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Abstract

Recent years have witnessed growing concerns about the privacy of sensitive data. In re-
sponse to these concerns, differential privacy has emerged as a rigorous framework for privacy
protection, gaining widespread recognition in both academic and industrial circles. While sub-
stantial progress has been made in private data analysis, existing methods often suffer from
impracticality or a significant loss of statistical efficiency. This paper aims to alleviate these
concerns in the context of hypothesis testing by introducing differentially private permutation
tests. The proposed framework extends classical non-private permutation tests to private set-
tings, maintaining both finite-sample validity and differential privacy in a rigorous manner. The
power of the proposed test depends on the choice of a test statistic, and we establish general
conditions for consistency and non-asymptotic uniform power. To demonstrate the utility and
practicality of our framework, we focus on reproducing kernel-based test statistics and intro-
duce differentially private kernel tests for two-sample and independence testing: dpMMD and
dpHSIC. The proposed kernel tests are straightforward to implement, applicable to various
types of data, and attain minimax optimal power across different privacy regimes. Our empiri-
cal evaluations further highlight their competitive power under various synthetic and real-world
scenarios, emphasizing their practical value. The code is publicly available to facilitate the
implementation of our framework.

1 Introduction

Ensuring the privacy of sensitive data has become a critical concern in modern data analysis. As
organizations collect and analyze vast amounts of personal information, safeguarding individual
privacy has emerged as a crucial ethical and legal imperative. In response to these challenges, dif-
ferential privacy (DP), introduced by Dwork et al. (2006b), has emerged as a rigorous framework
for addressing privacy concerns, and has gained widespread recognition not only in academia but
also in industrial companies. For instance, major industry players such as Apple (Apple, 2017),
Google (Erlingsson et al., 2014) and Microsoft (Ding et al., 2017) have embraced differential pri-
vacy as a robust definition of privacy. This growing trend has sparked a recent surge of research
in statistics and related fields, aiming at integrating differential privacy and its variants (Dwork
et al., 2006a; Bun and Steinke, 2016; Mironov, 2017; Dong et al., 2022) into data analysis and
developing privacy-preserving methodologies. In this line of work, a major challenge is to strike
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a balance between privacy guarantees and statistical efficiency. Notably, a high privacy guarantee
requires substantial data perturbation, which in turn degrades statistical performance. Conversely,
releasing less perturbed data can improve statistical efficiency but at the expense of reduced privacy
guarantees. Therefore, balancing this trade-off between privacy and efficiency has been a central
topic in the existing literature (e.g., Duchi et al., 2018; Cai et al., 2021; Kamath and Ullman, 2020).

Broadly, there are two major statistical problems tackled under privacy constraints: estimation
and hypothesis testing (Kamath and Ullman, 2020, for a recent review). This paper focuses on the
latter problem, which requires access to the null distribution of a test statistic in order to effectively
calibrate a test statistic. Analyzing the distribution of a test statistic becomes particularly more
challenging in private settings due to additional random sources arising from privacy mechanisms.
As we review in Section 1.1, substantial efforts have been made to address private testing problems.
These efforts involve adapting classical hypothesis tests to private settings or developing new testing
procedures that achieve an optimal balance between privacy and statistical power.

Despite the significant progress made over the last decade, there are still several areas where
further improvements can be made. One such area includes the reliance on asymptotic methods for
determining the critical value of a test statistic. The practical quality of this asymptotic approach
depends on the convergence rate of a privatized statistic to the limiting distribution. This conver-
gence rate is often slow in private settings, and more importantly, the limiting distribution may
vary depending on the delicate interplay between privacy and other parameters. This issue puts
practitioners in a bind as it is unclear which limiting distribution should be considered a priori. All
these concerns lead to the unreliability of asymptotic private tests in real-world applications.

Another area of concern is the limited practicality of existing methods. Many private statistical
tests are designed specifically for discrete data, not directly applicable to handling continuous or
mixed-type data. Moreover, existing methods often rely on unspecified constants and heuristics,
making them less user-friendly and potentially undermining their reliability. We also point out
that the majority of research has concentrated on theoretical aspects of private testing, and only a
handful of papers are equipped with thorough empirical evaluations and open-source code.

In this work, we aim to tackle the aforementioned concerns by introducing differentially pri-
vate permutation tests. The primary goal is to extend classical non-private permutation tests to
differentially private settings, applicable to any test statistic with finite global sensitivity. The pro-
posed private permutation test inherits the finite-sample validity of the classical permutation test
under the exchangeability condition, while ensuring differential privacy. The power of the proposed
test depends on the choice of a test statistic, and we establish sufficient conditions for consistency
and non-asymptotic uniform power. To demonstrate the effectiveness of our framework, we focus
on the two-sample and independence testing problems and propose differentially private versions
of the maximum mean discrepancy (MMD) and Hilbert–Schmidt independence criterion (HSIC),
which we coin as “dpMMD” and “dpHSIC”, respectively. On the theoretical side, we prove minimax
optimality of dpMMD and dpHSIC tests over the entire privacy regimes in terms of kernel met-
rics. On the empirical side, we showcase the competitive power performance of the proposed tests
across various practical scenarios. The code that implements our methods is publicly available at
https://github.com/antoninschrab/dpkernel to allow practitioners to build on our findings.
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1.1 Related Work

In recent years, there has been a growing body of research on hypothesis testing problems under
privacy constraints. Since the early work by Vu and Slavkovic (2009) and Fienberg et al. (2011),
numerous attempts have been made to extend classical non-private tests to their private counter-
parts. Examples include ANOVA (Campbell et al., 2018; Swanberg et al., 2019), likelihood ratio
tests (Canonne et al., 2019), tests for regression coefficients (Sheffet, 2017; Alabi and Vadhan, 2022),
rank or sign-based nonparametric tests (Task and Clifton, 2016; Couch et al., 2019), conditional
independence tests (Kalemaj et al., 2023) and χ2-tests (Fienberg et al., 2011; Wang et al., 2015;
Gaboardi et al., 2016; Rogers and Kifer, 2017; Kakizaki et al., 2017; Friedberg and Rogers, 2023).
While most of the aforementioned work focuses on asymptotic settings where the sample size goes to
infinity, a recent line of work within computer science has placed greater emphasis on finite-sample
analysis. In particular, Cai et al. (2017) propose a two-step algorithm for identity testing for dis-
crete distributions, and studies the sample complexity under DP. The work of Acharya et al. (2018)
explores both identity (goodness-of-fit) testing and closeness (two-sample) testing in finite-sample
settings, and improves the upper bound result by Cai et al. (2017) and Aliakbarpour et al. (2018) for
identity testing. Aliakbarpour et al. (2019) privatize the non-private test proposed by Diakonikolas
and Kane (2016), and investigate the sample complexity for closeness testing and independence
testing. In line with these advancements, our work develops private permutation tests, and studies
their non-asymptotic performance under DP settings.

Despite the extensive body of literature, the majority of research has focused on private tests
designed for discrete or bounded data. There are a few notable exceptions that have explored
other data types. For example, Canonne et al. (2020) and Narayanan (2022) have investigated
goodness-of-fit testing for high-dimensional Gaussian distributions. In addition, Raj et al. (2020)
have proposed private two-sample tests based on finite dimensional approximations of kernel mean
embeddings. The flexibility offered by kernels methods enables these tests to handle a wide variety of
data types. However, their tests are asymptotic in nature, which may introduce reliability concerns
when working with small sample sizes. Moreover, their analysis requires the number of features to
be fixed. Such requirement potentially limits the power of the test when dealing with alternatives
which are not well-represented by these fixed numbers of features.

Another line of work aims to develop a generic way to create private tests from non-private
ones. The subsample-and-aggregate idea (Nissim et al., 2007) has emerged as a useful tool for this
purpose. In particular, it offers a strategy to convert non-private sample complexity results into
private ones in a black-box manner as pointed out by Cai et al. (2017); Canonne et al. (2019, 2020).
Recent studies by Peña and Barrientos (2022) and Kazan et al. (2023) have focused specifically
on the practical implementation of the subsample-and-aggregate approach. However, it is worth
mentioning that this generality typically comes at the cost of suboptimal power, and often fails to
recover the optimal sample complexity (Canonne et al., 2019, 2020). Moreover, the performance of
this subsample-and-aggregate approach is sensitive to the number of subsamples, and determining
the optimal value of this parameter remains an open problem.

Beyond global differential privacy, there has been a substantial amount of work on hypothesis
testing under local differential privacy. Some of the notable works include Liao et al. (2017);
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Gaboardi and Rogers (2018); Sheffet (2018); Acharya et al. (2019); Berrett and Butucea (2020);
Dubois et al. (2023); Lam-Weil et al. (2022) and see the references therein. Local differential
privacy requires data perturbation at the individual level, proving particularly useful in settings
where data providers lack trust in data analysts. This individual-wise approach demands different
analyses than global differential privacy, and the results under global and local differential privacy
are not directly comparable.

Our work is also related to recent advances in kernel-based minimax testing (Li and Yuan, 2019;
Albert et al., 2022; Schrab et al., 2023; Kim et al., 2022a). Specifically, we extend the non-private
minimax testing rates established in this line of work to private counterparts. To achieve this, we
leverage the techniques therein, such as the two moments method and exponential inequalities for
permuted statistics in Kim et al. (2022a), and adapt them to private settings.

1.2 An Overview of Our Results

The main contributions of this work are summarized below.

• DP Permutation Tests (Section 3). We introduce differentially private permutation tests
in Algorithm 1, and establish their theoretical properties. A naive way of extending the
classical permutation tests to private settings is to first make the original test statistic and its
permuted counterparts differentially private, and then carry out the permutation test based on
these individually privatized statistics. However, this naive approach results in an unnecessary
power loss by adding more noise as the number of permutations increases. The proposed
framework addresses this issue by utilizing the quantile representation of a permutation test.
This strategy leads to a substantial power gain over the naive approach, while being finite-
sample valid. We present sufficient conditions for pointwise consistency (Theorem 3) and
non-asymptotic uniform power (Theorem 4) of the proposed tests. The latter uniform power
condition can be regarded as an extension of the two moments method (Kim et al., 2022a) to
private settings.

• DP Kernel Tests (Section 4). We showcase the versatility of our framework by apply-
ing it to two specific tasks: differentially private two-sample and independence testing based
on reproducing kernel-based test statistics. We consider the plug-in estimators of the MMD
and HSIC, and privatize them through the proposed method employing the standard Laplace
mechanism. The practical performance of the resulting differentially private kernel tests heav-
ily depends on the global sensitivity used in the Laplace mechanism. To boost the empirical
performance, we put significant effort into establishing sharp upper bounds for the global
sensitivity of the plug-in estimators of MMD and HSIC, as well as matching lower bounds for
popular kernels (Lemma 5 and Lemma 6). We then establish key properties of the proposed
kernel tests, including non-asymptotic validity and consistency against any fixed alternatives
in Theorem 5 and Theorem 6.

• Uniform Power and Optimality (Section 5). We characterize the trade-off between
differential privacy and statistical power through the lens of minimax analysis. To this end,
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we analyze the minimum separation required for the differentially private MMD test to achieve
significant power in terms of the MMD metric. We derive an upper bound on this minimum
separation in Theorem 7, and a lower bound in Theorem 8, which matches in all relevant
parameters including testing error rates and privacy levels. Our minimax results suggest that
there is an unavoidable loss of power when the privacy parameter is smaller than a certain
threshold (i.e., high privacy). On the other hand, the privacy guarantee comes for free in terms
of separation rate when the privacy parameter exceeds this threshold (i.e., low privacy). We
also derive the minimum separation in terms of the L2 metric in Theorem 9 that extends
the prior work (Li and Yuan, 2019; Schrab et al., 2023) on non-private minimax testing to
private settings. In Appendix B.5 and Appendix B.6, we present analogous findings for the
differentially private HSIC test, which closely resemble the results obtained for the MMD test.

• Negative Results of U-statistics (Section 5.3). We also derive perhaps unexpected
negative results of U-statistics in private settings. U-statistics have played an important role,
arguably more popular than V-statistics, in deriving non-private minimax rates for various
testing problems (Li and Yuan, 2019; Albert et al., 2022; Kim et al., 2022a; Berrett et al., 2021;
Schrab et al., 2023). Given this trend, it is natural to consider U-statistics as an initial building
block for obtaining private minimax rates. However, it turns out that the U-statistics suffer
from higher global sensitivity than the corresponding V-statistics, requiring a higher level
of noise to effectively privatize the resulting procedure. We formalize this observation in the
context of kernel testing and show that the private tests based on U-statistics have sub-optimal
power in high privacy regimes. This negative result naturally justifies our approach based on
the V-statistics (equivalently, plug-in estimators) of the MMD and HSIC.

• Empirical Validation (Section 6). A significant portion of the prior work on differentially
private testing has focused on theoretical aspects, often lacking practical values. On the
other hand, practical approaches to differentially private testing frequently rely on heuristics
without proper theoretical validation. Our work serves a role in bridging the gap between
theory and practice by balancing both theoretical and practical aspects. In particular, we
highlight that our method is simple to use and comes with strong theoretical guarantees as
we demonstrate throughout the paper. The empirical results in Section 6 and Appendix C
also illustrate the competitive performance of the proposed method across diverse scenarios,
highlighting its practical value.

We further make contributions by presenting asymptotic distributions of privatized kernel statis-
tics (Appendix B.1), general consistency results for resampling-based tests (Appendix B.2) as well as
other technical innovations (Appendix G). We also introduce private kernel tests obtained through
the subsample-and-aggregate idea (Appendix D). Due to space constraints, we relegate these addi-
tional results to the appendix.

1.3 Organization

The rest of this paper is organized as follows. We begin in Section 2 by providing a brief overview of
the fundamental concepts of differential privacy. Section 3 presents our main proposal, namely the
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differentially private permutation test, and investigates its finite-sample validity and consistency
in power. Moving forward to Section 4, we apply our proposed permutation framework to specific
scenarios, focusing on differentially private kernel testing. In particular, we explore the privatization
of kernel MMD and HSIC tests, and delve into minimum separation rates of the resulting tests in
Section 5. To validate our theoretical findings, Section 6 presents empirical evaluations of the
proposed algorithms, comparing their performance with existing methods. Finally, we conclude
in Section 7 with a discussion outlining potential directions for future work. All the proofs and
additional results are deferred to the appendix.

1.4 Notation

Given two datasets Xn := (X1, . . . , Xn) and X̃n := (X̃1, . . . , X̃n), we denote the Hamming distance
between Xn and X̃n by dham(Xn, X̃n) :=

∑n
i=1 1(Xi ̸= X̃i). For two sequences of real numbers an, bn,

we write an ≲ bn (and similarly an ≳ bn) if there exists some positive constant C > 0 independent
of n such that an ≤ Cbn for all n ≥ 1. We also write an ≍ bn if an ≲ bn and bn ≲ an. For x ∈ R,
⌊x⌋ denotes the largest integer smaller than or equal to x. For a natural number k ∈ N, we use [k]

to denote the set {1, . . . , k}. We let Πn denote the set of all permutations of [n]. For a continuous
function f : Rd 7→ R, the L2 and L∞ norms of f are given as ∥f∥L2 = {

∫
Rd f

2(x)dx}1/2 and
∥f∥L∞ = supx∈Rd |f(x)|, respectively. We say X ∼ Laplace(0, 1) if X follows a Laplace distribution
with local and scale parameters (0, 1). We often denote

ξε,δ := ε+ log
(
1/(1− δ)

)
(1)

to simplify the notation in various places.

2 Background: Differential Privacy

This section presents a brief overview of the basic concepts and properties regarding differential
privacy. For a comprehensive treatment, we refer the readers to Dwork et al. (2014). In our work, we
adhere to the definition of differential privacy (Dwork et al., 2014, page 25), allowing for the inclusion
of additional auxiliary variables. This extended definition requires that the standard differential
privacy condition holds for every possible value of the auxiliary variable. In our permutation testing
framework, we treat random permutations as the auxiliary variables independent of the dataset.

Definition 1 (Differential Privacy). Consider a randomized algorithm A, which takes as input a
dataset Xn and an additional auxiliary variable w ∈ W. For ε > 0 and δ ∈ [0, 1), the algorithm A
is said to be (ε, δ)-differentially private if for (i) all S ∈ range(A), (ii) all w ∈ W and (iii) all two
datasets Xn and X̃n with dham(Xn, X̃n) ≤ 1, the following inequality holds:

P
(
A(Xn;w) ∈ S | Xn, w

)
≤ eεP

(
A(X̃n;w) ∈ S | X̃n, w

)
+ δ.

We note that (ε, 0)-differential privacy is often simply referred to as ε-DP or pure-DP. On the
other hand, (ε, δ)-differential privacy with δ ∈ (0, 1) is referred to as approximate-DP, considered
as a relaxation of pure-DP. As mentioned by Dwork et al. (2014, page 18), employing a large value
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of δ may lead to serious privacy breaches, potentially exposing the complete information of a small
number of individuals with a non-trivial probability. Hence, it is generally desirable to choose small
values of δ such as δ ≲ ε2n−1. Nevertheless, our interest lies in exploring entire privacy regimes,
and developing comprehensive results applicable in a variety of settings. Consequently, we do not
place restrictions on privacy parameters other than ε > 0 and δ ∈ [0, 1).

We collect several fundamental properties of differential privacy that are useful in our contexts.
The first property is called post-processing (Dwork et al., 2014, Proposition 2.1), which asserts that
any arbitrary post-processing applied to the outcome of a differentially private algorithm preserves
the same level of privacy.

Lemma 1 (Post-Processing). Suppose that an algorithm A is (ε, δ)-differentially private. Then for
an arbitrary randomized function f , the composition f ◦A also preserves (ε, δ)-differentially privacy.

Another important property of differential privacy, called the composition theorem (Dwork et al.,
2014, Theorem 3.16), presents the overall privacy guarantee for a composition of multiple DP
mechanisms.

Lemma 2 (Composition). Suppose that each algorithm Ai is (ε, δ)-differentially private for i ∈
[m]. Then, the composed algorithm A1:m defined as A1:m := (A1, . . . ,Am) is (

∑m
i=1 εi,

∑m
i=1 δi)-

differentially private.

The definition of (ε, δ)-DP immediately leads to the following group property (Acharya et al.,
2021, Lemma 19), which plays an important role in constructing minimax lower bounds under DP.

Lemma 3 (Group Privacy). Suppose that an algorithm A is (ε, δ)-differentially private. Then for
(i) all S ∈ range(A), (ii) all w ∈ W, and (iii) all two datasets Xn and X̃n with dham(Xn, X̃n) ≤ m,
the following inequality holds:

P
(
A(Xn;w) ∈ S | Xn, w

)
≤ emεP

(
A(X̃n;w) ∈ S | X̃n, w

)
+me(m−1)εδ. (2)

Several mechanisms have been developed to safeguard differential privacy, with the Laplace
mechanism (Dwork et al., 2006b) standing out as one of the most commonly used approaches. To
formally state the Laplace mechanism, we first describe the global sensitivity, which is a keystone
in the differential privacy framework. We stress that the definition presented below allows us to
take into account an additional auxiliary variable w, and thus it is more general than the definition
commonly encountered in the DP literature, such as in Dwork et al. (2006b).

Definition 2 (Global ℓp-Sensitivity). Consider a function f taking as input a dataset Xn and an
additional auxiliary variable w ∈ W, and assume that the output of f lies in Rr. For p ≥ 1, the
global ℓp-sensitivity of f is defined as

∆p
f := sup

w∈W
sup

Xn,X̃n:

dham(Xn,X̃n)≤1

∥∥f(Xn;w)− f(X̃n;w)
∥∥
p
,

where ∥x∥p denotes the ℓp norm of a vector x.
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The Laplace mechanism works with the ℓ1-sensitivity, which determines the scaling factor of the
Laplace noise injected into the outputs of the function. Formally, the Laplace mechanism is given
as follows.

Definition 3 (Laplace Mechanism). Consider a function f with the ℓ1-sensitivity ∆1
f described in

Definition 2. For a given privacy parameter ξ > 0, the Laplace mechanism is defined as the random
function:

Mξ
f (Xn;w) := f(Xn;w) +

∆1
f

ξ
(ζ1, . . . , ζr)

⊤,

where ζ1, . . . , ζr
i.i.d.∼ Laplace(0, 1) generated independent of Xn and w.

The privacy guarantee of the Laplace mechanism depends crucially on the choice of privacy
parameter ξ. It is well-known that the Laplace mechanism is (ε, 0)-DP when ξ = ε (Dwork et al.,
2014, Theorem 3.6). In general, Acharya et al. (2018, Lemma 5) shows that any (ε+ δ, 0)-DP algo-
rithm is also (ε, δ)-DP. While this strategy is effective for small values of δ, it returns a suboptimal
result when δ is close to one. Concretely, when δ approaches one, we are entering the non-private
regime where adding noise is unnecessary. However, the Laplace mechanism with ξ = ε+δ injects a
non-negligible amount of noise to the algorithm. The refined calibration result proposed by Holohan
et al. (2015) avoids such issue, proving that Mξε,δ

f with ξε,δ = ε + log(1/(1 − δ)) is also (ε, δ)-DP.
We record this guarantee in the following lemma.

Lemma 4 (Differential Privacy of Laplace Mechanism). Let ε > 0 and δ ∈ [0, 1). The Laplace
mechanism Mξε,δ

f in Definition 3 with ξε,δ = ε+ log
(
1/(1− δ)

)
is (ε, δ)-differentially private.

It is worth noting that Holohan et al. (2015) consider typical differential privacy without con-
sidering an auxiliary variable w. Nevertheless, the same proof can be applied to differential privacy
involving auxiliary variables, provided that we consider the global sensitivity holding uniformly over
w ∈ W as in Definition 2.

Remark 1 (Gaussian Mechanism). For (ε, δ)-DP, one can also consider the Gaussian mechanism
with the ℓ2-sensitivity, another common method for preserving privacy (Dwork et al., 2006b, 2014).
The Gaussian mechanism can be beneficial over the Laplace mechanism when the ℓ2-sensitivity is
significantly smaller than the ℓ1-sensitivity. However, such benefit is not immediately clear when
the outcome of f is one-dimensional where the ℓp sensitivity remains the same for any p ≥ 1. As
our framework is mainly concerned with one-dimensional numeric outcomes, we simply focus on the
Laplace mechanism and refer to the global ℓ1-sensitivity as the global sensitivity whenever it is clear
from the context, and simply denote it by ∆f .

3 Differentially Private Permutation Tests

In this section, we introduce a general framework for constructing a differentially private permuta-
tion test. To begin, consider a class of distributions P, which is formed by the union of two disjoint
subclasses: P0 and P1. Suppose that we observe a random sample Xn of size n drawn from P ∈ P.
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Given Xn, our ultimate goal is to test whether H0 : P ∈ P0 or H1 : P ∈ P1, while preserving
differential privacy. Consider a test statistic T : Xn 7→ R, which is assumed to take a large value
under the alternative hypothesis H1. To build on the permutation principle (Lehmann and Romano,
2005, Chapter 15.2), we make the assumption that Xn is exchangeable under the null H0. That
is, for any permutation π := (π1, . . . , πn) ∈ Πn, the joint distribution of Xn is the same as that of
Xπ
n := (Xπ1 , . . . , Xπn). Under the exchangeability assumption, the permutation test rejects the null

when T is significantly larger than the permuted counterparts. More formally, let π1, . . . ,πB be
i.i.d. random permutations of [n], and denote by T (Xπ1

n ), . . . , T (XπB
n ), the test statistics computed

based on Xπ1
n , . . . ,XπB

n , respectively. The (Monte Carlo) permutation test then rejects the null
hypothesis when the permutation p-value is less than or equal to significance level α, i.e.,

p̂ :=
1

B + 1

{ B∑
i=1

1
(
T (Xπi

n ) ≥ T (Xn)
)
+ 1

}
≤ α. (3)

It is well-known that p̂ is super-uniform, i.e., P(p̂ ≤ t) ≤ t for all t ∈ [0, 1], under exchangeability
of Xn (e.g., Lemma 15). Therefore the permutation test 1(p̂ ≤ α) controls the type I error for any
finite sample size n. Our aim is to privatize the permutation test under the DP constraint, while
maintaining finite-sample validity and achieving competitive (potentially optimal) power.

For notational convenience, we often write T0 = T (Xn) and Ti = T (Xπi
n ) for i ∈ [B], and set

π0 = (1, 2, . . . , n) in what follows.

3.1 Proposed Privatization Method

To describe the proposed method, suppose that the test statistic T has the global sensitivity (Defi-
nition 2) with the permutation π as an auxiliary variable:

∆T := sup
π∈Πn

sup
Xn,X̃n:

dham(Xn,X̃n)≤1

∣∣T (Xπ
n )− T (X̃π

n )
∣∣. (4)

Our tailored definition of global sensitivity to permutation tests above is stronger than the usual one
since it measures the sensitivity over all possible permutations. However, this additional requirement
is not overly restrictive as we demonstrate below for integral probability metrics.

Example 1 (Sensitivity of Integral Probability Metric). Consider a two-sample setting where we
observe random variables Yn = {Y1, . . . , Yn} and Zm = {Z1, . . . , Zm}, each supported on S. Let F
be a class of real-valued functions on S. A plug-in estimator of the corresponding integral probability
metric (IPM) is given as

T = sup
f∈F

∣∣∣∣ 1n
n∑

i=1

f(Yi)−
1

m

m∑
i=1

f(Zi)

∣∣∣∣. (5)

As detailed in Appendix B.3, the global sensitivity of T is precisely equal to

∆T =
1

min{n,m}
sup

X,X′∈S
sup
f∈F
|f(X)− f(X ′)|.
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The IPM includes several metrics commonly used in the literature (Sriperumbudur et al., 2012) and
their sensitivity can be analyzed as follows.

(a) Mean difference in ℓp: Let S ⊂ Rd, and set 1 ≤ p, q ≤ ∞ such that 1/p + 1/q = 1. Choosing
F = {f : S 7→ R | f(x) = a⊤x, ∥a∥q ≤ 1}, the IPM becomes the pth norm of the sample
mean difference between Yn and Zm. In this case, we have supX,X′∈S supf∈F |f(X)− f(X ′)| =
supX,X′∈S ∥X −X ′∥p.

(b) Wasserstein distance: When F = {f : S 7→ R | ∥f∥Lip ≤ 1} where ∥f∥Lip denotes the mini-
mal Lipschitz constant for f on a metric space (S, ∥ · ∥), the IPM corresponds to the Wasser-
stein 1-distance. By the Lipschitz property of f , we have supX,X′∈S supf∈F |f(X) − f(X ′)| ≤
supX,X′∈S ∥X −X ′∥.

(c) Total variation distance: Let F = {f : S 7→ R | supx∈S |f(x)| ≤ 1}. The corresponding IPM is
the total variation distance for which we have supX,X′∈S supf∈F |f(X)− f(X ′)| ≤ 2.

(d) Kolmogorov distance: When F = {1(−∞, x] : x ∈ Rd}, the IPM is called the Kolmogorov
distance. In this case, we have supX,X′∈S supf∈F |f(X)− f(X ′)| ≤ 1 with S = Rd.

(e) Maximum mean discrepancy : Let ∥f∥Hk
be the norm of a function f in a reproducing kernel

Hilbert space Hk equipped with kernel k. When F = {f : S 7→ R | ∥f∥Hk
≤ 1}, the IPM

corresponds to the maximum mean discrepancy and it satisfies that supX,X′∈S supf∈F |f(X)−
f(X ′)| ≤

√
2K where K is the maximum value of a non-negative kernel k. See Lemma 5 for

details.

In general, obtaining the exact value of the global sensitivity ∆T can be challenging, and thus
we often work with an upper bound for ∆T . We remark that the differential privacy guarantee of
the Laplace mechanism in Lemma 4 remains valid when we replace the sensitivity in the Laplace
mechanism with any upper bound. With an abuse of notation, we also use ∆T to denote an upper
bound for the global sensitivity, when the exact value of the global sensitivity is not available.

Naive Approach. Given the global sensitivity of T , one naive attempt to privatize the permuta-
tion test is to apply the basic composition theorem (Lemma 2). To depict the idea, let {ζi}Bi=0 be
a sequence of i.i.d. Laplace(0, 1) random variables, and define

M̃i := Ti +
∆T

ε(B + 1)−1 + log
(
1/{1− δ(B + 1)−1}

)ζi, for i ∈ {0} ∪ [B].

By the Laplace mechanism, each M̃i is
(
ε/(B + 1), δ/(B + 1)

)
-DP and the composition theorem in

Lemma 2 then ensures that the permutation p-value given as

p̂ naive
dp :=

1

B + 1

{ B∑
i=1

1
(
M̃i ≥ M̃0

)
+ 1

}
(6)

is (ε, δ)-DP. Moreover, {M̃i}Bi=0 are exchangeable under the null, which in turn yields that p̂ naive
dp

is a valid p-value by Lemma 15. While this naive approach returns rigorous guarantees on both
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Algorithm 1 Differentially Private Permutation Test
Input: Data Xn, significance level α ∈ (0, 1), privacy parameters ε > 0 and δ ∈ [0, 1), test statistic
T , global sensitivity (or its upper bound) ∆T , number of permutations B ∈ N.

For i ∈ [B] do

Generate a random permutation πi of [n].
Generate ζi ∼ Laplace(0, 1).
Set Mi ← T (Xπi

n ) + 2∆T ξ
−1
ε,δ ζi where ξε,δ := ε+ log(1/(1− δ)).

End For

Generate ζ0 ∼ Laplace(0, 1) and set M0 ← T (Xn) + 2∆T ξ
−1
ε,δ ζ0.

Compute the permutation p-value p̂dp as in (7).
Output: Reject H0 if p̂dp ≤ α.

privacy and validity, it has room for improvement in regard to the power performance. Observe
that the noise level grows linearly in the number of permutations B. This means that the Laplace
noise overwhelms the signal when B is significantly large, leading to a loss of power. It is also worth
noting that the permutation p-value is lower bounded by (B + 1)−1. This means that in order to
have non-zero power, the number of permutations B must be greater than α−1 − 1. Hence, one
cannot take B to be arbitrarily small. This issue serves as the motivation for our proposal, which
is described below.

Refined Approach. The factor of B + 1 arises from an application of the composition theorem
(Lemma 2), which cannot be improved in general (e.g., Section 2.1 of Steinke, 2022). As one of our
key contributions, we remove this unpleasant dependence on B via the quantile representation of
the permutation test (Lemma 17). To describe our proposal, define

Mi := Ti +
2∆T

ξε,δ
ζi,

for i ∈ {0} ∪ [B], where ξε,δ can be recalled in (1). Notably, the noise level 2∆T ξ
−1
ε,δ is independent

of B and strictly smaller than that of the naive approach for any B > 1. Given {Mi}Bi=0, we define
the private permutation p-value as

p̂dp :=
1

B + 1

{ B∑
i=1

1
(
Mi ≥M0

)
+ 1

}
, (7)

and reject the null when p̂dp ≤ α. We summarize the proposed method in Algorithm 1.

3.2 Validity and Privacy Guarantee

Having introduced our method, we next investigate its theoretical guarantees and provide intuition
behind our proposal. We start with the validity of the private test, which follows immediately from
Lemma 15.
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Theorem 1 (Validity Guarantee). Suppose that Xn are exchangeable under the null H0 : P ∈ P0.
Then for any α ∈ (0, 1) and B,n ≥ 1, the type I error of the test 1(p̂dp ≤ α) from Algorithm 1
satisfies

sup
P∈P0

PP (p̂dp ≤ α) =
⌊(B + 1)α⌋
B + 1

≤ α.

It is worth emphasizing that type I error control of the proposed test is both non-asymptotic
and uniform over the entire class of null distributions P0. Another distinct feature is that the type
I error is equal to ⌊(B + 1)α⌋/(B + 1), which can be strictly smaller than α. If this small gap is a
concern, one can make the type I error exactly equal to α through randomization (Lemma 16). We
also remark that even if we replace the global sensitivity ∆T in the procedure with any other value,
type I error control remains valid. In other words, the validity of the proposed test is not affected
by the noise level of the Laplace mechanism.

Next we turn to the privacy guarantee of the proposed test and show that it is (ε, δ)-DP.

Theorem 2 (Privacy Guarantee). For any α ∈ (0, 1), the permutation test 1(p̂dp ≤ α) from
Algorithm 1 is (ε, δ)-differentially private.

It is worth highlighting that the privacy guarantee does not require the exchangeability of
Xn. Hence the proposed test is (ε, δ)-DP under both the null and the alternative. As mentioned
before, we prove the privacy guarantee of the proposed test via the quantile representation of the
permutation test (Lemma 17). That is, rejecting the null when p̂ ≤ α where p̂ is given in (3) is
equivalent to rejecting the null when T0 > Q1−α whereQ1−α is the 1−α quantile of {Ti}Bi=0. Roughly
speaking, our proof proceeds by privatizing T0 and Q1−α, separately, which raises the factor of 2
in 2∆T ξ

−1
ε,δ . However, a direct application of the Laplace mechanism to T0 and Q1−α destroys the

exchangeability of random variables, thereby type I error control is no longer guaranteed. Making
both T0 and Q1−α private while ensuring the finite-sample validity of the resulting test is non-trivial,
and thus we highlight it as our main contribution. Along the way, we develop a general sensitivity
result of quantiles in Lemma 19, which may be of independent interest. We also point out that the
factor of 2 in the noise level is a price to pay for not knowing the null distribution of T . When T is
distribution-free under the null, then it is possible to sharpen the constant factor from two to one.

3.3 Power Analysis

Moving our focus to the power property, we aim to provide tractable conditions for pointwise
consistency and non-asymptotic uniform power. Starting with pointwise consistency, the following
result provides conditions under which the power converges to one as the sample size increases
against a fixed alternative. Below, we add the subscript n to Bn to indicate that the number of
permutations can vary with the sample size.

Theorem 3 (Pointwise Consistency). Let α ∈ (0, 1) be a fixed constant. For a given alternative
distribution P , suppose that limn→∞ PP (M0 ≤ M1) = 0. Then for any positive sequence of Bn

such that minn≥1Bn +1 > α−1, the differentially private permutation test is consistent in power as
limn→∞ PP (p̂dp ≤ α) = 1.

12



In view of the above result, proving consistency of the permutation test essentially boils down
to verifying the condition M0 > M1, i.e., the original statistic is greater than a permuted statistic,
with probability approaching one. In Section 4, we showcase the consistency results based on kernel-
based methods for two-sample and independence testing. We note that Theorem 3 can be proven
in a straightforward manner via a union bound when Bn is fixed. A similar result for fixed Bn

can be found in Dobriban (2022, Lemma 5.2) and Rindt et al. (2021, Theorem 6). Extending this
result to any arbitrary sequence of Bn requires a different technique that exploits the conditional
i.i.d. structure of given variables. To broaden the scope of our paper, we develop a consistency
result for general resampling-based tests in Lemma 8 of Appendix B.2, from which we can derive
Theorem 3 as a corollary.

While pointwise consistency is a useful property, it is often regarded as a relatively weak guar-
antee. We now shift our focus to the second result of this subsection, providing a non-asymptotic,
uniform guarantee on the power under stronger assumptions. In particular, we identify the moment
conditions under which the proposed test has significant power. These conditions can be regarded
as the private extension of Kim et al. (2022a, Lemma 3.1). Below, the symbols EP,π and VarP,π
denote the expectation and the variance, respectively, taken over both Xn and π.

Theorem 4 (Uniform Power). For α ∈ (0, 1), β ∈ (0, 1 − α) and ξε,δ > 0, assume that B ≥
16α−2 log(8/β) and for any P ∈ P1,

EP [T (Xn)]− EP,π[T (Xπ
n )] ≥ C1

√
VarP [T (Xn)] + VarP,π[T (Xπ

n )]

αβ

+ C2
∆T

ξε,δ
max

{
log

(
1

α

)
, log

(
1

β

)}
,

(8)

where C1 and C2 are universal constants. Then the uniform power of the private permutation test
is bounded below by 1− β as

inf
P∈P1

PP (p̂dp ≤ α) ≥ 1− β.

A few remarks are in order.

• The above theorem ensures that the private permutation test has significant power as long as
the signal of the problem, namely the difference between the expected values of the original
test statistic and of the permuted test statistic, is larger than the noise of the problem, namely
the square root of the variances and the noise level of the Laplace mechanism.

• The proof of Theorem 4, given in Appendix E.2, builds on the proof of Kim et al. (2022a,
Lemma 3.1) where the key idea is to replace the random permutation threshold with a deter-
ministic one using concentration inequalities. The main distinction from Kim et al. (2022a)
is the incorporation of Laplace noises in the analysis, which results in the second line of the
condition (8). We also note that Theorem 4 concerns the Monte Carlo permutation test, which
is computationally more efficient than the full permutation test analyzed in Kim et al. (2022a,
Lemma 3.1).
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• Notably, the condition on B is independent of the sample size, which is a consequence of the
Dvoretzky–Kiefer–Wolfowitz (DKW) inequality (Massart, 1990), and similar conditions can
be found in Schrab et al. (2023) and Schrab et al. (2022). One can improve this restriction,
especially constant factors, with more technical effort or by using other techniques, such as
the one based on order statistics (Domingo-Enrich et al., 2023, Lemma 6).

• It is worth mentioning that the first line of the condition (8) relies on a polynomial dependence
on α and β, which arise from the application of Chebyshev’s and Markov’s inequalities. If
the considered test statistic has an exponential tail bound, these polynomial factors can be
improved to logarithmic ones as we illustrate in Section 5.

Before moving on, let us briefly illustrate Theorem 4 based on the plug-in IPM statistic consid-
ered in Example 1.

Example 2 (Power Analysis against IPM alternatives). Continuing our discussion from Example 1,
denote the IPM between P and Q with a class of functions F as

IPMF (P,Q) = sup
f∈F

∣∣EP [f(Y )]− EQ[f(Z)]
∣∣.

Without loss of generality, assume n ≤ m and write the pooled sample as Xn+m = Yn ∪ Zm =

{X1, . . . , Xn+m}. Consider the maximum Rademacher complexity of F over all possible permuted
samples given as

Rn(F) = sup
π∈Πn+m

E
[
sup
f∈F

∣∣∣∣ 1n
n∑

i=1

ωif(Xπi)

∣∣∣∣],
where {ωi}ni=1 are i.i.d. Rademacher random variables independent of Xn+m. Suppose that we
implement Algorithm 1 using the plug-in IPM estimator T (Xn+m) in (5). Then Theorem 4 yields
that the resulting permutation test has the power greater than 1− β if

IPMF (P,Q) ≥ C1
Rn(F)√
αβ

+ C2

√
n∆T√
αβ

+ C3
∆T

ξε,δ
max

{
log

(
1

α

)
, log

(
1

β

)}
,

where C1, C2, C3 are some positive constants. We defer a detailed analysis that leads to the above
result to Appendix B.4. We also refer to van der Vaart and Wellner (1996); Bartlett and Mendelson
(2002); Wainwright (2019) for additional information on the Rademacher complexity and illustrative
examples.

So far we have examined the properties of the private permutation test in a general context. In
the next section, we will apply our framework to the specific problem of kernel testing, and provide
a detailed analysis.

4 Application: Differentially Private Kernel Tests

In recent years, there has been a growing trend in employing kernel-based methods for hypothesis
testing problems, such as the MMD and the HSIC. This popularity is partly due to their ability to

14



capture complex, non-linear relationships and to their straightforward implementation. Equipped
with such benefits, the MMD (Gretton et al., 2012) is used to measure the difference between two
probability distributions, while the HSIC (Gretton et al., 2005) is used to quantify the dependence
between two random variables. In this and subsequent sections, we propose differentially private
tests based on these two kernel-based measures, and provide an in-depth analysis of their theoretical
properties.

Terminology. Before we begin, let us establish the terminology related to kernels. Consider a
reproducing kernel k : S×S 7→ R defined on a separable topological space S. LetHk be a reproducing
kernel Hilbert space (RKHS) endowed with kernel k. A kernel k is said to be characteristic if the
kernel mean embedding

µP =

∫
S
k(·, x)dP (x) ∈ Hk

is injective. In addition, a kernel k : S× S 7→ R is said to be translation invariant if there exists a
symmetric positive definite function κ such that k(x, y) = κ(x− y) for all x, y ∈ S. Assuming that
0 ≤ k(x, y) ≤ K for all x, y ∈ S, we say that the kernel k has non-empty level sets on S if, for any
ϵ ∈ (0,K), there exist x, y ∈ S, such that k(x, y) ≤ ϵ. Some popular examples of kernels include the
Gaussian kernel k(x, y) = e−σ∥x−y∥22 and the Laplacian kernel k(x, y) = e−σ∥x−y∥1 for σ > 0. These
two kernels are translation invariant and known to be characteristic on Rd (e.g., Sriperumbudur
et al., 2011). They also have non-empty level sets on Rd, which can be deduced from the continuity
of the kernel function.

4.1 Differentially Private MMD Test

Starting with the MMD, suppose we are given mutually independent samples Yn := {Y1, . . . , Yn}
i.i.d.∼

P and Zm := {Z1, . . . , Zm}
i.i.d.∼ Q on a domain S. Without loss of generality, assume n ≤ m through-

out the rest of this paper. Based on these samples, the two-sample problem aims to determine
whether two probability distributions P and Q coincide. A majority of two-sample methodologies
target a certain metric between P and Q, and use their empirical counterpart as a test statistic.
One such method is the non-private MMD test (Gretton et al., 2012) where the difference between
P and Q is quantified in terms of MMD. To elaborate, consider the unit ball in a RKHS Hk denoted
by Fk := {f ∈ Hk : ∥f∥Hk

≤ 1}. The maximum mean discrepancy between P and Q is defined as

MMDk(P,Q) := sup
f∈Fk

{
EP [f(Y )]− EQ[f(Z)]

}
.

The empirical MMD is a plug-in estimator of MMD that replaces P and Q with the corresponding
empirical probability measures. Formally, letting Xn+m = Yn ∪Zm be the pooled sample as before,
the empirical MMD is given as

M̂MD(Xn+m) := sup
f∈Fk

{
1

n

n∑
i=1

f(Yi)−
1

m

m∑
j=1

f(Zi)

}
. (9)
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Thanks to the reproducing kernel property, the empirical MMD can be computed straightforwardly.
In particular, the squared empirical MMD can be calculated in quadratic time using the kernel-based
expression

M̂MD
2
(Xn+m) =

1

n2

n∑
i,j=1

k(Yi, Yj) +
1

m2

m∑
i,j=1

k(Zi, Zj)−
2

nm

n∑
i=1

m∑
j=1

k(Yi, Zj). (10)

In order to propose a private version of the MMD test, we begin with the global sensitivity of the
empirical MMD.

Lemma 5 (Sensitivity of Empirical MMD). Assume that the kernel k is bounded as 0 ≤ k(x, y) ≤ K
for all x, y ∈ S. Then the global sensitivity of the empirical MMD satisfies

sup
π∈Πn+m

sup
Xn+m,X̃n+m:

dham(Xn+m,X̃n+m)≤1

∣∣M̂MD(Xπ
n+m)− M̂MD(X̃π

n+m)
∣∣ ≤ √2K

n
.

Moreover assume that k is translation invariant, and has non-empty level sets in S. Then the
inequality becomes an equality.

The proof of Lemma 5 can be found in Appendix E.5. Note that the sensitivity of the empirical
MMD in Lemma 5 can be equivalently defined without the supremum over the permutations π ∈
Πn+m as dham(Xn+m, X̃n+m) is the same as dham(Xπ

n+m, X̃π
n+m) for any π ∈ Πn+m. As we will see

in Section 4.2, however, this property does not hold for independence testing. We also highlight our
lower bound result, indicating that the upper bound

√
2K/n cannot be improved for translation

invariant kernels with non-empty level sets on their domain.
With Lemma 5 in place, we set the sensitivity parameter ∆T =

√
2Kn−1 and run Algorithm 1

with the empirical MMD in (9) as the test statistic. We refer to the resulting private permutation
test as the dpMMD test and denote it as ϕdpMMD. The dpMMD test has the following properties,
which are proven in Appendix E.6.

Theorem 5 (Properties of dpMMD test). Let α ∈ (0, 1) be a fixed constant and the kernel k be
bounded as 0 ≤ k(x, y) ≤ K for all x, y ∈ S. Then ϕdpMMD satisfies the following properties:

P1. (Differential Privacy) For ε > 0 and δ ∈ [0, 1), ϕdpMMD is (ε, δ)-differentially private.

P2. (Validity) The type I error of ϕdpMMD is controlled at level α non-asymptotically.

P3. (Consistency) Suppose that MMDk(P,Q) is independent of the sample sizes and strictly pos-
itive for a fixed pair of (P,Q). Moreover assume that n−1ξ−1

ε,δ → 0 as n → ∞. Then for any
sequence Bn such that minn≥1Bn + 1 > α−1, we have limn→∞ EP,Q[ϕdpMMD] = 1.

The first two properties on differential privacy and validity are clear in view of Theorem 1 and
Theorem 2. It is well-known that the population MMD is strictly positive under the alternative
if the kernel is characteristic (Gretton et al., 2012). Hence the condition on the MMD metric in
(P3 ) is satisfied for characteristic kernels against any fixed alternative. Another highlight is that
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consistency holds irrespective of the relationship between n and m. The power converges to one as
long as the minimum sample size goes to infinity. We also remark that the condition n−1ξ−1

ε,δ → 0 is
critical for obtaining consistency. If not, the empirical MMD is overwhelmed by the Laplace noise,
which leads to a significant loss of power.

We note in passing the recent work of Yang et al. (2023) that also utilizes the MMD in differ-
entially private data analysis. Despite the fact that both Yang et al. (2023) and ours consider the
differentially private MMD, their primary focus is on differentially private data generation, which
is different from our focus on hypothesis testing.

4.2 Differentially Private HSIC Test

Turning to the second application, suppose that we are given an i.i.d. paired sample Xn = {(Yi, Zi)}ni=1

from a joint distribution PY Z on domain Y × Z. Given Xn, the aim of independence testing is to
assess whether Y and Z are statistically independent or not. As a kernel dependence measure,
the HSIC compares the joint probability measure PY Z to the product of marginals PY PZ . To for-
mally define it, let k and ℓ be kernels on Y and Z, and let k ⊗ ℓ be the product kernel given as
k ⊗ ℓ

(
(y, z), (y′, z′)

)
= k(y, y′)ℓ(z, z′) for all y, y′ ∈ Y and z, z′ ∈ Z. Further denoting the unit ball

in the RKHS associated with k ⊗ ℓ by Fk⊗ℓ, HSIC is defined as1

HSICk⊗ℓ(PY Z) := sup
f∈Fk⊗ℓ

{
EPY Z

[f(Y,Z)]− EPY PZ
[f(Y, Z)]

}
.

In other words, the HSIC of Y and Z is simply the MMD between PY Z and PY PZ with the product
kernel k ⊗ ℓ. The empirical HSIC is a plug-in estimator given as

ĤSIC(Xn) := sup
f∈Fk⊗ℓ

{
1

n

n∑
i=1

f(Yi, Zi)−
1

n2

n∑
i,j=1

f(Yi, Zj)

}
. (11)

Similarly to the empirical MMD, the squared empirical HSIC also has an explicit form in terms of
the kernels k and ℓ as

ĤSIC
2
(Xn) =

1

n2

n∑
i,j=1

k(Yi, Yj)ℓ(Zi, Zj) +
1

n4

n∑
i1,i2,j1,j2=1

k(Yi1 , Yj1)ℓ(Zi2 , Zj2)

− 2

n3

n∑
i,j1,j2=1

k(Yi, Yj1)ℓ(Zi, Zj2),

(12)

which can be computed in quadratic time as described in Song et al. (2012, Theorem 1). For inde-
pendence testing, the permutation test proceeds by randomly permuting either the Y observations
or the Z observations. Here, we permute the Z observations and denote Xπ

n = {(Yi, Zπi)}ni=1. With
this notation in place, the next lemma explores the global sensitivity of the empirical HSIC.

1We remark that in the literature HSIC is often defined as the square of this quantity. However, for consistency
with MMD, we define it without the square.
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Lemma 6 (Sensitivity of Empirical HSIC). Assume that the kernels k and ℓ are bounded as 0 ≤
k(y, y′) ≤ K and 0 ≤ ℓ(z, z′) ≤ L for all y, y′ ∈ Y and z, z′ ∈ Z. Then the global sensitivity of the
empirical HSIC satisfies

sup
π∈Πn

sup
Xn,X̃n:

dham(Xn,X̃n)≤1

∣∣ĤSIC(Xπ
n )− ĤSIC(X̃π

n )
∣∣ ≤ 4(n− 1)

n2

√
KL.

Moreover assume that k and ℓ are translation invariant, and have non-empty level sets on Y and Z,
respectively. Then the global sensitivity is lower bounded by 4(n− 2.5)n−2

√
KL.

The proof of Lemma 5 can be found in Appendix E.7. Contrary to the MMD case, we observe
that the two hamming distances, namely dham(Xπ

n , X̃π
n ) and dham(Xn, X̃n), can differ for indepen-

dence testing. Consequently, the supremum over the permutations π ∈ Πn plays a non-trivial role
in the sensitivity of the empirical HSIC. We mention the work of Kusner et al. (2016) that also
examines the global sensitivity of the empirical HSIC. Our upper bound result improves theirs by
replacing the constant factor 12 to 4 with a tighter analysis. In fact, as the lower bound result
states, the proposed upper bound is asymptotically tight under mild conditions for k and ℓ.

In view of the above lemma, we set ∆T = 4(n − 1)n−2
√
KL and run Algorithm 1 with the

empirical HSIC in (11) as the test statistic. We refer to the resulting permutation test as the
dpHSIC test and denote it as ϕdpHSIC. Similar to Theorem 5, the dpHSIC test has the following
properties, which are proven in Appendix E.8.

Theorem 6 (Properties of dpHSIC test). Let α ∈ (0, 1) be a fixed constant and assume that the
kernels k and ℓ are bounded as 0 ≤ k(y, y′) ≤ K and 0 ≤ ℓ(z, z′) ≤ L for all y, y′ ∈ Y and z, z′ ∈ Z.
Then ϕdpHSIC satisfies the following properties:

P1. (Differential Privacy) For ϵ > 0 and δ ∈ [0, 1), ϕdpHSIC is (ε, δ)-differentially private.

P2. (Validity) The type I error of ϕdpHSIC is controlled at level α non-asymptotically.

P3. (Consistency) Suppose that HSICk⊗ℓ(PY Z) is independent of the sample sizes and strictly
positive for a fixed distribution PY Z . Moreover assume that n−1ξ−1

ε,δ → 0 as n→∞. Then for
any sequence Bn such that minn≥1Bn + 1 > α−1, we have limn→∞ EPY Z

[ϕdpHSIC] = 1.

As for the dpMMD test, the first two properties on differential privacy and validity are direct
consequences of Theorem 1 and Theorem 2. The condition for consistency is ensured under any
alternative when the kernels are characteristic (Gretton, 2015). Therefore the dpHSIC test equipped
with a characteristic kernel is pointwise consistent against any fixed alternative, provided that
n−1ξ−1

ε,δ → 0 and minn≥1Bn + 1 > α−1.
Before moving on and studying uniform power properties, let us briefly remark on the asymptotic

null distributions of private kernel test statistics.

Remark 2 (Asymptotic null distributions). As mentioned earlier, when the null distribution is
tractable, we can improve the power by eliminating the factor of 2 in the noise level. However,
characterizing the limiting distribution is not a trivial task, even for non-private kernel statistics.
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In Appendix B.1, we show that a private kernel statistic converges in distribution to a mixture of
Gaussian chaos and Laplace distributions, which is even more intricate than the limiting distribution
of a non-private kernel statistic. A recent line of work (Shekhar et al., 2022a,b) propose cross MMD
and cross HSIC that have a tractable limiting distribution with competitive power. We leave the
exploration of extending these variants to the private setting and comparing their power performance
with our proposed methods as an avenue for future research.

5 Uniform Power and Optimality

In the previous section, we examined the fundamental properties of the private kernel tests, including
their asymptotic power against fixed alternatives. This section delves into a more challenging setting
where the alternative can shrink to the null as the sample size increases, and develops uniform
power results. Moreover we highlight an intrinsic trade-off between privacy and statistical power
through the lens of minimax analysis, and explore optimality of the proposed private tests under
the differential privacy constraint. In the main text, we focus on the analysis of the dpMMD test,
and defer analogous results for the dpHSIC test to Appendix B.5 and Appendix B.6.

5.1 Separation in MMD Metric

Consider the setting described in Section 4.1, and denote by PS the class of distributions defined on
S. Our first goal is to determine the minimum separation for ϕdpMMD based on the MMD metric
with kernel k. To this end, for ρ > 0, we define a class of paired distributions (P,Q) such that

PMMDk
(ρ) :=

{
(P,Q) ∈ PS × PS : MMDk(P,Q) ≥ ρ

}
.

For a given target type II error β ∈ (0, 1−α), the minimum separation for the dpMMD test against
PMMDk

(ρ) is given by

ρϕdpMMD
(α, β, ε, δ,m, n) := inf

{
ρ > 0 : sup

(P,Q)∈PMMDk
(ρ)

EP,Q[1− ϕdpMMD] ≤ β
}
. (13)

In simpler terms, the minimum separation ρϕdpMMD
refers to the smallest MMD metric between P

and Q that can be correctly detected by the dpMMD test with probability at least 1−β. The next
theorem provides an upper bound for ρϕdpMMD

as a function of the parameters α, β, ε, δ, m, and n.
The proof can be found in Appendix E.9.

Theorem 7 (Minimum Separation of dpMMD over PMMDk
). Assume that the kernel k is bounded

as 0 ≤ k(x, y) ≤ K for all x, y ∈ S, and n ≤ m ≤ τn for some fixed constant τ ≥ 1. Then for
all values of α ∈ (0, 1), β ∈ (0, 1 − α), ε > 0, δ ∈ [0, 1) and B ≥ 16α−2 log

(
8/β

)
, the minimum

separation for ϕdpMMD satisfies

ρϕdpMMD
≤ CK,τ max

{√
max

{
log(1/α), log(1/β)

}
n

,
max

{
log(1/α), log(1/β)

}
nξε,δ

}
,

where CK,τ is a positive constant that depends only on K and τ , and ξε,δ can be recalled in (1).
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We present several comments on the upper bound result.

• Theorem 7 states that the separation rate for the dpMMD test becomes n−1/2 in low privacy
regimes (i.e., ξε,δ ≳ n−1/2), whereas it becomes n−1ξ−1

ε,δ in high privacy regimes (i.e., ξε,δ ≲

n−1/2). Notably, this upper bound result allows the parameters α, β, ξε,δ to vary freely within
the constraints in the theorem statement. We also mention that the minimum separation
is meaningful only when n−1ξ−1

ε,δ → 0, which coincides with the condition for consistency
established in Theorem 5.

• We point out that ϕdpMMD is equivalent to the non-DP MMD test (Gretton et al., 2012) when
ε → ∞ or δ → 1 (i.e., ξε,δ → ∞). Thus, our result also yields the minimum separation rate
for the non-DP MMD test as a byproduct.

• One can prove Theorem 7 by verifying the general conditions in Theorem 4. However this
strategy results in polynomial factors of α and β instead of logarithmic ones. To obtain
logarithmic dependence in both α and β, we modify the proof of Theorem 4 and utilize expo-
nential concentration inequalities for the empirical MMD statistic (Lemma 13) and permuted
MMD statistic (Lemma 10). As we will see in Theorem 8, these logarithmic factors cannot be
improved further when α ≍ β.

• The constraint on the sample size ratio can be completely removed by using the Markov in-
equality for a permuted MMD statistic (Lemma 11). Nevertheless, this alternative approach
yields a polynomial factor of α instead of a logarithmic one. See Remark 3. It is currently un-
known whether the constraint on m and n can be eliminated, while preserving the logarithmic
factors.

We next investigate minimax optimality of ϕdpMMD under certain regimes in S = Rd. To set the
stage, let ϕ : Yn ∪ Zm 7→ {0, 1} be a test function, and denote the set of (ε, δ)-DP level α tests as

Φα,ε,δ :=
{
ϕ : sup

P∈PS

EP,P [ϕ] ≤ α and ϕ is (ε, δ)-DP
}
.

From a theoretical point of view, it is of interest to figure out an information-theoretic lower bound
on the minimum separation for any test. This is often called the minimax separation or critical
radius in the literature (Ingster, 1994; Ingster et al., 2003; Baraud, 2002). Formally, the minimax
separation in terms of the MMD metric is defined as

ρ⋆MMD(α, β, ε, δ,m, n) := inf
{
ρ > 0 : inf

ϕ∈Φα,ε,δ

sup
(P,Q)∈PMMDk

(ρ)
EP,Q[1− ϕ] ≤ β

}
.

In simpler terms, the minimax separation ρ⋆MMD refers to the largest MMD metric between P and
Q that cannot be correctly detected with probability at least 1−β by any level α test. We say that
a test ϕ is minimax rate optimal in terms of the MMD metric if the minimum separation of ϕ is
equivalent to ρ⋆MMD up to constant factors. The next theorem, proved in Appendix E.10, establishes
a lower bound for the minimax separation under the DP constraint, from which we demonstrate
minimax optimality of the dpMMD test.
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Theorem 8 (Minimax Separation over PMMDk
). Let α and β be real numbers in the interval (0, 1/5),

ε > 0 and δ ∈ [0, 1). Assume that the kernel function k is translation invariant on Rd. In particular
there exists some function κ such that k(x, y) = κ(x− y) for all x, y ∈ Rd. Moreover, the kernel is
non-constant in the sense that there exists a positive constant η such that κ(0)− κ(z) ≥ η for some
z ∈ Rd. Then the minimax separation over PMMDk

is lower bounded as

ρ⋆MMD ≥ Cη max

{
min

(√
log(1/(α+ β))

n
, 1

)
, min

(
log(1/β)

nξε,δ
, 1

)}
,

where Cη is a positive constant that only depends on η, and ξε,δ can be recalled in (1).

Several remarks are in order.

• First of all, the restriction on α and β is mild as we are typically interested in small values of
α and β. In fact, the same result holds for any α, β such that α + β ≤ C where C is some
fixed constant strictly smaller than 1/2. We also note that for a bounded kernel ranging from
0 and K, the MMD as well as the corresponding minimax separation cannot exceed

√
2K.

Our lower bound result captures this restriction through the minimum operator.

• Second, our proof builds on the (ε, δ)-DP Le Cam’s method outlined in Acharya et al. (2018,
2021). This technique generalizes classical Le Cam’s two-point method (Le Cam, 1973) to
private settings via coupling argument. As pointed out by Acharya et al. (2018, Lemma 5),
one can obtain a lower bound result for (ε, δ)-DP by replacing ε with ε+ δ in the lower bound
result for ε-DP. However, this method fails to yield a tight lower bound in terms of β. Our
approach differs from Acharya et al. (2018, Lemma 5) and returns a sharp lower bound for all
parameters of interest, namely β, n, ε, δ.

• Theorem 8 holds for translation invariant kernels. Indeed, many kernels commonly used in
practice are translation invariant including the Gaussian, Laplacian, inverse multiquadrics and
Matérn kernels. Moreover, as discussed in Tolstikhin et al. (2017), if we further assume that
the kernel k is characteristic, it guarantees the existence of z ∈ Rd and η > 0 that satisfy the
conditions of Theorem 8. For instance, for the Gaussian kernel k(x, y) = e−σ∥x−y∥22 , one can
take η = σ

2 ∥z∥
2
2 for any non-zero z such that ∥z∥22 ≤ σ−1.

• The last point worth highlighting is that our lower bound permits varying values of α and β,
which is in contrast to most existing research on minimax testing. A notable exception is the
recent work by Diakonikolas et al. (2021), which examines the sample complexity of testing
for discrete distributions with high probability.

We now compare the results of Theorem 7 and Theorem 8, and observe that the lower bound
for ρ⋆MMD matches the upper bound for ρϕdpMMD

in the regime where m ≍ n and α ≍ β for
S = Rd. This shows that the proposed dpMMD test is minimax rate optimal against the class of
alternatives determined by the MMD metric in the considered regime. It is noteworthy that there is
no restriction on the privacy parameters ε > 0 and δ ∈ [0, 1), and hence the dpMMD test achieves
optimal separation rates in all privacy regimes.
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5.2 Separation in L2 Metric

We next investigate the minimum separation of the dpMMD test in terms of the L2 metric. Let p
and q denote the Lebesgue density functions of P and Q, respectively, defined on Rd. As in Schrab
et al. (2023) and Li and Yuan (2019), we restrict our attention to a smooth class of density functions
defined over a Sobolev ball. In particular, for a smoothness parameter s > 0 and a radius R > 0,
the Sobolev ball Ssd(R) is given as

Ssd(R) :=

{
f ∈ L1(Rd) ∩ L2(Rd) :

∫
Rd

∥w∥2s2 |f̂(w)|2dw ≤ (2π)dR2

}
, (14)

where f̂ is the Fourier transform of f , i.e., f̂(w) =
∫
Rd f(x)e

−ix⊤wdx for w ∈ Rd. The condition
f ∈ L1(Rd) ∩ L2(Rd) simply requires the function f : Rd → R to be both integrable and square-
integrable with respect to the Lebesgue measure. For ρ > 0, let PL2(ρ) be the collection of paired
distributions (P,Q) on Rd×Rd where P and Q are equipped with the Lebesgue density functions p
and q, respectively, such that ∥p− q∥L2 ≥ ρ. The target class of distributions is a subset of PL2(ρ)

defined as

Ps
L2
(ρ) :=

{
(P,Q) ∈ PL2(ρ) : p− q ∈ Ssd(R), max(∥p∥L∞ , ∥q∥L∞) ≤M

}
.

The aim of this subsection is to characterize the minimum value of ρ for which the dpMMD test has
significant power uniformly over Ps

L2
(ρ). For simplicity, we focus on the dpMMD test with a Gaus-

sian kernel. This choice is motivated by the observation that the population MMD with the Gaussian
kernel approximates ∥p− q∥2L2

for small bandwidth values (Li and Yuan, 2019), and a similar result
can be derived using other kernels in view of Schrab et al. (2023). For x = (x1, . . . , xd)

⊤ ∈ Rd and
y = (y1, . . . , yd)

⊤ ∈ Rd, the Gaussian kernel with bandwidth λ = (λ1, . . . , λd)
⊤ ∈ (0,∞)d is given

as

kλ(x, y) =
d∏

i=1

1√
2πλi

e
− (xi−yi)

2

2λ2
i .

Let us denote the minimum separation of the dpMMD test with the Gaussian kernel against L2

alternatives as

ρϕdpMMD,L2(α, β, ε, δ,m, n, d, s, R,M) := inf

{
ρ > 0 : sup

(P,Q)∈Ps
L2

(ρ)
EP,Q[1− ϕdpMMD] ≤ β

}
. (15)

The next theorem, proved in Appendix E.11, provides an upper bound for ρϕdpMMD,L2 in terms of a
set of parameters, including the bandwidth λ and sample sizes.

Theorem 9 (Minimum Separation of dpMMD over Ps
L2

). Assume that n ≤ m ≤ τn for some fixed
constant τ ≥ 1, and that α ∈ (0, e−1), β ∈ (0, 1 − α), ε > 0, δ ∈ [0, 1), B ≥ 16α−2 log(8/β) and∏d

i=1 λi ≤ 1. The minimum separation of the dpMMD test with the Gaussian kernel over Ps
L2

is
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upper bounded as

ρ2ϕdpMMD,L2
≤ Cτ,β,s,R,M,d

{
d∑

i=1

λ2si +
log(1/α)

n
√
λ1 · · ·λd

+
log(1/α)

n3/2λ1 · · ·λdξε,δ

+
log2(1/α)

n2λ1 · · ·λdξ2ε,δ
+

log3/2(1/α)

n3/2(λ1 · · ·λd)3/4ξε,δ

}
,

where Cτ,β,s,R,M,d is a positive constant, depending only on τ, β, s,R,M, d, and ξε,δ is as in (1).

There are several points needed to be highlighted. To facilitate our discussion, assume that α is
a fixed number and write

(I) =
log(1/α)

n
√
λ1 · · ·λd

, (II) =
log(1/α)

n3/2λ1 · · ·λdξε,δ
, (III) =

log2(1/α)

n2λ1 · · ·λdξ2ε,δ
, (IV) =

log3/2(1/α)

n3/2(λ1 · · ·λd)3/4ξε,δ
.

When α is fixed, we can absorb the term (IV) into the term (II) as λ1 · · ·λd ≤ 1, and simplify the
interpretation of the result as follows.

• In the low privacy regime where the first term (I) dominates the others, our result recovers
Schrab et al. (2023, Theorem 6), which studies the minimum separation of the non-private
MMD test against Ps

L2
. In this low privacy regime, by setting bandwidths λi = n−2/(4s+d) for

i ∈ [d], we can achieve the optimal separation rate over the Sobolev ball, that is n−2s/(4s+d).

• In the mid privacy regime where the term (II) becomes a leading term, equating (II) with∑d
i=1 λ

2s
i yields the optimal choice of bandwidths λi = n−3/(4s+2d)ξ

−1/(2s+d)
ε,δ for i ∈ [d]. The

resulting separation rate is n−3s/(4s+2d)ξ
−s/(2s+d)
ε,δ . Similarly, in the high privacy regime where

the term (III) dominates the others, equating (III) with
∑d

i=1 λ
2s
i yields the optimal choice of

bandwidths λi = (nξε,δ)
−2/(2s+d) for i ∈ [d]. This returns the separation rate (nξε,δ)

−2s/(2s+d).
By tracking conditions for each term dominating the others, the minimum separation rate that
one can achieve using different bandwidths is summarized as

ρϕdpMMD,L2 ≲


n−

2s
4s+d , if n−

2s−d/2
4s+d ≲ ξε,δ (low privacy),

(n
3
2 ξε,δ)

− s
2s+d , if n−

1
2 ≲ ξε,δ ≲ n−

2s−d/2
4s+d (mid privacy),

(nξε,δ)
− 2s

2s+d , if ξε,δ ≲ n−
1
2 (high privacy).

(16)

In particular, when ξε,δ ≍ n−1/2, the separation rate becomes n−2/(2s+d), which is known to be
the minimax optimal rate of density estimation under the L2 loss. We refer to Appendix B.8
for a detailed discussion of the separation rate.

• It is important to note that all these separation rates are achieved by using different band-
widths, which requires knowledge of the smoothness parameter s. Building on the idea of In-
gster (2000); Schrab et al. (2023); Biggs et al. (2023), one can develop an aggregated dpMMD

test that is adaptive to s without losing much power. The main idea would be to consider a
wide range of private MMD statistics with different bandwidths and aggregate them properly.
A detailed analysis of this approach is left for future research.
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• While the dpMMD test can achieve the minimax rate in the low privacy regime, it remains
unknown whether the derived separation rates are optimal in the mid/high privacy regimes.
We believe that (ε, δ)-DP Le Cam’s method (Acharya et al., 2021, Theorem 1) plays an
important role in constructing a lower bound for the L2 separation as well. The key challenge
lies in finding a coupling between continuous distributions, yielding a small expected Hamming
distance. We leave this important direction for future work.

In contrast to the prior work (Li and Yuan, 2019; Schrab et al., 2023) that utilize a U-statistic
for minimax two-sample testing, our approach is based on a plug-in estimator, also known as a
V-statistic, of the MMD. While plug-in estimators can often exhibit suboptimal performance in
estimation problems due to their inherent bias, they can still achieve optimal results in testing
problems. This can be explained by the interplay between the test statistic and the critical value in
a testing procedure, where the bias terms in these components may offset each other. Theorem 9
demonstrates this phenomenon by showing that the test based on the plug-in estimator of the MMD
attains the minimax separation rate over Ps

L2
in the low privacy regime. Perhaps more interestingly,

the plug-in estimator can outperform the U-statistic by having lower sensitivity and thus leading
to greater power in high privacy regimes. This aspect of plug-in estimators has not been noticed in
the literature, and we provide a more detailed discussion in the next subsection.

5.3 Private Test based on the MMD U-statistic

It has been shown that kernel tests based on U-statistics often produce optimal separation rates in
non-DP settings (Li and Yuan, 2019; Schrab et al., 2023; Albert et al., 2022; Kim et al., 2022a).
Therefore, one can naturally expect that their private extensions perform similarly well across
different privacy regimes. In this section, we prove that this is not necessarily the case. In particular,
we illustrate that the private MMD permutation test based on a U-statistic is provably outperformed
by our approach based on the plug-in MMD estimate in high privacy regimes. A similar result for
HSIC can be found in Appendix B.7.

We begin with the explicit form of the MMD U-statistic, which is an unbiased estimator of
MMD2

k, given as

UMMD(Xn+m) :=
1

n(n− 1)

∑
1≤i ̸=j≤n

k(Yi, Yj) +
1

m(m− 1)

∑
1≤i ̸=j≤m

k(Zi, Zj)−
2

nm

n∑
i=1

m∑
j=1

k(Yi, Zj).

The following lemma calculates the global sensitivity of UMMD, which is proved in Appendix E.12.

Lemma 7 (Global Sensitivity of UMMD). Assume that the kernel k is bounded as 0 ≤ k(x, y) ≤ K
for all x, y ∈ S. In addition, assume that k is translation invariant, and have non-empty level sets
on S. Then there exists a positive sequence cm,n ∈ [4, 8] such that for all 2 ≤ n ≤ m,

sup
π∈Πn+m

sup
Xn+m,X̃n+m:

dham(Xn+m,X̃n+m)≤1

∣∣UMMD(Xπ
n+m)− UMMD(X̃π

n+m)
∣∣ = cm,nK

n
.
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The lemma above indicates that the global sensitivity of the U-statistic has the same dependence
on n as that of the plug-in MMD in Lemma 5. However, it is important to mention that their target
parameters are different. The U-statistic is an estimator of MMD2

k, whereas the plug-in estimator
given in (9) estimates MMDk without squaring. This key difference can lead to a significant gap in
their power performance in privacy regimes as explored below.

Given the sensitivity of UMMD in Lemma 7, we consider the private permutation test in Algo-
rithm 1 using the test statistic UMMD and the global sensitivity ∆T = cm,nKn

−1. Let us denote the
resulting private test by ϕudpMMD. We analyze the minimum separations of ϕudpMMD over PMMDk

and
Ps
L2

in Theorem 10 and Theorem 11, respectively, and compare them with those of ϕdpMMD based
on the plug-in estimator. Starting with the MMD alternative, the following theorem demonstrates
that ϕudpMMD fails to achieve the minimax separation rate over PMMDk

.

Theorem 10 (Suboptimality of ϕudpMMD against MMD Alternatives). Assume that the kernel k
fulfills the conditions specified in Lemma 7. Moreover, assume that if P,Q ∈ PS, then wP + (1 −
w)Q ∈ PS for all w ∈ [0, 1], and there exist P0, Q0 ∈ PS such that MMDk(P0, Q0) = ϱ0 for some
fixed ϱ0 > 0. Let α ∈

(
(B+1)−1, 1

)
, β ∈ (0, 1−α) be fixed values. Consider the high privacy regime

where ξε,δ ≍ n−1/2−r with fixed r ∈ (0, 1/2), for ξε,δ as in (1). Then the uniform power of ϕudpMMD

is asymptotically at most α over PMMDk
(ρ) where

ρ = log(n)×max

{√
max

{
log(1/α), log(1/β)

}
n

,
max

{
log(1/α), log(1/β)

}
nξε,δ

}
. (17)

In other words, it holds that

lim sup
n→∞

inf
(P,Q)∈PMMDk

(ρ)
EP,Q[ϕ

u
dpMMD] ≤ α.

Theorem 10, proven in Appendix E.13, clearly shows that ϕudpMMD is not minimax optimal in
the MMD metric as ρ/ρ⋆MMD →∞ as n→∞. We also mention that the factor log(n) in ρ is chosen
for convenience, and it can be replaced by any other positive sequence that increases slower than nr

for r ∈ (0, 1/2). The suboptimal performance of ϕudpMMD primarily stems from the relatively high
noise level associated with the Laplace mechanism. Intuitively, we expect that ϕudpMMD is powerful
in the private regime when the target parameter MMD2

k(P,Q) is larger than the Laplace noise level
(nξε,δ)

−1, equivalently, MMDk(P,Q) is larger than (nξε,δ)
−1/2. Otherwise, the test statistic will be

dominated by the Laplace noise. Importantly, the minimax separation under high privacy regimes
in Theorem 8 is associated with min{(nξε,δ)−1, 1}, which is smaller than (nξε,δ)

−1/2. This briefly
explains the suboptimality of ϕudpMMD against the MMD alternative. Nevertheless, our analysis is
limited to the U-statistic with the Laplace mechanism, and it is unknown whether the U-statistic
in conjunction with other DP mechanisms can lead to optimality.

Turning to the L2 alternative, let us denote the minimum separation of ϕudpMMD with the Gaus-
sian kernel over Ps

L2
as ρϕu

dpMMD,L2 , which is similarly defined as (15). Our next concern is charac-
terizing ρϕu

dpMMD,L2 and comparing it with the minimum separation of the dpMMD test established
in Theorem 9.
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Theorem 11 (Minimum Separation of ϕudpMMD over Ps
L2

). Assume that n ≤ m ≤ τn for some
fixed constant τ ≥ 1, and that α ∈ (0, e−1), β ∈ (0, 1), ε > 0, δ ∈ [0, 1), B ≥ 16α−2 log(8/β)

and
∏d

i=1 λi ≤ 1. The minimum separation of ϕudpMMD with the Gaussian kernel over Ps
L2

is upper
bounded as

ρ2ϕu
dpMMD,L2

≤ Cτ,β,s,R,M,d

{
d∑

i=1

λ2si +
log(1/α)

n
√
λ1 · · ·λd

+
log(1/α)

nλ1 · · ·λdξε,δ

}
,

where Cτ,β,s,R,M,d is a positive constant, depending only on τ, β, s,R,M, d, and ξε,δ is as in (1).

The proof of Theorem 11 is given in Appendix E.14. To simplify our discussion, assume that
α is a fixed constant. In this case, by comparing Theorem 11 with Theorem 9, the upper bound
for ρ2ϕu

dpMMD,L2
is smaller than that for ρ2ϕdpMMD,L2

, up to a constant, only when nξε,δ ≲ 1. Since∏d
i=1 λi ≤ 1 and α is fixed, the condition nξε,δ ≲ 1 essentially means that ∥p − q∥L2 needs to

be sufficiently larger than a specific constant for significant power. However, this condition may
be infeasible as we assume that ∥p∥L∞ and ∥q∥L∞ are bounded by M . In fact, our earlier result
in Theorem 5 suggests that the test is not even consistent in a pointwise sense when nξε,δ ≲ 1.
Therefore, except for this boundary case, it is more beneficial to use ϕdpMMD than ϕudpMMD to
achieve tighter separation rates over Ps

L2
in high privacy regimes.

As we mentioned before, it remains an open question whether there exist alternative privacy
mechanisms that could potentially yield an optimal test based on UMMD in high privacy regimes.
While we still advocate using the plug-in MMD estimate over UMMD due to its smaller sensitivity,
it would be interesting to explore this question in future work.

6 Simulations

In this section, we compare the empirical power of dpMMD against other private two-sample tests,
including the naive dpMMD introduced in Equation (6) and the U-statistic dpMMD studied in
Section 5.3. We also implement two generic methods for privatizing the permutation MMD test,
which we refer to as TOT MMD (Kazan et al., 2023) and SARRM MMD (Peña and Barrientos,
2022). Finally, we also compare against the differentially private kernel two-sample test, TCS-
ME, proposed by Raj et al. (2020). A brief overview of these alternative methods is provided in
Section 6.1, with detailed information available in Appendix D.

We empirically study the power attained by dpMMD on synthetic data sampled from perturbed
uniform distributions in Section 6.2, and on real-world high-dimensional CelebA image data in
Section 6.3. The latter scenario involves sensitive information on human faces, justifying the incor-
poration of differential privacy in the analysis. In both simulation settings, we observe consistent
patterns in the power behavior, and a detailed discussion on the results is presented in Section 6.4.
For all our experiments, we use a Gaussian kernel, B = 2000 permutations, and report power results
averaged over 200 repetitions.

Due to space constraints, we defer the dpHSIC simulations to Appendix C, along with test-level
analysis and additional low-privacy experiments. The code to run our tests and to reproduce the
experiments is available at https://github.com/antoninschrab/dpkernel.
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6.1 Alternative differentially private tests

We provide a brief introduction to the alternative differentially private tests, namely TCS-ME,
TOT, and SARRM, with detailed implementation information available in Appendix D.

TOT (Kazan et al., 2023). TOT is constructed based on the subsample-and-aggregate idea
outlined in Canonne et al. (2019). It is guaranteed to be differentially private and to correctly
control the probability of type I error for any sample size, any number of partitioned subsets, and
any sub-test significance level. However, for non-parametric testing, there is no principled way to
choose the last two parameters and one has to rely on heuristics in practice. This heuristic aspect
presents a notable disadvantage of TOT, being highly sensitive to the choice of these parameters.

SARRM (Peña and Barrientos, 2022). As another method based on the subsample-and-
aggregate idea, SARRM also depends on the number of partitioned subsets and on the sub-test
significance level. Peña and Barrientos (2022) propose a method to select these parameters, which
can be implemented for MMD/HSIC tests. However, the differential privacy constraint and type I
error control for SARRM are only guaranteed for sufficiently large sample sizes (determined by a
minimum number of partitioned subsets to use), which means that SARRM simply cannot be run
in some settings depending on the values of ε, α, and n.

TCS-ME (Raj et al., 2020). The TCS-ME test is a privatized version of the ME test (Jitkrittum
et al., 2016) that utilizes kernel mean embeddings. This method builds on a Hotelling-type test
statistic privatized by the Gaussian mechanism, and requires a careful choice of test locations. The
resulting test is (ε, δ)-DP for δ > 0 (run with δ = 10−5). A major limitation of TCS-ME is its
potential for significant miscalibration, particularly in high-dimensional settings. See our discussion
on type I error control in Section 6.5.

6.2 Perturbed Uniform Distributions

As recalled in Section 5.2, the minimax L2 separation rate over the Sobolev ball Ssd(R) is n−2s/(4s+d)

in the non-privacy regime. A lower bound for this minimax separation rate is derived by constructing
two densities whose difference lies in the Sobolev ball with a small L2 norm. As explained by Schrab
et al. (2023, Appendix D), the uniform and perturbed uniform densities meet the requirements in
the lower bound construction, and we adopt this setting in our two-sample experiments. In more
detail, we compare the uniform distribution with its perturbed counterpart, varying the amplitudes.

Specifically, the considered uniform distribution on [0, 1]d has density 1(x ∈ [0, 1]d) for x ∈ Rd,
while the perturbed uniform density on [0, 1]d with a perturbation amplitude a ∈ [0, 1] is

1
(
x ∈ [0, 1]d

)
+ a

d∏
i=1

P (xi), for x = (x1, . . . , xd)
⊤ ∈ Rd, (18)
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Figure 1: Perturbed uniform d-dimensional densities on [0, 1]d with varying perturbation amplitude a.
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Figure 2: Comparing uniform vs. perturbed uniform while varying the privacy level ε. We set the sample
sizes m = n = 3000 and dimension d = 1, and change the privacy level ε and perturbation
amplitude a as follows: (Left) Privacy level ε from 1/n to 10/

√
n, perturbation amplitude a = 0.2.

(Middle) Privacy level ε from 10/
√
n to 1, perturbation amplitude a = 0.15. (Right) Privacy

level ε from 1 to
√
n, perturbation amplitude a = 0.1.

where the one-dimensional perturbation is defined as

P (xi) := exp

(
1− 1

1− (4xi − 1)2

)
1
(
xi ∈ (0, 1/2)

)
− exp

(
1− 1

1− (4xi − 3)2

)
1
(
xi ∈ (1/2, 1)

)
.

This definition matches the one of Schrab et al. (2023, Equation 17) with only one (scaled) pertur-
bation per dimension. The one-dimensional and two-dimensional perturbed densities with various
perturbation amplitudes are visualized in Figure 1.
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Figure 3: Comparing uniform vs. perturbed uniform while varying the sample sizes m = n. We set the
dimension d = 1 and perturbation amplitude a = 0.1. We change the privacy level as follows:
(Left) Privacy level ε = 10/

√
n. (Middle) Privacy level ε = 1. (Right) Privacy level ε =

√
n/10.
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Figure 4: Comparing uniform vs. perturbed uniform while varying the dimension d. We set the sample
sizes m = n = 3000 and perturbation amplitude a = 0.2. We change the privacy level as follows:
(Left) Privacy level ε = 10/

√
n. (Middle) Privacy level ε = 1. (Right) Privacy level ε =

√
n/10.

We run our perturbed uniform experiments under three different settings where we vary the
privacy level ε (Figure 2), the sample sizes m = n (Figure 3), and the dimension d (Figure 4).
Additionally, we provide experiments with ‘strong-signal’ alternatives in the low privacy regime in
Figure 12 in Appendix C.2, as well as a level analysis in Figure 14 in Appendix C.3. We discuss all
experimental results of Figures 2 to 4 in Section 6.4.
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Figure 5: Selected CelebA images in dimension 3× 178× 218.

6.3 CelebA

As some potential real-world applications of differentially private two-sample tests, we consider
CelebA face images which in practice would be highly confidential, and hence the use of DP tests
is thoroughly justified. The CelebA dataset (Liu et al., 2015) consists of 202, 599 face images of
10, 177 identities with a large diversity of face attributes, poses and backgrounds. For illustration
purposes, we display a selection of CelebA images in Figure 5. It is worth highlighting that we run
our tests on the original full-resolution images (3× 178× 218) without any modifications.

In our experiments, one sample consists of uniformly-sampled face images of women, while the
other is ‘corrupted’ with corruption parameter c ∈ [0, 1] in the following sense: we uniformly sample
face images of women with probability 1− c, and of men with probability c.

We run several CelebA experiments while varying the privacy level ε (Figure 6), the sample sizes
m = n (Figure 7), and the corruption c (Figure 8). As in Section 6.2, we consider the high/mid/low
privacy regimes for each of these. We also verify that all tests are well-calibrated in Figure 14 in
Appendix C.3. TCS-ME is excluded from our power analysis on the CelebA data as we empirically
observed that this method is not well-calibrated for this dataset.

Our results consistently demonstrate that kernel tests using a simple Gaussian kernel are able
to capture complex image distribution shifts (see Figure 5) even in this extremely high dimensional
setting with d = 3× 178× 218 = 116, 412. This result is surprising given that the Gaussian kernel
simply compares the distance between pixels at the same location without using information about
the image structure. We discuss this aspect more in Section 6.4.
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Figure 6: Comparing CelebA women/men images while varying the privacy level ε. We set the sample
sizes m = n = 500, and change the parameters as follows: (Left) Privacy level ε from 1/n to
10/
√
n, corruption c = 1. (Middle) Privacy level ε from 10/

√
n to 1, corruption c = 0.6. (Right)

Privacy level ε from 1 to
√
n, corruption c = 0.5.
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Figure 7: Comparing CelebA women/men images while varying the sample sizes m = n. We set the other
parameters as follows: (Left) Privacy level ε = 10/

√
n, corruption c = 0.7. (Middle) Privacy

level ε = 1, corruption c = 0.5. (Right) Privacy level ε =
√
n/10, corruption c = 0.4.

6.4 Analysis of Main Experimental Results

We now analyze the results of the perturbed uniform and CelebA experiments presented in Sec-
tions 6.2 and 6.3, respectively.
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Figure 8: Comparing CelebA women/men images while varying the corruption parameter c. We set the
sample sizes m = n = 500, and privacy parameter ε as follows: (Left) Privacy level ε = 10/

√
n.

(Middle) Privacy level ε = 1. (Right) Privacy level ε =
√
n/10.

Overview. First and foremost, we observe that dpMMD achieves significantly higher power than
all other tests across all privacy regimes. This trend remains consistent when varying the other
parameters {privacy, sample sizes, dimension, corruption}. In the high and mid privacy regimes
illustrated in Figures 2 to 4, only dpMMD is able to detect the perturbation on the uniform distribu-
tion. In the high and mid privacy regimes presented in Figures 6 to 8, dpMMD clearly outperforms
all other tests but TOT MMD and SARRM MMD eventually manage to detect the CelebA image
distributional shift. In the low privacy regime, dpMMD also achieves the highest power, which is
eventually matched by U-stat dpMMD as the privacy parameter increases.

Varying privacy and free privacy. As can be seen in Figures 2 and 6, increasing ε (i.e., lowering
privacy) first leads to an increase in power. However, we observe that, after some threshold, further
increasing ε does not increase the power of dpMMD. Essentially, in this low privacy regime, dpMMD
already attains the power of the non-private MMD test and the (low) privacy guarantee then comes
for free. This empirical observation is also supported by our theoretical findings that the non-private
MMD and L2 optimal uniform separation rates are attained by dpMMD in the low privacy regime
(see Theorems 7 and 9).

Varying privacy for U-stat dpMMD. Furthermore, Figures 2 and 6 shows that the dpMMD
test using the U-statistic is powerless in the high and mid privacy regimes, but it eventually reaches
the power of dpMMD (using the V-statistic) in the low privacy regime, which is theoretically justified
by our suboptimality result (Theorem 10) for dpMMD based on the U-statistic and by the fact that
the non-private MMD U-statistic test is minimax rate optimal (Schrab et al., 2023).
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Varying the sample size. When varying the sample sizes m = n in Figures 3 and 7 with fixed
high/mid/low privacy level ε ∈ {10/

√
n, 1,
√
n/10}, the power of all tests naturally increase, while

the power of dpMMD increases faster than the others. In the low privacy regime of Figure 3, we
see that the power of U-stat dpMMD approaches that of dpMMD as the same size increases. This
can be explained by the aforementioned reasoning along with the observation that the privacy level
ε =
√
n/10 also increases (i.e., lower privacy) in this setting.

Varying the problem difficulty. In Figures 4 and 8, the sample sizes and privacy levels are
fixed while the difficulty of the problem is varied. For the perturbed uniform experiment, as the
dimension of the problem increases, the perturbation becomes more difficult to detect and hence
the power decreases for each test. We observe nonetheless that the power of dpMMD deteriorates
at a much slower rate than the one of the other tests. For the CelebA experiment, the test power
increases with the corruption parameter of the image sampler, with dpMMD always achieving the
highest power, followed by either TOT MMD or SARRM MMD.

The power of kernel methods. We end this discussion with some remarks regarding the CelebA
experiments of Section 6.3. First, we emphasize again that the quadratic-time kernel tests run swiftly
on the full-resolution CelebA image data, which has 116, 412 pixels per image. Second, given the
large diversity of faces, poses and backgrounds (see Figure 5), it is remarkable that dpMMD is able
to detect such complicated differences in high-dimensional image distributions while using an off-
the-shelf Gaussian kernel which entirely ignores the image structure and simply averages distances
between pixel values at the same locations. Third, the fact that such complex testing problems
can now be solved while guaranteeing differential privacy is extremely important, especially when
dealing with data as personal and sensitive as facial data. The DP constraint essentially guarantees
privacy in the sense that confidential information about a single face image cannot be recovered.
Fourth, we stress that the power results reported are meaningful and that dpMMD truly detects
the difference between CelebA images of women and men, which is justified as type I error control
is correctly retained (Appendix C.3). We believe these CelebA experiments strongly advocate the
use of tests leveraging kernel methods for differential privacy.

6.5 Analysis of Additional Experimental Results

Before concluding the paper, we briefly summarize the results of the additional experiments in
Appendix C.

Independence testing. In the HSIC testing experiments of Appendix C.1, we consider the prob-
lem of detecting the dependence of variables with the perturbed uniform joint density introduced in
Section 6.2, and hence with uniform marginal densities. This setting is of particular interest as this
corresponds to the joint density used in deriving the non-private L2 minimax independence lower
bound over Sobolev balls by Albert et al. (2022). The exact same power dynamics and aforemen-
tioned observations, which hold for the MMD-based tests, also apply to the HSIC variants of all
tests, and indeed dpHSIC achieves substantially higher power than all the other tests.
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High-signal & low-privacy alternatives. We remark that Naive dpMMD and TCS-ME have
almost no power against the alternatives considered in the previous subsections. This is not because
these tests are faulty but because the signal is too weak to be detected by these tests. In fact, the
Naive dpMMD test with privacy ε is exactly equivalent to the dpMMD test with privacy 2/(Bε)

(recall B = 2000 permutations), which justifies the poor performance of Naive dpMMD. For a
sanity check, we consider ‘high-signal’ & ‘low-privacy’ alternatives in Appendix C.2 and show that
dpMMD and TCS-ME are indeed able to detect the difference when the signal is large enough. The
results can be found in Figure 12.

Type I error control. In Appendix C.3, we run experiments under the null hypothesis. This
corresponds to no perturbation for the perturbed uniform two-sample and independence settings
(amplitude a = 0), and to no corruption in the CelebA sampler (corruption c = 0). All tests are
well-calibrated with empirical level around α under all settings considered, except TCS-ME. Indeed,
we observe in Figure 14 that when testing two samples from a 100-dimensional uniform distribution,
TCS-ME fails to control the type I error rate, which is estimated to be around 0.5 = 10α instead
of around α = 0.05. This depicts a major limitation of TCS-ME especially in high-dimensional
settings. However, we point out that this test is well-calibrated in the settings of Section 6.2,
ensuring a fair comparison of power therein.

7 Discussion

In this work, we have proposed differentially private permutation tests and examined their theo-
retical and empirical performance. The prior work on differentially private testing has often been
limited in its practical applicability, being restricted to discrete data or relying on asymptotic the-
ory that does not offer confidence in finite sample scenarios. Our permutation framework addresses
these challenges by introducing practical tools, which are applicable to diverse settings with finite
sample guarantees for both type I error control and differential privacy. In addition to general power
properties, we have provided a detailed power analysis of the proposed method in the context of
kernel testing, and showed that the proposed private kernel tests achieve minimax optimal power
in terms of kernel metrics in all privacy regimes. We have also analyzed the testing power against
nonparametric L2 alternatives, and established minimum separation rates in all privacy regimes.
Finally, we have conducted an extensive simulation study to validate our theoretical findings as well
as to highlight the practical value of our approach.

Our work raises several intriguing open questions that deserve further investigation, as outlined
below.

• Beyond Global DP. Our work focuses on global (ε, δ)-differential privacy along with the
Laplace mechanism. While global DP is a widely used as an effective concept of data protec-
tion, other privacy concepts may be more suitable depending on the context and requirements.
Exploring the development of private permutation tests applicable to other privacy concepts or
based on other privacy mechanisms would be an interesting direction for future investigation.
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• Other Applications. We illustrated the proposed method in the context of two-sample
and independence testing, with a focus on kernel-based tests. The permutation method has
been employed successfully in other statistical problems such as testing for regression coeffi-
cients (DiCiccio and Romano, 2017) and conditional independence testing (Kim et al., 2022b).
It is therefore compelling to broaden the application of our framework by tackling other sta-
tistical problems in privacy settings. Future work can also focus on conducting a detailed
analysis of the private permutation test using non-kernel test statistics.

• Variants of dpMMD and dpHSIC. In our analysis, we utilized the plug-in estimators of
MMD and HSIC based on single kernels. In recent years, significant progress has been made
to reduce the computational complexity (Schrab et al., 2022; Domingo-Enrich et al., 2023) as
well as to avoid the bandwidth selection issue (Schrab et al., 2023; Biggs et al., 2023) of this
standard approach. Considering these developments, a promising avenue for future research
would be to extend these recent advances to privacy-preserving settings.

• Minimax Separation under DP. Our results in Section 5.2 provide upper bounds for the
minimax separation rates in terms of the L2 metric, which match the lower bound in low
privacy regimes. However, as mentioned earlier, it is unknown whether they are still tight in
mid/high privacy regimes. Consequently, future work could focus on addressing this question
by establishing matching lower bounds or sharper upper bounds. More broadly, it would be
interesting to establish minimax separation rates under DP in terms of other metrics as well.
We leave these important questions to future work.
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A Overview of Appendices

This supplementary material includes additional results, technical details and proofs, omitted in
the main text. The remaining material is organized as follows.

• In Appendix B, we present additional results including

(i) Limiting null distributions of privatized kernel statistics (Appendix B.1),

(ii) General consistency results (Appendix B.2),

(iii) Detailed explanation of Example 1 (Appendix B.3),

(iv) Detailed explanation of Example 2 (Appendix B.4),

(v) Minimax separation rate in the HSIC metric (Appendix B.5),

(vi) Minimum separation of the dpHSIC test in the L2 distance (Appendix B.6),

(vii) Negative results of HSIC U-statistic (Appendix B.7) and

(viii) Analyses of minimum separation rates (Appendix B.8).

• In Appendix C, we present additional simulations including

(i) Independence testing with dpHSIC (Appendix C.1),

(ii) Additional experiments on the power in the low privacy regime (Appendix C.2) and

(iii) Experiments on type I error rates (Appendix C.3),

• In Appendix D, we explain in detail other private tests considered in our simulation studies.

• In Appendix E, we provide the proofs of the results presented in the main text.

• In Appendix F, we collect the proofs of the additional results provided in Appendix B.

• In Appendix G, we collect technical lemmas used in the main proofs.

Throughout these appendices, we use an additional set of notation described below.

Additional Notation. For a sequence of random variables Xn, we say that Xn = OP (1) if
for any ϵ > 0, there exists Mϵ, Nϵ > 0 such that P(|Xn| > Mϵ) < ϵ for all n ≥ Nϵ. Similarly,
we say that Xn = oP (1) if for any ϵ > 0, there exists Nϵ > 0 such that P(|Xn| > ϵ) < ϵ for all
n ≥ Nϵ. For a sequence of positive numbers an, Xn = OP (an) (resp. oP (an)) means a−1

n Xn = OP (1)

(resp. a−1
n Xn = oP (1)). For x ∈ R, ⌈x⌉ denotes the least integer greater than or equal to x. We

use the notation Xn
d−→ X to denote the convergence in distribution and Xn

p−→ X to denote the
convergence in probability. Consider two probability distributions P and Q on a measurable space
(Ω,F). The total variation (TV) distance between P and Q is defined as

dTV(P,Q) = sup
A∈F

∣∣P (A)−Q(A)
∣∣ = 1

2
∥P −Q∥1 =

1

2

∫ ∣∣∣∣dPdν − dQ

dν

∣∣∣∣dν,
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where ν is a common dominating measure of P and Q, and dP
dν , dQ

dν are their density functions with
respect to ν. The Kullback–Leibler (KL) divergence of P from Q is given as

dKL(P,Q) =

∫
dP

dν
log

(
dP/dν

dQ/dν

)
dν.

We let iqp denote the set of all p-tuples drawn without replacement from [q]. The n-fold product
distribution of a distribution P is denoted as P⊗n.

B Additional Results

In this section, we provide additional technical results omitted in the main text. The proofs for
these additional results are relegated to Appendix F.

B.1 Limiting Null Distributions

The following proposition derives the limiting distributions of privatized kernel test statistics. In
particular, denote

MMMD := M̂MD(Xn+m) +
2
√
2K

nξε,δ
ζ and MHSIC := ĤSIC(Xn) +

8(n− 1)
√
KL

n2ξε,δ
ζ,

where ζ ∼ Laplace(0, 1) independent of everything else. The results developed in Section 4 guarantee
that MMMD and MHSIC are (ε, δ)-DP for bounded kernels. These two private statistics have the
following limiting behavior under the null. The proof of Proposition 1 can be found in Appendix F.1.

Proposition 1 (Asymptotic Null Distributions).

• (MMD) Assume that the kernel k is bounded as 0 ≤ k(x, y) ≤ K for all x, y ∈ S, and
m

n+m → ω ∈ (0, 1). Write σ = 2
√
2Kn−1ξ−1

ε,δ . Then there exists a deterministic sequence
{λi}∞i=1 such that(n+m)1/2MMMD

d−→
√∑∞

i=1 λiZ
2
i + ηζ if

√
n+mσ → η ∈ [0,∞),

σ−1MMMD
d−→ ζ if

√
n+mσ →∞,

where {Zi}∞i=1
i.i.d.∼ N(0, 1) and ζ ∼ Laplace(0, 1) are independent.

• (HSIC) Assume that the kernels k and ℓ are bounded as 0 ≤ k(y, y′) ≤ K and 0 ≤ ℓ(z, z′) ≤ L
for all y, y′ ∈ Y and z, z′ ∈ Z. Write σ = 8(n−1)n−2

√
KLξ−1

ε,δ . Then there exist deterministic
sequences {λi}∞i=1 and {ηi}∞i=1 such thatn

1/2MHSIC
d−→
√∑∞

i=1

∑∞
j=1 λiηjZ

2
i,j + ηζ if

√
nσ → η ∈ [0,∞),

σ−1MHSIC
d−→ ζ if

√
nσ →∞,

where {Zi,j}∞i,j=1
i.i.d.∼ N(0, 1) and ζ ∼ Laplace(0, 1) are independent.

Remark. Note that the sequences {λi}∞i=1 and {ηi}∞i=1 are associated with the eigenvalues of
integral kernel operators. See Gretton et al. (2012) and Zhang et al. (2018) for details.
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B.2 General Pointwise Consistency

One of the desiderata of nonparametric tests is their pointwise consistency: the power converges
to one as the sample size increases against any fixed alternative of interest. The following lemma
develops a general pointwise consistency result that can be applied broadly to resampling-based
tests (e.g., bootstrap and permutation tests). We then leverage this general result to derive condi-
tions for pointwise consistency of the differentially private permutation test in Theorem 3.

Lemma 8 (General Conditions for Consistency). Let α ∈ (0, 1) be a fixed constant. Suppose that
{W1,n, . . . ,WBn,n} are i.i.d. random variables conditional on a sigma field G, and W0,n is constant
conditional on the same sigma field G. Suppose further that limn→∞ P(W0,n ≤W1,n) = 0. Then for
any positive sequence of Bn such that minn≥1Bn + 1 > α−1, we have

lim
n→∞

P
(

1

Bn + 1

{ Bn∑
i=1

1(W0,n ≤Wi,n) + 1

}
≤ α

)
= 1.

The proof of this result can be found in Appendix F.2. When Bn is a fixed quantity, Lemma 8
can be proved using a union bound. As mentioned in the main text, proving this consistency result
for a general sequence of Bn is non-trivial and thereby we highlight it as our contribution.

To illustrate Lemma 8 in a simple setting, let us consider a wild bootstrap test for normal mean
testing described as follows.

Example 3 (Wild Bootstrap). Suppose that we are given Xn = {X1, . . . , Xn}
i.i.d.∼ N(µ, σ2), and

our interest is in testing whether H0 : µ = 0 or H1 : µ > 0. Consider a test statistic W0,n =
1
n

∑n
i=1Xi, and let G be the sigma field generated by Xn. Then conditional on G, the test statistic

W0,n is constant. Now generate i.i.d. Rademacher random variables ϵ1, . . . , ϵn, and define W1,n =
1
n

∑
i=1 ϵiXi. The other statistics W2,n, . . . ,WBn,n are defined similarly using independent sets

of i.i.d. Rademacher random variables. Then conditional on G, the sequence {W1,n, . . . ,WBn,n}
consists of i.i.d. random variables. We reject the null when

1

Bn + 1

{ Bn∑
i=1

1(W0,n ≤Wi,n) + 1

}
≤ α

and the resulting test is called a (wild) bootstrap test. By the law of large numbers, it can be
seen that W0,n

p−→ µ and W1,n
p−→ 0 for fixed mean µ > 0 and finite variance σ2, implying that

limn→∞ P(W0,n ≤ W1,n) = 0. Hence the bootstrap test is consistent according to Lemma 8. The
type I error is also controlled since {W0,n,W1,n, . . . ,WBn,n} are exchangeable under the null.

B.3 Details on Example 1

Let us denote the pooled sample as Xn+m = Yn ∪ Zm = {X1, . . . , Xn+m}, and the permutation
counterpart permuted according to π as Xπ

n+m. Then the plug-in estimator using Xπ
n+m is given as

TIPM(Xπ
n+m) = sup

f∈F

∣∣∣∣ 1n
n∑

i=1

f(Xπi)−
1

m

m∑
i=1

f(Xπn+i)

∣∣∣∣.
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By the reverse triangle inequality, it holds that

sup
Xn+m,X̃n+m:

dham(Xn+m,X̃n+m)≤1

∣∣TIPM(Xπ
n+m)− TIPM(X̃π

n+m)
∣∣ ≤ ∆̃T :=

1

min{n,m}
sup

X,X′∈S
sup
f∈F
|f(X)− f(X ′)|.

The above bound is independent of π and thus the global sensitivity is at most ∆̃T . Indeed, this
upper bound is tight. For X,X ′ ∈ S, set Xn+m = {X, . . . ,X} and X̃n+m = {X ′, X, . . . ,X}. Then
the global sensitivity ∆T is lower bounded as

1

min{n,m}
sup
f∈F
|f(X)− f(X ′)| ≤ ∆T ,

which holds for all X,X ′ ∈ S. Hence it holds ∆̃T ≤ ∆T , and the global sensitivity becomes
∆T = ∆̃T .

B.4 Details on Example 2

In view of condition (8), there are four terms that we need to investigate, namely E[T (Xn+m)],
E[T (Xπ

n+m)], Var[T (Xn+m)] and Var[T (Xπ
n+m)].

Starting with the expected value E[T (Xn+m)], the triangle inequality yields

sup
f∈F

∣∣∣∣ 1n
n∑

i=1

f(Yi)−
1

m

m∑
i=1

f(Zi)

∣∣∣∣ ≥ IPMF (P,Q)− sup
f∈F

∣∣∣∣ 1n
n∑

i=1

f(Yi)− EP [f(Y )]

∣∣∣∣
− sup

f∈F

∣∣∣∣EQ[f(Z)]−
1

m

m∑
i=1

f(Zi)

∣∣∣∣
and thus

E[T (Xn+m)] ≥ IPMF (P,Q)− E
[
sup
f∈F

∣∣∣∣ 1n
n∑

i=1

f(Yi)− EP [f(Y )]

∣∣∣∣]

− E
[
sup
f∈F

∣∣∣∣EQ[f(Z)]−
1

m

m∑
i=1

f(Zi)

∣∣∣∣]
≥ IPMF (P,Q)− 4Rn(F),

where the last inequality uses the standard symmetrization trick (e.g., van der Vaart and Wellner,
1996, Chapter 2.3). In particular, introducing i.i.d. copies Ỹis of Yis, Jensen’s inequality along with
the triangle inequality yields

E
[
sup
f∈F

∣∣∣∣ 1n
n∑

i=1

f(Yi)− EP [f(Y )]

∣∣∣∣] ≤ E
[
sup
f∈F

∣∣∣∣ 1n
n∑

i=1

ωi{f(Yi)− f(Ỹi)}
∣∣∣∣] ≤ 2Rn(F).

The other expectation can be handled exactly the same way, which allows us to obtain the lower
bound for E[T (Xn+m)].
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We next look at E[T (Xπ
n+m)], which is equal to

E[T (Xπ
n+m)] = E

[
sup
f∈F

∣∣∣∣ 1n
n∑

i=1

f(Xπi)−
1

m

m∑
i=1

f(Xπn+i)

∣∣∣∣].
Let I1, . . . , I(mn) denote all subsets (i1, . . . , in) of [m] satisfying 1 ≤ i1 < . . . < in ≤ m. Observe that
the sample mean can be expressed as the U-statistic with a kernel of order n as below:

1

m

m∑
i=1

f(Xπn+i) =
1(
m
n

) ∑
1≤j≤(mn)

{
1

n

∑
i∈Ij

f(Xπn+i)

}
.

This observation along with Jensen’s inequality yields

E[T (Xπ
n+m)] ≤ 1(

m
n

) ∑
1≤j≤(mn)

E
[
sup
f∈F

∣∣∣∣ 1n
n∑

i=1

f(Xπi)−
1

n

∑
i∈Ij

f(Xπn+i)

∣∣∣∣].
Without loss of generality, set Ij = (1, . . . , n) and then we have

E
[
sup
f∈F

∣∣∣∣ 1n
n∑

i=1

f(Xπi)−
1

n

∑
i∈Ij

f(Xπn+i)

∣∣∣∣] = E
[
sup
f∈F

∣∣∣∣ 1n
n∑

i=1

ωi{f(Xπi)− f(Xπn+i)}
∣∣∣∣],

as randomly switching the order between πi and πn+i for i ∈ [n] does not change the distribution of

sup
f∈F

∣∣∣∣ 1n
n∑

i=1

f(Xπi)− f(Xπn+i)

∣∣∣∣.
Therefore we may upper bound E[T (Xπ

n+m)] as

E[T (Xπ
n+m)] ≤ 2Rn(F).

Moving to the variance terms, since T (Xn+m) is a function of independent random variables, we
can apply the Efron–Stein inequality for the variance (Boucheron et al., 2013, Corollary 3.2) as

Var[T (Xn+m)] ≤ 1

2

n+m∑
i=1

E
[(
T (Xn+m)− T (X (i)

n+m)
)2]

≤ 1

2n
sup

X,X′∈S
sup
f∈F
|f(X)− f(X ′)|2 + 1

2m
sup

X,X′∈S
sup
f∈F
|f(X)− f(X ′)|2

≤ n∆2
T ,

where X (i)
n+m = (X1, . . . , X

′
i, . . . , Xn+m), and X ′

i is an i.i.d. copy of Xi independent of everything
else. This proves that Var[T (Xn+m)] ≤ n∆2

T .
For the last term, the law of total variance shows

Var[T (Xπ
n+m)] = Var[E{T (Xπ

n+m) |π}] + E[Var{T (Xπ
n+m) |π}].
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Conditional on π, the same analysis as above yields Var{T (Xπ
n+m) |π} ≤ n∆2

T based on the Efron–
Stein inequality, which gives E[Var{T (Xπ

n+m) |π}] ≤ n∆2
T . For the first term, using the same trick

used in the analysis of E[T (Xπ
n+m)], we have

Var[E{T (Xπ
n+m) |π}] ≤ E[(E{T (Xπ

n+m) |π})2]

≤ E
[(

E
{
sup
f∈F

∣∣∣∣ 1n
n∑

i=1

ωi{f(Xπi)− f(Xπn+i)}
∣∣∣∣ ∣∣∣∣π})2]

≤ 4R2
n(F).

Having these ingredients, one can directly check the condition (8) is fulfilled if

IPMF (P,Q) ≥ C1
Rn(F)√
αβ

+ C2

√
n∆T√
αβ

+ C3
∆T

ξε,δ
max

{
log

(
1

α

)
, log

(
1

β

)}
,

where C1, C2, C3 are some positive constants.

B.5 Separation in HSIC metric

In this subsection, we develop results similar to those in Section 5.1 in terms of the HSIC metric. We
start by discussing the minimum separation for the dpHSIC test in Theorem 12 and then establish
the matching lower bound in Theorem 13. Letting PY×Z denote the class of distributions on Y×Z
and ρ > 0, we define the set of alternative distributions as

PHSICk⊗ℓ
(ρ) :=

{
PY Z ∈ PY×Z : HSICk⊗ℓ(PY Z) ≥ ρ

}
.

For a given target type II error β ∈ (0, 1−α), the minimum separation for the dpHSIC test against
PHSICk⊗ℓ

(ρ) is given as

ρϕdpHSIC
(α, β, ε, δ, n) := inf

{
ρ > 0 : sup

PY Z∈PHSICk⊗ℓ
(ρ)

EPY Z
[1− ϕdpHSIC] ≤ β

}
. (19)

The next theorem, which is analogous to Theorem 7 for the dpMMD test, provides an upper bound
for the minimum separation ρϕdpHSIC

(α, β, ε, δ, n) as a function of α, β, ε, δ and n.

Theorem 12 (Minimum Separation of ϕdpHSIC). Assume that the kernels k and ℓ are bounded as
0 ≤ k(y, y′) ≤ K and 0 ≤ ℓ(z, z′) ≤ L for all y, y′ ∈ Y and z, z′ ∈ Z. For all values of α ∈ (0, 1),
β ∈ (0, 1 − α), ε > 0, δ ∈ [0, 1) and B ≥ 16α−2 log

(
8/β

)
, the minimum separation for ϕdpHSIC

satisfies

ρϕdpHSIC
(α, β, ε, δ, n) ≤ CK,Lmax

{√
max

{
log(1/α), log(1/β)

}
n

,
max

{
log(1/α), log(1/β)

}
nξε,δ

}
,

where CK,L is a positive constant that only depends on K and L, and ξε,δ is given in (1).
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The proof of Theorem 12, given in Appendix F.3, follows a similar approach to that of Theorem 8.
A notable difference, however, is that we need to use exponential tail bounds for the HSIC statistic
instead of the MMD statistic. To this end, we develop exponential concentration results for the
empirical HSIC (Lemma 14) and the permuted HSIC (Lemma 12), by leveraging the recent result
of Kim et al. (2022a) and McDiarmid’s inequality. As clearly demonstrated in the proof, the use of
these tools is crucial in obtaining the logarithmic factors in α and β.

We now examine minimax optimality of ϕdpHSIC with a focus on the cases where Y = RdY and
Z = RdZ . For this direction, we establish a lower bound for the minimax separation ρ⋆HSIC defined
below and compare it with ρϕdpHSIC

. Let ϕ : Xn 7→ {0, 1} be a test function and P0 := {PY Z ∈
PY×Z : PY Z = PY PZ} be the set of null distributions on RdY ×RdZ . We denote the set of (ε, δ)-DP
level α tests as

Φα,ε,δ :=
{
ϕ : sup

PY Z∈P0

EPY Z
[ϕ] ≤ α and ϕ is (ε, δ)-DP

}
,

and define the minimax separation in terms of the HSIC metric as

ρ⋆HSIC(α, β, ε, δ, n) := inf

{
ρ > 0 : inf

ϕ∈Φα,ε,δ

sup
PY Z∈PHSICk⊗ℓ

(ρ)
EPY Z

[1− ϕ] ≤ β
}
.

Similar to Theorem 8, the next result establishes a lower bound for the minimax separation ρ⋆HSIC

under the DP constraint.

Theorem 13 (Minimax Separation in HSIC). Let α and β be real numbers in the interval (0, 1/5),
ε > 0 and δ ∈ [0, 1). Assume that the kernel functions k and ℓ are translation invariant on RdY and
RdZ , respectively. In particular, there exist some functions κY , κZ such that k(y, y′) = κY (y−y′) for
all y, y′ ∈ RdY and ℓ(z, z′) = κZ(z − z′) for all z, z′ ∈ RdZ . Moreover, assume that the kernels are
non-constant in the sense that there exist positive constants ηY , ηZ such that κY (0)− κY (y0) ≥ ηY
and κZ(0) − κZ(z0) ≥ ηZ for some y0 ∈ RdY and z0 ∈ RdZ . Then the minimax separation over
PHSICk⊗ℓ

(ρ) is lower bounded as

ρ⋆HSIC(α, β, ε, δ, n) ≥ CηY ,ηZ max

{
min

{√
log(1/(α+ β))

n
, 1

}
, min

{
log(1/β)

nξε,δ
, 1

}}
,

where CηY ,ηZ is a positive constant that only depends on ηY and ηZ , and ξε,δ is given in (1).

The proof of this result can be found in Appendix F.4. By comparing the result of Theorem 12
with the above result, it becomes evident that ρϕdpHSIC

≍ ρ⋆HSIC under the conditions α ≍ β and
Y×Z = RdY ×RdZ . Consequently, ϕdpHSIC achieves minimax rate optimality across all parameters,
namely (α, β, ε, n), provided that the type I error and the type II error are comparable. Other
comments on Theorem 8 can similarly be applied to Theorem 13. For instance, numerous kernels
frequently used in practice are translation invariant and the existence of ηY and ηZ in the theorem
statement is guaranteed as long as the kernels k and ℓ are characteristic (Tolstikhin et al., 2017).

The minimax results for both dpMMD and dpHSIC tests indicate the existence of an inherent
trade-off between privacy and statistical power. More concretely, one cannot expect to achieve the
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parametric
√
n-separation rate in both MMD and HSIC metrics when the privacy parameter ξε,δ

is much smaller than n−1/2. This intrinsic trade-off has been observed in a variety of statistical
problems (Diakonikolas et al., 2015; Acharya et al., 2018; Kamath et al., 2019, 2020; Acharya et al.,
2021) and our work serves to reaffirm this trade-off in the context of kernel-based testing problems.

B.6 Separation in L2 Metric

We next investigate the minimum separation of the dpHSIC test against a class of alternatives
measured in terms of the L2 metric. For ρ > 0, let P̃L2(ρ) be the collection of distributions PY Z on
RdY ×RdZ , where PY Z is equipped with the Lebesgue density function pY Z and the product of the
marginals pY pZ such that ∥pY Z − pY pZ∥L2 ≥ ρ. The class of alternative distributions of interest is
a subset of P̃L2(ρ) given as

P̃s
L2
(ρ) :=

{
PY Z ∈ P̃L2(ρ) : pY Z − pY pZ ∈ SsdY +dZ

(R), max(∥pY Z∥L∞ , ∥pY pZ∥L∞) ≤M
}
,

where SsdY +dZ
(R) is the Sobolev ball defined in (14). As for the dpMMD test in Section 5.2,

we focus on the use of the Gaussian kernels for simplicity. In particular, for y, y′ ∈ RdY and
z, z′ ∈ RdZ , consider the Gaussian kernels with bandwidths λ = (λ1, . . . , λdY ) ∈ (0,∞)dY and
µ = (µ1, . . . , µdZ ) ∈ (0,∞)dZ given as

kλ(y, y
′) =

dY∏
i=1

1√
2πλi

e
− (yi−y′i)

2

2λ2
i and ℓµ(z, z

′) =

dZ∏
i=1

1√
2πµi

e
− (zi−z′i)

2

2µ2
i .

Let us denote the minimum separation of the dpHSIC test with the above Gaussian kernels against
L2 alternatives as

ρϕdpHSIC,L2(α, β, ε, δ, n, dY , dZ , s, R,M) := inf

{
ρ > 0 : sup

PY Z∈P̃s
L2

(ρ)

EPY Z
[1− ϕdpHSIC] ≤ β

}
.

The next theorem presents an upper bound for ρϕdpHSIC,L2 in terms of a set of parameters including
λ, µ and n. The proof of Theorem 14 is given in Appendix F.5.

Theorem 14 (Minimum Separation of dpHSIC over P̃s
L2

). Assume that α ∈ (0, 1), β ∈ (0, 1− α),
ε > 0, δ ∈ [0, 1), B ≥ 16α−2 log(8/β),

∏dY
i=1 λi ≤ 1 and

∏dZ
i=1 µi ≤ 1. The minimum separation of

the dpHSIC test with the Gaussian kernel over P̃s
L2

is upper bounded as

ρ2ϕdpHSIC,L2
≤ Cα,β,s,R,M,dY ,dZ

{
dY∑
i=1

λ2si +

dZ∑
i=1

µ2si +
1

n
√
λ1 · · ·λdY µ1 · · ·µdZ

+
1

n2λ1 · · ·λdY µ1 · · ·µdZξ2ε,δ
+

1

n3/2λ1 · · ·λdY µ1 · · ·µdZξε,δ

}
,

where Cα,β,s,R,M,dY ,dZ is a positive constant, depending only on α, β, s,R,M, dY , dZ , and ξε,δ is
given in (1).
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We make a few comments on Theorem 14.

• In contrast to the prior work (Berrett et al., 2021; Albert et al., 2022; Kim et al., 2022a; Schrab
et al., 2022) that considers U-statistic for independence testing against L2 alternatives, our
result is based on the V-statistic of the HSIC, which requires additional effort in dealing with
bias terms. As emphasized before, the V-statistic is more favorable than the U-statistic in
high privacy regimes as the former has smaller global sensitivity than the latter.

• The main idea behind the proof is similar to that of Theorem 9 for the dpMMD test where we
first analyze the difference between the U- and V-statistics of the MMD, and then leverage the
existing results of the U-statistic. Extending this strategy to the HSIC requires substantial
effort as the U- and V-statistics of the HSIC are based on the fourth-order kernel (whereas,
the corresponding MMD statistics are based on the second-order kernel).

• In the proof, we do not keep track of the dependence on the type I error rate α in deriving
the minimum separation. We believe that the dependence on α can be improved in view of
Schrab et al. (2022, Theorem 3) where they establish a logarithmic dependence on α using U-
statistics. Nevertheless, extending this result to the V-statistic poses a non-trivial challenge,
and we defer this investigation to future research.

• We remark that if ξε,δ is sufficiently large so that the following inequality holds

ρ2ϕdpHSIC,L2
≤ Cα,β,s,R,M,dY ,dZ

{
dY∑
i=1

λ2si +

dZ∑
i=1

µ2si +
1

n
√
λ1 · · ·λdY µ1 · · ·µdZ

}
,

then we obtain the same separation rate as the non-private HSIC test studied in Albert et al.
(2022). In particular, letting λ1 = · · ·λdY = µ1 = · · · = µdZ = n−2/(4s+dY +dZ), we see that
the dpHSIC test achieves minimax optimal rate n−2s/(4s+dY +dZ) against the Sobolev ball.

• As for the result (16) of the dpMMD test, one can achieve different minimum separation rates
by varying the bandwidth parameters of the Gaussian kernel. In particular, a similar analysis
given in Appendix B.8 verifies that

ρϕdpHSIC,L2 ≲


n−

2s
4s+d , if n−

2s−d/2
4s+d ≲ ξε,δ (low privacy),

(n
3
2 ξε,δ)

− s
2s+d , if n−

1
2 ≲ ξε,δ ≲ n−

2s−d/2
4s+d (mid privacy),

(nξε,δ)
− 2s

2s+d , if ξε,δ ≲ n−
1
2 (high privacy).

(20)

• As in the dpMMD test, the optimal choice of the bandwidths assumes that the smoothness
parameter s is known. In this regard, it would be interesting to develop an adaptive test that
does not require the knowledge of s, while retaining (nearly) optimal power. We leave this
direction for future work. We also note that establishing lower bounds in high privacy regimes
is another interesting avenue for future work.

We next turn to the minimum separation of the private independence test based on a U-statistic,
and compare it with the one established in Theorem 14.
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B.7 Private Test based on the HSIC U-statistic

Mirroring Section 5.3, this subsection develops a similar negative result for the dpHSIC test based
on a U-statistic. As an unbiased estimator of the square of HSICk⊗ℓ(PY Z), the U-statistic of HSIC
is given as

UHSIC =
1

n(n− 1)

∑
(i,j)∈in2

k(Yi, Yj)ℓ(Zi, Zj) +
(n− 4)!

n!

∑
(i1,i2,j1,j2)∈in4

k(Yi1 , Yj1)ℓ(Zi2 , Zj2)

− 2

n(n− 1)(n− 2)

∑
(i,j1,j2)∈in3

k(Yi, Yj1)ℓ(Zi, Zj2),

(21)

where we recall that iqp denotes the set of all p-tuples drawn without replacement from [q]. To
privatize UHSIC as well as the test function through the Laplace mechanism, the following lemma
computes the global sensitivity of UHSIC.

Lemma 9. Assume that the kernels k and ℓ are bounded as 0 ≤ k(y, y′) ≤ K and 0 ≤ ℓ(z, z′) ≤ L

for all y, y′ ∈ Y and z, z′ ∈ Z. In addition, assume that k and ℓ are translation invariant, and have
non-empty level sets on Y and Z, respectively. Then there exists a positive sequence cn ∈ [2, 24] such
that for all n ≥ 4,

sup
π∈Πn

sup
Xn,X̃n:

dham(Xn,X̃n)≤1

∣∣UHSIC(Xπ
n )− UHSIC(X̃π

n )
∣∣ = cnKL

n
.

The proof of Lemma 9 is given in Appendix F.6. We would like to highlight that determining
the precise global sensitivity of UHSIC is more challenging than that of UMMD as the former is a
fourth-order U-statistic, whereas the latter is a second order one. Having established the global
sensitivity of UHSIC, consider the dpHSIC test in Algorithm 1 using the test statistic UHSIC and the
global sensitivity ∆T = cnKL

n where cn can be an arbitrary sequence of constants between 2 and
24. We denote the resulting test as ϕudpHSIC and show its suboptimal power property. The proof of
the result below can be found in Appendix F.7

Theorem 15 (Suboptimality of ϕudpHSIC). Assume that the kernels k and ℓ fulfills the conditions
specified in Lemma 9. Moreover, assume that if PY Z ∈ PY×Z, then wPY Z + (1 − w)PZPZ ∈ PY×Z
for all w ∈ [0, 1], and there exists PY Z ∈ PY×Z such that HSICk⊗ℓ(PY Z) = ϱ0 for some fixed ϱ0 > 0.
Let α > 1

B+1 and α ∈ (0, 1), β ∈ (0, 1− α) be fixed values. Consider the high privacy regime where
ξε,δ ≍ n−1/2−r with fixed r ∈ (0, 1/2), for ξε,δ as in (1). Then the uniform power of ϕudpHSIC is
asymptotically at most α over PHSICk⊗ℓ

(ρ) where ρ is given in (17). In other words, it holds that

lim sup
n→∞

inf
PY Z∈PHSICk⊗ℓ

(ρ)
EPY Z

[ϕudpHSIC] ≤ α.

The comments made for Theorem 10 also apply to Theorem 15. Specifically, as in the MMD
case, the U-statistic of the HSIC requires a higher noise level than the V-statistic to ensure differen-
tial privacy through the Laplace mechanism. To be more precise, ϕudpHSIC becomes powerful in the

52



privacy regime when the target parameter HSIC2
k⊗ℓ is greater than the Laplace noise level (nξε,δ)−1

or equivalently HSICk⊗ℓ is greater than (nξε,δ)
−1/2. However, the second term min{(nξε,δ)−1, 1} in

the minimax separation rate (Theorem 13) is smaller than (nξε,δ)
−1/2, and thus we may see that

ϕudpHSIC becomes powerless when min{(nξε,δ)−1, 1} ≲ HSICk⊗ℓ ≲ (nξε,δ)
−1/2. We make this intu-

ition more precise in the proof of Theorem 15 and establish that the worse-case power is essentially
bounded by significance level α.

Our next concern is the minimum separation of ϕudpHSIC test over P̃s
L2

, which mirrors Theorem 11
for the U-statistic of the MMD. As in Theorem 11, we focus on the Gaussian kernels for the HSIC,
and establish the following result. The proof can be found in Appendix F.8.

Theorem 16 (Minimum Separation of ϕudpHSIC over P̃s
L2

). Assume that α ∈ (0, 1), β ∈ (0, 1− α),
ε > 0, δ ∈ [0, 1), B ≥ 16α−2 log(8/β),

∏dY
i=1 λi ≤ 1 and

∏dZ
i=1 µi ≤ 1. Then the minimum separation

of ϕudpHSIC with Gaussian kernels over P̃s
L2

is upper bounded as

ρ2ϕu
dpHSIC,L2

≤ Cα,β,s,R,M,dY ,dZ

{
dY∑
i=1

λ2si +

dZ∑
i=1

µ2si +
1

n
√
λ1 · · ·λdY µ1 · · ·µdZ

+
1

nλ1 · · ·λdY µ1 · · ·µdZξε,δ

}
,

where Cα,β,s,R,M,dY ,dZ is a positive constant, depending only on α, β,R,M, dY , dZ , and ξε,δ is given
in (1).

By comparing Theorem 16 with Theorem 14, we see that the upper bound for ρ2ϕu
dpHSIC,L2

is

smaller than that of ρ2ϕdpHSIC,L2
if nξε,δ ≲ 1. Since we assume

∏dY
i=1 λi ≤ 1 and

∏dZ
i=1 µi ≤ 1, the

condition nξε,δ ≲ 1 implies that ∥pY Z − pY pZ∥L2 needs to be sufficiently large to ensure significant
power. However, the L2 distance cannot be made sufficiently large as ∥pY Z∥L∞ and ∥pY pZ∥L∞ are
assumed to be bounded. Therefore, the proposed test ϕdpHSIC is more favorable than the one based
on the U-statistic in terms of obtaining a tight separation rate in the L2 distance. Nevertheless,
when ξε,δ is sufficiently large, the minimum separation satisfies

ρ2ϕu
dpHSIC,L2

≤ Cα,β,s,R,M,dY ,dZ

{
dY∑
i=1

λ2si +

dZ∑
i=1

µ2si +
1

n
√
λ1 · · ·λdY µ1 · · ·µdZ

}
.

Therefore, in low privacy regimes, both ϕdpHSIC and ϕudpHSIC tests achieve the same separation rate
in terms of the L2 distance, which can be optimal when λ1 = · · · = λdY = µ1 = · · · = µdZ ≍
n−2/(4s+dY +dZ).

Like the negative results of UMMD, our negative results of UHSIC are based solely on the Laplace
mechanism. It is currently unknown whether there is an alternative privacy mechanism, enabling a
test based on UHSIC to be optimal in high privacy regimes. We leave this important direction for
future work.
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B.8 Analyses of Minimum Separation Rates

In this section, we provide details on the separation rate stated in (16). Throughout our discussion,
we treat the level α as a fixed constant. Let us recall the three terms in the separation rate:

(I) =
log(1/α)

n
√
λ1 · · ·λd

,

(II) =
log(1/α)

n3/2λ1 · · ·λdξε,δ
,

(III) =
log2(1/α)

n2λ1 · · ·λdξ2ε,δ
.

Among these three terms, the dominant term becomes
(I), if n−1/2(λ1 . . . λd)

−1/2 ≲ ξε,δ (low privacy regime),

(II), if n−1/2 ≲ ξε,δ ≲ n−1/2(λ1 . . . λd)
−1/2 (mid privacy regime),

(III), if ξε,δ ≲ n−1/2 (high privacy regime).

We choose the bandwidth parameters so that each dominating term matches the order of
∑d

i=1 λ
2s
i

and compute the resulting rate explained below.

• Low privacy regime. First, in the low privacy regime, we have the separation rate satisfying

ρ2ϕdpMMD,L2
≤ Cτ,β,s,R,M,d

{
d∑

i=1

λ2si +
log(1/α)

n
√
λ1 · · ·λd

}
.

Equating (I) with
∑d

i=1 λ
2s
i yields optimal bandwidths λi = n−

2
4s+d for i = 1, . . . , d, and the

resulting rate is n−
4s

4s+d , i.e., ρ2ϕdpMMD,L2
≲ n−

4s
4s+d . This rate is known to be minimax optimal

over the Sobolev ball under the non-DP setting (Li and Yuan, 2019; Schrab et al., 2023).
Therefore, when λi = n−

2
4s+d for i ∈ [d], we can achieve an optimal separation rate whenever

ξε,δ ≳ n−
2s−d/2
4s+d .

• Mid privacy regime. Second, in the mid privacy regime, we have the separation rate
satisfying

ρ2ϕdpMMD,L2
≤ Cτ,β,s,R,M,d

{
d∑

i=1

λ2si +
log(1/α)

n3/2λ1 · · ·λdξε,δ

}
.

Equating (II) with
∑d

i=1 λ
2s
i yields optimal bandwidths λi = (n3/2ξε,δ)

− 1
2s+d for i = 1, . . . , d,

and the resulting rate becomes (n3/2ξε,δ)
− 2s

2s+d . Therefore, we can achieve the separation rate
(n3/2ξε,δ)

− 2s
2s+d using bandwidths λi = (n3/2ξε,δ)

− 1
2s+d for i ∈ [d] whenever n−1/2 ≲ ξε,δ ≲

n−1/2(λ1 . . . λd)
−1/2, which is equivalent to

n−1/2 ≲ ξε,δ ≲ n−
2s−d/2
4s+d .
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• High privacy regime. Lastly, in the high privacy regime, the separation rate satisfies

ρ2ϕdpMMD,L2
≤ Cτ,β,s,R,M,d

{
d∑

i=1

λ2si +
log2(1/α)

n2λ1 · · ·λdξ2ε,δ

}
.

Equating (III) with
∑d

i=1 λ
2s
i yields optimal bandwidths λi = (nξε,δ)

− 2
2s+d for i ∈ [d], and the

resulting rate becomes (nξε,δ)
− 4s

2s+d . Consequently, we have the separation rate (nξε,δ)
− 4s

2s+d

whenever ξε,δ ≲ n−1/2.

To summarize, we can achieve the separation rate using different bandwidths in different privacy
regimes as

ρ2ϕdpMMD,L2
≲


n−

4s
4s+d , in the low privacy regime with n−

2s−d/2
4s+d ≲ ξε,δ,

(n3/2ξε,δ)
− 2s

2s+d , in the mid privacy regime with n−1/2 ≲ ξε,δ ≲ n−
2s−d/2
4s+d ,

(nξε,δ)
− 4s

2s+d , in the high privacy regime with ξε,δ ≲ n−1/2.

Each separation rate can be attained by using the bandwidths λ1 = · · · = λd = n−
2

4s+d for the low
privacy regime, λ1 = · · · = λd = (n3/2ξε,δ)

− 1
2s+d for the mid privacy regime and λ1 = · · · = λd =

(nξε,δ)
− 2

2s+d for the high privacy regime.

C Additional Simulations

In this section, we present further experiments on:

(i) independence testing (Appendix C.1),

(ii) power in low privacy regimes (Appendix C.2) and

(iii) test significance levels (Appendix C.3).

These results are all analyzed in Section 6.4.

C.1 Perturbed Uniform Distributions for Independence Testing

We run independence testing simulations comparing the power of dpHSIC, U-Stat dpHSIC, Naive
dpHSIC, TOT HSIC and SARRM HSIC, where the samples are drawn from the perturbed uniform
joint density defined in Equation (18). The privacy level, sample size, and dimension are varied
in Figures 9 to 11, respectively. As analyzed in Section 6.4, the same power trends are observed
as in the two-sample MMD case of Section 6.2. Overall, dpHSIC achieves the highest power of all
independence DP tests in all experimental settings and across all privacy regimes.
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Figure 9: Measuring the dependence on joint perturbed uniform distributions while varying the privacy
level ε. We set the sample size n = 3000 and dimensions dX = dY = 1. We change the privacy
level and perturbation amplitude as follows: (Left) Privacy level ε from 1/n to 10/

√
n, pertur-

bation amplitude a = 0.4. (Middle) Privacy level ε from 10/
√
n to 1, perturbation amplitude

a = 0.2. (Right) Privacy level ε from 1 to
√
n, perturbation amplitude a = 0.15.
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Figure 10: Measuring the dependence on joint perturbed uniform distributions while varying the sample
size n. We set the dimensions dX = dY = 1, and change other parameters as follows: (Left)
Privacy level ε = 10/

√
n, perturbation amplitude a = 0.4. (Middle) Privacy level ε = 1,

perturbation amplitude a = 0.2. (Right) Privacy level ε =
√
n/10, perturbation amplitude

a = 0.1.
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Figure 11: Measuring the dependence on joint perturbed uniform distributions while varying the dimen-
sions dX = dY . We set the sample size n = 3000, and change other parameters as follows:
(Left) Privacy level ε = 10/

√
n, perturbation amplitude a = 0.4. (Middle) Privacy level ε = 1,

perturbation amplitude a = 0.35. (Right) Privacy level ε =
√
n/10, perturbation amplitude

a = 0.3.

C.2 High-Signal & Low-Privacy

We present power results on perturbed uniform two-sample and independence simulations in the low
privacy regime with a high signal (a = 1) in Figures 12 and 13. This illustrates that TCS-ME, Naive
dpMMD and Naive dpHSIC can indeed detect easier alternatives (while being almost powerless in
other challenging alternatives) and have power eventually reaching one. We observe that TCS-ME
and Naive dpMMD attain similar power, with Naive dpMMD actually being slightly more powerful.

C.3 Level

We verify in Figures 14 to 16 whether the tests are well-calibrated, i.e., their type I error rates
are well-controlled at the significance level α = 0.05. To this end, we run experiments under the
null where the underlying distribution is uniform without any perturbation (i.e., the amplitude
parameter a = 0 in the settings described in Section 6.2 and Appendix C.1) for both two-sample
and independence testing. We also evaluate the type I error rates of private MMD tests by drawing
CelebA face images of women (Section 6.3) for both samples (i.e., the corruption parameter c = 0).
Figures 14 to 16 indicate that all tests are well-calibrated in all experimental settings, except TCS-
ME. Indeed, TCS-ME appears to be extremely miscalibrated, for example in dimension d = 100

where its level is around 10α = 0.5 instead of being around α = 0.05. We note, nonetheless, that
TCS-ME controls the type I error correctly at level α in the one-dimensional case considered in
Section 6.2.
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Figure 12: Comparing uniform vs. perturbed uniform in low privacy regimes. We set the perturbation
amplitude a = 1 and change parameters as follows: (Left) Privacy level ε from 1 to

√
n, sample

sizes m = n = 3000, dimension d = 1. (Middle) Privacy level ε =
√
n/10, dimension d = 1.

(Right) Privacy level ε =
√
n/10, sample sizes m = n = 5000.
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Figure 13: Measuring the dependence on joint perturbed uniform distributions in low privacy regimes. We
set the perturbation amplitude a = 1 and change parameters as follows: (Left) Privacy level ε
from 1 to

√
n, sample size n = 5000, dimensions dX = dY = 1. (Middle) Privacy level ε =

√
n,

dimensions dX = dY = 1. (Right) Privacy level ε =
√
n, sample size n = 5000.
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Figure 14: Type I error rates for two-sample testing under the uniform null distribution, i.e., with per-
turbation amplitude a = 0. We vary parameters as follows: (Left) Privacy level ε from 1/

√
n

to
√
n, sample sizes m = n = 3000, dimension d = 1. (Middle) Privacy level ε = 10/

√
n,

dimension d = 100. (Right) Privacy level ε =
√
n/10, sample sizes m = n = 3000.
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Figure 15: Type I error rates for independence testing under the uniform joint null distribution, i.e., with
perturbation amplitude a = 0. We vary parameters as follows: (Left) Privacy level ε from 1/

√
n

to
√
n, sample size n = 3000, dimensions dX = dY = 1. (Middle) Privacy level ε = 10/

√
n,

dimensions dX = dY = 1. (Right) Privacy level ε =
√
n/10, sample size n = 3000.
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Figure 16: Type I error rates for two-sample testing for CelebA women images with zero-corruption (c = 0).
We vary parameters as follows: (Left) Privacy level ε from 1/

√
n to

√
n, sample sizes m = n =

500. (Right) Privacy level ε = 10/
√
n.

D Alternative private tests

We first explain how standard MMD and HSIC permutation tests can be privatized using the
methods of Kazan et al. (2023) in Appendix D.1 (TOT) and of Peña and Barrientos (2022) in
Appendix D.2 (SARRM), both relying on the subsample-and-aggregate procedure of Canonne et al.
(2019). We then present the approach of Raj et al. (2020) to constructing a private MMD test in
Appendix D.3 (TCS-ME). We provide our own implementation of TOT and SARRM in JAX, and
use the implemetation of Raj et al. (2020) directly for TCS-ME.

D.1 TOT: Test of Tests

Kazan et al. (2023) propose a procedure called ‘Test of Tests’ which allows us to privatize any
existing test. The resulting test, which we refer to as TOT, is (ε, 0)-DP and has well-calibrated
level (Kazan et al., 2023, Theorems 3.1 and 3.2). The test relies on the Truncated-Uniform-Laplace
distribution Tulap(b) (Awan and Slavković, 2018, Definition 4.1) for positive real scale parameter
b. It is defined as the distribution with the following cumulative distribution function

FTulap
b (x) =

(1 + b)−1 b−[x]near
(
b+

(
x− [x]near +

1
2

)(
1− b

))
if x ≤ 0,

1− (1 + b)−1 b[x]near
(
b+

(
[x]near − x+ 1

2

)(
1− b

))
if x > 0.

(22)

We summarize the procedure of the Test of Tests (Kazan et al., 2023, Algorithm 1) tailored to
our permutation setting in Algorithm 2, and remark that their private test does not depend on the
global sensitivity of the test statistic.
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Algorithm 2 Permutation Test of Tests TOT (Kazan et al., 2023)

Input: Data Xn, significance level α ∈ (0, 1), privacy level ε > 0, test statistic function T (·),
number of permutations B ∈ N.

Procedure:
Choose α0 (sub-test level) and S (number of subsets) according to Procedure 1.
Partition Xn into S disjoint subsets Xn,1, . . . ,Xn,S (of equal sizes if possible)
for s ∈ [S] do

for b ∈ [B] do
Generate a random permutation πb,s of [|Xn,s|].
Compute T (Xπb,s

n,s ).
end for
Compute T (Xn,s).
Compute p̂s the permutation p-value for the subset Xn,s as in (3).

end for
Compute the number of rejects a = |{s : p̂s < α0}|.
Privatize a using Truncated-Uniform-Laplace noise (Awan and Slavković, 2018, Algorithm 2):

Generate random quantities g1, g2 ∼ Geom(1− e−ε) and u ∼ Unif(−0.5, 0.5).
Compute z = a+ g1 − g2 + u.

Compute the p-value (Awan and Slavković, 2018, Algorithm 1):
Compute p̂ =

∑S
s=0

(
S
s

)
αs
0(1− α0)

S−sFTulap
e−ε (s− z) with FTulap

e−ε as in (22).

Output: Reject H0 if p̂ ≤ α.

Procedure 1 (Kazan et al. 2023, Section 3.4). To the best of our understanding, in the non-
parametric MMD and HSIC settings considered, the power of the permutation tests do not admit
closed form expressions and, hence, it is not possible to perform the optimization procedure proposed
by Kazan et al. (2023, Section 3.4) to select the optimal combination of the number of subsets S
and of the sub-test significance threshold α0. The authors point out that ‘the optimization tends
to favor high values of S, with very small subsamples and high significance thresholds α0 on the
subtests.’ We verified these observations empirically and have found on separate data that setting
the values to S =

√
n and α0 = 5α consistently provide high power, we use these heuristics in our

implementation.

Note that the privatized statistic z in Algorithm 2 is the sum of two terms: “a” which under
the null follows a Binomial(S, α0) distribution, and a noise quantity which follows a Tulap(e−ε)

distribution. Hence, the p-value is P(B +N ≥ z) where B ∼ Binomial(S, α0) and N ∼ Tulap(e−ε),
and it can be estimated as in the last step of Algorithm 2 (Awan and Slavković, 2018, Algorithm
1).

While TOT is guaranteed to be (ε, 0)-DP and able to maintain a significance level α for any
number of subsets S for the data partitioning, any sub-test significance level α0 ∈ (0, 1), and any
sample size n (which is not the case of SARRM introduced below), this comes at the cost of having
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to rely on heuristics for α0 and S in the non-parametric testing setting (as explained in Procedure 1).

D.2 SARRM: Subsampled and Aggregated Randomized Response Mechanism

The privatization procedure of Peña and Barrientos (2022) is similar to the one of Kazan et al.
(2023): both methods split the data into subsets on which the non-private test is run. Kazan et al.
(2023) then runs the optimal binomial test of Awan and Slavković (2018), while Peña and Barrientos
(2022) relies on a binomial test based on a randomized response mechanism.

For binary input x ∈ {0, 1} and p ∈ [0, 1], the randomized response mechanism is defined as

rp(x) :=

{
x with probability p,

1− x with probability 1− p.
(23)

We present the Subsampled and Aggregated Randomized Response Mechanism (SARRM) Test
of Peña and Barrientos (2022) in Algorithm 3. Again, unlike our procedure, we point out that this
test does not rely on the global sensitivity of the test statistic.

Algorithm 3 Permutation SARRM Test (Peña and Barrientos, 2022)

Input: Data Xn, significance level α ∈ (0, 1), privacy level ε > 0, test statistic function T (·),
number of permutations B ∈ N.

Procedure:
Compute p = eε/(1 + eε).
Choose α0 (sub-test level) and k (determining the number of subsets) according to Procedure 2.
Partition Xn into S = 2k + 1 disjoint subsets Xn,1, . . . ,Xn,S (of equal sizes if possible)
for s ∈ [S] do

for b ∈ [B] do
Generate a random permutation πb,s of [|Xn,s|].
Compute T (Xπb,s

n,s ).
end for
Compute T (Xn,s).
Compute p̂s the permutation p-value for the subset Xn,s as in (3).
Compute sub-test output ts = 1(p̂s ≤ α0).

end for
Compute statistic T =

∑S
s=1 rp(ts) with rp as in (23).

Output: Reject H0 if T > k.

Recall the meaning of the test parameters of SARRM: k determines the number of subsets 2k+1,
p is the randomized response mechanism probability, α0 is the sub-test significance level, α is the
significance level, and ε is the privacy level. Peña and Barrientos (2022, Proposition 2) show that
SARRM is (ε, 0)-DP with

ε = log
(
P(B1 > k)

/
P(B0 > k)

)
(24)
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where B0 ∼ Binomial(2k+1, 1−p) and B1 ∼ Bernoulli(p)+Binomial(2k, 1−p). Peña and Barrientos
(2022, Proposition 7) use the fact that the test statistic T =

∑2k+1
s=1 rp(ts) defined in Algorithm 3

follows a Binomial(2k + 1, qp,α0) distribution under the null, where qp,α0
:= pα0 + (1 − p)(1 − α0),

from which it can be deduced that SARRM has significance level α provided that

level(k, p, α0) :=
2k+1∑
ℓ=k+1

(
2k + 1

ℓ

)
qℓp,α0

(1− qp,α0)
2k+1−ℓ ≤ α. (25)

Procedure 2 (Peña and Barrientos 2022, Section 3.3). The aim is to determine the parameters k ∈
N\{0}, p ∈ (0.5, 1) and α0 ≥ α0,min for α0,min = 0.0025 (user-specified), such that SARRM achieves
the given privacy level ε and significance level α. To start, set the value of k to 1. The parameter p
can then be chosen according to (24) to guarantee the (ε, 0)-DP property. If level(k, p, α0,min) ≤ α,
then there exists some α0 ≥ α0,min such that level(k, p, α0) = α which guarantees test level α,
all required conditions are then satisfied, and the values k, p and α0 are used for SARRM. If
level(k, p, α0,min) > α, then level α cannot be attained, the value k + 1 is then considered instead of
k, and the procedure is repeated.2 The procedure is guaranteed to terminate. If an upper bound on
k is known (as in our experiments since the sample size is fixed), then the search of the parameter
k can be performed using a bisection method which runs considerably faster.

Note that, in order to achieve a given privacy level ε and significance level α, a certain number
of subsets 2k + 1 (determined by Procedure 2) must be used. This is only possible if the sample
size is greater than the number of subsets, that is, if n ≥ 2k + 1. If this is not the case, then
SARRM simply cannot be run with that privacy level, significance level and sample size, which is
a considerable limitation of SARRM.

D.3 TCS-ME: Trusted-Curator, perturbed Statistic, Mean Embedding

Raj et al. (2020) propose several variants of a DP kernel two-sample test:

• considering both the trusted-curator and the no-trusted-entity privacy settings,

• relying on the analytic Gaussian mechanism (Balle and Wang, 2018) to inject privacy noise
either in the statistic or in the means and covariances of feature vectors,

• using the two kernel statistics of Jitkrittum et al. (2016) based on mean embeddings and on
smooth characteristic functions,

• either optimizing the test locations and bandwidth, or sampling locations and using the median
heuristic bandwidth,

• using the asymptotic χ2 null distribution, or an approximation to the null distribution.

We compare against the most powerful of these tests (as can be seen in Raj et al. 2020, Figure
2), which they refer to as TCS-ME. This is the test based on the Trusted-Curator (TC) privacy

2Following this procedure, we are able to replicate the results of Peña and Barrientos (2022, Table 1).
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setting (which is coherent with the privacy framework considered in for dpMMD), which directly
perturbs the test Statistic (S) based on the kernel Mean Embeddings (ME), and which uses 20%
of the data to optimize the test locations and kernel bandwidth for maximizing power, and which
approximates the null.

TCS-ME is guaranteed to be (ε, δ)-DP for δ > 0 as it relies on the (analytic) Gaussian mecha-
nism. In our simulations, we set δ = 10−5 as in the experiments of Raj et al. (2020), and compare
against (ε, 0)-DP tests (a slightly more restrictive constraint).

As can be seen in Appendix C.3, while TCS-ME controls the type I error at level α in the one-
dimensional case (which is the setting considered Section 6.2 where we compared against TCS-ME),
we observe that it can be extremely poorly calibrated (type I error up to 10α) when working in
higher dimensions.

E Proofs for the Main Text

This section collects the proofs of the results provided in the main text.

E.1 Proof of Theorem 1

When Xn = (X1, . . . , Xn) are exchangeable, M0, . . . ,MB are exchangeable by construction. More-
over, since M0,M1, . . . ,MB are distinct with probability one due to i.i.d. Laplace noises, the second
result of Lemma 15 proves the equality.

E.2 Proof of Theorem 2

Let us denote the 1−α quantile of {Mi}Bi=0 and the 1−α⋆ quantile of {Mi}Bi=1 by q1−α and r1−α⋆ ,
respectively, where

α⋆ = max

{(
B + 1

B
α− 1

B

)
, 0

}
∈ [0, 1).

We then claim that

1(p̂dp ≤ α)
(i)
= 1(M0 > q1−α)

(ii)
= 1(M0 > r1−α⋆)1

(
α ≥ 1

B + 1

)
,

where identity (i) holds by the quantile representation of the permutation test in Lemma 17, and
identity (ii) holds by Lemma 18. Moreover, Lemma 19 proves that r1−α⋆ has the global sensitivity
at most ∆T , and the triangle inequality yields that T0 − r1−α⋆ has the global sensitivity at most
2∆T under condition (4). Therefore the Laplace mechanism ensures that M0 − r1−α⋆ = T0 −
r1−α⋆ +2∆T ξ

−1
ε,δ ζ0 is (ε, δ)-DP. Finally, noting that the test function 1(p̂dp ≤ α) = 1(M0− r1−α⋆ >

0)1(α ≥ 1/(B + 1)) is a function of (ε, δ)-DP statistic, the post processing property of differential
privacy (Lemma 1) proves that the given permutation test is differentially private at privacy levels
ε and δ. This completes the proof of Theorem 1.
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E.3 Proof of Theorem 3

The result of Theorem 3 follows as a corollary of Lemma 8. In more detail, let G be the sigma
field generated by {Xn, ζ0}. Conditional on G, observe that {M1, . . . ,MB} are i.i.d. where the
randomness arises from {πi, ζi}Bi=1, and M0 is constant. Therefore, the proposed private test is
pointwise consistent as the conditions in Lemma 8 are satisfied.

E.4 Proof of Theorem 4

By the quantile representation of the permutation test (Lemma 17), the type II error can be written
as

PP (p̂dp > α) = PP

(
M0 ≤ q1−α,B

)
,

where q1−α,B is the 1− α quantile of M0,M1, . . . ,MB. Let us split the proof into several steps:

• In the first step, we present an upper bound for q1−α,B holding with high probability. In
particular, the following holds

q1−α,B ≤ EP [T (Xπ
n )] + 12

√
VarP [T (Xπ

n )]

αβ
+ 2∆T ξ

−1
ε,δF

−1
ζ (1− α/4)

with high probability (say 1− 3β/4).

• In the second step, we use the above quantile bound to show that control of the type II error
is guaranteed under the condition in (8).

For simplicity, we omit the subscript P in the expectation, variance and probability operators
throughout the proof.

Step 1 (Bounding the quantile). We first focus on the quantile q1−α,B and present a high
probability upper bound. Recall that we define Mi as Ti +2∆T ξ

−1
ε,δ ζi and let qa1−α/2,B and qb1−α/2,B

be the 1−α/2 quantiles of {T0, T1, . . . , TB} and of {2∆T ξ
−1
ε,δ ζ0, . . . , 2∆T ξ

−1
ε,δ ζB}, respectively. Denote

by qa1−α/2,∞ and qb1−α/2,∞ the corresponding 1−α/2 quantiles with B =∞. In particular, we define
qa1−α,∞ and qb1−α,∞ as

qa1−α,∞ := inf

{
x ∈ R :

1

|Πn|
∑

π∈Πn

1
(
T (Xπ

n ) ≤ x
)
≥ 1− α

}
and

qb1−α,∞ := 2∆T ξ
−1
ε,δF

−1
ζ (1− α),

where |Πn| denotes the cardinality of the set Πn. Intuitively, when B is large, qa1−α,B (resp. qb1−α,B)
becomes close to qa1−α,∞ (resp. qb1−α,∞) with high probability. As noted in Kim et al. (2022a) and
Schrab et al. (2023), their closeness can be precisely captured by the Dvoretzky–Kiefer–Wolfowitz
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(DKW) inequality (Massart, 1990). More specifically, the DKW inequality ensures that the following
event

E1 :=

{
sup
x∈R

∣∣∣∣ 1B
B∑
i=1

1
(
Ti ≤ x

)
− 1

|Πn|
∑

π∈Πn

1
(
T (Xπ

n ) ≤ x
)∣∣∣∣ ≤

√
1

2B
log

(
8

β

)}

holds with probability at least 1− β/4. Similarly, define the event E2 as

E2 :=

{
sup
x∈R

∣∣∣∣ 1

B + 1

B∑
i=0

1
(
ζi ≤ x

)
− P(ζ ≤ x)

∣∣∣∣ ≤
√

1

2(B + 1)
log

(
8

β

)}
,

which holds with probability at least 1−β/4. Under the event E1, we see that qa1−α/2,B is bounded
as

qa1−α/2,B = inf

{
x ∈ R :

1

B + 1

B∑
i=0

1
(
Ti ≤ x

)
≥ 1− α

2

}

= inf

{
x ∈ R :

1

B

B∑
i=1

1
(
Ti ≤ x

)
≥ B + 1

B

(
1− α

2

)}

≤ inf

{
x ∈ R :

1

|Πn|
∑

π∈Πn

1
(
T (Xπ

n ) ≤ x
)
≥ 1− α

4

}

= qa1−α/4,∞,

where the inequality holds when

B + 1

B

(
1− α

2

)
+

√
1

2B
log

(
8

β

)
≤ 1− α

4
.

This inequality holds for B ≥ 16
α2 ×

(
1
2 log(

8
β )+

α
2 (1−

α
2 )
)
, which is further implied by the condition

B ≥ 16
α2 log(

8
β ). In more detail, we can obtain the last condition for B by noting that α

2 (1 −
α
2 ) ≤

1
4 < log(8)

2 ≤ 1
2 log(

8
β ) for all α, β ∈ (0, 1). Therefore, under the condition for B in the theorem

statement, it holds that qa1−α/2,B ≤ qa1−α/4,∞. Similarly, under the event E2, the quantile qb1−α/2,B

is bounded as

qb1−α/2,B = inf

{
x ∈ R :

1

B + 1

B∑
i=0

1
(
2∆T ξ

−1
ε,δ ζi ≤ x

)
≥ 1− α/2

}

≤ inf

{
x ∈ R : P

(
2∆T ξ

−1
ε,δ ζ ≤ x

)
≥ 1− α/2 +

√
1

2(B + 1)
log

(
8

β

)}

≤ inf

{
x ∈ R : P

(
2∆T ξ

−1
ε,δ ζ ≤ x

)
≥ 1− α/4

}
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= qb1−α/4,∞,

where the last inequality holds when

1− α

2
+

√
1

2(B + 1)
log

(
8

β

)
≤ 1− α

4
.

Again, the above inequality is implied by our condition for B in the theorem statement. Note
further that Lemma 20 gives the inequality that q1−α,B ≤ qa1−α/2,B + qb1−α/2,B. Therefore under the
events E1 and E2 with the condition for B, it holds that q1−α,B ≤ qa1−α/4,∞ + qb1−α/4,∞.

Next we further upper bound qa1−α/4,∞ and qb1−α/4,∞ by more manageable terms. To begin with
qa1−α/4,∞, Chebyshev’s inequality conditional on Xn yields

Pπ

{
T (Xπ

n ) ≥ Eπ[T (Xπ
n ) | Xn] + t | Xn

}
≤ Varπ[T (Xπ

n ) | Xn]

t2
for any t > 0.

Consequently, qa1−α/4,∞ is bounded as

qa1−α/4,∞ ≤
√

4Varπ[T (Xπ
n ) | Xn]

α
+ Eπ[T (Xπ

n ) | Xn].

Now define other events E3 and E4,

E3 :=
{
Varπ[T (Xπ

n ) | Xn] < 8β−1E
(
Varπ[T (Xπ

n ) | Xn]
)}
,

E4 :=

{∣∣Eπ[T (Xπ
n ) | Xn]− E[T (Xπ

n )]
∣∣ <√8β−1Var

(
Eπ[T (Xπ

n ) | Xn]
)}
,

where each of the events holds with probability at least 1−β/8 by Markov’s inequality and Cheby-
shev’s inequality, respectively. We emphasize that the expectation E[T (Xπ

n )] is taken with respect
to both Xn and π. Under these events E3 and E4, it can be seen that

qa1−α/4,∞ ≤ E[T (Xπ
n )] +

√
36E

(
Varπ[T (Xπ

n ) | Xn]
)

αβ
+

√
8Var

(
Eπ[T (Xπ

n ) | Xn]
)

β

≤ E[T (Xπ
n )] + 12

√
Var[T (Xπ

n )]

αβ

where the second inequality uses the law of total variance. On the other hand, qb1−α/4,∞ is simply
the 1− α/4 quantile of 2∆T ξ

−1
ε,δ ζ, namely

qb1−α/4,∞ = 2∆T ξ
−1
ε,δF

−1
ζ (1− α/4).

In summary, we have shown that with probability at least 1− 3β/4,

q1−α,B ≤ E[T (Xπ
n )] + 12

√
Var[T (Xπ

n )]

αβ
+ 2∆T ξ

−1
ε,δF

−1
ζ (1− α/4).
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Step 2 (Bounding the type II error). Given the upper bound for q1−α,B from the previous
step, we now examine the type II error of the differentially private permutation test and show that
it is bounded by β under the given condition. In particular, writing

R1 := 12

√
Var[T (Xπ

n )]

αβ
+ 2∆T ξ

−1
ε,δF

−1
ζ (1− α/4),

R2 := 2∆T ξ
−1
ε,δF

−1
ζ (1− β/8),

the result from Step 1 yields

P(M0 ≤ q1−α,B) ≤ P
(
M0 ≤ E[T (Xπ

n )] +R1

)
+

3β

4

= P
(
T0 + 2∆T ξ

−1
ε,δ ζ0 ≤ E[T (Xπ

n )] +R1

)
+

3β

4

≤ P
(
T0 ≤ E[T (Xπ

n )] +R1 +R2

)
+

7β

8
, (26)

where the last inequality holds since

P
(
−ξ−1

ε,δ ζ0 > F−1
ζ (1− β/8)

)
≤ β

8
.

We also remark that for any α ∈ (0, 1) and β ∈ (0, 1− α) (implying that min{α, β} < 1/2),

F−1
ζ (1− α/4) + F−1

ζ (1− β/8) ≤ 5max{log(1/α), log(1/β)}. (27)

In more detail, the quantile function of ζ is given as

F−1
ζ (t) =

{
log(2t) < 0, if t < 0.5,

− log
(
2(1− t)

)
≥ 0, if t ≥ 0.5.

Based on this expression along with the fact that min{α, β} < 1/2, we have

F−1
ζ (1− α/4) + F−1

ζ (1− β/8) ≤ log(2/α) + log(4/β) = 3 log(2) + log(1/α) + log(1/β)

≤ 5max{log(1/α), log(1/β)}.

Hence, under the given condition of (8), we can ensure that

E[T (Xπ
n )] +R1 +R2 ≤ E[T (Xn)]−

√
8β−1Var[T (Xn)].

For clarity, we emphasize the notational difference between E[T (Xn)] = EP [T (Xn)] and E[T (Xπ
n )] =

EP,π[T (Xπ
n )] where the former expectation is taken over Xn, whereas the latter expectation is taken

over both Xn and π. This bound together with Chebyshev’s inequality yields

P
(
T0 ≤ E[T (Xπ

n )] +R1 +R2

)
≤ P

(
T0 ≤ E[T (Xn)]−

√
8β−1Var[T (Xn)]

)
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= P
(√

8β−1Var[T (Xn)] ≤ E[T (Xn)]− T0
)

≤ β

8
.

Now combining the inequality (26) with the above yields that

P(M0 ≤ q1−α,B) ≤ β.

This bound holds for any P ∈ P1 and the upper bound is independent of P . Hence the uniform
guarantee stated in Theorem 4 holds.

E.5 Proof of Lemma 5

We start with the proof of the upper bound, followed by the proof of the lower bound.

E.5.1 Upper Bound

To simplify the proof, we may exploit the permutation invariance property of M̂MD(Xπ
n+m) within

{Xπ1 , . . . , Xπn} and {Yπn+1 , . . . , Yπn+m}, and focus on two specific cases of neighboring dataset:

X̃π,a
n+m = {X ′

π1
, . . . , Xπn , Yπn+1 , . . . , Yπn+m} and X̃π,b

n+m = {Xπ1 , . . . , Xπn , Y
′
πn+1

, . . . , Yπn+m},

where X ′
π1

is an i.i.d. copy of Xπ1 and Y ′
πn+1

is an i.i.d. copy of Yπn+1 . The bound for the other
neighboring datasets can be proven by following the same lines of the proof.

Starting with the neighboring dataset X̃π,a
n+m, note that

M̂MD(Xπ
n+m)

= sup
f∈Fk

{
1

n

n∑
i=1

f(Xπi)−
1

m

m∑
j=1

f(Yπn+j )

}

= sup
f∈Fk

{
1

n

n∑
i=1

f(Xπi)−
1

m

m∑
j=1

f(Yπn+j ) +
1

n
f(X ′

π1
)− 1

n
f(X ′

π1
)

}

= sup
f∈Fk

{
1

n

(
f(X ′

π1
) +

n∑
i=2

f(Xπi)
)
− 1

m

m∑
j=1

f(Yπn+j ) +
1

n
f(Xπ1)−

1

n
f(X ′

π1
)

}

≤ sup
f∈Fk

{
1

n

(
f(X ′

π1
) +

n∑
i=2

f(Xπi)
)
− 1

m

m∑
j=1

f(Yπn+j )

}
+ sup

f∈Fk

{
1

n
f(Xπ1)−

1

n
f(X ′

π1
)

}

= M̂MD(Xπ,a
n+m) + sup

f∈Fk

{
1

n
f(Xπ1)−

1

n
f(X ′

π1
)

}
,

where the inequality uses the triangle inequality. Since |f(x) − f(y)| = |⟨f, k(x, ·) − k(y, ·)⟩Hk
| ≤

∥f∥Hk

√
k(x, x) + k(y, y)− 2k(x, y) by the Cauchy–Schwarz inequality as well as the reproducing
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kernel property, we obtain

sup
f∈Fk

{
1

n
f(Xπ1)−

1

n
f(X ′

π1
)

}
≤ 1

n
sup
f∈Fk

|f(Xπ1)− f(X ′
π1
)| ≤

√
2K

n
,

where the second inequality uses the fact that ∥f∥Hk
≤ 1 and 0 ≤ k(x, y) ≤ K for all x, y ∈ S. We

therefore observe M̂MD(Xπ
n+m) − M̂MD(Xπ,a

n+m) ≤
√
2K/n. Since the same argument holds with

the roles of Xπ
n+m and Xπ,a

n+m reversed, we conclude that

∣∣M̂MD(Xπ
n+m)− M̂MD(Xπ,a

n+m)
∣∣ ≤ √2K

n
.

Next, for the dataset X̃π,b
n+m, we can use essentially the same argument to show that

∣∣M̂MD(Xπ
n+m)− M̂MD(Xπ,b

n+m)
∣∣ ≤ √2K

m
.

Since n ≤ m, the sensitivity is bounded by
√
2K/n for any neighboring datasets and the upper

bound is independent of π. Therefore it holds that

sup
π∈Πn+m

sup
Xn+m,X̃n+m:

dham(Xn+m,X̃n+m)≤1

∣∣M̂MD(Xπ
n+m)− M̂MD(X̃π

n+m)
∣∣ ≤ √2K

n
,

which in turn proves the first claim in Lemma 5.

E.5.2 Lower Bound

We now further assume that the kernel k is translation invariant, and has non-empty level sets in S.
In this case, we show that the inequality becomes an equality by considering appropriate sets Xn+m

and X̃n+m. More specifically, for a translation invariant kernel k and a constant ϵ > 0, consider
values xa and xb in S such that k(xa, xb) = ϵ⋆ ≤ ϵ, which is guaranteed by our assumption that k
has non-empty level sets. Let Y1 = . . . = Yn = Z1 = . . . = Zm = xa. In this scenario, the empirical
MMD becomes zero for any permutation π ∈ Πn+m. Let Y ′

1 = xb so that k(Y1, Y ′
1) = ϵ⋆. Then

based on the closed form expression of the empirical MMD (10), we have

M̂MD
2
(X̃π

n+m) =
(n− 1)2 + 1

n2
K +

2(n− 1)

n2
ϵ⋆ +K − 2m(n− 1)

nm
K − 2m

nm
ϵ⋆

=
2K

n2
− 2ϵ⋆
n2
.

Therefore

sup
π∈Πn+m

sup
Xn+m,X̃n+m:

dham(Xn+m,X̃n+m)≤1

∣∣M̂MD(Xπ
n+m)− M̂MD(X̃π

n+m)
∣∣ ≥ √2(K − ϵ⋆)

n
.

Since ϵ is an arbitrary positive number and ϵ⋆ ≤ ϵ, we may take ϵ → 0 and thus the lower bound
becomes

√
2K/n, indicating that the upper bound

√
2K/n is tight under the given conditions. This

proves the second claim in Lemma 5.
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E.6 Proof of Theorem 5

Let us prove the three claims made in Theorem 5 below.

• Proof of Differential Privacy. This result follows by Theorem 2 along with Lemma 5.

• Proof of Validity. This result follows by Theorem 1.

• Proof of Consistency. Having Lemma 8 in place, the only condition we need to verify for
consistency is limn→∞ P(W0,n ≤W1,n) = 0. Let G be the sigma field generated by {ζ0,Xn+m},
and let

Wi,n =Mi = M̂MD(Xπi
n+m) +

2
√
2K

nξε,δ
ζi, for each i ∈ {0, 1},

where we recall ξε,δ = ε+ log(1/(1− δ)). Our goal is to show that limn→∞ P(M0 ≤ M1) = 0

under the conditions. Since the pair of distributions (P,Q) and kernel k do not vary with n,
we consider the kernel bound K to be a fixed constant throughout. Since K is a constant and
(nξε,δ)

−1 → 0, the scale of the Laplace noise 2
√
2K

nξε,δ
goes to zero as well. Thus Slutsky’s theorem

yields 2
√
2K

nξε,δ
× ζi = oP (1) for each i ∈ {0, 1}. Next, for i = 0, Gretton et al. (2012, Theorem 7)

indicate that the unpermuted MMD statistic satisfies M̂MD(Xπ0
n+m)

p−→ MMDk(P,Q) where
the symbol p−→ denotes convergence in probability. Hence another application of Slutsky’s
theorem yields M0

p−→ MMDk(P,Q). On the other hand, we have M̂MD(Xπ1
n+m)

p−→ 0 by
Lemma 11, and again Slutsky’s theorem gives M1

p−→ 0. Combining these two results, we
further have M0 −M1

p−→ MMDk(P,Q). To complete the proof, note that MMDk(P,Q) =:

ϵ > 0 is assumed to be a fixed positive constant and therefore

lim
n→∞

P(M0 ≤M1) ≤ lim
n→∞

P(|M0 −M1| ≥ ϵ) = 0,

by the definition of convergence in probability. This completes the proof of Theorem 5.

E.7 Proof of Lemma 6

We prove the upper bound result and the lower bound result in order.

E.7.1 Upper Bound

We begin by considering the upper bound result of Lemma 6. Let us consider the dataset Xn =

{(Y1, Z1), . . . , (Yn, Zn)} and its neighboring dataset denoted by

X̃n = {(Y ′
1 , Z

′
1), (Y2, Z2), . . . , (Yn, Zn)} := {(Ỹ1, Z̃1), (Ỹ2, Z̃2), . . . , (Ỹn, Z̃n)}

where (Y ′
1 , Z

′
1) is an i.i.d. copy of (X1, Y1) independent of everything else. That is, Xn and X̃n differ

in their first component. We only prove the result of Lemma 6 focusing on X̃n, and the proof for the
other neighboring datasets can be derived similarly due to the symmetric structure of the empirical
HSIC.
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For a given permutation π, denote by X̃π
n the neighboring dataset X̃n whose Z values are

permuted based on π. Let us divide the cases into two: (i) π1 = 1 and (ii) π1 ̸= 1, and provide
the proofs separately. For the first case where π1 = 1, we write k(y, ·) = ψY (y) and ℓ(z, ·) =

ψZ(z). We also write the sample mean of ψY (Y1), . . . , ψY (Yn) as ψY and the sample mean of
ψZ(Z1), . . . , ψZ(Zn) as ψZ . Similarly write the sample mean of ψY (Ỹ1), . . . , ψY (Ỹn) as ψ̃Y and the
sample mean of ψZ(Z̃1), . . . , ψZ(Z̃n) as ψ̃Z . Then by adding and subtracting the same terms, we
can connect ĤSIC(Xπ

n ) with ĤSIC(X̃π
n ) as follows:

ĤSIC(Xπ
n )

= sup
f∈Fk⊗ℓ

{
1

n

n∑
i=1

f(Yi, Zπi)−
1

n2

n∑
i=1

n∑
j=1

f(Yi, Zπj )

}

= sup
f∈Fk⊗ℓ

〈
f,

1

n

n∑
i=1

{
ψY (Yi)− ψY

}{
ψZ(Zπi)− ψZ

}〉
Hk⊗ℓ

= sup
f∈Fk⊗ℓ

〈
f,

1

n

n∑
i=1

{
ψY (Yi)− ψY (Ỹi) + ψY (Ỹi)− ψY + ψ̃Y − ψ̃Y

}{
ψZ(Zπi)− ψZ

}〉
Hk⊗ℓ

(i)a
= sup

f∈Fk⊗ℓ

〈
f,

1

n

n∑
i=1

{
ψY (Yi)− ψY (Ỹi) + ψY (Ỹi)− ψ̃Y

}{
ψZ(Zπi)− ψZ

}〉
Hk⊗ℓ

≤ sup
f∈Fk⊗ℓ

〈
f,

1

n

{
ψY (Y1)− ψY (Ỹ1)

}{
ψZ(Zπ1)− ψZ

}〉
Hk⊗ℓ

+ sup
f∈Fk⊗ℓ

〈
f,

1

n

n∑
i=1

{
ψY (Ỹi)− ψ̃Y

}{
ψZ(Zπi)− ψZ

}〉
Hk⊗ℓ

= sup
f∈Fk⊗ℓ

〈
f,

1

n

{
ψY (Y1)− ψY (Ỹ1)

}{
ψZ(Zπ1)− ψZ

}〉
Hk⊗ℓ

+ sup
f∈Fk⊗ℓ

〈
f,

1

n

n∑
i=1

{
ψY (Ỹi)− ψ̃Y

}{
ψZ(Zπi)− ψZ(Z̃πi) + ψZ(Z̃πi)− ψ̃Z + ψ̃Z − ψZ

}〉
Hk⊗ℓ

(ii)a
≤ ĤSIC(X̃π

n ) + sup
f∈Fk⊗ℓ

〈
f,

1

n

{
ψY (Y1)− ψY (Ỹ1)

}{
ψZ(Zπ1)− ψZ

}〉
Hk⊗ℓ

+ sup
f∈Fk⊗ℓ

〈
f,

1

n

{
ψY (Ỹ1)− ψ̃Y

}{
ψZ(Zπ1)− ψZ(Z̃π1)

}〉
Hk⊗ℓ

,
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where step (i)a uses 1
n

∑n
i=1(ψY −ψ̃Y ){ψZ(Zπi)−ψZ} = 0, and step (ii)a follows similarly. Therefore

∣∣ĤSIC(Xπ
n )− ĤSIC(X̃π

n )
∣∣ ≤ sup

f∈Fk⊗ℓ

∣∣∣∣∣
〈
f,

1

n

{
ψY (Y1)− ψY (Ỹ1)

}{
ψZ(Zπ1)− ψZ

}〉
Hk⊗ℓ

∣∣∣∣∣
+ sup

f∈Fk⊗ℓ

∣∣∣∣∣
〈
f,

1

n

{
ψY (Ỹ1)− ψ̃Y

}{
ψZ(Zπ1)− ψZ(Z̃π1)

}〉
Hk⊗ℓ

∣∣∣∣∣
= (I) + (II).

For the term (I), the Cauchy–Schwarz inequality along with the fact ∥f∥Hk⊗ℓ
≤ 1 yields

(I) ≤
∥∥∥∥ 1n{ψY (Y1)− ψY (Ỹ1)

}{
ψZ(Zπ1)− ψZ

}∥∥∥∥
Hk⊗ℓ

=
1

n

∥∥ψY (Y1)− ψY (Ỹ1)
∥∥
Hk

∥∥ψZ(Zπ1)− ψZ

∥∥
Hℓ

(i)b
≤ 1

n2

n∑
i=1

∥∥ψY (Y1)− ψY (Ỹ1)
∥∥
Hk

∥∥ψZ(Zπ1)− ψZ(Zπi)
∥∥
Hℓ

(ii)b
≤ n− 1

n2

√
2K
√
2L.

In the above, step (i)b uses Jensen’s inequality, and step (ii)b follows since

∥ψY (y)− ψY (y
′)∥Hk

=
√
k(y, y) + k(y′, y′)− 2k(y, y′) ≤

√
2K and

∥ψZ(z)− ψZ(z
′)∥Hℓ

=
√
ℓ(z, z) + ℓ(z′, z′)− 2ℓ(z, z′) ≤

√
2L,

for any y, y′ ∈ Y and z, z′ ∈ Z. The second term (II) can be similarly handled and shown to be

(II) ≤ n− 1

n2

√
2K
√
2L.

Thus it holds that ∣∣ĤSIC(Xπ
n )− ĤSIC(X̃π

n )
∣∣ ≤ 4(n− 1)

√
KL

n2
.

The other case where π1 ̸= 1 can be proven similarly. Without loss of generality, we may assume
that π1 = 2. Then by following the same calculations as before, we have∣∣ĤSIC(Xπ

n )− ĤSIC(X̃π
n )
∣∣ ≤ sup

f∈Fk⊗ℓ

∣∣∣∣∣
〈
f,

1

n

{
ψY (Y1)− ψY (Ỹ1)

}{
ψZ(Zπ1)− ψZ

}〉
Hk⊗ℓ

∣∣∣∣∣
+ sup

f∈Fk⊗ℓ

∣∣∣∣∣
〈
f,

1

n

{
ψY (Ỹ2)− ψ̃Y

}{
ψZ(Zπ2)− ψZ(Z̃π2)

}〉
Hk⊗ℓ

∣∣∣∣∣
≤ 4(n− 1)

√
KL

n2
,

which completes the proof of the first claim of Lemma 6.
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E.7.2 Lower Bound

We now construct an example where the sensitivity becomes 4(n − 2.5)n−2
√
KL. For a given ϵ ∈

(0,min{K,L}), we may assume that there exist ya, yb ∈ Y and za, zb ∈ Z such that k(ya, yb) = ϵ⋆ ≤ ϵ
and ℓ(za, zb) = ϵ′⋆ ≤ ϵ, since k and ℓ are assumed to have non-empty level sets on Y and Z. Consider
the two datasets

Xn =


ya za
ya za
yb zb
...

...
yb zb

 and X̃n =


ya za
yb zb
yb zb
...

...
yb zb

 ,

where dham(Xn, X̃n) = 1. We then consider a permutation π = (2, 1, 3, 4, . . . , n) and denote the
corresponding permuted datasets as

Xπ
n =


ya za
ya za
yb zb
...

...
yb zb

 and X̃π
n =


ya zb
yb za
yb zb
...

...
yb zb

 .

Using the closed form expression of the squared HSIC in (12) and the property of translation
invariant kernels, in particular k(y, y) = K and ℓ(z, z) = L for all y, z, it can be seen that

ĤSIC
2
(Xπ

n ) =
4 + (n− 2)2

n2
KL+

4(n− 2)ϵ⋆ϵ
′
⋆

n2

+

{
4 + (n− 2)2

n2
K +

4(n− 2)

n2
ϵ⋆

}{
4 + (n− 2)2

n2
L+

4(n− 2)

n2
ϵ′⋆

}

− 4

{
4

n3
KL+

2Kϵ′⋆(n− 2)

n3
+

2Lϵ⋆(n− 2)

n3
+

(n− 2)2ϵ⋆ϵ
′
⋆

n3

}

− 2(n− 2)

{
4ϵ⋆ϵ

′
⋆

n3
+

2ϵ⋆L(n− 2)

n3
+

2Kϵ′⋆(n− 2)

n3
+
KL(n− 2)2

n3

}

=
16(n− 2)2

n4
KL+ C1ϵ⋆ϵ

′
⋆ + C2ϵ⋆ + C3ϵ

′
⋆,

where C1, C2, C3 are constants that only depend on K,L, n. A similar calculation shows

ĤSIC
2
(X̃π

n ) =
4

n4
KL+ C ′

1ϵ⋆ϵ
′
⋆ + C ′

2ϵ⋆ + C ′
3ϵ

′
⋆,

where C ′
1, C

′
2, C

′
3 are constants that only depend on K,L, n. These results together with the reverse

triangle inequality yields

∣∣ĤSIC(Xπ
n )− ĤSIC(X̃π

n )
∣∣ ≥ ∣∣∣∣

√
16(n− 2)2

n4
KL−

√
4

n4
KL

∣∣∣∣− h(ϵ⋆, ϵ′⋆,K, L, n)
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=
4(n− 2.5)

n2

√
KL− h(ϵ⋆, ϵ′⋆,K, L, n),

where h(ϵ⋆, ϵ′⋆,K, L, n) is some function of ϵ⋆, ϵ′⋆,K, L, n, which goes to zero as ϵ⋆ → 0 and ϵ′⋆ → 0

for each fixed K,L, n. Therefore it holds that

sup
π∈Πn

sup
Xn,X̃n:

dham(Xn,X̃n)≤1

∣∣ĤSIC(Xπ
n )− ĤSIC(X̃π

n )
∣∣ ≥ 4(n− 2.5)

n2

√
KL− h(ϵ⋆, ϵ′⋆,K, L, n),

and the lower bound result follows by letting ϵ→ 0 given that max{ϵ⋆, ϵ′⋆} ≤ ϵ. This completes the
proof of Lemma 6.

E.8 Proof Theorem 6

Let us prove the three claims made in Theorem 6 below.

• Proof of Differential Privacy. This result follows by Theorem 2 along with Lemma 6.

• Proof of Validity. This result follows by Theorem 1.

• Proof of Consistency. The proof of consistency for ϕdpHSIC is essentially the same as that
for ϕdpMMD in Theorem 5. We only need to verify that ĤSIC(Xπ0

n )
p−→ HSICk⊗ℓ(PY Z) and

ĤSIC(Xπ1
n )

p−→ 0. Indeed, the first claim follows by Lemma 14 and the second claim follows
by Lemma 12, given that α,K,L are fixed quantities. The remaining steps are the same as
those for the proof of Theorem 5 and thus we omit the details.

E.9 Proof of Theorem 7

The proof of Theorem 7 follows the same structure as that of Theorem 4. The main difference is
that we make use of exponential concentration inequalities of the MMD statistic in order to obtain
the logarithmic dependence on both α and β. Throughout the proof, we denote positive constants
that only depend on K and τ by C1, C2, . . . whose values may vary in different places. As in the
proof of Theorem 4, we build on the quantile representation of the permutation test (Lemma 17)
from which we see that the type II error can be written as

E(1− ϕdpMMD) = P(M0 ≤ q1−α,B),

where q1−α,B denotes the 1− α quantile of {M0,M1, . . . ,MB}, and Mi is given as M̂MD(Xπi
n+m) +

2∆T ξ
−1
ε,δ ζi for i ∈ {0} ∪ [B].

Step 1 (Bounding the quantile). As in the proof of Theorem 4, let qa1−α/2,B and qb1−α/2,B denote

the 1 − α/2 quantiles of {M̂MD(Xπ0
n+m), . . . , M̂MD(XπB

n+m)} and of {2∆T ξ
−1
ε,δ ζ0, . . . , 2∆T ξ

−1
ε,δ ζB},

respectively. Denote by qa1−α/4,∞ and qb1−α/4,∞ the corresponding 1 − α/4 quantiles with B = ∞.
Then following the argument given in Appendix E.4 and under the condition for B, we see that the
inequality q1−α,B ≤ qa1−α/4,∞ + qb1−α/4,∞ holds with probability at least 1− β/2.
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Next we further upper bound qa1−α/4,∞ and qb1−α/4,∞ by more manageable terms. Applying
Lemma 10 with the condition n ≤ m ≤ τn yields the following inequality:

qa1−α/4,∞ ≤ C1

√
1

n
log

(
4

α

)
.

On the other hand, as noted in Appendix E.4, qb1−α/4,∞ is simply the 1−α/4 quantile of 2∆T ξ
−1
ε,δ ζ,

namely

qb1−α/4,∞ = 2∆T ξ
−1
ε,δF

−1
ζ (1− α/4).

Therefore, the following inequality holds with probability at least 1− β/2:

q1−α,B ≤ C1

√
1

n
log

(
4

α

)
+ 2∆T ξ

−1
ε,δF

−1
ζ (1− α/4). (28)

Remark 3 (Condition for the sample-size ratio). The condition n ≤ m ≤ τn is required to apply
Lemma 10 under which we can obtain the logarithmic factor of α in the upper bound for qa1−α/4,∞.
This condition can be eliminated by using Lemma 11, which shows that

qa1−α/4,∞ ≤ C2

√
1

nα
,

without the condition for the sample-size ratio constraint. It remains an open question whether we
can achieve the logarithmic factor of α in the upper bound without the constraint n ≤ m ≤ τn,
which we leave for future research.

Step 2 (Bounding the type II error). Let (P,Q) be a pair of distributions in PMMDk
(ρ). Given

(P,Q), Lemma 13 (concentration inequality for M̂MD) ensures that the following event E1:

E1 :=

{∣∣∣∣MMDk(P,Q)− M̂MD(Xn+m)

∣∣∣∣ ≤ C3

√
log(8/β)

n

}
holds with probability at least 1− β/4. Notice that the inverse cumulative distribution function of
ζ ∼ Laplace(0, 1) is given by

F−1
ζ (p) := −sign(p− 0.5)× log(1− 2|p− 0.5|) for p ∈ (0, 1).

This yields that the probability of the event

E2 :=
{
2∆T ξ

−1
ε,δ ζ0 > 2∆T ξ

−1
ε,δF

−1
ζ (β/4)

}
is equal to 1−β/4. Using these preliminary results, it can be seen that the type II error of ϕdpMMD

satisfies

E(1− ϕdpMMD)
(i)
= P(M0 ≤ q1−α,B)

(ii)
= P

(
M̂MD(Xn+m) + 2∆T ξ

−1
ε,δ ζ0 ≤ q1−α,B

)
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(iii)

≤ P
(
MMDk(P,Q) + 2∆T ξ

−1
ε,δF

−1
ζ (β/4) ≤ q1−α,B + C3

√
log(8/β)

n

)
+ P(Ec

1) + P(Ec
2)

(iv)

≤ P
(
MMDk(P,Q) ≤ q1−α,B + C3

√
log(8/β)

n
− 2∆T ξ

−1
ε,δF

−1
ζ (β/4)

)
+
β

2

(v)

≤ P
(
MMDk(P,Q) ≤ C

√
log(4/α)

n
+ 2∆T ξ

−1
ε,δF

−1
ζ (1− α/4)

+ C3

√
log(8/β)

n
− 2∆T ξ

−1
ε,δF

−1
ζ (β/4)

)
+ β,

where step (i) uses Lemma 17, step (ii) uses the definition of M0, step (iii) follows by the union
bound, step (iv) uses the properties of the events E1 and E2, and step (v) uses the inequality given
in (28) and the union bound.

Since β/4 < 1/2 and 1− α/4 > 1/2, it follows that

F−1
ζ (β/4) = log

(
β

2

)
and F−1

ζ (1− α/4) = log

(
2

α

)
,

which gives

2∆T ξ
−1
ε,δF

−1
ζ (1− α/4)− 2∆T ξ

−1
ε,δF

−1
ζ (β/4) = 2∆T ξ

−1
ε,δ

{
log

(
2

α

)
+ log

(
2

β

)}
.

Consequently, the type II error of the dpMMD test is bounded by

E(1− ϕdpMMD

≤ P
(
MMDk(P,Q) ≤ C4

√
max

{
log(1/α), log(1/β)}

n
+ C5

max
{
log(1/α), log(1/β)}

nξε,δ

)
+ β

≤ β,

where the last inequality holds by taking CK,τ to be larger than, for instance, 2max{C4, C5}+1 in
the theorem statement. Finally, we note that the above upper bound is independent of (P,Q), and
thus complete the proof by taking the supremum on both sides over PMMDk

(ρ).

E.10 Proof of Theorem 8

Under the conditions of Theorem 8, we analyze that the minimax separation ρ⋆MMD(α, β, ε, δ,m, n) =

ρ⋆MMD in the non-privacy regime and in the privacy regime, separately. In both regimes, we use
a common trick that reduces the two-sample problem to the one-sample problem (also known as
goodness-of-fit testing) stated below.

Reducing the two-sample problem to the one-sample problem. We can think of the one-
sample problem as a special case of the two-sample problem by assuming that we have access to
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an infinite number of observations from one of the two distributions (say Q). That is, we know
the entire information of the distribution Q and m = ∞. Arias-Castro et al. (2018, Lemma 1)
builds on this simple observation and formalizes that the minimax risk of the two-sample problem
is greater than or equal to that of the one-sample problem. We follow this strategy and work with
the one-sample problem.

More formally, pick one distribution Q0 (specified later in the proof) from P and fix it through-
out. Let ϕ : Xn 7→ {0, 1} be a test function and define the set of (ε, δ)-DP level α one-sample tests
as

Φα,ε,δ,Q0
:=
{
ϕ : EQ0 [ϕ] ≤ α and ϕ is (ε, δ)-DP

}
.

Then, letting P1,MMDk
(ρ;Q0) := {P ∈ P : MMDk(P,Q0) ≥ ρ}, Arias-Castro et al. (2018, Lemma

1) yields

ρ⋆MMD ≥ inf
{
ρ > 0 : inf

ϕ∈Φα,ε,δ,Q0

sup
P∈P1,MMDk

(ρ;Q0)
EP [1− ϕ] ≤ β

}
.

Therefore, once we prove

inf
{
δ > 0 : inf

ϕ∈Φα,ε,Q0

sup
P∈P1,MMDk

(ρ;Q0)
EP [1− ϕ] ≤ β

}

≥ Cη max

{
min

{√
log(1/(α+ β))

n
, 1

}
, min

{
log(1/β)

n(ε+ δ)
, 1

}}
(29a)

≥ Cη max

{
min

{√
log(1/(α+ β))

n
, 1

}
, min

{
log(1/β)

n
(
ε+ log(1/(1− δ))

) , 1}}, (29b)

for some Q0 ∈ P, then the desired result of Theorem 8 follows. The two lower bounds in (29b) are
proved in Appendices E.10.1 and E.10.2. The inequality (29a) ≥ (29b) holds as log(1/(1− δ)) ≥ δ
for all δ ∈ [0, 1), and is sufficient to prove Theorem 8. Nonetheless, to provide intuition on the
tightness of the lower bound, it is interesting to understand that when α ≍ β the two rates in
Equations (29a) and (29b) are the same, which we prove in Appendix E.10.3.

E.10.1 Non-privacy regime

We first show that ρ⋆MMD ≥ Cη min
{√

log(1/(α+ β))/n, 1
}

in the non-privacy regime. Writing the
set of non-private level α tests (i.e., ε→∞) as

Φα,∞,Q0
:=
{
ϕ : EQ0 [ϕ] ≤ α

}
,

we clearly have Φα,ε,δ,Q0 ⊂ Φα,∞,Q0 . Hence, in this non-private regime, it suffices to show

inf
{
ρ > 0 : inf

ϕ∈Φα,∞,Q0

sup
P∈P1,MMDk

(ρ;Q0)
EP [1− ϕ] ≤ β

}
≥ Cη min

{√
log(1/(α+ β))

n
, 1

}
,
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as the infimum term above is smaller than or equal to ρ⋆MMD. To this end, we use the standard Le
Cam’s two point method (Le Cam, 1973, 2012). In particular, for any P0 ∈ P1,MMDk

(ρ̃;Q0) with

ρ̃ = Cη min

{√
log(1/(α+ β))

n
, 1

}
,

we have

inf
ϕ∈Φα,∞,Q0

sup
P∈P1,MMDk

(ρ̃;Q0)
EP [1− ϕ] ≥ inf

ϕ∈Φα,∞,Q0

EP0 [1− ϕ] = 1− sup
ϕ∈Φα,∞,Q0

EP0 [ϕ]

≥ 1− α− dTV(P
⊗n
0 , Q⊗n

0 )

(i)

≥ 1− α− 1 +
1

2
e−dKL(P

⊗n
0 ∥Q⊗n

0 ) (ii)
=

1

2
e−n×dKL(P0∥Q0) − α,

where step (i) holds by Bretagnolle–Huber inequality (Canonne, 2022, Lemma B.4) and step (ii)
uses the chain rule of the KL divergence. Therefore the minimax type II error is bounded by β,
that is

inf
ϕ∈Φα,∞,Q0

sup
P∈P1,MMDk

(ρ̃;Q0)
EP [1− ϕ] ≥ β,

provided that α+ β < 0.4 and

dKL(P0∥Q0) ≤
1

n
log

(
1

2(α+ β)

)
.

Hence it is enough to find an instance of (P0, Q0) in Rd such that

MMDk(P0, Q0) ≥ Cη min

{√
log(1/(α+ β))

n
, 1

}
and (30a)

dKL(P0∥Q0) ≤
1

n
log

(
1

2(α+ β)

)
. (30b)

Motivated by the proof of Tolstikhin et al. (2017, Theorem 1), we pick two discrete distributions
P0 = p0δx+(1− p0)δv and Q0 = q0δx+(1− q0)δv, where x, v ∈ Rd, 0 < p0, q0 < 1 and δx is a Dirac
measure at x. In this setting, the calculations in Tolstikhin et al. (2017) show that

MMDk(P0, Q0) =
√

2(p0 − q0)2
(
κ(0)− κ(x− v)

)
. (31)

In addition, under the same setting, the KL divergence of P0 from Q0 is bounded by

dKL(P0∥Q0) ≤
(p0 − q0)2

q0(1− q0)
.

Now set

p0 =
1

2
+min

{√
1

4n
log

(
1

2(α+ β)

)
,
1

2

}
and q0 =

1

2
,
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so that both P0 and Q0 are valid probability measures, which leads to

dKL(P0∥Q0) ≤ min

{
1

n
log

(
1

2(α+ β)

)
, 1

}
≤ 1

n
log

(
1

2(α+ β)

)
.

We also choose x and v such that κ(0) − κ(z) ≥ η for z = x − v where η is given in the theorem
assumption. In this setting, the explicit expression of the MMD metric (31) can be used to show

MMDk(P0, Q0) ≥
√

2ηmin

{√
1

4n
log

(
1

2(α+ β)

)
,
1

2

}

≥ Cη min

{√
1

n
log

(
1

α+ β

)
, 1

}

where the second inequality holds by taking Cη sufficiently small under the condition α+ β < 0.4.
Hence we have shown that the sufficient conditions in (30a) and (30b) are fulfilled, and thus the
minimax separation satisfies

ρ⋆MMD ≥ Cη min

{√
log(1/(α+ β))

n
, 1

}
.

Next we focus on the privacy regime and prove the second term in the lower bound.

E.10.2 Privacy regime

The second term in the lower bound can be proved based on the coupling idea described in Acharya
et al. (2018, Theorem 11) and Acharya et al. (2021, Theorem 1). In detail, we pick P0 from
P1,MMDk

(δ;Q0), and let (Xn,Yn) be a coupling between P⊗n
0 and Q⊗n

0 with D = E[dham(Xn,Yn)].
Then for any ϕ ∈ Φα,ε,Q0 , the proof of Acharya et al. (2021, Theorem 1) shows

1− α ≤ EQ0 [1− ϕ] ≤ EP0 [1− ϕ] · e10Dε + 0.1 + 10Dδe10Dε

EP0 [1− ϕ] ≥ e−10Dε(0.9− α)− 10Dδ.

For completeness, we give details here. By Markov’s inequality, the event Ec = {dham(Xn,Yn) >
10D} holds with probability at most 1/10 (here one can replace the constant 10 with some other
positive number). Moreover,

EQ0 [1− ϕ] = PQ0(ϕ = 0) ≤ PQ0(ϕ = 0 | E)P(E) + P(Ec)

≤ PQ0(ϕ = 0 | E)P(E) + 0.1

(†)
≤ PP0(ϕ = 0 | E)P(E) · e10Dε + 0.1 + 10Dδe(10D−1)ε

≤ EP0 [1− ϕ] · e10Dε + 0.1 + 10Dδe10Dε,
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where step (†) holds due to the fact that ϕ is ε-differentially private and inequality (2). Letting
E := 10D for notation purposes, and using the fact that α ∈ (0, 1/5), we obtain

inf
ϕ∈Φα,ε,Q0

sup
P∈P1,MMDk

(ρ;Q0)
EP [1− ϕ] ≥ inf

ϕ∈Φα,ε,Q0

EP0 [1− ϕ]

≥ e−Eε(0.9− α)− Eδ

≥ 0.5e−Eε − Eδ

≥ 0.25e−Eε,

provided that the condition Eδ ≤ 0.25e−Eε holds. Hence, we require

inf
ϕ∈Φα,ε,Q0

sup
P∈P1,MMDk

(ρ;Q0)
EP [1− ϕ] ≥ 0.25e−Eε ≥ β,

which is fulfilled when

E ≤ 1

ε
log

(
1

4β

)
and Eδ ≤ 1

4
e−Eε. (32)

The second condition, equivalently EδeEε ≤ 1/4, is trivial when δ = 0. Hence by assuming δ > 0,
we verify that

E ≤ 1

4(ε+ δ)
implies EδeEε ≤ 1

4
.

To see this, under the condition E ≤ 1
4(ε+δ) and letting x = ε/δ,

EδeEε ≤ δ

4(ε+ δ)
e

ε
4(ε+δ) =

1

4(x+ 1)
e

x
4(x+1)

Hence it suffices to show that for all x > 0 we have

1

4(x+ 1)
e

x
4(x+1) ≤ 1

4
⇐⇒ f(x) := 4(x+ 1) log(x+ 1)− x ≥ 0.

The first derivative of f is given as f ′(x) = 4 log(x+ 1) + 3 > 0, which implies that f is monotone
increasing and f(x) ≥ 0 for all x > 0. Hence, for all ε > 0 and δ ∈ [0, 1), the conditions in
Equation (32) are satisfied when

E ≤ 1

ε
log

(
1

4β

)
and E ≤ 1

4(ε+ δ)
,

which are in particular satisfied when

E ≤ 1

4(ε+ δ)
min

{
log

(
1

4β

)
, 1

}
. (33)
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Furthermore, given P0 and Q0, Acharya et al. (2021, Lemma 20) ensures the existence of a coupling
between P⊗n

0 and Q⊗n
0 such that

D = E[dham(X n
1 ,Yn

1 )] =
n

2
∥P0 −Q0∥1,

so E = 10D = 5n∥P0 −Q0∥1. The condition in Equation (33) becomes

∥P0 −Q0∥1 ≤
1

20n(ε+ δ)
min

{
log

(
1

4β

)
, 1

}
. (34)

As in the non-private case, we can pick two discrete distributions P0 = p0δx + (1 − p0)δv and
Q0 = q0δx + (1− q0)δv, where q0 = 1/2 and

p0 =
1

2
+min

{
1

40n(ε+ δ)
log

(
1

4β

)
,
1

2

}
.

This choice ensures that

∥P0 −Q0∥1 = 2|p0 − q0| = 2min

{
1

40n(ε+ δ)
log

(
1

4β

)
,
1

2

}
.

We also choose x and v such that κ(0)− κ(z) ≥ η for z = x− v under which

MMDk(P0, Q0) ≥
√

2ηmin

{
1

40n(ε+ δ)
log

(
1

4β

)
,
1

2

}

≥ Cη min

{
1

n(ε+ δ)
log

(
1

β

)
, 1

}
,

where the second inequality holds under the condition β ∈ (0, 1/5). Therefore, under privacy regime,
for all ε > 0 and all δ ∈ [0, 1), it holds that

ρ⋆MMD ≥ Cη min

{
log(1/β)

n(ε+ δ)
, 1

}
,

which proves the inequality in (29a).

E.10.3 Equivalence of rates

We now prove the equivalence in (29b) when α ≍ β. As previously noted, we have (29a) ≥ (29b) as

log(1/(1− δ)) ≥ δ for all δ ∈ [0, 1).

Hence, it remains to show that (29a) ≤ (29b), so that, up to constants, we have

max

{
min

{√
log(1/β)

n
, 1/2

}
, min

{
log(1/β)

n(ε+ δ)
, 1/2

}}
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(⋆)
≍ max

{
min

{√
log(1/β)

n
, 1/2

}
, min

{
log(1/β)

n
(
ε+ log(1/(1− δ))

) , 1/2}}.
Here, we have used the fact that α ≍ β and have absorbed some terms in the constants to replace
the 1’s with 1/2’s in the minima. For the result to be non-trivial we need to assume√

log(1/β)

n
< 1/2 and

log(1/β)

n
(
ε+ log(1/(1− δ))

) < 1/2. (35)

• If δ ∈ [0, 1/2), then 2 log(2)δ ≥ log(1/(1− δ)) ≥ δ, and so we get

log(1/β)

n
(
ε+ log(1/(1− δ))

) ≤ log(1/β)

n(ε+ δ)
≤ 2 log(2)

log(1/β)

n
(
ε+ log(1/(1− δ))

)
which proves (⋆) for δ ∈ [0, 1/2).

• If δ ∈ [1/2, 1), then δ ≥ 1/2 >
√

log(1/β)/n, hence we get

log(1/β)

n
(
ε+ log(1/(1− δ))

) ≤ log(1/β)

nδ
<

√
log(1/β)

n

and
log(1/β)

n(ε+ δ)
<

√
log(1/β)

n
,

so both sides of (⋆) are equal to
√

log(1/β)/n when δ ∈ [1/2, 1). So, when δ ≥
√

log(1/β)/n,
the non-DP rate dominates.

We have shown that (⋆) holds for all δ ∈ [0, 1), which completes the proof.

E.11 Proof of Theorem 9

To simplify the notation, we denote the square of the empirical MMD based on Xn+m as VMMD (or
equivalently the V-statistic of MMD), and that based on permuted data Xπ

n+m as Vπ,MMD. We also
denote the U-statistic of the MMD as UMMD, i.e.,

UMMD =
1

n(n− 1)

∑
1≤i ̸=j≤n

kλ(Yi, Yj) +
1

m(m− 1)

∑
1≤i ̸=j≤m

kλ(Zi, Zj)−
2

nm

n∑
i=1

m∑
j=1

kλ(Yi, Zj),

and Uπ,MMD is similarly defined based on Xπ
n+m. Remark that the difference between the V-statistic

and the U-statistic of MMD is

VMMD − UMMD =
1

n

d∏
i=1

1√
2πλi

+
1

m

d∏
i=1

1√
2πλi

− 1

n2(n− 1)

∑
1≤i ̸=j≤n

kλ(Yi, Yj)−
1

m2(m− 1)

∑
1≤i ̸=j≤m

kλ(Zi, Zj).

(36)
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Given this connection, our proof strategy is to leverage known results of the U-statistic along with
a careful analysis of the difference between VMMD and UMMD. Writing the sensitivity of

√
VMMD as

∆V 1/2 , Lemma 17 ensures that the dpMMD test rejects the null if and only if√
VMMD +

2∆V 1/2

ξε,δ
ζ0 > q1−α,B,

where q1−α,B is the 1 − α quantile of {
√
Vπi,MMD + 2∆V 1/2ξ−1

ε,δ ζi}
B
i=0. We then closely follow the

proof steps given in Appendix E.4 to prove the claim.

Bounding the type II error. As in the proof of Theorem 4 in Appendix E.4, we let
qa1−α,B and qb1−α,B denote the 1 − α quantiles of {V 1/2

π0,MMD, V
1/2
π1,MMD, . . . , V

1/2
πB ,MMD} and of

{2∆V 1/2ξ−1
ε,δ ζ0, . . . , 2∆V 1/2ξ−1

ε,δ ζB}, respectively. Similarly, denote by qa1−α,∞ and qb1−α,∞, the cor-
responding 1 − α quantiles with B = ∞. Then for B ≥ 16α−2 log(8/β), the analysis given in the
proof of Theorem 4 shows that the type II error of the dpMMD test can be bounded as

P
(√

VMMD + 2∆V 1/2ξ−1
ε,δ ζ0 ≤ q1−α,B

)
≤ P

(√
VMMD + 2∆V 1/2ξ−1

ε,δ ζ0 ≤ q
a
1−α/4,∞ + qb1−α/4,∞

)
+ β/2

≤ P
(√

VMMD ≤ qa1−α/4,∞ + qb1−α/4,∞ +R2

)
+ 5β/8,

where we recall R2 = 2∆V 1/2ξ−1
ε,δF

−1
ζ (1 − β/8). We also note that the quantile qb1−α/4,∞ can be

explicitly written as

qb1−α/4,∞ = 2∆V 1/2ξ−1
ε,δF

−1
ζ (1− α/4),

and using the inequality (27), the type II error is upper bounded as

P
(√

VMMD + 2∆V 1/2ξ−1
ε,δ ζ0 ≤ q1−α,B

)
≤ P

(√
VMMD ≤ qa1−α/4,∞ + 10∆V 1/2ξ−1

ε,δ max{log(1/α), log(1/β)}
)
+ 5β/8. (37)

Given this bound for the type II error, our next effort lies in bounding qa1−α/4,∞.

Bounding qa1−α/4,∞. To obtain an upper bound for qa1−α/4,∞, we leverage the exponential inequality
for permuted U-statistics studied in Kim et al. (2022a) and Schrab et al. (2023). To this end, denote
the probability function, which is taken over π conditional on Xm+n, as Pπ and note that for any
t > 0,

Pπ

(√
Vπ,MMD ≥

√√√√( 1

n
+

1

m

) d∏
i=1

1√
2πλi

+ t

)

= Pπ

(
Vπ,MMD ≥

(
1

n
+

1

m

) d∏
i=1

1√
2πλi

+ t

)

= Pπ

(
Vπ,MMD − Uπ,MMD + Uπ,MMD ≥

(
1

n
+

1

m

) d∏
i=1

1√
2πλi

+ t

)
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= Pπ

({
Vπ,MMD − Uπ,MMD −

(
1

n
+

1

m

) d∏
i=1

1√
2πλi

}
+ Uπ,MMD ≥ t

)

≤ Pπ

(
Uπ,MMD ≥ t

)
,

where the last equality holds since for any permutation π

Vπ,MMD − Uπ,MMD −
(
1

n
+

1

m

) d∏
i=1

1√
2πλi

≤ 0,

which can be seen from the previous expression of VMMD−UMMD in (36) and non-negativity of kλ.
Hence qa1−α/4,∞ is bounded by

qa1−α/4,∞ ≤

√√√√( 1

n
+

1

m

) d∏
i=1

1√
2πλi

+ qU1−α/4,∞,

where qU1−α/4,∞ denotes the 1−α/4 quantile of the permutation distribution of Uπ,MMD. Now using
the exponential bound for Uπ,MMD in Kim et al. (2022a, Equation 59), and following the proof of
Schrab et al. (2023, Proposition 4), we see that there exists a constant Cτ,β,M,d such that

P
(
qU1−α/4,∞ ≤ Cτ,β,M,d

log(1/α)

n
√
λ1 · · ·λd

)
≥ 1− β/8,

under the conditions of Theorem 9. For simplicity, let us write

bn,m,λ =

(
1

n
+

1

m

) d∏
i=1

1√
2πλi

≤
Cτ,d

nλ1 . . . λd
. (38)

Observe that we have max{log(1/α), log(1/β)} ≤ Cβ log(1/α) for α ∈ (0, e−1). Putting these pieces
together and continuing from (37), the type II error is further bounded by

P
(√

VMMD + 2∆V 1/2ξ−1
ε,δ ζ0 ≤ q1−α,B

)
≤ P

(√
VMMD ≤

√
bn,m,λ + Cτ,β,M,d

log(1/α)

n
√
λ1 · · ·λd

+ Cβ∆V 1/2ξ−1
ε,δ log(1/α)

)
+ 6β/8

= P

(
VMMD ≤ bn,m,λ + Cτ,β,M,d

log(1/α)

n
√
λ1 · · ·λd

+ C2
β∆

2
V 1/2ξ

−2
ε,δ log

2(1/α)

+ 2

√
bn,m,λ + Cτ,β,M,d

log(1/α)

n
√
λ1 · · ·λd

Cβ∆V 1/2ξ−1
ε,δ log(1/α)

)
+ 6β/8. (39)

Connecting VMMD with UMMD. In order to express the condition for type II error control in
terms of the L2 distance, we make use of the existing results for the U-statistic in Schrab et al.
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(2023). For simplicity, we use the notation C1, C2, . . . to represent constants that may depend on
τ, β, s,R,M, d. The specific values of these constants may vary in different places. To proceed, let
us make an observation that

E
[

1

n2(n− 1)

∑
(i,j)∈in2

kλ(Yi, Yj)

]
=

1

n
E
[
kλ(Y1, Y2)

]
=

1

n

∫ ∫
p(y1)p(y2)kλ(y1, y2)dy1dy2

≤ ∥p∥L∞

n

and

Var

[
1

n2(n− 1)

∑
(i,j)∈in2

kλ(Yi, Yj)

]
≤ C1

n3
E[k2λ(Y1, Y2)] ≤

C2

n3λ1 . . . λd
. (40)

To explain the last display, note that the U-statistic

1

n(n− 1)

∑
(i,j)∈in2

kλ(Yi, Yj)

achieves the minimum variance among all unbiased estimators of kλ(Y1, Y2), including a linear
estimator given as

1

⌊n/2⌋

⌊n/2⌋∑
i=1

kλ(Y2i−1, Y2i).

The variance of the above linear estimator is bounded by n−1E[k2λ(Y1, Y2)], up to a constant factor,
thereby the inequality (40) holds. A similar calculation shows that

E
[

1

m2(m− 1)

∑
(i,j)∈im2

kλ(Zi, Zj)

]
≤ ∥p∥L∞

n
and

Var

[
1

m2(m− 1)

∑
(i,j)∈im2

kλ(Zi, Zj)

]
≤ C3

n3λ1 . . . λd
.

Based on these results combined with Chebyshev’s inequality, we have the following statement,
which holds with probability at least 1− β/8,

VMMD − UMMD + UMMD

= bn,m,λ −
1

n2(n− 1)

∑
(i,j)∈in2

kλ(Yi, Yj)−
1

m2(m− 1)

∑
(i,j)∈im2

kλ(Zi, Zj) + UMMD

≥ bn,m,λ −
C4

n
− C5

n3/2
√
λ1 . . . λd

+ UMMD.
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Hence, continuing from (39), the type II error is upper bounded by

P

(
UMMD ≤

C1

n
+

C2

n3/2
√
λ1 · · ·λd

+
C3 log(1/α)

n
√
λ1 · · ·λd

+
C4∆

2
V 1/2 log

2(1/α)

ξ−2
ε,δ

+ 2C5

√
bn,m,λ +

C6 log(1/α)

n
√
λ1 · · ·λd

∆V 1/2 log(1/α)

ξε,δ

)
+ 7β/8.

(41)

Recall that we assume α ∈ (0, e−1) and λ1 · · ·λd ≤ 1. Moreover, for the Gaussian kernel, Lemma 5
shows that the sensitivity of

√
VMMD satisfies

∆V 1/2 ≤
C6

n
√
λ1 . . . λd

.

Using these conditions along with the inequality (38) for bn,mλ, the previous bound (41) can be
upper bounded as

P

(
UMMD ≤

C1 log(1/α)

n
√
λ1 · · ·λd

+
C2 log

2(1/α)

n2λ1 · · ·λdξ2ε,δ

+
C3 log(1/α)

n3/2λ1 · · ·λdξε,δ
+

C4 log
3/2(1/α)

n3/2(λ1 · · ·λd)3/4ξε,δ

)
+ 7β/8.

Condition in terms of L2 distance. As shown in Schrab et al. (2023, Lemma 2), a sufficient
condition for the first probability term in the above display to be less than β/8 is

MMD2
kλ
≥ C5

√
Var[UMMD] +

C1 log(1/α)

n
√
λ1 · · ·λd

+
C2 log

2(1/α)

n2λ1 · · ·λdξ2ε,δ

+
C3 log(1/α)

n3/2λ1 · · ·λdξε,δ
+

C4 log
3/2(1/α)

n3/2(λ1 · · ·λd)3/4ξε,δ
.

Moreover, writing the difference of two densities as ψ = p − q and the convolution of ψ and kλ as
ψ ∗ kλ, the proof of Schrab et al. (2023, Theorem 5) yields that the previous condition is implied by

∥ψ∥2L2
≥ ∥ψ − ψ ∗ φλ∥2L2

+ C6

{
log(1/α)

n
√
λ1 · · ·λd

+
log2(1/α)

n2λ1 · · ·λdξ2ε,δ

+
log(1/α)

n3/2λ1 · · ·λdξε,δ
+

log3/2(1/α)

n3/2(λ1 · · ·λd)3/4ξε,δ

}
.

Lastly, the proof of Schrab et al. (2023, Theorem 6) yields that over the Sobolev ball, a sufficient
condition for the previous inequality is

∥ψ∥2L2
≥ C7

{
d∑

i=1

λ2si +
log(1/α)

n
√
λ1 · · ·λd

+
log2(1/α)

n2λ1 · · ·λdξ2ε,δ
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+
log(1/α)

n3/2λ1 · · ·λdξε,δ
+

log3/2(1/α)

n3/2(λ1 · · ·λd)3/4ξε,δ

}
as claimed.

E.12 Proof of Lemma 7

Let U ′
MMD be the U-statistic similarly defined as UMMD by replacing Y1 with Y ′

1 . Then it can be
seen that

|UMMD − U ′
MMD| =

∣∣∣∣ 2

n(n− 1)

n∑
i=2

{
k(Y1, Yj)− k(Y ′

1 , Yj)
}
− 2

nm

m∑
j=1

{
k(Y1, Zj)− k(Y ′

1 , Zj)
}∣∣∣∣

≤ 8K

n
.

Similarly, the difference is bounded by 8K/n for other neighboring datasets, and thus the global
sensitivity of UMMD is bounded by 8K/n. Let ϵ be a number between (0,K). For a translation
invariant kernel with non-empty level sets, we can ensure the existence of an instance where Y1 =

. . . = Yn and Z1 = . . . = Zm such that k(Y1, Z1) = ϵ⋆ for some ϵ⋆ ∈ [0, ϵ]. Moreover, by taking
Y ′
1 = Z1, we have k(Y1, Y ′

1) = ϵ⋆ and k(Y ′
1 , Z1) = K. Under this setting, the difference between

UMMD and U ′
MMD becomes

|UMMD − U ′
MMD| =

4(K − ϵ⋆)
n

.

Since ϵ (and so ϵ⋆) can be arbitrarily small, we see that the global sensitivity defined with the
supremum is lower bounded by 4K/n. This concludes the claim of Lemma 7. This concludes the
claim of Lemma 7.

E.13 Proof of Theorem 10

For notational convenience, let us write UMMD(Xπ0
n+m) = UMMD and UMMD(Xπi

n+m) = Uπi,MMD for
i ∈ [B]. For α > 1/(B + 1), Lemma 18 yields that

ϕudpMMD = 1

(
UMMD +

2cm,nK

nξε,δ
ζ0 > r1−α⋆

)
,

where α⋆ =
B+1
B α− 1

B and r1−α⋆ is the 1− α⋆ quantile of {Uπi,MMD +
2cm,nK
nξε,δ

ζi}Bi=1. Let us denote
the V-statistic of MMD as

VMMD =
1

n2

n∑
i,j=1

k(Yi, Yj) +
1

m2

m∑
i,j=1

k(Zi, Zj)−
2

nm

n∑
i=1

m∑
j=1

k(Yi, Zj),

which is greater than or equal to UMMD since

1

n2

n∑
i,j=1

k(Yi, Yj) ≥
1

n(n− 1)

∑
(i,j)∈in2

k(Yi, Yj)
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⇐⇒ 1

n

n∑
i=1

k(Yi, Yi) = K ≥ 1

n(n− 1)

∑
(i,j)∈in2

k(Yi, Yj)

and similarly

1

m2

m∑
i,j=1

k(Zi, Zj) ≥
1

m(m− 1)

∑
(i,j)∈im2

k(Zi, Zj)

⇐⇒ 1

m

m∑
i=1

k(Zi, Zi) = K ≥ 1

m(m− 1)

∑
(i,j)∈im2

k(Zi, Zj).

Moreover, since VMMD ≥ 0, the U-statistic is lower bounded by UMMD ≥ UMMD − VMMD. Consider
a lower bound for UMMD − VMMD as

UMMD − VMMD =
1

n(n− 1)

∑
(i,j)∈in2

k(Yi, Yj)−
1

n2

n∑
i,j=1

k(Yi, Yj)

+
1

m(m− 1)

∑
(i,j)∈im2

k(Zi, Zj)−
1

m2

m∑
i,j=1

k(Zi, Zj)

=
1

n

[
1

n(n− 1)

∑
(i,j)∈in2

k(Yi, Yj)−
1

n

n∑
i=1

k(Yi, Yi)

]

+
1

m

[
1

m(m− 1)

∑
(i,j)∈im2

k(Zi, Zj)−
1

m

m∑
i=1

k(Zi, Zi)

]

≥ − K

n
− K

m
.

Thereby, UMMD ≥ −K
n −

K
m . We use this observation to lower bound the critical value r1−α⋆ as

r1−α⋆ ≥
2cm,nK

nξε,δ
Quantile1−α⋆

{
ζ1, . . . , ζB

}
− K

n
− K

m
,

where Quantile1−α⋆
{ζ1, . . . , ζB} denotes the 1 − α⋆ quantile of ζ1, . . . , ζB. Putting pieces together

yields

ϕudpMMD

≤ 1

(
VMMD +

2cm,nK

nξε,δ
ζ0 >

2cm,nK

nξε,δ
Quantile1−α⋆

{
ζ1, . . . , ζB

}
− K

n
− K

m

)

≤ 1

(
nξε,δ

2cm,nK
VMMD + ζ0 > Quantile1−α⋆

{
ζ1, . . . , ζB

}
−

ξε,δ
cm,n

)
.

Further note that the statistic VMMD is the square of the empirical MMD, which satisfies

VMMD =
{
MMDk(P,Q) +Rm,n}2,
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where Rm,n = OP (n
−1/2) due to Gretton et al. (2012, Theorem 7), recalled in Lemma 13.

Let us consider P0, Q0 ∈ PS such that MMDk(P0, Q0) = ϱ0 in the theorem statement. Let
P = P0, and let Q be a mixture distribution Q = wP0 + (1 − w)Q0. Since PS is a convex set, Q
belongs to PS, and it can be seen that

MMDk(P,Q) = (1− w)ϱ0.

Now for γ ∈ (1/2, 1), we set w = 1 − (nξε,δ)
−γ . Since ξε,δ ≍ n−1/2−r with r ∈ (0, 1/2), we can

ensure that w ∈ (0, 1) and MMDk(P,Q) = (nξε,δ)
−γϱ0 for sufficiently large n. Moreover, this pair

of distributions (P,Q) belongs to PMMDk
(ρ) for ρ as in (17) since

MMDk(P,Q) =
ϱ0(

nξε,δ
)γ ≥ ρ ≍ log(n)

nξε,δ
⇐⇒

(
nξε,δ

)1−γ
≳ log(n)

⇐⇒ n
(1−2r)(1−γ)

2 ≳ log(n).

Moreover, as nξε,δ →∞ and ξε,δ → 0,

nξε,δ
2cm,nK

VMMD =
1

2cm,nK

{√
nξε,δMMDk(P,Q) +

√
nξε,δRm,n}2 = oP (1),

where we use the fact that cm,n ∈ [4, 8]. Having this observation in place, for any fixed t > 0, we
can take Nt > 0 such that for all n ≥ Nt, it holds that

E[ϕudpMMD] ≤ P
(
ζ0 > Quantile1−α⋆

{
ζ1, . . . , ζB

}
−

ξε,δ
cm,n

−
nξε,δ

2cm,nK
VMMD,

∣∣∣ ξε,δ
cm,n

+
nξε,δ

2cm,nK
VMMD

∣∣∣ < t
)
+ P

(∣∣∣ ξε,δ
cm,n

+
nξε,δ

2cm,nK
VMMD

∣∣∣ ≥ t)
≤ P

(
ζ0 > Quantile1−α⋆

{
ζ1, . . . , ζB

}
− t
)
+ t

= E
[
P
(
ζ0 > Quantile1−α⋆

{
ζ1, . . . , ζB

}
− t
∣∣∣ ζ1, . . . , ζB)]+ t

≤ P
(
ζ0 > Quantile1−α⋆

{
ζ1, . . . , ζB

})
+ t∥fζ∥L∞ + t,

where fζ denotes the density function of Laplace(0, 1) and the last inequality uses the fact that∣∣P(ζ > a+ b)− P(ζ > b)
∣∣ ≤ ∥fζ∥L∞ |a| for all a, b ∈ R.

Since ∥fζ∥L∞ ≤ 1
2 and

P
(
ζ0 > Quantile1−α⋆

{
ζ1, . . . , ζB

})
= P

(
ζ0 > Quantile1−α

{
ζ0, ζ1, . . . , ζB

})
≤ α,

we have

lim sup
n→∞

inf
(P,Q)∈PMMDk

(ρ)
EP,Q[ϕ

u
dpMMD] ≤ α+

3t

2
.

The result follows as t can be made arbitrarily small.
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E.14 Proof of Theorem 11

Let us denote by C1, C2, . . . constants that may depend on τ, β, s,R,M, d. Following the proofs of
Theorem 4 and Theorem 9 along with the sensitivity result for UMMD in Lemma 7, we may arrive
at the point where the type II error of ϕudpMMD is upper bounded as

E[1− ϕudpMMD] ≤ P
(
UMMD ≤

C1 log(1/α)

n
√
λ1 · · ·λd

+
C2 log(1/α)

nλ1 · · ·λdξε,δ

)
+ 7β/8.

We then use the proofs of Schrab et al. (2023, Theorem 5) and Schrab et al. (2023, Theorem 6),
and show that the probability term in the above display is less than or equal to β/8 once

∥p− q∥2L2
≥ C3

{
d∑

i=1

λ2si +
log(1/α)

n
√
λ1 · · ·λd

+
log(1/α)

nλ1 · · ·λdξε,δ

}
.

This proves Theorem 11.

F Proofs for Appendix B

This section collects the proofs of the results in Appendix B.

F.1 Proof of Proposition 1

Focusing on MMD, the square of the empirical MMD satisfies

(n+m)M̂MD
2
(Xn+m)

d−→
∞∑
i=1

λiZ
2
i ,

which can be seen by the standard asymptotic theory of V-statistics. See Fernández and Rivera
(2022, Proposition 9). Moreover, note that the empirical MMD and the Laplace noise are indepen-
dent. Therefore, the continuous mapping theorem along with Slutsky’s theorem proves the result
when

√
n+mσ → η ∈ [0,∞). On the other hand, when

√
n+mσ →∞, it holds that

σ−1MMMD =
1√

n+mσ︸ ︷︷ ︸
= oP (1)

×
√
n+m M̂MD(Xn+m)︸ ︷︷ ︸

=OP (1)

+ ζ = oP (1) + ζ.

This proves the results for MMD. The proof for HSIC is completely analogous and thereby omitted,
which can be derived by using Zhang et al. (2018, Theorem 1) in place of Fernández and Rivera
(2022, Proposition 9).

F.2 Proof of Lemma 8

We first prove the claim by considering two scenarios: (i) Bn is fixed in n and (ii) Bn increases with
n, and prove the consistency result. We then turn to a general case of Bn and complete the proof
building on the prior result. Throughout this proof, we often omit the dependence of n on Bn and
write it as B for simplicity.
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F.2.1 Simple cases

Fixed B. Assume that B is fixed and B + 1 > α−1 or equivalently α(B + 1) ≥ 1. As mentioned
in the main text, we simply exploit the union bound to prove the claim for fixed B. Concretely,

P
[

1

B + 1

( B∑
i=1

1(W0,n ≤Wi,n) + 1

)
≤ α

]
= P

[ B∑
i=1

1(W0,n ≤Wi,n) ≤ α(B + 1)− 1

]
(i)

≥ P
[ B∑
i=1

1(W0,n ≤Wi,n) ≤ 0

]

= P
[
W0,n −max

i∈[B]
Wi,n > 0

]
(ii)

≥ 1−
B∑
i=1

P(W0,n ≤Wi,n),

where step (i) uses condition α(B+1) > 1 and step (ii) uses de Morgan’s law and the union bound.
By the condition that limn→∞ P(W0,n ≤ W1,n) = 0 and since {W0,n − Wi,n}Bi=2 are identically
distributed as W0,n −W1,n, the lower bound converges to one for fixed B and thus the consistency
result follows.

Increasing B. Next we consider the case where B increases to infinity with n. For some η > 0

(specified later), define an event A as

A =

{∣∣∣∣ 1B
B∑
i=1

1(W0,n ≤Wi,n)− P(W0,n ≤W1,n | G)
∣∣∣∣ ≤

√
1

2B
log

(
2

η

)}
.

Since 1(W0,n ≤W1,n), . . . ,1(W0 ≤WB,n) are i.i.d. random variables conditional on the sigma field
G under the condition of Lemma 8, Hoeffding’s inequality yields that

P(Ac | G) ≤ η.

By taking the expectation over G on both sides, it also holds marginally that P(Ac) ≤ η. Now

P
[

1

B + 1

( B∑
i=1

1(W0,n ≤Wi,n) + 1

)
> α

]

= P
[
1

B

B∑
i=1

1(W0,n ≤Wi,n) >
B + 1

B

(
α− 1

B + 1

)]

≤ P
[
1

B

B∑
i=1

1(W0,n ≤Wi,n) >
B + 1

B

(
α− 1

B + 1

)
, A
]
+ P(Ac)

≤ P
[
P(W0,n ≤W1,n | G) +

√
1

2B
log

(
2

η

)
>
B + 1

B

(
α− 1

B + 1

)]
+ η.

(42)
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By taking η = B−1, we know η → 0 (since B →∞) and

B + 1

B

(
α− 1

B + 1

)
−

√
1

2B
log

(
2

η

)
→ α as n→∞.

Moreover our condition guarantees that limn→∞ P(W0,n ≤ W1,n) = 0. Hence for any ϵ > 0, we can
take N such that statement (i) η < ϵ/2 and statement (ii)

P
[
P(W0,n ≤W1,n | G) +

√
1

2B
log

(
2

η

)
>
B + 1

B

(
α− 1

B + 1

)]

≤ P
[
P(W0,n ≤W1,n | G) >

α

2

]
(†)
≤ 2

α
P(W0,n ≤W1,n) ≤

ϵ

2
,

(43)

hold for all n ≥ N . Here step (†) holds by Markov’s inequality. Thus for all n ≥ N we have

P
[

1

Bn + 1

( Bn∑
i=1

1(W0,n ≤Wi,n) + 1

)
> α

]
< ϵ.

Since ϵ is arbitrary, the above argument proves the claim that

lim
n→∞

P
[

1

Bn + 1

( Bn∑
i=1

1(W0,n ≤Wi,n) + 1

)
≤ α

]
= 1.

F.2.2 Main proof

We now deal with an arbitrary sequence of Bn such that infn≥1Bn + 1 > α−1 and prove the claim.
First note that

P
[

1

B + 1

( B∑
i=1

1(W0,n ≤Wi,n) + 1

)
> α

]
= P

[
1

B + 1

B∑
i=1

1(W0,n ≤Wi,n) >

(
α− 1

B + 1

)]
(i)

≤ P
[ B∑
i=1

1(W0,n ≤Wi,n) > 0

]
= 1− P

[ B∑
i=1

1(W0,n ≤Wi,n) = 0

]

= 1− E
{
P
[ B∑
i=1

1(W0,n ≤Wi,n) = 0

∣∣∣∣G]} = 1− E
[
{P(W0,n > W1,n | G)}B

]
(ii)

≤ 1− {P(W0,n > W1,n)}B,

where step (i) uses the condition α > 1
B+1 and step (ii) uses Jensen’s inequality. On the other hand,

from the previous results (42) and Markov’s inequality with η = B−1, we have

P
[

1

B + 1

( B∑
i=1

1(W0,n ≤Wi,n) + 1

)
> α

]
≤ 1

B
+

P(W0,n ≤W1,n) +
√

1
2B log(2B)

B+1
B (α− 1

B+1)
.
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Thus combining the two bounds yields

P
[

1

B + 1

( B∑
i=1

1(W0,n ≤Wi,n) + 1

)
> α

]

≤ min

{
1− {P(W0,n > W1,n)}B,

1

B
+

P(W0,n ≤W1,n) +
√

1
2B log(2B)

B+1
B (α− 1

B+1)

}
.

Interestingly, a careful argument shows that the above upper bound can be made independent of
B. Concretely, write pn := P(W0,n > W1,n) for simplicity, which by assumption tends to 1 as n
tends to infinity, and let bn be a positive sequence that goes to infinity and satisfies pbnn → 1. For
instance, one can take bn =

√
− log(1− pn). Using this notation in place, observe

min

{
1− {P(W0,n > W1,n)}B,

1

B
+

P(W0,n ≤W1,n) +
√

1
2B log(2B)

B+1
B (α− 1

B+1)

}

≤ 1(B < bn)
{
1− pBn

}
+ 1(B ≥ bn)

{
1

B
+

1− pn +
√

1
2B log(2B)

B+1
B (α− 1

B+1)

}

≤ 1− pbnn +

{
1

bn
+

1− pn +
√

1
2bn

log(2bn)

bn+1
bn

(α− 1
bn+1)

}
.

Now the upper bound does not depend on B and converges to zero, which is ensured by the condition
limn→∞ pn = 1. As a result, we have

lim
n→∞

P
[

1

Bn + 1

( Bn∑
i=1

1(W0,n ≤Wi,n) + 1

)
≤ α

]
= 1,

and complete the proof of Lemma 8.

F.3 Proof of Theorem 12

The proof of Theorem 12 can follow a similar approach to that of Theorem 7 by replacing concen-
tration inequalities for MMD statistics (Lemma 10 and Lemma 13) with the corresponding ones for
HSIC statistics (Lemma 12 and Lemma 14). Throughout this proof, we denote positive constants
that only depend on K and L by C1, C2, C3, . . .

Step 1 (Bounding the quantile). Let us remind that Mi is defined as ĤSIC(Xπi
n ) + 2∆T ξ

−1
ε,δ ζi

for i ∈ {0} ∪ [B]. We first examine the 1 − α quantile of M0,M1, . . . ,MB denoted as q1−α,B and
establish an upper bound for q1−α,B with high probability. Again, the proof strategy is similar to
that of Theorem 7. With an abuse of notation, let qa1−α/2,B and qb1−α/2,B be the 1 − α/2 quan-

tiles of {ĤSIC(Xπ0
n ), . . . , ĤSIC(XπB

n )} and of {2∆T ξ
−1
ε,δ ζ0, . . . , 2∆T ξ

−1
ε,δ ζB}, respectively. Denote by

qa1−α/2,∞ and qb1−α/2,∞ the corresponding 1−α/2 quantiles with B =∞. Following the same lines of
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the proof of Theorem 7, we see that q1−α,B ≤ qa1−α/4,∞ + qb1−α/4,∞ with probability at least 1− β/2
under our condition for B given as B ≥ 16α−2 log

(
8/β

)
. Moreover applying Lemma 12 yields

qa1−α/4,∞ ≤ C1

√
1

n
max

{
log

(
4

α

)
, log1/2

(
4

α

)
, 1

}
,

whereas qb1−α/4,∞ = 2∆T ξ
−1
ε,δF

−1
ζ (1 − α/4). Therefore, with probability at least 1 − β/2, it holds

that

q1−α,B ≤ C1

√
1

n
max

{
log

(
4

α

)
, log1/2

(
4

α

)
, 1

}
+ 2∆T ξ

−1
ε,δF

−1
ζ (1− α/4). (44)

Step 2 (Bounding the type II error). For the empirical HSIC, Lemma 14 shows that the
following event

E′
1 :=

{∣∣∣∣HSICk⊗ℓ(PY Z)− ĤSIC(Xn)

∣∣∣∣ ≤ C2

√
log(8/β)

n

}
holds with probability at least 1−β/4. On the other hand, the condition ζ0 ∼ Laplace(0, 1) ensures
that the probability of the event

E′
2 :=

{
2∆T ξ

−1
ε,δ ζ0 > 2∆T ξ

−1
ε,δF

−1
ζ (β/4)

}
is equal to 1 − β/4 where F−1

ζ is the inverse cumulative distribution function of ζ. Using these
results as well as inequality (44) from Step 1, it can be seen similarly to the proof of Theorem 7
that

E[1− ϕdpHSIC] ≤ P
(
HSICk⊗ℓ(PY Z) ≤ q1−α,B + C2

√
log(8/β)

n
− 2∆T ξ

−1
ε,δF

−1
ζ (β/4)

)
+
β

2

≤ P
(
HSICk⊗ℓ(PY Z) ≤ C1

√
1

n
max

{
log

(
4

α

)
, log1/2

(
4

α

)
, 1

}

+ 2∆T ξ
−1
ε,δF

−1
ζ (1− α/4) + C2

√
log(8/β)

n
− 2∆T ξ

−1
ε,δF

−1
ζ (β/4)

)
+ β.

Next, recall that we assume α ∈ (0, 1) and β ∈ (0, 1− α) under which it holds

max

{
log

(
4

α

)
, log1/2

(
4

α

)
, 1, log

(
8

β

)}
≤ C3max

{
log

(
1

α

)
, log

(
1

β

)}
. (45)

To see this inequality, first assume that α ∈ (0, 1/2). Then

max

{
log

(
4

α

)
, log1/2

(
4

α

)
, 1

}
≤ C4 log

(
1

α

)
≤ C4max

{
log

(
1

α

)
, log

(
8

β

)}

≤ C5max

{
log

(
1

α

)
, log

(
1

β

)}
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as β ∈ (0, 1− α). On the other hand, if α ∈ [1/2, 1), β should be less than 1/2, which implies that

max

{
log

(
4

α

)
, log1/2

(
4

α

)
, 1

}
≤ C6 log

(
8

β

)
≤ C7 log

(
1

β

)

≤ C7max

{
log

(
1

α

)
, log

(
1

β

)}
.

Therefore inequality (45) follows.
Having these ingredients in place, we follow the same lines of the proof of Theorem 7 and see

that

E[1− ϕdpHSIC]

≤ P
(
HSICk⊗ℓ(PY Z) ≤ C8

√
max

{
log(1/α), log(1/β)}

n
+ C9

max
{
log(1/α), log(1/β)}

nξε,δ

)
+ β

≤ β,

where the last inequality holds by taking CK,L to be larger than, for instance, 2max{C8, C9} + 1

in the theorem statement. We conclude the proof by noting that the upper bound is independent
of PY Z and taking the supremum on both sides over PHSICk⊗ℓ

(ρ).

F.4 Proof of Theorem 13

The proof of Theorem 13 relies on the same idea as that of Theorem 8, which uses Le Cam’s
two point method and coupling method. Hence we omit the details explained in the proof of
Theorem 8, and instead focus on the key differences. As in the proof of Theorem 8, we simply
let ρ⋆HSIC = ρ⋆HSIC(α, β, ε, δ, n) and establish the minimax separation by examining the non-privacy
regime and privacy regime in order.

F.4.1 Non-privacy regime

We begin by proving that ρ⋆HSIC ≥ CηY ,ηZ min{
√
log(1/(α+ β))/n, 1} in the non-privacy regime.

We pick one distribution PY Z,0 from PHSICk⊗ℓ
(ρ̃) with

ρ̃ = CηY ,ηZ min

{√
log(1/(α+ β))

n
, 1

}
and denote the product of its marginals as PY,0PZ,0. Then, as in Appendix E.10.1, an application
of Le Cam’s two point method (Le Cam, 1973, 2012) and Bretagnolle–Huber inequality (Canonne,
2022, Lemma B.4) yields

inf
ϕ∈Φα,ε,δ

sup
PY Z∈PHSICk⊗ℓ

(ρ̃)
EPn

Y Z
[1− ϕ] ≥ inf

ϕ∈Φα,∞
sup

PY Z∈PHSICk⊗ℓ
(ρ̃)

EPY Z
[1− ϕ]

≥ inf
ϕ∈Φα,∞

EPY Z,0
[1− ϕ] = 1− sup

ϕ∈Φα,∞

EPY Z,0
[ϕ]
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≥ 1− α− dTV(P
⊗n
Y Z,0, P

⊗n
Y,0P

⊗n
Z,0 )

≥ 1

2
e−n×dKL(PY Z,0∥PY,0PZ,0) − α.

Therefore the minimax type II error is at least β if α+ β < 0.4 as well as

dKL(PY Z,0∥PY,0PZ,0) ≤
1

n
log

(
1

2(α+ β)

)
.

Hence ρ⋆HSIC ≥ CηY ,ηZ min{
√

log(1/(α+ β))/n, 1} follows if we find PY Z,0 such that

HSICk⊗ℓ(PY Z,0, PY,0PZ,0) ≥ CηY ,ηZ min

{√
log(1/(α+ β))

n
, 1

}
and (46a)

dKL(PY Z,0∥PY,0PZ,0) ≤
1

n
log

(
1

2(α+ β)

)
. (46b)

To this end, consider (discrete) random vectors Y ∈ {y1, y2} and Z ∈ {z1, z2} where y1, y2 ∈ RdY

and z1, z2 ∈ RdZ . Further assume that P(Y = y1) = P(Y = y2) = 1/2 and P(Z = z1) = P(Z =

z2) = 1/2. Suppose that the joint probabilities of (Y, Z) are given as

P(Y = y1, Z = z1) = P(Y = y2, Z = z2) = 1/4 + ν and

P(Y = y1, Z = z2) = P(Y = y2, Z = z1) = 1/4− ν,

where ν ∈ (0, 1/4]. In this setting, it can be seen that PY Z,0 ̸= PY,0PZ,0 and thus Y and Z are
trivially dependent. For such PY Z,0 and translation invariant kernels, we have

HSICk⊗ℓ(PY Z,0)
(i)
=
√

E[k(Y1, Y2)ℓ(Z1, Z2)] + E[k(Y1, Y2)ℓ(Z3, Z4)]− 2E[k(Y1, Y2)ℓ(Z1, Z3)]

(ii)
=
√
4ν2{κY (0)− κY (y1 − y2)}{κZ(0)− κZ(z1 − z2)}

(iii)

≥
√
4ν2ηY ηZ = 2ν

√
ηY ηZ ,

where step (i) follows by Gretton et al. (2005, Lemma 1) with {(Yi, Zi)}4i=1
i.i.d.∼ PY Z,0, step (ii) can

be verified through algebra and the last inequality (iii) holds by choosing (y1, y2) and (z1, z2) such
that y1 − y2 = y0 and z1 − z2 = z0.

On the other hand, we verify condition (46b) based on the well-known fact (e.g., Tsybakov,
2009, Lemma 2.7) that the Kullback–Leibler divergence is upper bounded by χ2 divergence denoted
by dχ2(PY Z,0∥PY,0PZ,0). This gives

dKL(PY Z,0∥PY,0PZ,0) ≤ dχ2(PY Z,0∥PY,0PZ,0) = 8

(
1

4
+ ν

)2

+ 8

(
1

4
− ν
)2

− 1

= 16ν2.
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Using the above inequality, condition (46b) is fulfilled by taking

ν = min

{√
1

16n
log

(
1

2(α+ β)

)
,
1

4

}

for which condition (46a) is also satisfied as

HSICk⊗ℓ(PY Z,0) ≥ 2ν
√
ηY ηZ =

√
ηY ηZ

2
min

{√
1

n
log

(
1

2(α+ β)

)
, 1

}

≥ CηY ,ηZ min

{√
log(1/(α+ β))

n
, 1

}

as α+ β < 0.4. Therefore it holds that ρ⋆HSIC ≥ CηY ,ηZ min{
√

log(1/(α+ β))/n, 1} as desired.

F.4.2 Privacy regime

The proof of the separation rate under the privacy regime is essentially the same as that for the
dpMMD test in Appendix E.10.2. All we need is to find an instance of PY Z,0 such that

HSICk⊗ℓ(PY Z,0) ≥ CηY ,ηZ min

{
log(1/β)

n
(
ε+ δ

) , 1} and (47a)

∥PY Z,0 − PY,0PZ,0∥1 ≤
1

20n
(
ε+ δ

) log( 1

4β

)
. (47b)

To this end, choose the distribution of (Y,Z) as in the case of the non-privacy regime. For such
PY Z,0, a direct calculation gives ∥PY Z,0 − PY,0PZ,0∥1 = 4ν and thus condition (47b) is satisfied if
we take

ν = min

{
1

80n
(
ε+ δ

) log( 1

4β

)
,
1

4

}
.

On the other hand, the previous calculation of the lower bound for HSICk⊗ℓ(PY Z,0) yields

HSICk⊗ℓ(PY Z,0) ≥ 2ν
√
ηY ηZ = 2min

{
1

80n
(
ε+ δ

) log( 1

4β

)
,
1

4

}
√
ηY ηZ

≥ CηY ,ηZ min

{
log(1/β)

n
(
ε+ δ

) , 1}

which in turn verifies condition (47a) under β ∈ (0, 1/5). Therefore it holds that the minimax
separation under privacy regime ρ⋆HSIC ≥ CηY ,ηZ min

{
log(1/β)/(n(ε+ δ)), 1

}
.
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F.4.3 Combining bounds

Combining the lower bounds for the non-privacy and privacy regimes, for all ε > 0 and δ ∈ [0, 1),
we obtain

ρ⋆HSIC ≥ CηY ,ηZ max

{
min

{√
log(1/(α+ β))

n
, 1

}
, min

{
log(1/β)

n(ε+ δ)
, 1

}}

≥ CηY ,ηZ max

{
min

{√
log(1/(α+ β))

n
, 1

}
, min

{
log(1/β)

n
(
ε+ log(1/(1− δ))

) , 1}}.
The last inequality holds since log(1/(1− δ)) ≥ δ for all δ ∈ [0, 1), and is actually tight when α ≍ β
as explained in Appendix E.10.3. This concludes the proof of Theorem 12.

F.5 Proof of Theorem 14

The proof of Theorem 14 follows the same structure as the proof of Theorem 9 in Appendix E.11.
For simplicity, write ĤSIC

2
given in (12) with the Gaussian kernels as VHSIC and similarly the

U-statistic given in (21) with the Gaussian kernel as UHSIC. We also denote the corresponding
statistics based on permuted data Xπ

n as Vπ,HSIC and Uπ,HSIC, respectively. Letting

K =

dY∏
i=1

1√
2πλi

and L =

dZ∏
i=1

1√
2πµi

,

Lemma 21 ensures that the difference between VHSIC and UHSIC can be written as

VHSIC − UHSIC = D1 +D2,

where

D1 =
n− 1

n2
KL− L

n3

∑
(i,j)∈in2

kλ(Yi, Yj)−
K

n3

∑
(i,j)∈in2

ℓµ(Zi, Zj),

D2 =−
3n2 − 4n+ 2

(n− 1)n4

∑
(i,j)∈in2

kλ(Yi, Yj)ℓµ(Zi, Zj) +
2(5n2 − 8n+ 4)

n4(n− 1)(n− 2)

∑
(i,j1,j2)∈in3

kλ(Yi, Yj1)ℓµ(Zi, Zj2)

− 6n2 − 11n+ 6

n4(n− 1)(n− 2)(n− 3)

∑
(i1,i2,j1,j2)∈in4

kλ(Yi1 , Yi2)ℓµ(Zj1 , Zj2).

The term D1 is invariant to any permutation of Z values, and thus the permutation distribution of
Vπ,HSIC is equivalent to the permutation distribution of Uπ,HSIC + D1 + D2,π where D2,π has the
same form of D2 but computed based on permuted data Xπ

n . Writing the sensitivity of
√
VHSIC as

∆V 1/2 , Lemma 17 yields that the dpHSIC test rejects the null if and only if√
VHSIC +

2∆V 1/2

ξε,δ
ζ0 > q1−α,B,
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where q1−α,B is the 1−α quantile of {
√
Vπi,HSIC+2∆V 1/2ξ−1

ε,δ ζi}
B
i=0. As in the proof of Theorem 9 in

Appendix E.11, we let qa1−α,B denote the 1−α quantile of {V 1/2
π0,HSIC, V

1/2
π1,HSIC, . . . , V

1/2
πB ,HSIC}. Simi-

larly, denote by qa1−α,∞ the corresponding 1−α quantile with B =∞. Then for B ≥ 16α−2 log(8/β),
the analysis given in the proof of Theorem 9 shows that the type II error of the dpHSIC test can
be bounded as

P
(√

VHSIC + 2∆V 1/2ξ−1
ε,δ ζ0 ≤ q1−α,B

)
≤ P

(√
VHSIC ≤ qa1−α/4,∞ + 10∆V 1/2ξ−1

ε,δ max{log(1/α), log(1/β)}
)
+ 5β/8. (48)

We next delve into qa1−α/4,∞, and then continue to upper bound the type II error. In what fol-
lows, we use the notation C1, C2, C3, . . . to represent constants, which could be dependent on
α, β, s,R,M, dY , dZ . The values of these constants may vary in different places.

Bounding qa1−α/4,∞. Using the relationship between VHSIC and UHSIC in Lemma 21 and the quantile
inequality in Lemma 20, we have

qa1−α/4,∞ =
√
Quantile1−α/4

({
Uπi,HSIC +D2,πi

}∞
i=0

+D1

)
≤
√
Quantile1−α/8

({
Uπi,HSIC

}∞
i=0

)
+Quantile1−α/8

({
D2,πi

}∞
i=0

)
+D1.

The quantile of the permuted U-statistic Uπ,HSIC has been studied by Kim et al. (2022a). In
particular, the proof of Kim et al. (2022a, Theorem 5.1) along with the proof of Albert et al. (2022,
Proposition 2) shows that

Eπ[Uπ,HSIC | Xn] = 0 and E
[
Varπ

(
Uπ,HSIC | Xn

)]
≤ C1

n2λ1 · · ·λdY µ1 · · ·µdZ
.

Thus by Chebyshev’s inequality, it can be seen that the following inequality holds with probability
at least 1− β/8:

Quantile1−α/8

({
Uπi,HSIC

}∞
i=0

)
≤ C2

n
√
λ1 · · ·λdY µ1 · · ·µdZ

, (49)

For the 1− α/8 quantile of
{
D2,πi

}∞
i=0

, note that

D2,π ≤
C3

n4

∑
(i,j1,j2)∈in3

kλ(Yi, Yj1)ℓµ(Zπi , Zπj2
)

due to the non-negativity of kλ and ℓµ, and also note that

Eπ

[ ∑
(i,j1,j2)∈in3

kλ(Yi, Yj1)ℓµ(Zπi , Zπj2
)
∣∣∣Xn

]
≤ C4

n

[ ∑
(i1,i2)∈in2

kλ(Yi1 , Yi2)

][ ∑
(j1,j2)∈in2

ℓµ(Zj1 , Zj2)

]
.

Then Markov’s inequality yields that the 1− α/8 quantile of
{
D2,πi

}∞
i=0

is bounded as

Quantile1−α/8

({
D2,πi

}∞
i=0

)
≤ C5

n5

[ ∑
(i1,i2)∈in2

kλ(Yi1 , Yi2)

][ ∑
(j1,j2)∈in2

ℓµ(Zj1 , Zj2)

]
.
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Moreover, since we assume ∥pY Z∥L∞ ≤M and ∥pY pZ∥L∞ ≤M ,

max
{
E[kλ(Y1, Y2)ℓµ(Z1, Z2)], E[kλ(Y1, Y2)ℓµ(Z1, Z3)], E[kλ(Y1, Y2)ℓµ(Z3, Z4)]

}
≤ C6.

For instance, we see that

E[kλ(Y1, Y2)ℓµ(Z1, Z2)] =

∫
· · ·
∫
kλ(y1, y2)ℓµ(z1, z2)pY Z(y1, z1)pY Z(y2, z2)dy1dy2dz1dz2

≤ ∥pY Z∥L∞

∫ ∫ ∫
kλ(y1, y2)dy1︸ ︷︷ ︸

=1

∫
ℓµ(z1, z2)dz1︸ ︷︷ ︸

=1

pY Z(y2, z2)dy2dz2

≤ M,

and the other terms can be similarly analyzed. Given this ingredient, we have

E

{[ ∑
(i1,i2)∈in2

kλ(Yi1 , Yi2)

][ ∑
(j1,j2)∈in2

ℓµ(Zj1 , Zj2)

]}
≤ C7n

4.

Therefore, another application of Markov’s inequality yields

Quantile1−α/8

({
D2,πi

}∞
i=0

)
≤ C8

n
, (50)

with probability at least 1− β/8, and observe that D1 ≤ n−1
n2 KL ≤ C9/{nλ1 · · ·λdY µ1 · · ·µdZ}.

In summary, with probability at least 1− β/4,

qa1−α/4,∞ ≤
C10√

nλ1 · · ·λdY µ1 · · ·µdZ
. (51)

given that D1 ≤ KL/n and λ1 · · ·λdY µ1 · · ·µdZ ≤ 1.

Bounding the type II error. We continue from (48), and note that

P
(√

VHSIC ≤ qa1−α/4,∞ + 10∆V 1/2ξ−1
ε,δ max{log(1/α), log(1/β)}

)
= P

(
VHSIC ≤ (qa1−α/4,∞)2 + 102∆2

V 1/2ξ
−2
ε,δ max{log2(1/α), log2(1/β)}

+ 20qa1−α/4,∞∆V 1/2ξ−1
ε,δ max{log(1/α), log(1/β)}

)
= P

(
UHSIC ≤ Quantile1−α/8

({
Uπi,HSIC

}∞
i=0

)
+Quantile1−α/8

({
D2,πi

}∞
i=0

)
−D2

+ 102∆2
V 1/2ξ

−2
ε,δ max{log2(1/α), log2(1/β)}+ 20qa1−α/4,∞∆V 1/2ξ−1

ε,δ max{log(1/α), log(1/β)}
)
,

where the first equality simply follows by taking the square on both sides, and the second equality
uses the identity VHSIC = UHSIC+D1+D2 from Lemma 21. Next, by Lemma 6, the global sensitivity
of
√
VHSIC is bounded as

∆V 1/2 ≤
C1

n
√
λ1 · · ·λdY µ1 · · ·µdZ

.
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In addition, observe that |D2| ≤ C2n
−1 with probability at least 1− β/16, which can be proven by

Markov’s inequality. Therefore, equipped with the previous ingredients (48), (49), (50) and (51),
the type II error bound can be bounded as

P
(√

VHSIC + 2∆V 1/2ξ−1
ε,δ ζ0 ≤ q1−α,B

)
≤ P

(
UHSIC ≤

C3

n
√
λ1 · · ·λdY µ1 · · ·µdZ

+
C4

n2λ1 · · ·λdY µ1 · · ·µdZξ2ε,δ

+
C5

n3/2λ1 · · ·λdY µ1 · · ·µdZξε,δ

)
+

15

16
β.

Condition in terms of L2 distance. A slight modification of Albert et al. (2022, Lemma 1)
yields that a sufficient condition for the first probability in the above display to be less than β/16 is

HSIC2
kλ⊗ℓµ ≥

√
Var[UHSIC] +

C3

n
√
λ1 · · ·λdY µ1 · · ·µdZ

+
C4

n2λ1 · · ·λdY µ1 · · ·µdZξ2ε,δ

+
C5

n3/2λ1 · · ·λdY µ1 · · ·µdZξε,δ
.

In addition, by writing ψ = pY Z − pY pZ and the convolution of ψ and kλ ⊗ ℓµ as ψ ∗ (kλ ⊗ ℓµ),
Albert et al. (2022, Theorem 1 and Proposition 4) show that the previous condition is implied by

∥ψ∥2L2
≥ ∥ψ − ψ ∗ (kλ ⊗ ℓµ)∥2L2

+ C6

{
1

n
√
λ1 · · ·λdY µ1 · · ·µdZ

+
1

n2λ1 · · ·λdY µ1 · · ·µdZξ2ε,δ

+
1

n3/2λ1 · · ·λdY µ1 · · ·µdZξε,δ

}
.

Finally the proof of (Albert et al., 2022, Theorem 2) yields that over the Sobolev ball, a sufficient
condition for the previous inequality is

∥ψ∥2L2
≥ C7

{
dY∑
i=1

λ2si +

dZ∑
i=1

µ2si +
1

n
√
λ1 · · ·λdY µ1 · · ·µdZ

+
1

n2λ1 · · ·λdY µ1 · · ·µdZξ2ε,δ
+

1

n3/2λ1 · · ·λdY µ1 · · ·µdZξε,δ

}
as claimed.

F.6 Proof of Lemma 9

Sensitivity upper bound. For simplicity, write UHSIC = UHSIC,a + UHSIC,b − 2UHSIC,c where

UHSIC,a :=
1

n(n− 1)

∑
(i,j)∈in2

k(Yi, Yj)ℓ(Zi, Zj),
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UHSIC,b :=
(n− 4)!

n!

∑
(i1,i2,j1,j2)∈in4

k(Yi1 , Yj1)ℓ(Zi2 , Zj2),

UHSIC,c :=
1

n(n− 1)(n− 2)

∑
(i,j1,j2)∈in3

k(Yi, Yj1)ℓ(Zi, Zj2).

To establish an upper bound for the global sensitivity, we first consider a neighboring dataset
X̃n = {(Y ′

1 , Z
′
1), (Y2, Z2), . . . , (Yn, Zn)} and denote the U-statistic of HSIC based on X̃n as U ′

HSIC :=

U ′
HSIC,a +U ′

HSIC,b − 2U ′
HSIC,c. By the triangle inequality, the absolute deviation between UHSIC and

U ′
HSIC is then bounded as

|UHSIC − U ′
HSIC| ≤ |UHSIC,a − U ′

HSIC,a|+ |UHSIC,b − U ′
HSIC,b|+ 2|UHSIC,c − U ′

HSIC,c|

≤ C1KL

n
,

where C1, C2, . . . denote some universal positive constants throughout.
For another neighboring dataset X̃n = {(Y ′

1 , Z1), (Y2, Z
′
2), . . . , (Yn, Zn)}, a similar analysis shows

that |UHSIC−U ′
HSIC| ≤

C2KL
n . Since UHSIC is invariant to the permutation of the paired indices, we

may conclude that

sup
π∈Πn

sup
Xn,X̃n:

dham(Xn,X̃n)≤1

∣∣UHSIC(Xπ
n )− UHSIC(X̃π

n )
∣∣ ≤ C3KL

n
. (52)

While it is loose, the inequality holds with C3 = 24 for n ≥ 4.

Sensitivity lower bound. We now show that this upper bound is tight up to a constant factor.
We treat the cases of n being even or odd separately, and follow a similar reasoning to the one in
Appendix E.7. Recall that kernels k and ℓ are assumed to have non-empty level sets on Y and Z.
Hence, for a given ϵ ∈ (0,min{K,L}), we may assume that there exist ya, yb ∈ Y and za, zb ∈ Z
such that k(ya, yb) = ϵ1 and ℓ(za, zb) = ϵ2 where 0 ≤ ϵ1, ϵ2 ≤ ϵ.

Sensitivity lower bound for n = 2k even. We begin by considering the case where n is even,
and compute the difference between U-statistics of the HSIC based on two specific neighboring
datasets given below:

Xn =



ya za
...

...
ya za
ya za
ya za
yb zb
...

...
yb zb


and X̃n =



ya za
...

...
ya za
ya za
yb zb
yb zb
...

...
yb zb


.
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The indices displayed above are 1, . . . , k−2, k−1, k, k+1, . . . 2k, and it is clear that dham(Xn, X̃n) =

1. We further consider the permutation π which permutes only the k − 1 and k entries, i.e.,
π = (1, 2, . . . , k − 2, k, k − 1, k + 1, . . . , n), so that

Xπ
n =



ya za
...

...
ya za
ya za
ya za
yb zb
...

...
yb zb


and X̃π

n =



ya za
...

...
ya za
ya zb
yb za
yb zb
...

...
yb zb


.

We now compute the U-statistic of the HSIC based on these two permuted datasets. Unfortunately,
a direct computation of UHSIC requires a complicated case-by-case analysis. Instead, we consider the
following trick to simplify calculations. First of all, we pretend that (ya, za) and (yb, zb) take some
specific values, say (ya, za) = (1, 1) and (yb, zb) = (0, 0), and consider indicator kernels k(y, y′) =

K × 1(y = y′) and ℓ(z, z′) = L × 1(z = z′). Under this simplified setting, UHSIC is essentially
the statistic considered in Kim et al. (2023, Proposition 1) for multinomial data, which can be
computed in a straightforward manner. In addition, we observe that UHSIC based on the indicator
kernels remains the same as UHSIC based on generic kernels k and ℓ up to some quantities tending
to zero as ϵ1, ϵ2 → 0. Using this trick along with the observation that k(y, y) = K and ℓ(z, z) = L

for all y ∈ Y and z ∈ Z, it can be seen that for all k ≥ 2

UHSIC(Xπ
n ) =

k(k − 1)

(2k − 1)(2k − 3)
KL+ C1ϵ1 + C2ϵ2 + C3ϵ1ϵ2,

where C1, C2, C3 are constants that only depend on K,L, n. A similar calculation yields

UHSIC(X̃π
n ) =

(k − 2)(k2 − 4k + 1)

(k − 1)(2k − 1)(2k − 3)
KL+ C ′

1ϵ1 + C ′
2ϵ2 + C ′

3ϵ1ϵ2,

where C ′
1, C

′
2, C

′
3 are constants that only depend on K,L, n. From these results, we deduce that

UHSIC(Xπ
n )− UHSIC(X̃π

n )

=

(
2

k − 1
− 1

2k − 1
− 1

2k − 3

)
KL+ (C1 − C ′

1)ϵ1 + (C2 − C ′
2)ϵ2 + (C3 − C ′

3)ϵ1ϵ2

(⋆)→
(

2

k − 1
− 1

2k − 1
− 1

2k − 3

)
KL ≥ KL

k

where convergence (⋆) holds as ϵ1, ϵ2 → 0 for each fixed K,L, n, and the last inequality holds for
all k ≥ 2. Therefore, by letting k = n/2 ≥ 2, it holds that

sup
π∈Πn

sup
Xn,X̃n:

dham(Xn,X̃n)≤1

∣∣UHSIC(Xπ
n )− UHSIC(X̃π

n )
∣∣ ≥ 2KL

n
.
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Sensitivity lower bound for n = 2k+1 odd. We now consider the same two datasets as in the
even case but with an additional row consisting of (yb, zb):

Xn =



ya za
...

...
ya za
ya za
ya za
yb zb
...

...
yb zb
yb zb


and X̃n =



ya za
...

...
ya za
ya za
yb zb
yb zb
...

...
yb zb
yb zb


,

where the indices displayed are 1, . . . , k− 2, k− 1, k, k+1, . . . 2k, 2k+1. As before, we indeed have
dham(Xn, X̃n) = 1. Once again, we consider the permutation π which permutes only the k − 1 and
k entries, which leads to

Xπ
n =



ya za
...

...
ya za
ya za
ya za
yb zb
...

...
yb zb
yb zb


and X̃π

n =



ya za
...

...
ya za
ya zb
yb za
yb zb
...

...
yb zb
yb zb


.

To compute UHSIC(Xπ
n ) and UHSIC(X̃π

n ), we use the trick considered in the even case, and find that

UHSIC(Xπ
n ) =

k(k + 1)

4k2 − 1
KL+ C1ϵ1 + C2ϵ2 + C3ϵ1ϵ2

and

UHSIC(X̃π
n ) =

(k + 1)(k − 2)(k2 − 3k − 2)

k(k − 1)(2k − 1)(2k + 1)
KL+ C ′

1ϵ1 + C ′
2ϵ2 + C ′

3ϵ1ϵ2,

where C1, . . . , C
′
3 are constants that only depend on K,L, n. As a result, we have

UHSIC(Xπ
n )− UHSIC(X̃π

n ) =
4(k3 − 2k + 1)

k(k − 1)(4k2 − 1)
KL+ (C1 − C ′

1)ϵ1 + (C2 − C ′
2)ϵ2 + (C3 − C ′

3)ϵ1ϵ2

(⋆)→ 4(k3 − 2k + 1)

k(k − 1)(4k2 − 1)
KL ≥ 2

2k + 1
KL,
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where convergence (⋆) holds as ϵ1, ϵ2 → 0 for each fixed K,L, n, and the last inequality holds for
all k ≥ 2. Therefore we conclude that

sup
π∈Πn

sup
Xn,X̃n:

dham(Xn,X̃n)≤1

∣∣UHSIC(Xπ
n )− UHSIC(X̃π

n )
∣∣ ≥ 2KL

n
,

for any n ≥ 4 (either even or odd). This completes the derivation of the lower bound on the
sensitivity of the HSIC U-statistic. Together with the upper bound (52), this verifies the claim of
Lemma 9.

F.7 Proof of Theorem 15

Let us write the V-statistic of HSIC as

VHSIC =
1

n2

n∑
i,j=1

k(Yi, Yj)ℓ(Zi, Zj) +
1

n4

n∑
i1,i2,j1,j2=1

k(Yi1 , Yj1)ℓ(Zi2 , Zj2)

− 2

n3

n∑
i,j1,j2=1

k(Yi, Yj1)ℓ(Zi, Zj2)

= VHSIC,a + VHSIC,b − 2VHSIC,c,

which is equivalent to the square of ĤSIC. Using the bounded kernel property, it can be seen that

max
{
|UHSIC,a − VHSIC,a|, |UHSIC,b − VHSIC,b|, |UHSIC,c − VHSIC,c|

}
≤ C1

KL

n

for some constant C1 > 0, which leads to

|UHSIC − VHSIC| ≤ C2
KL

n
.

Again, C2 is some positive number. By treating K and L as some fixed numbers, we also note that
Lemma 14 yields

VHSIC =
{
HSICk⊗ℓ(PY Z) +Rn

}2 where Rn = OP (n
−1/2).

Having these ingredients in place, we can essentially follow the same proof strategy as for Theorem 10
and conclude that

lim sup
n→∞

inf
P∈PHSICk⊗ℓ

(ρ)
EPY Z

[ϕudpHSIC] ≤ α.

This completes the proof of Theorem 15.
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F.8 Proof of Theorem 16

Let us denote by C1, C2, . . . constants that may depend on α, β,R,M, dY , dZ . Following the proofs
of Theorem 4 and Theorem 14 along with the sensitivity result for UHSIC in Lemma 9, we may
arrive at the point where the type II error of ϕudpHSIC is upper bounded as

E[1− ϕudpHSIC] ≤ P
(
UHSIC ≤

C1

n
√
λ1 · · ·λdY µ1 · · ·µdZ

+
C2

nλ1 · · ·λdY µ1 · · ·µdZξε,δ

)
+

15

16
β

We then use the proofs of Albert et al. (2022, Theorem 1) and Albert et al. (2022, Theorem 2), and
show that the probability term in the above display is less than or equal to β/16 once

∥ψ∥2L2
≥ C3

{
dY∑
i=1

λ2si +

dZ∑
i=1

µ2si +
1

n
√
λ1 · · ·λdY µ1 · · ·µdZ

+
1

nλ1 · · ·λdY µ1 · · ·µdZξε,δ

}
.

This proves Theorem 11.

G Technical Lemmas

This section collects some technical lemmas used in the main proofs. The first lemma from Kim
(2021) provides an exponential concentration inequality for the permuted MMD statistic with kernel
k.

Lemma 10 (Theorem 5.1 of Kim 2021). Consider two samples Y1, . . . , Yn and Z1, . . . , Zm and write
{X1, . . . , XN} = {Y1, . . . , Yn, Z1, . . . , Zm}. Let us further write k̃(x, y) = k(x, x)+ k(y, y)− 2k(x, y)

and γ = nm/(n+m)2. Define

σ̂2 =
1

N(N − 1)

∑
(i,j)∈iN2

k̃(Xi, Xj).

Then for all t > 0,

Pπ

[
sup
f∈Fk

(
1

n

n∑
i=1

f(Xπi)−
1

m

m∑
i=1

f(Xπi+n)

)
≥ t+

√
σ̂2

2Nγ

∣∣∣∣∣ X1, . . . , XN

]
≤ exp

(
−Nγ

2t2

2σ̂2

)
.

An exponential tail decay in the above comes at a price — it requires that n and m are well-
balanced in the sense that Nγ2 is large. Thus it can be used to show that M̂MD(Xπ

n+m) = oP (1)

under the limited regime where Nγ2 →∞. The lemma below removes this unnecessary constraint
at the expense of having a polynomial tail decay.

Lemma 11 (Markov for the Permuted MMD). Under the setting of Lemma 10 with N = n +m,
we have

P

[
sup
f∈Fk

(
1

n

n∑
i=1

f(Xπi)−
1

m

m∑
i=1

f(Xπi+n)

)
≥ t

]
≤ 2K

nt2
for all t > 0.

Hence M̂MD(Xπ
n+m) = oP (1), provided that Kn−1 → 0.
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Proof. Markov’s inequality together with the V-statistic representation of the empirical MMD yields
that for any t > 0

P

[
sup
f∈Fk

(
1

n

n∑
i=1

f(Xπi)−
1

m

m∑
i=1

f(Xπi+n)

)
≥ t

]

≤ 1

t2

{
1

n2

n∑
i,j=1

E[k(Xπi , Xπj )]︸ ︷︷ ︸
(I)

+
1

m2

m∑
i,j=1

E[k(Xπi+n , Xπj+n)]︸ ︷︷ ︸
(II)

− 2

nm

n∑
i=1

m∑
j=1

E[k(Xπi , Xπj+n)]︸ ︷︷ ︸
(III)

}
.

Exploiting the uniformity of permutation π, we analyze the terms (I), (II) and (III), separately.
The analyses of the first two terms (I) and (II) are similar, and we note that

E[k(Xπi , Xπi)] = E[k(Xπi+n , Xπi+n)] =
1

N

n∑
i=1

E[k(Yi, Yi)] +
1

N

m∑
j=1

E[k(Zj , Zj)]

=
n

N
E[k(Y1, Y1)] +

m

N
E[k(Z1, Z1)]

and for i ̸= j,

E[k(Xπi , Xπj )] = E[k(Xπi+n , Xπj+n)]

=
1

N(N − 1)

{ ∑
(i,j)∈in2

E[k(Yi, Yj)] +
∑

(i,j)∈im2

E[k(Zi, Zj)] + 2

n∑
i=1

m∑
j=1

E[k(Yi, Zj)]

}

=
n(n− 1)

N(N − 1)
E[k(Y1, Y2)] +

m(m− 1)

N(N − 1)
E[k(Z1, Z2)] +

2nm

N(N − 1)
E[k(Y1, Z1)].

Therefore

(I) =
n

nN
E[k(Y1, Y1)] +

m

nN
E[k(Z1, Z1)]

+
n− 1

n

{
n(n− 1)

N(N − 1)
E[k(Y1, Y2)] +

m(m− 1)

N(N − 1)
E[k(Z1, Z2)] +

2nm

N(N − 1)
E[k(Y1, Z1)]

}
and

(II) =
n

mN
E[k(Y1, Y1)] +

m

mN
E[k(Z1, Z1)]

+
m− 1

m

{
n(n− 1)

N(N − 1)
E[k(Y1, Y2)] +

m(m− 1)

N(N − 1)
E[k(Z1, Z2)] +

2nm

N(N − 1)
E[k(Y1, Z1)]

}
.

On the other hand, the last term (III) is

(III) =
2n(n− 1)

N(N − 1)
E[k(Y1, Y2)] +

2m(m− 1)

N(N − 1)
E[k(Z1, Z2)] +

4nm

N(N − 1)
E[k(Y1, Z1)].
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Given that kernel k is non-negative and bounded by K, we can upper bound (I) + (II)− (III) as

(I) + (II)− (III) ≤
(
n

nN
+

m

nN
+

n

mN
+

m

mN

)
K =

n+m

nm
K

≤ 2K

n
.

Hence the result follows.

The lemma below presents a concentration bound for the permuted HSIC statistic. It is worth
noting that obtaining the logarithmic dependence on α is non-trivial, and thus we highlight it as
our contribution.

Lemma 12 (Concentration Inequality for Permuted HSIC). Assume that the kernels k and ℓ are
bounded as 0 ≤ k(y, y′) ≤ K and 0 ≤ ℓ(z, z′) ≤ L for all y, y′ ∈ Y and z, z′ ∈ Z. Then for any
α ∈ (0, 1),

Pπ

(
ĤSIC(Xπ

n ) ≥ C
√
KL

n
max

{
log1/4

(
1

α

)
, log1/2

(
1

α

)
, 1

} ∣∣∣∣Xn

)
≤ α,

where C is some positive constant.

Proof. The proof is based on Kim et al. (2022a, Theorem 6.2) that establishes an exponential tail
bound for a permuted U-statistic of HSIC. Given Xπ

n , let us denote the permuted U-statistic by

Uπ,HSIC =
(n− 2)!

n!

∑
(i,j)∈in2

k(Yi, Yj)ℓ(Zπi , Zπj ) +
(n− 4)!

n!

∑
(i1,i2,j1,j2)∈in4

k(Yi1 , Yj1)ℓ(Zπi2
, Zπj2

)

−2(n− 3)!

n!

∑
(i,j1,j2)∈in3

k(Yi, Yj1)ℓ(Zπi , Zπj2
),

where inm stands for the set of all m-tuples drawn from [n] without replacement. Kim et al. (2022a,
Theorem 6.2) shows that Uπ,HSIC satisfies

Pπ

(
Uπ,HSIC ≥ t | Xn

)
≤ exp

{
− C1min

(
t2

Σ2
n

,
t

Σn

)}
for all t > 0,

where

Σ2
n =

1

n2(n− 1)2
sup

π∈Πn

{ ∑
(i,j)∈in2

k2(Yi, Yj)ℓ
2(Zπi , Zπj )

}
≤ 1

n(n− 1)
K2L2.

The inequality above holds under the assumption that k and ℓ are uniformly bounded by K and L.
Therefore, under the assumption of Lemma 12,

Pπ

(
Uπ,HSIC ≥ t | Xn

)
≤ exp

{
− C2min

(
n2t2

K2L2
,
nt

KL

)}
for all t > 0. (53)
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On the other hand, the squared empirical HSIC can be written in the form of a V-statistic given as

ĤSIC
2
(Xπ

n ) =
1

n2

n∑
i,j=1

k(Yi, Yj)ℓ(Zπi , Zπj ) +
1

n4

n∑
i1,i2,j1,j2=1

k(Yi1 , Yj1)ℓ(Zπi2
, Zπj2

)

− 2

n3

n∑
i,j1,j2=1

k(Yi, Yj1)ℓ(Zπi , Zπj2
),

and we note that the difference between the U-statistic and the V-statistic is bounded as∣∣Uπ,HSIC − ĤSIC
2
(Xπ

n )
∣∣

≤
∣∣∣∣(n− 2)!

n!

∑
(i,j)∈in2

k(Yi, Yj)ℓ(Zπi , Zπj )−
1

n2

n∑
i,j=1

k(Yi, Yj)ℓ(Zπi , Zπj )

∣∣∣∣
+

∣∣∣∣(n− 4)!

n!

∑
(i1,i2,j1,j2)∈in4

k(Yi1 , Yj1)ℓ(Zπi2
, Zπj2

)− 1

n4

n∑
i1,i2,j1,j2=1

k(Yi1 , Yj1)ℓ(Zπi2
, Zπj2

)

∣∣∣∣
+

∣∣∣∣2(n− 3)!

n!

∑
(i,j1,j2)∈in3

k(Yi, Yj1)ℓ(Zπi , Zπj2
)− 2

n3

n∑
i,j1,j2=1

k(Yi, Yj1)ℓ(Zπi , Zπj2
)

∣∣∣∣
≤ C3

KL

n
, (54)

for any π and Xn. Using the above bound (54) and letting t > 0, we convert the concentration
inequality for the permuted empirical HSIC into that for the permuted U-statistic as

Pπ

(
ĤSIC(Xπ

n ) ≥ t | Xn

)
= Pπ

(
ĤSIC

2
(Xπ

n ) ≥ t2 | Xn

)
= Pπ

(
ĤSIC

2
(Xπ

n )− Uπ,HSIC + Uπ,HSIC ≥ t2 | Xn

)
≤ Pπ

(∣∣ĤSIC2
(Xπ

n )− Uπ,HSIC

∣∣+ Uπ,HSIC ≥ t2 | Xn

)
(i)

≤ Pπ

(
Uπ,HSIC ≥ t2 − C3

KL

n
| Xn

)
(ii)

≤ Pπ

(
Uπ,HSIC ≥

t2

2
| Xn

)
(iii)

≤ exp

{
− C4min

(
n2t4

K2L2
,
nt2

KL

)}
where step (i) uses the bound (54), step (ii) assumes that t2 ≥ 2C3

KL
n and step (iii) follows by

concentration inequality (53). Setting the last exponential bound to α and solving for t yield the
desired result.
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We recall the concentration inequality of the empirical MMD presented by Gretton et al. (2012),
which has been used in various places throughout the paper.

Lemma 13 (Theorem 7 of Gretton et al. 2012). Assume that the kernel k is bounded as 0 ≤
k(x, y) ≤ K for all x, y ∈ S. Then for any t > 0

P
{∣∣∣∣M̂MD(Xn+m)−MMDk(P,Q)

∣∣∣∣ > 2

(√
K

m
+

√
K

n

)
+ t

}
≤ 2 exp

(
− t2mn

2K(m+ n)

)
.

The following is a counterpart to Lemma 13 for the empirical HSIC. While similar results exist
in the literature (e.g., Gretton et al., 2005, Theorem 3), none precisely align with our specific
requirements. Hence we opt to present a detailed proof of the following result.

Lemma 14 (Exponential Inequality for the Empirical HSIC). Assume that the kernels k and ℓ are
bounded as 0 ≤ k(y, y′) ≤ K and 0 ≤ ℓ(z, z′) ≤ L for all y, y′ ∈ Y and z, z′ ∈ Z. Then for any
t ≥ 0,

P
{∣∣ĤSIC(Xn)−HSICk⊗ℓ(PY Z)

∣∣ ≥ C1

√
KL

n
+ t

}
≤ 2 exp

(
−C2t

2n

KL

)
,

where C1, C2 are positive constants.

Proof. Throughout the proof, we denote by C1, C2, . . . some generic positive constants. By Lemma 6,
the empirical HSIC has global sensitivity at most C1

√
KL/n. Thus an application of McDiarmid’s

inequality (Gretton et al., 2012, Theorem 29) yields

P
{∣∣ĤSIC(Xn)− E

[
ĤSIC(Xn)

]∣∣ ≥ t} ≤ 2 exp

(
−C2t

2n

KL

)
for all t ≥ 0. (55)

Now we bound the difference between the expectation of ĤSIC(Xn) and the population HSIC as∣∣E[ĤSIC(Xn)
]
−HSICk⊗ℓ(PY Z)

∣∣
=

∣∣∣∣E[ sup
f∈Fk⊗ℓ

{
1

n

n∑
i=1

f(Yi, Zi)−
1

n2

n∑
i,j=1

f(Yi, Zj)

}]
− sup

f∈Fk⊗ℓ

{
EPY Z

[f(Y,Z)]− EPY PZ
[f(Y, Z)]

}∣∣∣∣
(i)

≤ E
∣∣∣∣ sup
f∈Fk⊗ℓ

{
1

n

n∑
i=1

f(Yi, Zi)−
1

n2

n∑
i,j=1

f(Yi, Zj)

}
− sup

f∈Fk⊗ℓ

{
EPY Z

[f(Y, Z)]− EPY PZ
[f(Y, Z)]

}∣∣∣∣
(ii)

≤ E
∣∣∣∣ sup
f∈Fk⊗ℓ

{
1

n

n∑
i=1

f(Yi, Zi)− EPY Z
[f(Y, Z)]− 1

n2

n∑
i,j=1

f(Yi, Zj) + EPY PZ
[f(Y,Z)]

}∣∣∣∣
(iii)

≤ E sup
f∈Fk⊗ℓ

∣∣∣∣ 1n
n∑

i=1

f(Yi, Zi)− EPY Z
[f(Y,Z)]

∣∣∣∣︸ ︷︷ ︸
:=(I)

+E sup
f∈Fk⊗ℓ

∣∣∣∣ 1n2
n∑

i,j=1

f(Yi, Zj)− EPY PZ
[f(Y,Z)]

∣∣∣∣︸ ︷︷ ︸
:=(II)

,
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where step (i) uses Jensen’s inequality, step (ii) uses the reverse triangle inequality and step (iii)
follows by the triangle inequality. Let {(Ỹi, Z̃i)}ni=1 be i.i.d. copies of (Y1, Z1), and {ϵi}ni=1 be
i.i.d. Rademacher random variables. Then Jensen’s inequality in conjunction with symmetrization
yields

(I) ≤ E sup
f∈Fk⊗ℓ

∣∣∣∣ 1n
n∑

i=1

ϵi
{
f(Yi, Zi)− f(Ỹi, Z̃i)

}∣∣∣∣
≤ 2E sup

f∈Fk⊗ℓ

∣∣∣∣ 1n
n∑

i=1

ϵif(Yi, Zi)

∣∣∣∣ ≤ 2

√
KL

n
, (56)

where the last inequality is due to Bartlett and Mendelson (2002, Lemma 22). For the second term,

(II)
(i)

≤ 1

n

n∑
j=1

E sup
f∈Fk⊗ℓ

∣∣∣∣ 1n
n∑

i=1

f(Yi, Zj)− EPY PZ
[f(Y, Z)]

∣∣∣∣
= E sup

f∈Fk⊗ℓ

∣∣∣∣ 1n
n∑

i=2

f(Yi, Z1) +
f(Y1, Z1)

n
− EPY PZ

[f(Y, Z)]

∣∣∣∣
(ii)

≤ E sup
f∈Fk⊗ℓ

∣∣∣∣ 1n
n∑

i=2

f(Yi, Z1)− EPY PZ
[f(Y,Z)]

∣∣∣∣+ 1

n
E sup

f∈Fk⊗ℓ

|f(Y1, Z1)|

(iii)

≤ E sup
f∈Fk⊗ℓ

∣∣∣∣ 1

n− 1

n∑
i=2

f(Yi, Z1)− EPY PZ
[f(Y, Z)]

∣∣∣∣
+

1

n(n− 1)

n∑
i=2

E sup
f∈Fk⊗ℓ

|f(Yi, Z1)|+
1

n
E sup

f∈Fk⊗ℓ

|f(Y1, Z1)|,

where step (i) follows by Jensen’s inequality and step (ii) and step (iii) use the triangle inequality.
Let Hk⊗ℓ be the reproducing kernel Hilbert space with the product kernel k ⊗ ℓ. Then by the
reproducing property and the Cauchy–Schwarz inequality, we have

sup
f∈Fk⊗ℓ

|f(y, z)| = sup
f∈Fk⊗ℓ

|⟨k(·, y)ℓ(·, z), f⟩Hk⊗ℓ
| ≤

√
k(y, y)ℓ(z, z) sup

f∈Fk⊗ℓ

∥f∥Hk⊗ℓ
≤
√
KL

for all y ∈ Y, z ∈ Z. Using this inequality and letting {(Ỹi, Z̃1)}ni=2 be i.i.d. copies of {(Yi, Z1)}ni=2

and recalling that {ϵi}ni=1 are i.i.d. Rademacher random variables, the second term can be further
bounded by

(II) ≤ E sup
f∈Fk⊗ℓ

∣∣∣∣ 1

n− 1

n∑
i=2

f(Yi, Z1)− EPY PZ
[f(Y,Z)]

∣∣∣∣+ 2
√
KL

n

= E sup
f∈Fk⊗ℓ

∣∣∣∣ 1

n− 1

n∑
i=2

f(Yi, Z1)−
1

n− 1

n∑
i=2

E[f(Ỹi, Z̃1)]

∣∣∣∣+ 2
√
KL

n
(57)

≤ E sup
f∈Fk⊗ℓ

∣∣∣∣ 1

n− 1

n∑
i=2

f(Yi, Z1)− f(Ỹi, Z̃1)

∣∣∣∣+ 2
√
KL

n
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= E
{
E
[

sup
f∈Fk⊗ℓ

∣∣∣∣ 1

n− 1

n∑
i=2

ϵi{f(Yi, Z1)− f(Ỹi, Z̃1)}
∣∣∣∣ ∣∣∣Z1, Z̃1

]}
+

2
√
KL

n
(58)

≤ 2E
{
E
[

sup
f∈Fk⊗ℓ

∣∣∣∣ 1

n− 1

n∑
i=2

ϵif(Yi, Z1)

∣∣∣∣ ∣∣∣Z1

]}
+

2
√
KL

n

≤ 2

√
KL

n− 1
+

2
√
KL

n
, (59)

where the last inequality is due to Bartlett and Mendelson (2002, Lemma 22). Putting the inequal-
ities (56) and (59) together, we have

∣∣E[ĤSIC(Xn)
]
−HSICk⊗ℓ(PY Z)

∣∣ ≤ C3

√
KL

n
.

The above inequality along with McDiarmid’s inequality (55) yields

P
{∣∣ĤSIC(Xn)−HSICk⊗ℓ(PY Z)

∣∣ ≥ t+ C3

√
KL

n

}
≤ 2 exp

(
−C2t

2n

KL

)
for all t ≥ 0.

Hence we complete the proof of Lemma 14.

The below lemma is folklore in the literature (e.g., Romano and Wolf, 2005, Lemma 1) where we
recall ⌊x⌋ denotes the largest integer smaller than or equal to x. We provide a proof for completeness.

Lemma 15 (Permutation p-value). Suppose that X1, . . . , Xn, Xn+1 are exchangeable random vari-
ables. Then for any α ∈ [0, 1], it holds that

P
(

1

n+ 1

{ n∑
i=1

1(Xn+1 ≤ Xi) + 1

}
≤ α

)
≤ ⌊(n+ 1)α⌋

n+ 1
≤ α.

Suppose further that X1, . . . , Xn+1 are all distinct with probability one. Then

P
(

1

n+ 1

{ n∑
i=1

1(Xn+1 ≤ Xi) + 1

}
≤ α

)
=
⌊(n+ 1)α⌋
n+ 1

.

Proof. Let X(1) ≤ X(2) ≤ . . . ≤ X(n+1) be the order statistics of X1, . . . , Xn+1. Then we have a
series of the identities:

1

n+ 1

{ n∑
i=1

1(Xn+1 ≤ Xi) + 1

}
=

1

n+ 1

n+1∑
i=1

1(Xn+1 ≤ Xi) ≤ α

⇐⇒
n+1∑
i=1

1(Xn+1 ≤ Xi) ≤ ⌊(n+ 1)α⌋

⇐⇒
n+1∑
i=1

1(Xi < Xn+1) ≥ (n+ 1)− ⌊(n+ 1)α⌋ := k
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⇐⇒ Xn+1 > X(k).

Now by the exchangeability condition, we have

P(Xn+1 > X(k)) = E
[

1

n+ 1

n+1∑
i=1

1(Xi > X(k))

]
.

On the other hand, by the definition of X(k),

1

n+ 1

n+1∑
i=1

1(Xi > X(k)) ≤
n+ 1− k
n+ 1

=
⌊(n+ 1)α⌋
n+ 1

.

Hence the first result follows. When X1, . . . , Xn+1 are all distinct, observe

n+1∑
i=1

1(Xi > X(k)) = n+ 1− k.

Thus

E
[

1

n+ 1

n+1∑
i=1

1(Xi > X(k))

]
=
n+ 1− k
n+ 1

=
⌊(n+ 1)α⌋
n+ 1

.

The permutation test is often slightly conservative due to its discrete nature. The following
randomization trick is well-known in the literature (e.g., Lehmann and Romano, 2005, Chapter 15),
which modifies the permutation test to have type I error exactly equal to α.

Lemma 16 (Randomized Tests). For given α ∈ (0, 1) and γ ∈ (0, α], consider a test function ϕ

such that PH0(ϕ = 1) = γ ≤ α. Letting U be a uniform random variable on [0, 1] independent of ϕ,
define a randomized test ϕrand as

ϕrand = ϕ+ (1− ϕ)× 1
(
U ≤ α− γ

1− γ

)
.

The randomized test ϕrand has type I error exactly equal to α, and power never worse than that of
ϕ, i.e., PH0(ϕrand = 1) = α and PH1(ϕrand = 1) ≥ PH1(ϕ = 1).

Proof. Type I error control is immediate given that

EH0 [ϕrand] = EH0 [ϕ] + EH0 [1− ϕ]× PH0

(
U ≤ α− γ

1− γ

)
= γ + (1− γ)× α− γ

1− γ
= α.

The second claim about the power is also immediate given that ϕrand ≥ ϕ.
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The permutation test can be expressed in terms of the permutation p-value as well as the quantile
of the permutation distribution, which can be justified by the following lemma.

Lemma 17 (Quantile Representation). For any α ∈ [0, 1] and dataset {X1, . . . , Xn+1}, we have
the identity

1

(
1

n+ 1

{ n∑
i=1

1(Xn+1 ≤ Xi) + 1

}
≤ α

)
= 1

(
Xn+1 > q1−α

)
,

where q1−α is the 1− α quantile of {X1, . . . , Xn+1} given as

q1−α = inf

{
t ∈ R :

1

n+ 1

n+1∑
i=1

1(Xi ≤ t) ≥ 1− α
}
.

Moreover, by letting X(⌈(1−α)(n+1)⌉) denote the ⌈(1 − α)(n + 1)⌉th order statistic of X1, . . . , Xn+1

and X(0) = −∞, we have q1−α = X(⌈(1−α)(n+1)⌉).

Proof. The second claim follows by noting that

q1−α = inf

{
t ∈ R :

1

n+ 1

n+1∑
i=1

1(Xi ≤ t) ≥ 1− α
}

= inf

{
t ∈ R :

1

n+ 1

n+1∑
i=1

1(Xi < t) ≥ 1− α
}

(60)

= inf

{
t ∈ R :

n+1∑
i=1

1(Xi < t) ≥ (1− α)(n+ 1)

}
= X(⌈(1−α)(n+1)⌉).

For the first claim, denote G(x) =
∑n+1

i=1 1(Xi < x), which is a left-continuous step function. We
then have

1

(
1

n+ 1

{ n∑
i=1

1(Xn+1 ≤ Xi) + 1

}
≤ α

)
= 1

(
G(Xn+1) ≥ (1− α)(n+ 1)

)
≤ 1(Xn+1 > q1−α)

where the last step follows since G is a left-continuous step function. In more detail, suppose that
G(Xn+1) ≥ (1− α)(n+ 1). Since G is a left-continuous step function, there exists a small constant
ϵ > 0 such that G(Xn+1 − ϵ) = G(Xn+1) ≥ (1 − α)(n + 1). Therefore, Xn+1 cannot be the 1 − α
quantile and should be greater than q1−α.

Moreover, the event Xn+1 > q1−α implies that G(Xn+1) ≥ (1 − α)(n + 1) by the definition of
q1−α as in expression (60). Hence we conclude that

1
(
G(Xn+1) ≥ (1− α)(n+ 1)

)
= 1(Xn+1 > q1−α),

and the first claim follows.
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The next lemma plays a crucial role in proving the validity of the differentially private permu-
tation test in Algorithm 1.

Lemma 18 (Alternative Expression). Given α ∈ (0, 1) and n ≥ 1, set

α⋆ = max

{(
n+ 1

n
α− 1

n

)
, 0

}
.

Then for dataset {X1, . . . , Xn+1}, we have the identity

1(Xn+1 > q1−α) = 1(Xn+1 > r1−α⋆)1

(
α ≥ 1

n+ 1

)
,

where q1−α and r1−α⋆ are the 1 − α quantile of {Xi}n+1
i=1 and the 1 − α⋆ quantile of {Xi}ni=1,

respectively.

Proof. For α ∈ (0, 1
n+1), q1−α becomes the maximum of X1, . . . , Xn+1 for which 1(Xn+1 > q1−α) =

0. Similarly, it becomes

1(Xn+1 > r1−α⋆)1

(
α ≥ 1

n+ 1

)
= 0.

Hence we only need to verify the identity under α ≥ 1
n+1 . In what follows, we assume α ≥ 1

n+1 and
show that 1(Xn+1 > q1−α) = 1(Xn+1 > r1−α⋆).

Remark that the 1− α quantile of {X1 + c, . . . ,Xn+1 + c} is the same as the 1− α quantile of
{X1, . . . , Xn+1} plus c for any c ∈ R. Using this location-shift property of quantiles, observe that

1(Xn+1 > q1−α) = 1

(
0 > inf

{
x ∈ R :

1

n+ 1

n+1∑
i=1

1(Xi −Xn+1 ≤ x) ≥ 1− α
})

= 1

(
0 > inf

{
x ∈ R :

1

n

n∑
i=1

1(Xi −Xn+1 ≤ x) ≥
n+ 1

n
(1− α)− 1(0 ≤ x)

n

})

≥ 1

(
0 > inf

{
x ∈ R :

1

n

n∑
i=1

1(Xi −Xn+1 ≤ x) ≥
n+ 1

n
(1− α)

})
(†)
= 1

(
0 > inf

{
x ∈ R :

1

n

n∑
i=1

1(Xi −Xn+1 ≤ x) ≥ min

[
n+ 1

n
(1− α), 1

]})
= 1(Xn+1 > r1−α⋆).

where the equality (†) holds under α ≥ 1
n+1 . Therefore it holds that 1(Xn+1 > q1−α) ≥ 1(Xn+1 >

r1−α⋆).
Next we prove the other direction 1(Xn+1 > q1−α) ≤ 1(Xn+1 > r1−α⋆). Note that the infimum

in the definition of a quantile can be replaced by the minimum so that

1

n+ 1

n+1∑
i=1

1(Xi −Xn+1 ≤ q1−α −Xn+1︸ ︷︷ ︸
:=q̃1−α

) ≥ 1− α.
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Having this in mind, for α ≥ 1
n+1 , assume Xn+1 > q1−α (equivalently 0 > q̃1−α) under which it

holds that

1

n

n∑
i=1

1(Xi −Xn+1 ≤ q̃1−α) ≥
n+ 1

n
(1− α)− 1(0 ≤ q̃1−α)

n
=
n+ 1

n
(1− α)

⇐⇒ 1

n

n∑
i=1

1(Xi −Xn+1 ≤ q̃1−α) ≥ min

{
n+ 1

n
(1− α), 1

}
.

This implies that q̃1−α ≥ r1−α⋆−Xn+1 := r̃1−α⋆ by the definition of r1−α⋆ . Consequently, 1(Xn+1 >

q1−α) ≤ 1(q̃1−α ≥ r̃1−α⋆), which further implies that

1(Xn+1 > q1−α) ≤ 1(q̃1−α ≥ r̃1−α⋆)1(Xn+1 > q1−α) ≤ 1(0 > r̃1−α⋆) = 1(Xn+1 > r1−α⋆).

Thus we conclude that 1(Xn+1 > q1−α) = 1(Xn+1 > r1−α⋆) for α ≥ 1
n+1 as well. This completes

the proof of Lemma 18.

The next result is concerned with the global sensitivity of the quantiles.

Lemma 19 (Sensitivity of Quantiles). Suppose that the test statistic T has the global sensitivity
at most ∆T as in (4). Let us denote by r1−α

(
Xn; {πi, ζi}Bi=1

)
the 1 − α quantile of {Mi}Bi=1 where

Mi = T (Xπi
n ) + 2∆T ξ

−1
ε,δ ζi with ξε,δ = ε+ log(1/(1− δ)) and ζi

i.i.d.∼ Laplace(0, 1) for i ∈ [B]. Then
for any α ∈ [0, 1), the global sensitivity of the 1− α quantile satisfies

sup
Xn,X̃n:

dham(Xn,X̃n)≤1

∣∣r1−α

(
Xn; {πi, ζi}Bi=1

)
− r1−α

(
X̃n; {πi, ζi}Bi=1

)∣∣ ≤ ∆T ,

for any permutations π1, . . . ,πB and any ζ1, . . . , ζB
i.i.d.∼ Laplace(0, 1).

Proof. Let X̃n be a neighboring dataset of Xn where X̃n and Xn differ only in their kth component
for some k ∈ [n]. Denote the permuted test statistics computed on X̃π1

n , . . . , X̃πB
n by T̃1, . . . , T̃B.

For simplicity, we write r1−α = r1−α

(
Xn; {πi, ζi}Bi=1

)
and r̃1−α = r1−α

(
X̃n; {πi, ζi}Bi=1

)
. Having this

notation, first note that Ti ≥ T̃i −∆T for all i ∈ [B] under the assumption of (4) and thus

1− α ≤ 1

B

B∑
i=1

1(Ti + 2∆T ξ
−1
ε,δ ζi ≤ r1−α) ≤

1

B

B∑
i=1

1(T̃i + 2∆T ξ
−1
ε,δ ζi ≤ r1−α +∆T ),

which implies that r̃1−α ≤ r1−α +∆T .
Next we argue that r̃1−α ≥ r1−α −∆T . For this direction, let ϵ > 0 be an arbitrary constant.

Then by the definition of r1−α and Ti ≤ T̃i +∆T for all i ∈ [B],

1− α > 1

B

B∑
i=1

1(Ti + 2∆T ξ
−1
ε,δ ζi ≤ r1−α − ϵ) ≥

1

B

B∑
i=1

1(T̃i + 2∆T ξ
−1
ε,δ ζi ≤ r1−α − ϵ−∆T ).

Hence r̃1−α > r1−α − ϵ−∆T . Since ϵ is arbitrary, we conclude r̃1−α ≥ r1−α −∆T . In summary, we
have established that |r1−α− r̃1−α| ≤ ∆T , which holds for any k ∈ [n], any permutations π1, . . . ,πB

and any ζ1, . . . , ζB
i.i.d.∼ Laplace(0, 1). Therefore, the desired claim follows.
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The Laplace mechanism introduces a perturbed statistic by adding Laplace noise. Instead of
directly studying quantiles of this perturbed statistic, it is often easier to analyze the quantiles of
the original statistic and the quantiles of the added Laplace noise separately. These results can then
be combined using the following quantile inequality.

Lemma 20 (Quantile Inequality). Let qX+Y
1−α be the 1− α quantile of X + Y . Similarly, let qX1−α/2

and qY1−α/2 be the 1− α/2 quantile of X and Y , respectively. Then qX+Y
1−α ≤ qX1−α/2 + qY1−α/2.

Proof. Note that if {X + Y > qX1−α/2 + qY1−α/2}, then at least one of the events {X > qX1−α/2} and
{Y > qY1−α/2} should occur (otherwise contradiction). This together with the union bound yields

P
(
X + Y > qX1−α/2 + qY1−α/2

)
≤ P

(
X > qX1−α/2

)
+ P

(
Y > qY1−α/2

)
≤ α,

where the last inequality follows by the definition of quantile. The above implies that the 1 − α
quantile of X + Y is less than or equal to qX1−α/2 + qY1−α/2 and therefore the claim follows.

The following lemma computes the difference between the V-statistic and U-statistic of the
squared HSIC, which is useful in the proof of Theorem 14.

Lemma 21 (Difference between VHSIC and UHSIC). Recall ĤSIC
2

given in (12) and UHSIC given in
(21). Suppose that kernels satisfy k(y, y) = K and ℓ(z, z) = L for all y ∈ Y and z ∈ Z. Then the
difference between ĤSIC

2
and UHSIC is computed as follows:

ĤSIC
2
− UHSIC = D1 +D2,

where

D1 =
n− 1

n2
KL− L

n3

∑
(i,j)∈in2

k(Yi, Yj)−
K

n3

∑
(i,j)∈in2

ℓ(Zi, Zj)

D2 = − 3n2 − 4n+ 2

(n− 1)n4

∑
(i,j)∈in2

k(Yi, Yj)ℓ(Zi, Zj) +
2(5n2 − 8n+ 4)

n4(n− 1)(n− 2)

∑
(i,j1,j2)∈in3

k(Yi, Yj1)ℓ(Zi, Zj2)

− 6n2 − 11n+ 6

n4(n− 1)(n− 2)(n− 3)

∑
(i1,i2,j1,j2)∈in4

k(Yi1 , Yi2)ℓ(Zj1 , Zj2).

Remark. The term D1 is invariant to any permutation of either Y values or Z values.

Proof. Write the squared empirical HSIC in (12) as VHSIC and the U-statistic of the squared HSIC
as UHSIC. Note that VHSIC = Va + Vb − 2Vc where

Va =
1

n2

n∑
i,j=1

k(Yi, Yj)ℓ(Zi, Zj), Vb =
1

n4

n∑
i1,i2,j1,j2=1

k(Yi1 , Yi2)ℓ(Zj1 , Zj2),
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Vc =
1

n3

n∑
i,j1,j2=1

k(Yi, Yj1)ℓ(Zi, Zj2),

and each term can be expressed as

Va =
KL

n
+

1

n2

∑
(i,j)∈in2

k(Yi, Yj)ℓ(Zi, Zj),

Vb =
KL

n3
+

2K

n4

∑
(i,j)∈in2

ℓ(Zi, Zj) +
2L

n4

∑
(i,j)∈in2

k(Yi, Yj) +
KLn(n− 1)

n4

+
K(n− 2)

n4

∑
(i,j)∈in2

ℓ(Zi, Zj) +
L(n− 2)

n4

∑
(i,j)∈in2

k(Yi, Yj)

+
2

n4

∑
(i,j)∈in2

k(Yi, Yj)ℓ(Zi, Zj) +
4

n4

∑
(i,j1,j2)∈in3

k(Yi, Yj1)ℓ(Zi, Zj2)

+
1

n4

∑
(i1,i2,j1,j2)∈in3

k(Yi1 , Yi2)ℓ(Zj1 , Zj2) and

Vc =
KL

n2
+
K

n3

∑
(i,j)∈in2

ℓ(Zi, Zj) +
L

n3

∑
(i,j)∈in2

k(Yi, Yj)

+
1

n3

∑
(i,j)∈in2

k(Yi, Yj)ℓ(Zi, Zj) +
1

n3

∑
(i,j1,j2)∈in3

k(Yi, Yj1)ℓ(Zi, Zj2).

Note also that UHSIC can be written as UHSIC = Ua + Ub − 2Uc where

Ua =
1

n(n− 1)

∑
(i,j)∈in2

k(Yi, Yj)ℓ(Zi, Zj),

Ub =
(n− 4)!

n!

∑
(i1,i2,j1,j2)∈in4

k(Yi1 , Yj1)ℓ(Zi2 , Zj2) and

Uc =
1

n(n− 1)(n− 2)

∑
(i,j1,j2)∈in3

k(Yi, Yj1)ℓ(Zi, Zj2).

The result follows by calculating Va − Ua, Vb − Ub and −2Vc + 2Uc, and simplifying their sum via
algebra.
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