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POMDP-BCI: A benchmark of (re)active BCI
using POMDP to issue commands

Juan J. Torre Tresols, Caroline P. C. Chanel, Frédéric Dehais

Abstract— Objective: Past research in Brain-Computer
Interfaces (BCI) have presented different decoding algo-
rithms for different modalities. Meanwhile, highly specific
decision making processes have been developed for some
of these modalities, while others lack such a component
in their classic pipeline. The present work proposes a
model based on Partially Observable Markov Decission
Process (POMDP) that works as a high-level decision mak-
ing framework for three different active/reactive BCI modal-
ities. Methods: We tested our approach on three different
BCI modalities using publicly available datasets. We com-
pared the general POMDP model as a decision making
process with state of the art methods for each BCI modality.
Accuracy, false positive (FP) trials, no-action (NA) trials
and average decision time are presented as metrics. Re-
sults: Our results show how the presented POMDP models
achieve comparable or better performance to the presented
baseline methods, while being usable for the three pro-
posed experiments without significant changes. Crucially,
it offers the possibility of taking no-action (NA) when the
decoding does not perform well.Conclusion: The present
work implements a flexible POMDP model that acts as a
sequential decision framework for BCI systems that lack
such a component, and perform comparably to those that
include it. Significance: We believe the proposed POMDP
framework provides several interesting properties for fu-
ture BCI developments, mainly the generalizability to any
BCI modality and the possible integration of other physi-
ological or brain data pipelines under a unified decision-
making framework.

Index Terms— Brain-computer interface, EEG, POMDP,
Active Perception

I. INTRODUCTION

Brain-computer interfaces (BCI) are systems that enable
the communication between the user and a machine without
the direct intervention of motor pathways [1]. Active and
reactive brain-computer interface (BCI) systems allow users
to send commands to machines using different types of brain
activity, such as imagined motor movements (MI) [2]), or
exposition to certain types of stimuli (i.e., steady-state visual
evoked potentials (SSVEP) [3] or other evoked potentials (e.g.
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P300) [4]) in response to specific stimuli. However, many BCI
implementations suffer from limitations, such as the inability
of the system to remain in an ”idle” or ”waiting” state and
not take (a wrong) action. This is a crucial limitation that
must be addressed in order to ensure that BCI systems are
safe and effective for use in various applications [5]–[9]. In
addition, these BCI implementations require the specification
of several system parameters in advance, such as the length
of the data window to be analyzed and any thresholding
parameters required by the decoding algorithm, which must
be set equally for all users. [10]–[13].

At a conceptual level, brain-computer interfaces (BCIs)
enable user-machine communication by decoding the user’s
cerebral activity using brain imaging techniques such as
electroencephalography (EEG) [14]. From this perspective,
the BCI problem can be seen as an agent trying to obtain
information about a hidden true state in the user’s brain in
order to determine which action or command needs to be
performed by the machine.

Interestingly, the field of active perception presents a
scheme that aims to reduce uncertainty about an unknown
variable by collecting useful information from the environ-
ment [15]. According to [16], the goal of active perception
is to collect observations to predict the values of unknown
variables. In its simplest form, a brain-computer interface
(BCI) can be viewed as an active perception scheme that
collects observations from the user’s brain and decides to wait
if there is not enough information available to make a decision.

A popular approach for this paradigm is to formulate it
as a sequential decision-making problem based on the Par-
tially Observable Markov Decision Process (POMDP) [17].
POMDPs provide a versatile framework for decision-making
in the face of uncertainties related to an agent’s perception
capabilities and the effects of its actions. From an active
perception standpoint, POMDPs can enable an agent to decide
how long to engage in perception (e.g., by taking information-
acquisition actions) until sufficient information has been gath-
ered to accurately identify a hidden state (e.g., by performing
an identification action).

In this context, the objective of the current work is to
evaluate an active perception POMDP-based paradigm on
BCIs by implementing and testing a POMDP-BCI framework
on three different active/re-active BCIs: SSVEP, Code-VEP
(CVEP) and MI. Specifically, modeling aspects are presented
and performance of the proposed framework is discussed
and evaluated against classic decoding methods for each of
these approaches. Then, current limitations and future research
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directions of such a POMDP-BCI approach are addressed.
The rest of the paper is structured as follows: First, section

II will discuss previous research on POMDP applied to active
perception, POMDP applied to human-machine interaction,
and finally POMDP applied to BCIs. Then, Section III contains
detailed explanations of the datasets employed, followed by
the POMDP model definition and explanation. The results
section reports the accuracy, number of false positives, the
decision time and the number of trials where the POMDP
decides not to act (called ”no-action” trials or NA) for all
the different BCI approaches. Finally, the discussion section
will comment on the results and discuss limitations and future
directions of the proposed framework.

II. RELATED WORK

A. POMDP and Active Perception
Although active perception problems have been addressed

by numerous probabilistic planning frameworks, a number of
studies have formalized such a problem using the POMDP
framework [18]–[22], which allows to plan actions (e.g. con-
trols) that maximize a long-term objective (i.e., a non-myopic
course of actions) in environments where selecting the most
relevant sources of information is crucial. In particular, Guo
et al. (2003) [22] proposed a method to represent an active
sensing problem as a POMDP, where each state of the model
corresponds to a different class of objects to be classified. This
approach is similar to the one used in the BCI problem, which
is described in more detail in section III-A.

Another relevant application of POMDP for active sensing
is when there are numerous information sources available to
the agent, and it must decide which ones to query in order to
obtain the maximum relevant information given its long-term
objectives. In [18], a robot had to navigate a maze in order
to arrive at a goal and avoid obstacles. Meanwhile, several
camera-equipped drones patrolled the area in fixed concentric
routes. The agent then had to choose which drones to query
in order to obtain the most relevant information from the
environment to navigate efficiently.

Other works proposed POMDP model extensions to active
perception applications like ρPOMDP [23], a model that
evaluates courses of actions by the expectation of belief-
dependent rewards1, prioritizing information acquisition, and
POMDP with informed rewards (POMDP-IR) [24], which
allows the user to reward the agent for reaching a desired
level of certainty about a particular state variable.

Although these more refined POMDP approaches could be
potentially useful for BCI problems in the future, the present
work focuses on a POMDP implementation using the classical
POMDP model where the information-collecting actions con-
sist on waiting on more data (i.e. for new observations). In
the problem that we describe in Sec. III-A, the actions of the
agent do not influence the world, and thus the problem can be
resumed in how much information is needed before confidently
identifying a hidden state (i.e. a BCI target state), which can
be modeled as a classical POMDP. Note, it conceptualy differs

1More specifically, defining a reward function that is belief-dependent
instead of state-dependent as in the classical POMDP model.

from POMDP-IR case as no preference between states exists
and no desire level (or threshold) of certainty is a priori
defined. The goal is to translate any recognized brain activity
to actions correctly (whatever they are).

B. POMDP and Human-Machine Interaction
Although not using brain data, there is a body of literature

on the use of POMDP models for human-machine interaction,
using other physiological signals. Research has been con-
ducted modeling collaboration or adaptive interaction frame-
works between user and machine using Mixed-Observability
Markov Decision Processes (MOMDP) or POMDPs in search
and rescue [25], target search [26] scenarios and pilote assis-
tive systems [27]. These studies incorporated uncertainties as-
sociated with the actions of human operators on the interface,
as well as uncertainties about their cognitive state (such as
cognitive availability and mental workload) into the POMDP
model that governs the interaction. This enables the belief state
of the POMDP to continuously monitor both the human state
and other mission-related partially observable state variables.

C. POMDP and BCI
To the knowledge of the authors, only two previous research

works have used POMDPs to model the BCI-related decision
problem. In [28], the authors propose a POMDP to classify
SSVEP stimuli. In this study, the SSVEP spectral features are
extracted using the Fast Fourier Transform (FFT) algorithm,
and used directly as observations of the POMDP model. Given
the continuous nature of those POMDP observations (and
the resulting difficulty of solving a such POMDP problem),
they proposed an approach to discretize the feature space
(observation space) in order to obtain a discrete set of obser-
vations. The discretization procedure was necessary due to the
direct use of spectral features. This study was conducted prior
to the introduction of state-of-the-art SSVEP classification
methods such as Canonical Correlation Analysis (CCA) [12]
and Task-Related Component Analysis (TRCA) [11], which
enable working directly with classification labels instead of
continuous spectral scores. These advanced methods eliminate
the need for such a complex discretization procedure, however
they are specific to SSVEP, making them not generalizable to
other BCI modalities.

In [29], the POMDP model controls both the selection of
the target as well as the order of the stimulus presentation in a
P300 speller paradigm. The authors shown how POMDP can
manage BCI where the optimal time of stimulation (or number,
in their case) is not a priori known for different users. Their
results suggested that, in the case of P300 speller, controlling
the order of stimulation provided an improvement in time with
respect to the classic random stimulation pattern. Other re-
active BCI modalities (e.g. SSVEP), present all possible targets
simultaneously, so there is no need for controlling the stimulus
presentation using the POMDP model, and then, the decision-
making problem climbs into an active perception problem.

With these previous work in mind, we believe a revision of
the work on [28] is required since SSVEP literature has seen
notable contributions in both decoding algorithms [11], [13]

This article has been accepted for publication in IEEE Transactions on Biomedical Engineering. This is the author's version which has not been fully edited and 

content may change prior to final publication. Citation information: DOI 10.1109/TBME.2023.3318578

© 2023 IEEE. Personal use is permitted, but republication/redistribution requires IEEE permission.
See https://www.ieee.org/publications/rights/index.html for more information.
Authorized licensed use limited to: ISAE. Downloaded on November 08,2023 at 17:08:47 UTC from IEEE Xplore.  Restrictions apply. 



TORRE TRESOLS et al.: POMDP-BCI: A BENCHMARK OF (RE)ACTIVE BCI USING POMDP TO ISSUE COMMANDS 3

Fig. 1. Division applied to EEG data (top) and pipeline steps (bottom) for each experiment described. Data is divided into that used to train the
classification algorithm (’A-cal’, orange), that used to estimate the POMDP observation function (’O-cal’, green), and that used to test the POMDP
(’Testing’, blue).

and stimulus presentation [30], [31]. In detail, we choose to
exploit these existing approaches to obtain the POMDP-BCI
model. Specifically, our approach allows for the construction
of a confusion matrix (e.g. using a calibration step), repre-
senting the performance of these decoding algorithms, to be
used as the observation function of the POMDP. The principal
advantage is that one can define a personalized POMDP-BCI
model (i.e. using its specific observation function) on the fly
without the need for any other threshold or parameter tuning.
Moreover, we employ our POMDP-BCI framework to other
(re)active BCI modalities that we believe were not yet explored
in literature, such as CVEP and MI.

III. METHODS

In this section, we will describe the three experiments
we have conducted with three different active/reactive BCI
modalities: SSVEP (Experiment 1), CVEP (Experiment 2) and
MI (Experiment 3). Before describing each dataset in detail, a
general introduction for POMDP-BCI approach is presented,
followed by the specificities of each experiment.

A. POMDP-BCI model
1) Recall on POMDPs: A POMDP is formally defined as a

tuple ⟨S,A,Ω, T,O,R, γ, b0⟩, where: S is the set of states; A
is the set of actions; Ω is the set of observations; T : S×A×
S → [0; 1] is the transition function denoting the probability
T (s′, a, s) = p(s′|a, s) of reaching state s′ ∈ S given the
action a ∈ A is performed in state s ∈ S; O : Ω × S →
[0; 1] is an observation function such that O(o, s) = p(o|s),
denoting the probability of observing o ∈ Ω given state s ∈ S;
R : S × A → R is the reward function associating a real
value for each state-action pair; γ is the discount factor; and
b0 is the initial probability distribution over states such that
b0(s) = p(s0 = s), with b0(s) ∈ ∆, the belief state space.

At each decision time step t, the agent takes an action a ∈
A, receives an observation o ∈ Ω and updates its belief state
b ∈ ∆ using the Bayes’ rule:

boa(s
′) = η−1p(o|a, b) = η−1p(o|s′)

∑
s∈S

p(s′|s, a)b(s) (1)

where η =
∑

s′ p(o|s′)
∑

s p(s
′|s, a)b(s) is a normalization

factor. The belief state can be seen as a complete information
state (i.e. history), as it concatenates all the action-observation
sequences such as bt(s) = p(st = s|ot, at−1, ot−1, ..., a0).

The goal of solving a POMDP is to find a policy π : ∆ →
A, which maximizes a performance criterion, the so-called
Value Function, which is generally defined as the expected
discounted sum of rewards:

V π(b) = Eπ

[ ∞∑
t=0

γtr(bt, π(bt))

∣∣∣∣∣b0 = b

]
. (2)

Thus, the optimal policy π∗ is the policy that maximizes
the value function (Eq. 2). It can be shown that V π∗

satisfies
the Bellman equation (V π∗

= V ∗):

V ∗(b) = max
a∈A

[
r(b, a) + γ

∑
o∈Ω

p(o|a, b)V ∗(boa)

]
, (3)

where r(b, a) =
∑

s∈S R(s, a)b(s). As r(b, a) can be see as
the average immediate gain. The optimal policy π∗ can be
extracted from Eq. 3 when it converges for all belief states.

In practice, the exact optimal solution of an infinite horizon
POMDP is hard to be achieved. However, several algorithms
allow to approximate a near-optimal value function and a near-
optimal policy using iterative methods. In our POMDP-BCI
methodology, we used one of such algorithms, called SARSOP
[32]. SARSOP is a well known POMDP solving algorithm
which achieves a near-optimal policy solution in reasonable
time, enabling us to exploit it on the fly.

2) POMDP modeling proposal: The POMDP model we used
is the same for all three experiments. In each case, the state and
observation spaces S : {s1, . . . , sN} and Ω : {o1, . . . , oN} are
made of N states and observations, respectively, with N being
equal to the number of available BCI commands in the system,
as well as the number of possible classification outputs. For
example, an SSVEP BCI with 12 possible commands (i.e.
N = 12), such as that used in experiment 1 (see section III-
B.1), would be mapped to a POMDP model with 12 possible
states and observations. For experiments 2 and 3, the same
applies with N = 11 and N = 2, respectively. Similarly,
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the POMDP action space A : {a1, . . . , aN , aw} contains one
action per state, denoted a1, . . . , aN , to decide that the user is
issuing each of the possible N commands, plus a wait action
denoted by aw, for when the model needs to collect more
observations before taking a decision.

The observations for the model are the possible outputs
from a regular classification algorithm, that varies depending
on the experiment. The observation function O denoting the
probability p(o|s′) of obtaining a given observation in a given
next state is obtained by calculating a confusion matrix F ∈
RN×N of the trained classifier using empirical data. Assuming
the rows of the confusion matrix represent the true N classes
and its columns represent the N predicted classes, we can
express the probability function as p(o|s′) = Fs′,o. Thus, for
each experiment, data was divided into three parts (see Fig. 1):
A-cal (orange), O-cal (green), testing (blue). A-cal data was
used to train the corresponding algorithm, O-cal data was used
to empirically estimate the POMDP observation function and
to instantiate the POMDP model, and testing data was used
to simulate the POMDP policy.

Due to the empirical approximation using limited data, we
know that the approximated observation function Ô may not
perfectly reflect the true probability of p(o|s′) ∀s′ ∈ S, o ∈ Ω.
Thus, we adopted a similar approach to the one applied by
[29] and [27]. In order to account with this empirical error,
we merged the obtained observation function Ô with a uniform
distribution over states using a weighted average, as follows:

Ō(s, a) = (1− ωO)Ô(s, a) + ωO
1

N
(4)

with Ô(s, a) being the observation function obtained from data
and ωO being the weighting factor.

For the transition function T , the transition probabilities for
the action wait aw, (i.e. T (s, aw, s′)) was set as an identity
matrix, defined as 1 when s = s′, and 0 otherwise. Note that
we assume the BCI user will not change targets within a trial.
However, for any other action a1, · · · , aN (i.e. identification
actions), the transition probabilities were set as the uniform
distribution over states. We assume it since we have no a priori
information of what the next target state the BCI user will
select after a command.

For the reward function R, we defined the reward of aw to
be equal to -1 for all states, incurring a small cost for the infor-
mation gain. For all control actions (state identification action),
the reward R(sn, an), with sn = an, was set to 10, rewarding
the model for selecting the control action that matched the
true state, whereas the reward for R(sm, an),∀m ̸= n incurs
a penalty, i.e. a high cost for incorrect control actions. In
experiments, different costs (i.e, negative rewards) were tested
in order to assess the effect of different costs on false positives.
The details about such costs are explained in the section
corresponding to each experiment.

In order to acquire observations, a slice of EEG data is fed
into the corresponding classifier, and the resulting output is
given to the POMDP as an observation. For every experiment,
we defined a data window length for all the observations, that
is shifted in time by the amount of the time step.

The initial belief b0 was set to the uniform distribution.

In each trial, the model would perform an action, receive an
observation and update the belief state as described above.
Similarly to other approaches that implemented variable trial
length in BCIs [33], we defined a maximum time for each trial
(which varied depending on the experiments). If the POMDP-
BCI model does not reach a state identification decision by
the last time step, no other decision is taken and the trial was
ended, which set the belief again to the uniform distribution.

Since both the maximum trial time and the time step are
known, the maximum number of time steps per trial dmax is
also pre-defined for each experiment. This allowed us to set
the discount factor γ dynamically as: γ = g1/dmax , with g
being the desired value for the discount factor at the last time
step (i.e. γdmax ). This allowed for faster POMDP solving by
relaxing the effect of how far in the future expected rewards
weight on the initial belief state.

B. Experiments, Datasets and Evaluation Metrics

All three experiments were conducted using public available
EEG datasets. Datasets for experiments 1 and 3 were down-
loaded directly using the ’MOABB’ [34] Python package2.
The POMDP implementation for the three problems is iden-
tical and was developed using the ’pomdp-py’ [35] Python
package3. All the code developed to carry on the analyses
described in this paper, as well as the code used to generate
all figures and tables (except Fig. 1) are available on Github4.

As explained in section III, data was divided into three (see
Fig. 1) for all experiments: A-cal data (Fig. 1, orange), which
is the data used to train the underlying classification algorithm,
O-cal data (Fig. 1, green), used to compute the confusion
matrix and instantiate the POMDP model, and testing data
(Fig. 1, blue). To avoid confusion with other terms (e.g.,
observation, calibration), we will refer to these divisions of
the data with the aforementioned names, leaving the use of the
word ’calibration’ to denote the complete process of preparing
for the testing phase (i.e. classification algorithm training plus
POMDP instantiation and solving).

For all experiments, the POMDP decision step was 0.1s,
meaning that the model takes an action (which includes not
acting) every 0.1 seconds. This means that the EEG data fed
to the classifier at each time step uses a sliding window whose
step is equal to the POMDP’s decision step. The length of the
sliding window varies depending on the experiment. There is
as well a maximum trial time. Consequently, the maximum
number of time steps per trial is known for each experiment.

In all experiments, our POMDP-BCI approach was com-
pared against the baseline, i.e. using the classification algo-
rithm alone.

For all POMDP models (across experiments and partici-
pants), the parameter ωO (see Eq. 4) was set to 0.3, as in
[29]. Similarly, the parameter g that defines the desired value
of the discout factor γ at the last time step of each trial was
set to 0.25.

2Available on https://github.com/NeuroTechX/moabb
3Available on https://github.com/h2r/pomdp-py
4https://github.com/neuroergoISAE/POMDP-BCI
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The performance evaluation in all experiments and methods
was based on several metrics, including accuracy, false posi-
tives (FP), average decoding time, and, when applicable, the
number of no-action (NA) trials. It is worth noting that all
classifications, both in the POMDP approach and the baseline
methods, were conducted using the inter-trial data from each
dataset.

In the case of methods that employ single-time classifi-
cation, such as the baseline method in experiment 1 and
experiment 3, false positive (FP) trials are defined as trials
where the predicted label differs from the true label. The
average decoding time for these methods is equal to the length
of the data window used for classification.

On the other hand, methods that perform multi-time pre-
diction using multiple data windows, such as the POMDP
approach and the baseline method in experiment 2, may
encounter situations where a decision is not reached even after
processing all available data within a trial. In such cases, these
trials are classified as no-action (NA). False positive (FP) trials,
for these methods, refer to trials where a decision is made, but
the predicted label does not match the true label.

To calculate the average decoding time for participants using
these latter methods, we compute the arithmetic mean of the
decoding time across all test trials.

Additionally, and in order to compare the number of FP and
average decoding time between POMDP and their respective
baselines, statistical tests were performed. Firstly, normality
and homoscedasticity assumptions were verified on all FP
and avg. decoding time results. Since these assumptions were
only respected for the FP scores of experiment 3, non-
parametric Friedman and Nenmeyi post-hoc tests were used in
all statistical analyses for comparison of effect sizes between
experiments.

1) Experiment 1: The first experiment was conducted using
the dataset described in [10]. The dataset consists in 12 SSVEP
flickers, at frequencies between 9.25 and 14.75Hz acquired
from 10 subjects. The data amounts to 15 blocks with one trial
per class, for a total of 180 SSVEP trials. The algorithm used
for this experiment was ensembled Task-Related Component
Analysis (TRCA) [11]. TRCA uses a body of calibration
data to compute a series of spatial filters that maximize
the correlation between examples of the same class while
minimizing the correlation of examples of different classes.
It also averages all the calibration trials of a given class to
create a ’template’ for that class. When new data is obtained,
a correlation score is calculated between the new example
and the templates (using the pre-computed spatial filters). The
class that obtains the highest correlation with new example is
selected.

The EEG data window for this experiment was 0.5s (i.e., all
POMDP observations are obtained using 0.5s data windows),
and the maximum trial time was set to 1s (i.e. there is a
maximum of 6 decision steps between 0.5s and 1s, each
with 0.1s of interval). For the whole calibration process,
which is composed by the TRCA calibration and observation
function computation, a cross-validation was used to find the
best combination of data for TRCA calibration and observa-
tion function estimation for each participant. Specifically, the

TRCA models were trained using data from 8 experimental
blocks, and the observation matrix was approximated using
data from 5 experimental blocks. The POMDP testing was then
performed on the remaining 2 blocks of data (i.e., 24 trials).
Due to the template-matching nature of the TRCA algorithm,
a different TRCA model was trained for each time step (i.e.
from t = 0 to t = 0.5, from t = 0.1 to t = 0.6, etc.), and the
final confusion matrix was obtained averaging the predictions
for all time steps. For this experiment, different values of
penalty (i.e. a negative reward when R(sm, an),∀sm ̸= an)
were tested in the POMDP model. In detail, each partici-
pant had two different POMDP models with costs 100 and
1000, respectively. The reward for a correct identification (i.e.
R(sn, an), with sn = an) was not changed.

For baseline comparison, all data corresponding to calibra-
tion and observation function computation (i.e., 13 blocks of
data) were used to train two TRCA models with different
epoch lengths: 0.5s and 1s (resp. TRCA-0.5s and TRCA-1s).
The accuracy on flickers identification of the POMDP-based
and both TRCA baseline models was compared.

2) Experiment 2: The second experiment was conducted on
C-VEP data using the dataset from [36]5. The CVEP response
is evoked by regulating visual stimuli using pseudo-random
and aperiodic sequences, instead of the frequency-modulated
pattern used in SSVEP [36], [37].

The dataset consists on 11 flickers acquired from 11
subjects. The dataset contains 15 blocks with one trial per
class, for a total of 165 CVEP trials. The underlying algo-
rithm for classification was the Convolutional Neural Network
(CNN) used in [36], based on the architecture presented by
EEG2Code [37]. The EEG2Code model proposes a neural
network that takes EEG activity as input and outputs the
predicted stimulation code that corresponds to that EEG data.
Once the code is obtained, different methods are used to
compare the predicted code with the different stimuli in order
to select that which is being attended by the user.

Similarly to Experiment 1, the window length (i.e., length
of the data used to obtain all observation) for our POMDP
approach was set to a minimum of 0.5s and a maximum of
1s, resulting in a maximum of 6 time steps. The distribution
of the data between calibration, observation and testing data
was also identical to that of Experiment 1 (Note: Since this
experiment has 11 classes, the total number of test trials is
22). Since the CNN is trained to regress the stimulation code
from EEG activity, only one network is required, no matter the
specific time window used. Similar to the Experiment 1, each
participant had two different POMDP models with costs 100
and 1000, respectively. The reward for a correct identification
did not change.

For the comparison against the baseline, each participant
had the testing data classified using the same CNN trained
for the POMDP using two different methods used in previous
CVEP publications [36], [37]. These methods involve starting
with a small window of data, which was set to 0.5s (30
frames at 60 frames per second), and performing multiple
classifications on a data window of increasing length up to

5available on https://doi.org/10.5281/zenodo.7277151

This article has been accepted for publication in IEEE Transactions on Biomedical Engineering. This is the author's version which has not been fully edited and 

content may change prior to final publication. Citation information: DOI 10.1109/TBME.2023.3318578

© 2023 IEEE. Personal use is permitted, but republication/redistribution requires IEEE permission.
See https://www.ieee.org/publications/rights/index.html for more information.
Authorized licensed use limited to: ISAE. Downloaded on November 08,2023 at 17:08:47 UTC from IEEE Xplore.  Restrictions apply. 

https://doi.org/10.5281/zenodo.7277151


6 GENERIC COLORIZED JOURNAL, VOL. XX, NO. XX, XXXX 2023

Fig. 2. Average accuracy per subject for Experiment 1 (TRCA) showing,
from left to right: baseline (TRCA) at 0.5s of data, baseline (TRCA) at
1s of data, POMDP with cost 100 and POMDP with cost 1000.

1s (contrary to POMDP, which uses a fixed window length).
The methods are:

• p-value based method: at each time step, the code ob-
tained from the CNN is compared with the corresponding
code of each target stimulus at the same time window us-
ing Pearson correlation. If the value of the most correlated
code is statistically significant (with a p-value pre-defined
by the experimenter), the target is selected, otherwise, the
operation is repeated at the next time step. Each decision
increased the data by 0.05s (corresponding to 3 frames at
60 frames per second), for a total of 10 decision steps.The
p-value for this experiment was set to 0.001

• accumulation method: at each time step, the code ob-
tained is compared with all the stimuli as in the p-value
method. The one with the highest correlation is stored
and the operation is repeated at each time step. Each
decision increased the data by 0.016s (corresponding to 1
frame at 60 frames per second), for a total of 30 decision
steps. If a certain number of predictions corresponds to
the same stimuli, it is selected. The number of necessary
classifications is decided beforehand by the experimenter.
For this experiment, the number of necessary predictions
of the same class was set to 15.

3) Experiment 3: The third experiment was conducted using
the MI dataset used in the fourth BCI competition [38],
comprising data from 9 subjects performing four different MI
tasks: right hand, left hand, both feet and tongue. The data
was acquired over two sessions with six runs each, for a total
of 12 runs. Each run comprised 12 trials per class. Only the
right hand and left hand trials were used for this experiment
(24 trials per runs). The algorithm used as underlying classifier
was a logistic regression using tangent space features extracted
based on Riemannian geometry (RG+LR), see [39], [40] for
more details on the classification process.

The data window length used for the POMDP was 3s,
with a maximum of 4s. Regarding the division of the data,
the whole first session was used for algorithm calibration,
while the first three runs of the second session were used
for the observation function estimation (i.e. estimating an
inter-session classification performance) and the remaining
three runs were used as testing data (i.e., 72 test trials). As
with Experiments 1 and 2, each participant had two different
POMDP models with costs 100 and 1000, respectively, and
the reward for a correct identification did not change.

For comparison purposes, the baseline used the classifica-
tion algorithm alone using static epochs of both 3s and 4s
of length, and evaluated on the same testing data used for
the evaluation of POMDP-based approach. Due to the inter-
session nature of the classification process addressed in this
experiment, adding the observation data (second session) to
the training data (first session) for the baseline algorithm
(similarly to Experiment 1) would introduce information about
the second session, which invalidates the purpose of analysis.

IV. RESULTS

For each experiment, we present the accuracy score for
each participant for their POMDP model, as well as the two
corresponding baselines. Additionally, the same information
is shown in a separate table, which also includes information
about the number of false positives (FP), average decision time
and the number of times the system decided not to act (NA)
when applicable. The tables also include the general perfor-
mance in each of the aforementioned metrics (i.e. averaged
across all participants).

TABLE I
EXPERIMENT 1 (SSVEP BCI) RESULTS (TEST SIZE: 24 TRIALS)

TRCA (0.5s) TRCA (1s) POMDP (cost 100) POMDP (cost 1000)
Sub. Acc FP Avg. Time Acc FP Avg. Time Acc FP Avg. Time NA Acc FP Avg. Time NA

1 0.83 4 0.5 0.96 1 1.0 0.88 2 0.74 1 0.75 2 0.87 4
2 0.42 14 0.5 0.71 7 1.0 0.67 4 0.82 4 0.46 0 0.96 13
3 0.79 5 0.5 0.92 2 1.0 0.83 4 0.63 0 0.83 1 0.75 3
4 1.0 0 0.5 1.0 0 1.0 1.0 0 0.6 0 1.0 0 0.71 0
5 1.0 0 0.5 1.0 0 1.0 1.0 0 0.6 0 1.0 0 0.7 0
6 1.0 0 0.5 1.0 0 1.0 1.0 0 0.5 0 1.0 0 0.5 0
7 0.42 14 0.5 0.75 6 1.0 0.88 3 0.75 0 0.71 3 0.87 4
8 0.83 4 0.5 1.0 0 1.0 0.92 2 0.62 0 0.96 0 0.75 1
9 0.88 3 0.5 1.0 0 1.0 1.0 0 0.63 0 1.0 0 0.72 0

Avg. 0.8 4.9 0.5 0.93 1.8 1.0 0.91 1.7 0.65 0.6 0.86 0.7 0.76 2.8
(%) – 20 – – 8 – – 7 – 3 – 3 – 12
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Fig. 3. Average accuracy per subject for Experiment 2 (C-VEP) show-
ing, from left to right: EEG2Code + p-value, EEG2Code + accumulation,
POMDP with cost 100 and POMDP with cost 1000.

A. Experiment 1 (SSVEP)

The average accuracy for each subject can be seen in Fig. 2,
where the POMDP-100 scores in between TRCA at 0.5 and 1s.
Notably, we can see than subject 2 (S2) and 7 (S7) performed
under 0.5 accuracy with 0.5s TRCA, and the POMDP got
comparable accuracy (S2) and even better (S7) than 1s TRCA.
On the other side, most subjects perform equally or worse in
POMDP-1000.

Table I shows the general (i.e. across subjects) accuracy of
each approach (TRCA-0.5 = 0.8, TRCA-1 = 0.93, POMDP-
100 = 0.91, POMDP-1000 = 0.86). It also shows that both
POMDP reduces the number of FP when compared with
TRCA-0.5 from 4.9 to 1.7 (POMDP-100) and 0.7 (POMDP-
1000), and does the same for TRCA-1 (avg. FP = 1.8) with
the exception of two subjects (sub. 3 and sub. 8) for POMDP-
100, resulting in a comparable overall performance. Regarding
statistical differences, Friedman test disclosed a main effect of
the type of method on the FP (Q = 13.41, p < 0.05,W =
0.49). Nenmeyi post-hoc analyses only revealted a significant
difference between POMDP-1000 and TRCA-0.5 (p < 0.05).

The POMDP approach offers the possibility of not acting
(i.e. NA or ’No-action’), where TRCA always outputs an

action. Two number of subjects who present NA trials is two
and five, for POMDP-100 and POMDP-1000, respectively.

Regarding the average response time for each approach,
both POMDP varies widely across participants. Those with
perfect accuracy in TRCA are between 0.5 and 0.6 seconds,
while the rest vary depending on how well TRCA performed.
Crucially, the POMDP model adapted the length of the trial
to each participant depending on the quality of the TRCA
detection, resulting in performance comparable to 1s TRCA
in an average of 0.65s for POMDP-100 and 0.76 for POMDP-
1000. Statistical tests disclose a main effect of the type of
method on the avg. decoding time using Friedman(Q =
25.884, p < 0.001,W = 0.95), and Nenmeyi post-hoc tests re-
veal a significant difference between POMDP-100 and TRCA-
1 (p < 0.05), as well as between TRCA-0.5 and POMDP-1000
(p < 0.05).

B. Experiment 2 (C-VEP)
Fig. 3 shows the mean accuracy for each subject for

POMDP with costs 100 (POMDP-100) and 1000 (POMDP-
1000), as well as the chosen baselines. POMDP-100 performs
comparably or better than both baselines for all subjects except
one (S7), while in POMDP-1000 most subjects keep the same
performance, and others perform lower than baseline.

The average across subjects shown in Table II reveals that
both POMDPs perform comparably to both CVEP baselines.
The best accuracy is obtained by POMDP-100 (0.9), followed
by the accumulation baseline (0.89), p-value baseline (0.86),
and POMDP-1000 (0.85). For FP, all approaches perform
similarly, with POMDP-1000 having the lowest average FP
(0.4) across subjects, followed by p-value baseline (0.5),
accumulation baseline (1.0) and finally POMDP-100 (1.3). The
Friedman test did not disclose any effect of type of method on
the FP (Q = 4.26, p = 0.235,W = 0.142). This is similar in
the case of NA trials, with scores of 3 (POMDP-1000), 2.6 (p-
value baseline), 1.2 (accumulation baseline) and 0.9 (POMDP-
100).

Finally, the fastest method of the four is the p-value
baseline with an avg. time across subjects of 0.56s, followed
by POMDP-100 at 0.68s. The accumulation baseline and
POMDP-1000 perform similarly in that regard with 0.76s and
0.79s, respectively. The Friedman test disclosed a main effect

TABLE II
EXPERIMENT 2 (C-VEP BCI) RESULTS (TEST SIZE: 22 TRIALS)

CVEP (p-value) CVEP (accumulation) POMDP (cost 100) POMDP (cost 1000)
Sub. Acc FP Avg. Time NA Acc FP Avg. Time NA Acc FP Avg. Time NA Acc FP Avg. Time NA

1 0.96 0 0.52 1 0.96 0 0.75 1 0.96 1 0.63 0 0.96 1 0.73 0
2 1.0 0 0.5 0 1.0 0 0.75 0 1.0 0 0.6 0 1.0 0 0.71 0
3 0.82 0 0.62 4 0.86 0 0.76 2 0.91 2 0.75 0 0.73 0 0.86 6
4 0.73 3 0.55 3 0.77 3 0.77 2 0.86 1 0.78 2 0.59 0 0.9 9
5 1.0 0 0.5 0 1.0 0 0.75 0 1.0 0 0.61 0 1.0 0 0.71 0
6 0.82 0 0.63 4 0.82 1 0.78 2 0.86 2 0.73 1 0.86 2 0.84 1
7 0.91 1 0.57 1 0.96 0 0.76 0 0.86 3 0.66 0 0.91 0 0.80 2
8 0.86 0 0.53 3 0.96 0 0.75 1 1.0 0 0.61 0 1.0 0 0.74 0
9 1.0 0 0.51 0 1.0 0 0.75 0 1.0 0 0.6 0 1.0 0 0.7 0
10 0.5 1 0.64 10 0.55 6 0.78 4 0.55 4 0.85 6 0.41 1 0.95 12

Avg. 0.86 0.5 0.56 2.6 0.89 1.0 0.76 1.2 0.9 1.3 0.68 0.9 0.85 0.4 0.79 3.0
(%) – 2 – 12 – 5 – 5 – 6 – 4 – 2 – 14
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Fig. 4. Average accuracy per subject for Experiment 3 (MI) showing,
from left to right: baseline (RG + LR) using 3s of data, baseline using 4s
of data, POMDP with cost 100 and POMDP with cost 1000.

of the method on the avg. decoding time (Q = 23.88, p <
0.001,W = 0.79), and Nenmeyi post-hoc tests revealed a
significant difference between the p-val method and POMDP-
1000 (p < 0.05).

C. Experiment 3 (MI)
The average accuracy for each subject is presented in Fig.

4 for both POMDP-100 and POMDP-1000, together with the
two baselines. POMDP-100 performs comparatibly to both
baselines, which perform almost equally to each other. For
POMDP-1000, most subjects show comparative performance
to POMDP-100, however, three subjects (S2, S5 and S7)
present a sharp drop in accuracy. It is shown in Table III that
these subjects show close to none FP, and all (S2, S5) or almost
all (S7) trials are NA trials. Contrary to Experiment 2, where
the increased POMDP cost obtains comparable accuracy with
less FP and more NA trials, here the increase in cost makes
the POMDP model to decide to not act in almost every trial.

Because of this, we show the confusion matrix of S2 in Fig.
5, where we can see how poor classification score is achieved
in one of the two classes with the underlying algorithm.
In this case, the POMDP model chooses to not act due to
high uncertainty avoiding the high cost of 1000, and risks

more false positives at the low cost of 100. Considering this
together with the fact that this is a 2-class problem (i.e.
the chance level is 0.5), it is likely that at least part of the
correctly classified trials for both POMDP-100 and the two
baselines can be attributed to chance. Even considering that,
POMDP-100 achieves lower FP across subjects than both
baselines (POMDP-100: 9.9, RG+LR (3s): 12, RG+LR (4s):
12). POMDP-1000 has the lowest FP across subjects at 4.8.
With respect to statistical analysis, the Friedman ANOVA
disclosed a main effect of the type of method on the FP scores
(Q = 15.39, p < 0.05,W = 0.57). Nenmeyi post-hoc tests
revealed statistically significant differences for POMDP-100
with RG+LR both at 3 seconds (p < 0.05) and 4 seconds
(p < 0.05).

Regarding NA trials, POMDP-100 shows most of the NA
trials come from S2, S5 and S7, which were discussed above
on the basis or their poor decoding performance. POMDP-
1000 shows the same tendency, while achieving some NA
trials for the rest of the subjects.

For conclusion, both POMDP methods achieve running
times between the static times of the two baselines, with
POMDP-100 being slightly faster in average (3.46s) than
POMDP-1000 (3.68s). The Friedman test disclosed a main
effect of the method on the avg. decoding time (Q =
26.523, p < 0.001,W = 0.98). Nenmeyi post-hoc tests
revealed significant differences between POMDP-100 (p <
0.05) and RG+LR at 4s, as well as between RG+LR at 3s and
POMDP-1000 (p < 0.05). Similarly to Experiment 1, POMDP
achieved a balance in accuracy and response time depending
on the performance of the subject, without the need to specify
a fixed trial duration for all the subjects a priori.

V. DISCUSSION

In this study, we proposed a single POMDP model and show
how it can be applied to different types of BCI paradigms
(SSVEP, C-VEP and MI). The main advantage of the POMDP
lies in being a flexible and integrated framework that can adapt
to the underlying process that one wishes to model, and in
the present study, we have observed that the POMDP model
can bring distinct advantages to various BCI modalities..
This enables a sequential decision-making framework for any
BCI, and allows integrating other data modalities (i.e. other

TABLE III
EXPERIMENT 3 (MI BCI) RESULTS (TEST SIZE: 72 TRIALS)

RG + LR (3s) RG + LR (4s) POMDP (cost 100) POMDP (cost 1000)
Sub. Acc FP Avg. Time Acc FP Avg. Time Acc FP Avg. Time NA Acc FP Avg. Time NA

1 0.77 10 3.0 0.81 9 4.0 0.85 7 3.21 0 0.90 4 3.44 1
2 0.56 21 3.0 0.56 21 4.0 0.46 15 3.94 11 0.0 0 4.0 48
3 0.92 4 3.0 0.92 4 4.0 0.92 4 3.16 0 0.92 3 3.38 1
4 0.71 13 3.0 0.71 13 4.0 0.65 15 3.52 2 0.63 9 3.86 9
5 0.65 17 3.0 0.71 13 4.0 0.60 9 3.74 10 0.0 0 4.0 48
6 0.60 19 3.0 0.58 20 4.0 0.60 18 3.34 1 0.56 16 3.65 5
7 0.73 13 3.0 0.63 18 4.0 0.71 10 3.85 4 0.15 1 3.94 40
8 0.96 1 3.0 1.0 0 4.0 1.0 0 3.11 0 1.0 0 3.31 0
9 0.77 10 3.0 0.79 10 4.0 0.75 11 3.23 1 0.67 10 3.55 6

Avg. 0.74 12.0 3.0 0.75 12.0 4.0 0.73 9.9 3.46 3.2 0.53 4.8 3.68 17.6
(%) – 17 – – 17 – – 14 – 4 – 7 – 24

This article has been accepted for publication in IEEE Transactions on Biomedical Engineering. This is the author's version which has not been fully edited and 

content may change prior to final publication. Citation information: DOI 10.1109/TBME.2023.3318578

© 2023 IEEE. Personal use is permitted, but republication/redistribution requires IEEE permission.
See https://www.ieee.org/publications/rights/index.html for more information.
Authorized licensed use limited to: ISAE. Downloaded on November 08,2023 at 17:08:47 UTC from IEEE Xplore.  Restrictions apply. 



TORRE TRESOLS et al.: POMDP-BCI: A BENCHMARK OF (RE)ACTIVE BCI USING POMDP TO ISSUE COMMANDS 9

Fig. 5. Confusion matrix for S2 of Experiment 3. This confusion matrix
is that obtained using the O-Cal data (Fig. 1, green) and represent the
observation model of the POMDP. On the right, horizontal bar plots show
performance comparison between baseline at 3s of data, POMDP-100
and POMDP-1000 for accuracy (top), false positives (mid) and no-action
trials (bottom).

physiological signals) as well as other BCI pipelines, or any
combination of systems that one wishes to explore.

While the POMDP model used in all three paradigms is the
same, its benefits for different BCI pipelines vary depending
on the characteristics of the task and the decoding algorithm
being employed.

In Experiment 1, we used the POMDP model to decide on
the classification of SSVEP stimuli, with the underlying refer-
ence algorithm being TRCA [11]. The classic implementation
of the algorithm is static (i.e., requires a fixed epoch length to
be set for every participant) and always outputs a prediction,
which limits its usability for real-world scenarios. Epochs of
0.5s are considered enough to get good performance, but some
participants may need more time to get good performance.
The POMDP model offers a significant advantage by enabling
TRCA to flexibly accumulate single predictions, achieving a
delicate balance between high performance and swift decision-
making. Moreover, POMDP allows for NA trials, where the
model decides to skip the trial without outputing any decision
if data is considered inconclusive.

Our POMDP-100 achieved a performance comparable (al-
beit lower) to TRCA at 1s, with an average time of 0.65s per
trial. Alternatively, POMDP-1000 presents a drop in accuracy
that is comparable to TRCA at 0.5s, together with a significant
increase in response time in exchange for the lowest number
of FP and the highest number of NA.

The most notorious disadvantage of POMDP compared
to TRCA alone is the extra data needed to estimate the
observation model (O-cal, Fig. 1) from the trained algorithm.
In this experiment, the POMDP approach used 8 blocks for
TRCA calibration (A-cal, Fig. 1 and 5 blocks as O-cal data.
However, the baseline TRCA were trained with 12 trials per
class (which equals to all the data mentioned above), meaning
that POMDP approaches used a TRCA model training on less
data compared to baseline. The results then show that POMDP
performed well even if the underlying algorithm (i.e. TRCA) is
trained on less data. Due to dataset size constraints, it was not
possible to compare the baseline to a POMDP model where

both TRCA are trained using the same amount of data.
Lastly, there exist research on flexible decision processes

for TRCA [33]. Although the method presented allows for
adaptable epoch length depending on the participant, it relies
on calculating probability density functions every trial, and it
scales with the number of classes. The paper itself analyzes
the computational performance of the approach as a potential
constraint and presents an optimized approach to ensure real-
time performance. Besides the aforementioned computational
constrains, this method is designed specifically for TRCA,
while POMDP remains a general framework. However, the
aforementioned approach employs data windows of increasing
length until a decision is taken, while POMDP uses a sliding
window of the same length for each time step. Future studies
can study modifications to the POMDP definition that allow
to leverage the accumulated information of an increasing data
window.

In Experiment 2, we compared our POMDP model with a
similar type of stimulation, C-VEP, supported by the decision
pipeline EEG2Code, which shares with POMDP features such
as flexible data windows, and the possibility of having NA
trials. From the three experiments performed, this is the only
one that includes a dedicated decision-making process. As
such, this is the experiment where POMDP performs most
similarly to the baseline. Although POMDP-100 tends to allow
more FP trials, the differences with the chosen baseline were
found to be non-significant.Meanwhile POMDP-1000 is more
conservative and favors NA trials when the decoding of a
subject is not good, while presenting a significant increase
in avg. decoding time.

Similarly to the parameters that need to be specified for both
baseline approaches (i.e. p-value and number of decisions,
respectively), the cost of the POMDP needs to be decided
by the experimenter. This is a constraint when observing
that a higher cost is more convenient for participants whose
decoding is worse, and lower cost if preferable for those
performing well. Besides the generalist nature of POMDP, it
faces similar constraints to EEG2Code when it comes to C-
VEP decoding. Although, again, POMDP requires extra data
to estimate the observation model, and the division of the data
was identical as that of Experiment 1 both for the POMDP
models and for the baseline. This means that the C-VEP
baseline analyses were performed including said extra data in
the training of the CNN. The results equally show that POMDP
can perform comparatively to EEG2Code with less calibration
data. Future studies could implement modifications to the
POMDP model such that it can adapt the cost depending on
decoding performance, since the performance of the decoding
algorithm is required to estimate the observation model.

As previously mentioned when discussing the results of
Experiment 1, the current POMDP model uses sliding data
windows of fixed length in each step, while both of the
baseline methods use increasing data windows in each step. If
the POMDP model could leverage the existing data to get more
information in each time step, it seems natural to assume that
overall performance would increase. Because of that, it is a
prominent future direction for the POMDP-BCI framework.
This, together with the fact that both approaches employ
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advanced decision-making processes, could explain why this
is the only experiment where POMDP tends to produce more
FP trials when compared to the baseline.

Experiment 3 analyzed the performance of the proposed
POMDP model for a 2-class MI BCI. As with Experiment 1,
the baseline used a static time window, that was set to 3 and 4
seconds, respectively. On the one hand, POMDP-100 achieves
a significant reduction of the average time with respect to the
baseline at 4 seconds, while being adapted to the decoding
performance of each participant. On the other hand, POMDP-
1000 achieves a significant reduction of FP trials with respect
to both baselines, while introducing a significant increase in
decoding time when compared with the baseline at 3 seconds.

Interestingly, the POMDP-1000 model sees a dramatic
decrease in accuracy performance. We further investigated
and found that the general accuracy drop was mostly due to
three subjects’ accuracy (that of S2, S5 and S7) decreasing
either to or near 0 for POMDP-1000. Upon inspecting the
confusion matrices of these three subjects (Fig. 5), which are
used as the observation model for their respective POMDPs,
we found that the aforementioned subjects exhibit near-chance
classification performance for at least one of the classes.
This makes the POMDP decide not to act and results on a
high number of NA trials. MI BCIs are known to require
training in order to perform well [41]. This, together with
the phenomenon known as ’BCI illiteracy’ (i.e., the fact that
some users seem to be unable to achieve a good performance
in MI BCI systems) [42], can explain that for some subjects
the approaches perform poorly. The POMDP model at high
cost can adapt to this particularity and decide to not act when
the user’s performance in the MI task is poor. This behavior
could be particularly interesting for applications where FP
trials represent a threat to the user, and it is preferable to not
do anything if the user faces difficulties performing the task.

Contrary to the previous two experiments, the baseline
algorithm does not include the data that corresponded to the es-
timation of the observation model of the POMDP approaches.
This may lead the reader to suggest the comparison between
POMDP and baseline is not fair in this experiment. However,
including this information in the baseline algorithm would
introduce data from the second session, invalidating the com-
parison with the POMDP model, whose decoding algorithm is
trained only with data from the first session. For the sake of
making comparisons between two models that perform inter-
session classification, we decided to exclude this data from the
baseline comparison. Since the observation model represents
the probability of observing different classification outputs
given the observed data, it only makes sense to estimate the
observation model using data from the same session as the
testing data for inter-session classification.

In a real-life situation, one can think as the first session
being used to train the underlying decoding algorithm, and
while the POMDP requires more data to estimate the observa-
tion model, nothing stops the user to start the second session
using the baseline algorithm alone. The data from the initial
trials can be stored and, once enough data are available, the
POMDP can be solved and deployed to replace the baseline
algorithm.

Future studies can explore this scenario, as well as dive into
the potential applications of POMDP for MI BCI systems that
rely on continuous feedback, instead of classification outputs.
Since the POMDP keeps a probability distribution over all
possible state, it could potentially be explored as a means of
providing a certainty score for each class that updates every
time step.

Similarly to experiment 1, we observed how the cost
of the POMDP determined performance in terms of the
speed/accuracy trade-off: while both costs achieve adaptive
decoding times, POMDP-100 tends to allow more FP in
favor of faster decoding times, while POMDP-1000 prioritizes
reducing FP trials at the cost of slower decoding times. As
previously mentioned when discussing Experiment 2’s results,
the fact that the cost needs to be decided beforehand becomes
a relevant shortcoming for POMDP applied to BCI in the light
of this work’s results. As such, a promising future work for
POMDP would be to design it such as the cost can be au-
tomatically assigned depending on the desired speed/accuracy
trade-off.

VI. CONCLUSION

The present work shows how a POMDP-based approach can
provide an integrated sequential decision framework to those
BCI approaches that lack it on their classic implementations,
while performing comparatively to those that already include
it. Moreover, the fact that the same model can easily be
adapted to every modality means that combination of BCI with
other data modalities (e.g. other physiological measurements
or behavioral data) or other BCI pipelines would be possible
within the same POMDP-based framework.

Future work can explore such an integration, as well as
potential modifications to the POMDP model definition that
address the shortcomings found in the present study, namely
the constraint of the POMDP to use (sliding) fixed-length data
windows for each time step, as well as the need to specify the
cost beforehand. The former could be achieved by including
a time step dimension in the observation model, having a
different observation model for each time step that reflects
decoding performance with the corresponding amount of data,
while the latter could be achieved by specifying different costs
depending on the estimated observation model. This could be
achieved by mapping decoding performance to a cost via some
uncertainty metric, similar to the ρ-POMDP [43] model.
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