never excited due to
symmetry reasons (B} ~0) and a peak in the reflection
coefficient for the plane wave is reached at the cut-off
frequency, around 1714 Hz, which corresponds to the
emergence of the symmetric second transverse duct mode.
Computed results show good agreements in the frequency
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\

Figure 5. The terminal diffuser modeled as a 1-port system.

range of interest (up to 4000 Hz) and this confirms that the
finite element discretization of the silencer is of sufficient
quality.

The construction of the scattering matrix as described
earlier can be adapted to model infinite or semi-infinite
media. For this purpose, the radiation of acoustic waves
can be modeled using the Perfectly Matched Layer
(PML). The latter, placed on the periphery of the computa-
tional domain, can be regarded as an artificial porous mate-
rial which absorbs waves as they radiate away. The precise
description of the method can be found in [12] and this will
not be repeated here. In order to illustrate the method, we
compute the radiation of acoustic waves from a flanged
rigid duct of rectangular cross-section with dimensions
16 cm x 26.7 cm. The computational domain is shown in
Figure 5. The entrance of the system, of rectangular shape,
is identified in blue color.

We are interested in the Transmission Loss (TL) of this
1-port system for an incident plane wave of unit amplitude,
A{ = 1. Two scenarios are investigated: one with the pres-
ence of an outlet grille generally encountered in terminal
diffusers and one without grille. The TL of the terminal dif-
fuser can be estimated according to VDI 2081 [6] and is
given by the following formula

c

TL = 10log(1 + (W)2%) + m(0.04283 log(fV/S)

—0.0303), (20)

where f = w/2m, S is the outlet area, Q = 2 and m is the
length to height ratio. The computed TL is calculated as

-
TL = —10log (1 - W—i) (21)

1

Results, from Figure 6, clearly show very good agreements
(note that, up to 3 duct acoustic modes with coefficients
B}, B%, and B} are involved in the definition of the reflected

10 w w
— VDI 2081
Oultlet grille
— 8r No outlet grille |
m
S,
[)]
8
S 67 1
[y
Ke]
3
-é 4 | 4
(2]
[y
e
= ol )
0

200 400 600 800 1000
Frequency [Hz]

1200

Figure 6. Transmission loss of a terminal diffuser.

power W7 ). The “no grille” case shows noticeable deviations
at low frequency (remind that the first cut-off frequency
appears at 640 Hz).

4 Scattering matrix for the acoustic power
flow

4.1 Formulation and assumptions

The previous formalism allows an exact description of
the scattering of waves taking place in each sub-system
and in principle, this can be used to simulate the propaga-
tion of waves in arbitrary networks. In view of simplifying
this, we can exploit the fact that, in many situations, many
random excitation mechanisms are responsible for broad-
band noise. For incoherent excitation we can treat the
incident mode amplitudes as uncorrelated random variables
and it is assumed that

<A,-,,Aj, /> —0 it 141 (22)
We call

(wi)= i (AwA) (23)

the incident acoustic power at port . We can calculate
the radiated power at port [,

1

N\ 1 +

w;) = %0 Z <Al,d1ag(5”,\IfISl’l/>A/>, (24)
/=1

where property (22) has been used. The concept of scat-

tering matrix for the acoustic power flow starts by

expressing the previous relation as

N

S (W)) (25)
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Figure 7. Illustration of an acoustic system with two ports (the FE mesh is represented). Scenario 1 (left) is referred to as “Monobloc”
(in this example the length of the central duct is 10 cm) and scenario 2 (right) is referred to as “Chained”. Note the entrance of the

system is identified by the blue color.

25 T
Monobloc 10cm
— Monobloc 20cm
—— Monobloc 40cm
20 - —— Chained ]
g
g 15 ‘ |
L (\ \ b
2 ” ;. i M i
= AT ot YA Gl
5 .| [' , M' \Tw ‘\‘\“ a:M k
0 | | |

2000

1000

3000

4000

1
5000 6000 7000 8000

Frequency [Hz]

Figure 8. Transmission loss due to the association of two rigid expansion chambers (note the power flow model is constructed using

equal energy per mode).

where, by definition

AN <Aj,diag<5?l,\P,Sl71/)A1r>.

S”/ - + 1

CAR 7Y
At this point, we should note that similar derivations can
be found in [9] using the concept of acoustic exergy and this
allows taking into account the effect of the flow in the
analysis. The values of these scattering coefficients depend
on the modal distribution and some additional assumptions
must be adopted to simplify the analysis. For this purpose,
we should adopt the power-law model

<|Ai,1|2> = Q(ki,l)_u

which relevance is discussed in [20]. Here, the strength Q
is arbitrary and the exponent « depends on the nature of
the source distribution model. Here ¢ = 1 and o = 2
correspond, respectively, to equal energy per mode and
a uniform distribution of incoherent monopoles and o =
0 to equal energy density per mode [20]. By construction,
scattering coefficients for the acoustic power flow are
positive and real-valued and satisfy the inequality

N ~

>§

=1

(26)

(27)

(28)

and it is equal to unity in the no-dissipative case. In order
formalize the theory for a acoustic network composed of
n, sub-systems, we call S* the power scattering matrix asso-
c1ated with the sub-system number s € [0, n], ie.

=8y

4.2 Comparison between a single system and
two sub-systems

The accuracy of the method is assessed in the case of
two chained 2-ports sub-systems where each sub-system
consists of an expansion chamber with or without porous
material (see Fig. 7).

The main body length of the expansion chamber of
cylindrical shape is set to L = 40 cm while inner and outer
radius r, and 7, are set to 4 cm and 6 cm, respectively. The
chamber is either filled with air (purely reactive) or with a
rock mineral wool placed between r, and r, (dissipative
case). We are interested in computing the TL due to the
association of two similar expansion chambers connected

to each other.
<Wt>>
TL = —10log ( ,
)

(29)

where (W) and (W) are the transmitted and incident
acoustic power. Here, the simple case where (W) is
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Table 1. Number of propagating modes in the connecting duct
(the last line indicates the cut-off frequencies).

M 1 3 5 6 8 10 12
f (Hz) 0 2510 4160 5220 5730 7250 7270

constant is considered, this means that the losses can be
evaluated directly from the knowledge of the scattering
coefficients and TL = —101log Ss;. Results called “Mono-
bloc” correspond to the scenario 1 (see Fig. 7) where the
system composed of the succession of two expansion
chambers is modeled as single acoustic system. Results
are compared with the “Chained” scenario whereby each
expansion chamber is treated independently. Here, the
scattering matrix for the whole system is calculated using
the Redheffer star product [21]:

§=58'98 (30)

which is equivalent to solving equation (25) for each
sub-system. Figure 8 shows the TL due to the association
of two rigid expansion chambers. Because this acoustic
system which is purely reactive, is prone to resonance
and phase effects between the two sub-systems, the Mono-
bloc has been constructed by considering three different
lengths for the central duct, here 10 c¢cm, 20 cm, and
40 cm. Results are compared with the “Chained” scenario
which does not depend on this geometric parameter. It
emerges that all curves collapse showing a remarkable
consistency as long as the frequency is sufficiently high.
In order to interpret this more clearly, the number of prop-
agating modes, call it M, in the connecting duct is shown in
Table 1.

Results at low frequency are typical of the plane wave
regime showing noticeable deviations whereas they become
more consistent above 4000 Hz, which means that at least
5 modes propagate. Clearly, resonance effects which results
in high losses due to the reflection of waves can only be par-
tially captured by the “Chained” scenario. Once integrated
over 1/3-octave bands', discrepancies are somehow
smoothed out except in the plane wave regime and this also
due to the fact that frequency bands are smaller and there-
fore very sensitive to frequency shifts (see Fig. 9).

The effect of the modal distribution is now shown in
Figure 10. Here, the scattering matrix for the power flow
is constructed using the modal distribution law (27) with
o = 0 and o = 1 as these values are representative of many
configurations (see for instance [20] and references therein
and in [22, 23]). Below the first cut-off frequency of the
circular duct (around 2500 Hz), results are independent of
the modal distribution as expected. It can be observed
that differences between the two scenarios, though dis-
cernible, are modest and this remains the case even above
cut-off. Above cut-off, results deviate slightly depending
on the modal distribution but differences do not exceed
2 dB.

! Integrals over each frequency band are evaluated using the
trapezoidal rule with a frequency step of 10 Hz.

Figure 11 shows the TL due to the association of one
rigid expansion chamber and one filled with absorbing
material (which properties are taken from the numerical
example given in the Sect. 3.2). Deviations are only notice-
able between 3000 Hz and 4000 Hz and they do not exceed
3dB which is reasonable when compared to the value of the
TL, here above 45 dB of attenuation.

5 Formalism for duct networks, case of a
simplified HVAC

Two-port networks which are connected in series can be
modeled using formula (30) which allows to compute
rapidly the acoustic power scattering matrix of the whole
system. In order to deal with more complex networks
involving, for instance, subsystems having more than two
ports, we need a more general formalism. This can be done
in the spirit of Glav and Abom’s work [5]. The approach
proposes a strategy for the assembly of the scattering matri-
ces taking into account the interactions between acoustic
sub-systems. To illustrate this, the HVAC duct network
of Figure 12 is chosen as an example.

One can recognize the baffle-type silencer already
encountered in Section 3 (sub-system 2) and the two termi-
nal diffusers modeled as 1-port systems (labeled 4 and 5).
Element 3 represents a typical Y-junction and the element 1
is a 1l-port in which is placed the acoustic source.
Systems are connected to each other via acoustic waveg-
uides (rigid ducts) of arbitrary length. The starting point
is the definition of the global scattering matrix S which
results in the concatenation all scattering matrices
involved. It is a block diagonal matrix having the following
form:

S0 0 0 0 0 0 0
0 8 8 0 0 0 0 0
0 8, 8, 0 0 0 0 0
s_ [0 0 0 ssLs 0 0|
0 0 0 8 8 8§ 0 0
0 0 0 8 8§ 8§ 0 0
0o 0 0 0 0 0 8 0
o 0 0 0 0 0 0 &

We now define the column vectors W~ and W* containing
all incoming and outgoing waves in the network. The
presence of acoustic sources, generated for instance by the
turbulent flow or a vibrating structure, can be easily
accounted for by including a source vector W* in the analy-
sis, so the scattering mechanisms (for the acoustic power) in
the network is described by the set of equations

W™ = SWH + W5, (32)
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Figure 10. Transmission loss due to the association of two rigid expansion chambers.
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Source

Figure 12. Illustration of a simplified HVAC duct network
with five acoustic sub-systems.

30

n
&l
T
I

3
®
\
»
Yo
7/
/

Transmission Loss [dB]
o
/
d
/
d

>
<]
.

—G6-a=0
0 . . . . n N . . . .
400 500 630 800 1K 1.25K 1.6K 2K 25K 3.15K 4K 5K
Frequency [Hz]

Figure 13. Transmission loss of the HVAC duct network.

Table 2. Effect of the impedance of the source on the TL (only differences are shown). Results are calculated for two modal

distributions (¢ = 0 and o = 1).

1/3 octband [Hz] 400 500 630 800 1000 1250 1600 2000 2500 3150 4000 5000
A, [dB] 0.5 0.5 0.4 0.7 0.8 0.8 1.5 1.7 1.9 2.3 2.3 2.5
A, [dB] 0.5 0.5 0.4 0.8 0.7 0.6 1.2 14 2 2.6 2.2 2.2

The system of equations can be solved by realizing that
incoming and outgoing acoustic power are equal at each
interface. This means that

W~ = PW*, (33)

where P is the permutation matrix

o O O O O o

SO O O O O O = O
SO O O O = O O O
O O O O O = O O
o = O O O o o o
_ O O O O O © O
S O O H O O O O
o O = O O O o o

0

The solution is easily found:

WH=(P -5 "'W and W~ =P(P-S5)""W5. (35)

In this example, we consider that element 1 generates some
acoustic power with a given sound power spectrum so we
put WS = ((53),0,0,0,0,0,0,0)". We are interested in
the radiated acoustic power at ports 4 and 5. The TL is
calculated via

/ e (Wi Naf

TL = —10log | “n — |, (36)

fma.x
/f (s

where (W) is the radiated power at both terminal
diffusers, evaluated as follows

() = (W) = (W) + (W) = (W3, (3)
Results of Figure 13 show no more than 2 dB variations
depending on the modal distribution and results below
cut-off frequency of the silencer 2 (around 857 Hz) are iden-
tical as expected. These predictions also depend on the
acoustic power spectrum of the source which is assumed
constant in our calculations. Here, the impedance of the
source is chosen so that S}, =0 which means that the
source is placed in a semi-infinite duct and part of the
acoustic energy is allowed to radiate upstream. The oppo-
site scenario where there is total reflection, ie. S}, =1 is
also worth investigating. Results reported in Table 2 show
that this condition can increase the radiated power by
0.5 dB to more than 2 dB depending on the frequency
range. More importantly, the variations are comparable
irrespective of the modal distribution law and this shows,
at least in this example, that the method is robust and
reliable for engineering purposes.

We end this section by pointing out that the hypothesis
that incoming waves obey a similar power-law model (27)
might seem restrictive. As discussed in [9], dissipative
elements are sensitive to the incident field and are also
prone to strongly attenuate high-order modes. This can
have an impact on the accuracy of the method when a large
number of elements are connected in cascade [9]. To remedy
this, scattered coefficients for the power (26) could be
calculated using iterative algorithms (as shown in [11] in
the case of a single expansion chamber with absorbing
materials) by treating each element successively from the
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source to the exit of the duct system. This could be a topic
for further studies.

6 Conclusion

The numerical method presented in this paper, enables
to simulate the propagation of medium to high frequency
sound waves, i.e. above plane wave cut-off frequency, in
HVAC duct networks. The main idea is to construct a
multi-port scattering matrix describing each component of
the network using the acoustic power associated with
incoming and outgoing waves, as a state variable instead
of the acoustic pressure. The simplified model, relies on
simplifying assumptions which are representative of broad-
band random noise: it is assumed that (i) duct acoustic
modes are uncorrelated and (ii) the modal distribution is
supposed to satisfy simple power-law models. Numerical
tests show that the TL, once integrated over 1/3-octave
bands, are not very sensitive to the power-law model. This
method allows to tackle complex duct networks at a modest
computational cost while taking into account the exact
geometry of each multi-port element of the network.
In practice, the method is shown to be an efficient and reli-
able tool for the study of dissipative systems when the
frequency is sufficiently large, i.e. the propagation of waves
in ducts must be multi-modal. It would be interesting to
compare this with ray tracing algorithms based methods
as advocated in [9] and we leave this for further studies.
There are good reasons to believe that the new approach
presented in this paper could be tailored to more specific
configurations whereby propagating waves comprises
both broadband noise and tonal components. In the latter
case, scattering matrices could be constructed with a more
appropriate model taking into account precisely the modal
distribution and partial correlation between modes. The
association of a large number of elements connected in
cascade could be treated in an iterative manner as discussed
earlier.
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