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A general method for the estimation of moments of substitution number in molecular

evolution

Bahram Houchmandzadeh
Univ. Grenoble Alpes, CNRS, LIPHY, F-38000 Grenoble, France

The random variable �substitution number� Nt, i.e. the number of mutations that have accumu-
lated in a sequence under neutral evolution during a time t, is a cornerstone of the �eld of molecular
evolution. We show here that a complete solution of the moments of this random variable can be
obtained explicitly by recurrence, using a simple matrix shift method. This result leads to simple
expressions for both the short and long time limits of the moments that can be computed directly
from the substitution matrix used to model the neutral evolution. The method developed here is
also used to compute the moments of the complementary variable, Tn, the time it takes to accu-
mulate n mutations. The method we develop here necessitates only elementary operations on the
substitution matrix and does not involve spectral decomposition.

I. INTRODUCTION.

Substitution models are the cornerstone of the �eld of
molecular evolution and describe the Markovian stochas-
tic process of genetic variation through �xed mutations.
One of their most important application is to evaluate the
length of the branches in a phylogeny tree, and hence the
time of divergence from an ancestor, trough the estima-
tion of the number of substitutions N that has occurred
between two sequences. A substitution model describes
the rate of mutation between symbols of an alphabet,
that can describe for example base pairs in DNA (4 sym-
bols), codons (61 symbols, excluding the STOP), amino
acids (20 symbols), or more complicated alphabets taking
into account various intricacy of the evolutionary process
under consideration. Since their inception by Jukes and
Cantor[1] and Kimura and Ohta [2, 3], many substitution
models have been proposed, documented in textbooks
[4, 5] and incorporated into phylogenetic software such
as IQ-Tree[6]. A review of these models and advances in
this �eld can be found in [7].

Once a substitution model Q has been chosen, it can be
used to characterize the random variable Nt of the num-
ber of substitutions that have occurred during a time
t. It is straightforward to deduce the mean number of
substitutions ⟨Nt⟩ from the substitution matrix Q. How-
ever, the mean is only the �rst step to characterize a ran-
dom variable and one need its higher moments (variance,
skewness, kurtosis, ...) to set the con�dence limits on this
estimation. The task of evaluating the higher moments
has proved extremely di�cult and for example has led to
the much discussed controversy of the �overdispersion� of
the molecular clock[8�11].

Zheng[12] was the �rst to use Markov chains to investi-
gate the variance of substitution number as a solution of a
set of di�erential equations. His investigation was further
developed by Bloom, Raval and Wilke[13] who gave the
general solution in terms of the spectral decomposition
of the substitution matrix; this solution was extended by
Raval[14] for a speci�c class of matrices used for random
walk on neutral graphs. Minin and Suchard[15] used the
same spectral method to derive an analytical form for

the generating function of a binary process. Note that
the substitution matrix is singular and asymmetric, its
eigenvalues are in general complex and the spectral de-
composition cannot in general be obtained exactly. We
recently published[16] a simple, exact result for the vari-
ance of the substitution number and showed, as a conse-
quence, that for the large class of Generalized Time Re-
versible matrices, the dispersion index, i.e. the variance
to mean ratio is always larger than one. Although the
result for the variance was simple, the method to obtain
it was intricate and could not be generalized to compute
the higher moments of the substitution number.

In the present article, we show that there exists a sim-
ple transformation of the substitution matrix that de-
composes the problem into a series of simple equations
that can be solved by elementary matrix algebra and al-
lows for the computation of moments of arbitrary order.
The same method allows us also to compute directly the
moments of the complementary random variable Tn, the
time it takes to reach n substitutions. This provides for
a more direct approach to estimate the divergence time

from an ancestor.

This article is organized as follows. In the next sec-
tion, we highlight the main results of this article and
their comparison to numerical simulations of the stochas-
tic process. Section III then details the methods used to
compute the moments of Nt. Section IV address the
complementary method of computing the variance of Tn.
Section V is devoted to discussions and conclusions. The
appendices contain details of some of the computations.

II. MAIN RESULTS

A. De�nitions and notations.

The problem of substitution number N can be formu-
lated as follows. A discrete �nite Markov process X has
K possible values and is described by substitutions rates

mα
β α, β ∈ {1 . . .K} (1)
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Figure 1. The random process of substitution number. Inset :
a random processX can haveK di�erent values (here the four
bases of DNA) with rates of transitionmα

β between states. (a)
Each time a transition occurs, the random variables (N,T )
are incremented by (1, ti) where ti is an exponential time de-
pending on the state that is left. (b) A realization of this
process can be represented by a random path in the (N,T )
space (solid lines for 200 such random paths, simulated by a
Gillespie algorithm). Given a time t, one could then study
the probability P (n; t) of observing n substitutions at time
t and the moments of the random variable Nt (vertical red
slices). On the other hand, given a substitution number n,
one could study the probability density p(t;n) of the time it
takes to reach n substitutions, and the moments of the ran-
dom variable Tn (horizontal, blue slices).

of transition from one state α into another β (Fig.1, in-
set). Each time a transition occurs, the random variable
N is incremented by one unit, while the random variable
time T is incremented by tα, an exponentially distributed
time with a parameter depending on the state α that the
system leaves (Fig 1a). We can represent each realiza-
tion of this process by a random path (N,T ) (Fig 1b).
The problem of the substitution number is to evaluate the
moments (variance and higher order moments) of Nt, the
number of substitutions observed at time t. A comple-
mentary and valuable information is the moments of the
random variable Tn, the time it takes to reach n substi-
tution numbers. To our knowledge, this last problem has
not been addressed in the literature. The substitution
number is used to evaluate the length of the branches in
a phylogeny tree[5]. Under the assumption of molecu-
lar clock[9, 17], the time of divergence can be estimated
from the substitution number. Its intrinsic uncertainty
could be in principle deduced from the moments of the
substitution number. Computing the moments, and in
particular the variance, of Tn is a more direct approach
to the problem of divergence time.

The main result of this article is that a simple transfor-
mation, a matrix shift, allows one to compute the quan-
tities described above, both for Nt and Tn.
First, let us recall the basic de�nitions used in the �eld

of molecular evolution. The substitution matrix

Q =M −D (2)

contains all the information about the rates : The matrix
M contains the transition rates mα

β (α ̸= β) between

states while the diagonal matrix D = diag(mα) contains
the rate of leaving state α

mα =

K∑
β=1

mα
β (3)

The matrix Q is not symmetric and we must make a
clear distinction between column (right) and row (left)
vectors (i.e. linear forms). The Dirac notations[18] are
extremely useful to manage this distinction and will be
used through this article. A column vector is noted |u⟩,
a row vector ⟨u|, left (right) multiplication of a matrix
by a row (column) vector are ⟨u|R and R |u⟩; ⟨u|v⟩ is a
scalar while |u⟩ ⟨v| is a matrix.
By de�nition, each column of Q sums to zero, therefore

it has a zero eigenvalue :

⟨1|Q = ⟨0| (4)

where ⟨1| = (1, 1, ..., 1) is the left (row) eigenvector. The
right (column) eigenvector associated to the zero eigen-
value is denoted |π⟩:

Q |π⟩ = |0⟩ (5)

and is called the equilibrium probability of the states.
The average rate m̄, i.e. the weighted average of the

leaving rates is de�ned as :

m̄ =

K∑
α=1

mαπα = ⟨1|D|π⟩ = ⟨1|M |π⟩ (6)

The �rst moment (average) of Nt and Tn are straightfor-
ward to compute :

N̄t = m̄t (7)

T̄n =
1

m̄
n (8)

B. Moments of Substitution number Nt

As we discussed above, the average quantities are not
su�cient to evaluate a random variable and one must
possess the higher central moments such as variance,
third and fourth moments. An exact estimation of the
higher moments had proved extremely di�cult. The
source of this di�culty resides precisely in the existence
of the zero eigenvalues of Q (see section III). We show
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here that this di�culty can be circumvented by making
a simple transformation of the substitution matrix : us-
ing the matrix |π⟩ ⟨1| whose columns are all equal and
formed of the eigenvector |π⟩ and de�ning the invertible
matrix

Q̃ = m̄ |π⟩ ⟨1| −Q (9)

one can obtain the higher moments of Nt in terms of
simple manipulations of the matrix Q̃, its inverse Q̃−1

and the matrix M̄ =M − m̄I.
In the long time limit the second (variance, µ2), third

(µ3 ) and fourth (µ4) central moments of Nt are as fol-
lows. For the variance, we obtain

µ2

N̄t
= 1 + 2

δ2
m̄

+O(1/t) (10)

The quantity 2δ2/m̄ is is called �the overdispersion� of
the molecular clock and δ2 is found to be

δ2 = ⟨1| M̄Q̃−1M̄ |π⟩ (11)

Expression (10) is equivalent to the expression published
in our earlier work[16].
For the third central-moment, the result is found to be

µ3

N̄t
= 1 +

6δ3
m̄

+O(1/t) (12)

where

δ3 = ⟨1| M̄Q̃−1M̄(Q̃−1M̄ + I) |π⟩ (13)

Note that for a Poisson process, µ3/N̄ = 1.
For the fourth central-moment, the result is found to

be

µ4(
N̄t

)2 = 3

{
1 + 4

δ2
m̄

+ 2

(
δ2
m̄

)2
}

+O(1/t) (14)

For a Poisson process, µ4/N̄
2 = 3 +O(1/N̄).

Comparison to numerical simulations for µ3 is given in
�gure 2 and detailed in section III. For a two state system
with only one free parameter (beyond time scaling), a
simple formula for µ3 can be derived (equation 38 and
�gure 7).
Similar expression for the short time limit can also be

found by the same method (see section III).

C. Variance of Tn, time to reach n substitution.

The matrix

M̃ =MD−1

contains the jump probabilities from state α to β,knowing
that a transition has occurred (see section IV). This
matrix has one eigenvalue equal to unity, and its left and

Figure 2. The third central moment µ3 (relation 35) : compar-
ison between numerical simulation and theory for four states
system. 80 random 4×4 substitution matrix M are generated
and normalized to have m̄ = 1, so all numerical simulations
take the same time. For each matrix, 6 × 107 paths are gen-
erated for a total time of T = 1000 using a standard Gillespie
algorithm[19] ; each simulation for a given matrix takes ap-
proximately 5 hours. (a) For each matrix, the theoretical
value of µ3 is plotted against its numerical value. Solid lines
represents the diagonal. (b) The relative absolute di�erence
between these two values for each matrix.

right eigenvectors are noted ⟨1| and |ψ⟩, where ⟨1| =
(1, . . . 1) :

⟨1| M̃ = ⟨1| ; M̃ |ψ⟩ = |ψ⟩

As in the preceding discussion, we can decompose M̃ :

M̃ = |ψ⟩ ⟨1|+ F

The long term variance of Tn is then given as

1

n
Var(Tn) = 2

〈
1|D−1 (I − F )

−1
D−1|ψ

〉
−
〈
1|D−1|ψ

〉2
+O(1/n)

where the term in O(1/n) can be exactly evaluated (equa-
tion 57) and the residual is of the form Fn that converges
exponentially to zero. Figures 3 shows the comparison of
this result to numerical simulations. For a two state sys-
tem with only one free parameter, a simple formula for
Var(Tn) can be derived (equation 59 and �gure 7).
The next sections are devoted to the derivation of the

above results.

III. COMPUTING MOMENTS OF Nt

A. Background.

Consider a random process X that can take K values.
The rate of transition from a state β to a state α is noted
mβ

α. The probability Pα(t) of observing, at time t, the
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Figure 3. Comparison between theoretical and numerical
limit of Var(Tn)/n for 200 random 4 × 4 substitution ma-
trices. Each matrix is normalized in order to have m̄ = 1. A
standard Gillespie algorithm[19] is used to simulate 106 path
for each matrix for a duration of nmax = 200. The Variance
at each index n is computed using these paths. The numerical
limiting value is extracted from the last 100 indexes. (a) for
each random matrix, its theoretical variance is plotted against
its numerical value. (b) The relative absolute di�erence be-
tween these two values for each matrix. The relative di�erence
is inversely proportional to the number of paths used for the
numerical simulation.

system in the state α is given by the master equation

d

dt
Pα(t) =

K∑
β=1

mβ
αPβ(t)−mαPα(t) (15)

where mα =
∑

β m
α
β is the rate of leaving the state α.

Collecting the components Pα into the vector |P ⟩ we can
rewrite equation (15) in matricial notations as

d

dt
|P ⟩ =M |P ⟩ −D |P ⟩ (16)

where the elements of matrix M are given by the rates
mβ

α (withmα
α = 0) and D is the diagonal matrix of the el-

ements mα. The matrix Q =M−D, called the substitu-
tion matrix (relation2), has one zero eigenvalue with the
associated left and right eigenvectors ⟨1| and |π⟩(relations
4-5).
We can now set a counter N called the substitution

number (Figure 4) : each time a transition occurs, N is
incremented by one unit. The joined probability Pn

α (t)
of observing at time t the system in state α after n sub-
stitutions is given by the Master equations

d

dt
P 0
α(t) = −

K∑
β=1

mα
βP

0
α(t) (17)

d

dt
Pn
α (t) =

K∑
β=1

mβ
αP

n−1
β (t)−mαPn

α (t) ; n > 0 (18)

Figure 4. The stochastic process X as a function of time t.
The probability density of jumping from state α to state β is
mα

β (equ. 1). Each time a transition occurs, the substitution
number Nt is incremented by one unit.

or, in matricial notations introduced above :

d

dt
|Pn⟩ =M |Pn−1⟩ −D |Pn⟩ (19)

where, without loss of generality, we suppose that the
system at t = 0 is in equilibrium. :

|P 0(t = 0)⟩ = |π⟩

From the expression of |Pn⟩ the average of the random
variable Nt is computed by

N̄ = ⟨Nt⟩ =
∞∑

n=0

⟨1|nPn(t)⟩

and is trivial (see appendix A) to show that :

N̄ = m̄t (20)

The focus of this article is the higher moments of Nt. Let
us de�ne the central moment of order k for the state α
as

µk
α(t) =

∑
n

(
n− N̄

)k
Pn
α (t)

We group these moments into the vectorial moments

|µk(t)⟩ =
(
µk
1(t), . . . µ

k
K(t)

)T
The true quantity of interest, the (scalar) central moment
for the substitution number is therefore

µk =

K∑
α=1

µk
α(t) =

〈
1|µk(t)

〉
(21)
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B. Deriving the moments equation.

From the recurrence equation (19) we can directly de-
rive a set of hierarchical ordinary di�erential equations
(see appendix A) for the central moments :

d

dt
|µk⟩ = Q |µk⟩+ kM̄ |µk−1⟩

+ M

k∑
ℓ=2

(
k
ℓ

)
|µk−ℓ⟩ (22)

where

M̄ =M − m̄I (23)

and therefore, by de�nition,〈
1|M̄ |π

〉
= 0

Time derivative of a moment of order k depends only
on the moments of equal and lower order. The zero eigen-
value of matrix Q causes the moments to grow as a power
of time. This zero eigenvalue however prevents us to solve
the equations in terms of convolutions of exp(−Qt) with
some functions, as the matrix Q−1 does not exist. One
could theoretically use the spectral decomposition of Q
to solve equation (22) ; Q being asymmetric in general,
some of the eigenvalues are complex and this is not a
practical solution, specially when the number of states
K > 2. Surprisingly, this di�culty can be circumvented
by a simple matrix shift :

Q̃ = m̄ |π⟩ ⟨1| −Q (24)

The matrix |π⟩ ⟨1| is just a matrix whose columns are the

repetition of the eigenvector |π⟩. The matrix Q̃ has the
same eigenvectors as the matrix Q. The zero eigenvalue
is shifted to m̄:

Q̃ |π⟩ = m̄ |π⟩ (25)

while the sign of other eigenvalues is reversed : for |ei⟩
associated to the eigenvalue λi (< 0 ) of Q, noting that
⟨1|ei⟩ = 0,

Q̃ |ei⟩ = −λi |ei⟩

The matrix Q̃ is invertible, as all its eigenvalues have their
real part greater than 0. Using relation (24), equation
(22) transforms into :

d

dt
|µk⟩ = −Q̃ |µk⟩+ m̄µk |π⟩+ kM̄ |µk−1⟩

+ M

k∑
ℓ=2

(
k
ℓ

)
|µk−ℓ⟩ (26)

while the main quantity of interest, the scalar moment
µk =

〈
1|µk

〉
, is obtained from (22) by projecting the

equation on the ⟨1| linear form:

d

dt
µk = k

〈
1|M̄ |µk−1

〉
+

k∑
ℓ=2

(
k
ℓ

)〈
1|M |µk−ℓ

〉
(27)

The set of equations (26,27) allows us now to obtain, by
the usual techniques of ordinary di�erential equations,
all the moments. The algorithm is as follows :

� Knowing the vectorial moment up to |µk−1⟩, com-
pute the scalar moment µk from equation (27).
This necessitates only to compute the quantities〈
1|M |µk−ℓ

〉
, i.e. left and right multiplication of

the Matrix M by known vectors.

� Knowing the scalar moment µk, compute the vec-
torial moment |µk⟩from the relation (26). This ne-
cessitates only the knowledge of |µk−j⟩ and µk.

By de�nition, |µ0⟩ = |π⟩, so the recurrence in the above
process can be processed step by step. This two step
resolution allows for the isolation of the e�ect of the zero
eigenvalue from the other ones, as detailed below.

C. Solving the moments equations.

Equations (26,27) are best studied in the Laplace do-
main

|µ̂k(s)⟩ =
ˆ ∞

0

e−st |µk(t)⟩ dt

where linear di�erential equations are transformed into
algebraic ones. The long time limit t → ∞ can be ob-
tained by the limit s→ 0 in the Laplace domain. On the
other hand, the short range limit t → 0 is obtained by
the limit s→ ∞ of the Laplace transform.
Using the basic rules of Laplace transforms, equations

(26,27) are transformed into

µ̂k =
k

s

〈
1|M̄ |µ̂k−1

〉
+

1

s

k∑
ℓ=2

(
k
ℓ

)〈
1|M |µ̂k−ℓ

〉
(28)

and

|µ̂k⟩ =
m̄

s+ m̄
µ̂k |π⟩+ kUsM̄ |µ̂k−1⟩

+ UsM

k∑
ℓ=2

(
k
ℓ

)
|µ̂k−ℓ⟩ (29)

where we have used the shorthand notation

Us =
(
sI + Q̃

)−1

As (sI + Q̃) |π⟩ = (s+ m̄) |π⟩, the simpli�cation

Us |π⟩ =
1

s+ m̄
|π⟩

has been used to derive expression (29). Moreover, de-
velopment of Us in power of s is straightforward

Us = Q̃−1 − sQ̃−2 + . . .
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and is used below to obtain the long time limit of the
moments.

Let us know apply the resolution algorithm to solve for
the �rst moments of Nt. The resolution process, as we
described above, uses the successive steps

µ̂1 ⇒ |µ̂1⟩ ⇒ µ̂2 ⇒ |µ̂2⟩ ⇒ µ̂3 . . .

We already know that µ̂1 = 0 by de�nition. As |µ0⟩ =
|π⟩, from eq.(29), we obtain

|µ̂1⟩ = 1

s
UsM̄ |π⟩ (30)

From the above expression, we compute the variance of
Nt and its long time behavior:

µ̂2 =
2

s2
〈
1|M̄UsM̄ |π

〉
+
m̄

s2
(31)

=
2

s2

〈
1|M̄Q̃−1M̄ |π

〉
+
m̄

s2
+O(1/s) (32)

The dispersion index R, i.e. the variance to mean ratio,
converges to

R = 1 + 2
δ2
m̄

(33)

where

δ2 =
〈
1|M̄Q̃−1M̄ |π

〉
The above expression is equivalent to the expression ob-
tained, by a more intricate method, in [16] that has been
shown to be exact by numerical simulations.

Continuing the resolution, from expression (31), we
compute |µ̂2⟩ :

|µ̂2⟩ =
m̄

s2(s+ m̄)

(〈
1|M̄UsM̄ |π

〉
+ m̄

)
|π⟩

+
2

s

(
UsM̄

)2 |π⟩+ 1

s
UsM |π⟩

The expression for µ̂3 is trivially obtained if we recall
that

〈
1|M̄ |π

〉
= 0 :

µ̂3 =
6

s2

〈
1|M̄

(
UsM̄

)2 |π〉+ 6

s2
〈
1|M̄UsM̄ |π

〉
+
m̄

s2
(34)

In the long time limit (s→ 0), keeping the leading terms
in the above expression, we have

µ3

N̄t
= 1 +

6

m̄

〈
1|M̄Q̃−1M̄

(
Q̃−1M̄ + I

)
|π
〉
+O(1/t)

(35)
The explicit computation of µ4 (relation A) is given in
the appendix A.

Figure 5. The third central moment µ3 (relation 35) : compar-
ison between numerical simulation and theory for two states
system. For each value of q, the 2 × 2 matrix M (relation
36) is generated and is normalized to have m̄ = 1, so all nu-
merical simulations take the same time. For each matrix, 107

(A series, blue circles) or 106 (B series, red squares) paths
are generated for a total time of T = 1000 using a standard
Gillespie algorithm[19] ; each simulation for a given matrix
takes approximately 50 minutes. The value of µ3at each time
step and its limit value is computed from these paths. Solid
line is the theoretical expression (38).

D. Applications.

As an example, consider a two states system. Noting
the two transition rates mq and m(1− q), we have

M = m

(
0 1− q
q 0

)
; |π⟩ =

(
1− q
q

)
(36)

and m̄ = 2mq(1−q). All the matricial computations can
be performed symbolically and we have, for large times,

µ2/N̄t = 1 + (1− 2q)2 (37)

µ3/N̄t = 1 + 3(1− 2q)4 (38)

�gure 5 shows the excellent agreement between the
above theoretical results and numerical simulations of the
stochastic process.
For higher dimensional matrices, the symbolic expres-

sions are too cumbersome to compute symbolically. Fig-
ure 2 shows the comparison of the numerical simulations
to the theory for random 4× 4 substitution matrices.

E. Short term limit

The short term limit of the expression for the moments
can also be simply retrieved by taking the s→ ∞ limit of
equations (31,34). Note that in this limit, the operator

Us =
(
sI + Q̃

)−1

=
1

s
I − 1

s2
Q̃+ . . .
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Therefore, expression (31) is developed into

µ̂2 =
m̄

s2
+

2

s3
〈
1|M̄2|π

〉
+O(1/s4)

µ2 = N̄ +

〈
1|M̄2|π

〉
m̄2

N̄2 +O(t3) (39)

Note that the coe�cient νm =
〈
1|M̄2|π

〉
is a variance like

expression of the leaving rates weighted by equilibrium
probabilities :

νm =
∑
α

(mα)
2
πα −

(∑
α

mαπα

)2

By the same token, expression (34) is developed into

µ̂3 =
m̄

s2
+

6

s3
νm +O(1/s4)

= N̄ + 3
νm
m̄2

N̄2 +O(t3) (40)

IV. DERIVING THE VARIANCE EQUATION

FOR Tn

A. Evolution of the probability density of Tn.

Consider again the stochastic process X, but this time
as a function of the substitution number and not time
(Fig; 6). We note Pα(n) the probability of observing
the system in state α, knowing that n substitutions have
taken place. Knowing that the system was in state α and

that a transition has occurred, the probability of �nding
the system in state β is

m̃α
β = mα

β/m
α. (41)

Collecting the coe�cients Pα into the vector |P (n)⟩, and
the coe�cients m̃α

β into the matrix M̃ (not to be confused

with the matrix M̄ of preceding section), we can write
the evolution of the system as

|P (n)⟩ = M̃ |P (n− 1)⟩ (42)

By de�nition, the columns of the matrix

M̃ =MD−1 (43)

sum to 1 :

⟨1| M̃ = ⟨1| (44)

therefore ⟨1| is the left (row) eigenvector of M̃ associ-
ated to the eigenvalue 1. We denote by |ψ⟩ the right

(column) normalized eigenvector of M̃ associated to the
same eigenvalue 1 :

M̃ |ψ⟩ = |ψ⟩ ; ⟨1|ψ⟩ = 1 (45)

Figure 6. The stochastic process X as a function of the num-
ber of transitions n. Knowing that a transition has occurred,
the probability of jumping from state α to state β is m̃α

β (equ.
41). The residency time τα in the state α is exponentially
distributed with parameter mα. The total time tn that the
system takes to reach n transition is the sum of these resi-
dency times : tn =

∑n

i=1
τn.

|ψ⟩ is the equilibrium probability of the X process, con-
sidered as a function of n. Without loss of generality, we
suppose that initially, the system is in equilibrium

|P (0)⟩ = |ψ⟩ (46)

The vector |ψ⟩ is related to the zero eigenvector of the
matrix Q (relation 2) through the relation

D |π⟩ = m̄ |ψ⟩ (47)

The probability density f(τ ;α) that the system resides
a time τ in the state α is exponentially distributed with
parameter mα :

f(τ ;α) = mαe−mατ

We can now derive the expression for the random vari-
able Tn. The probability density pα(t;n) of the total time
t to reach n substitutions and to be in state α is therefore

pα(t;n+ 1) =

ˆ t

τ=0

∑
β

pβ(t− τ ;n)m̃β
αf(τ ;β)dτ. (48)

In plain words, the probability density that the total time
at n + 1 is t and the system in state α equals the prob-
ability density that (i) at n the total time was t− τ and
(ii) the system was in β and made a transition β → α
and (iii) the system resided a time τ in state β, summed
over all β and u.
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Collecting the coe�cients pα(t;n) into the vector
|p(t;n)⟩, equation (48) can be written as

|p(t;n+ 1)⟩ =
ˆ t

τ=0

M exp(−Dτ) |p(t− τ ;n1)⟩ dτ (49)

where we have used the relation M̃D = M . The above
expression is a convolution product, therefore using the
Laplace transform

|p̂(s;n)⟩ =
ˆ ∞

t=0

e−st |p(t;n)⟩ dt

equation (49) transforms into a simple recurrence relation
:

|p̂(s;n+ 1)⟩ = K̂(s) |p̂(s;n)⟩ (50)

where

K̂(s) =M(D + sI)−1

is the Laplace transform of the kernel

K(τ) =M exp(−Dτ)

in relation (49). Formally, the solution of the recurrence
relation (50) is

|p̂(s;n)⟩ =
(
K̂(s)

)n
|ψ⟩ (51)

B. Computing the variance of Tn

Various moments of the random variable Tn can be
computed by the derivations of the expression (51) as a
function of s for s = 0. Let us de�ne

Ln(s) =
(
K̂(s)

)n
and note that, from equations (44,45)

⟨1|Ln(0) = ⟨1|
(
M̃
)n

= ⟨1| (52)

Ln(0) |ψ⟩ =
(
M̃
)n

|ψ⟩ = |ψ⟩ (53)

the mean of the random variable Tn can be computed by

⟨Tn⟩ =

〈
1| d
ds

|p̂(s;n)⟩
∣∣∣∣
s=0

〉
= ⟨1|L′

n(s = 0)|ψ⟩ (54)

The matrix

K̂ ′(s) =M(D + sI)−2

and K̂(s) don't commute in general. Therefore, the
derivative of the matrix Ln(s) has to be computed ex-
plicitly :

L′
n(s) =

n−1∑
m=0

Lm(s)K̂ ′(s)Ln−m−1(s)

Using the simpli�cations (44,52,53) and the relation (47),
it is straightforward to compute the average

⟨Tn⟩ = n
〈
1|D−1|ψ

〉
=

n

m̄

where m̄ is the average leaving rate de�ned in equation
(6).
For the second moment,〈

T 2
n

〉
=

〈
1| d

2

ds2
|p̂(s;n)⟩

∣∣∣∣
s=0

〉
We note that

L′′
n(s) =

n−1∑
m=0

L
′

m(s)K̂ ′(s)Ln−m−1(s)

+

n−1∑
m=0

Lm(s)K̂ ′′(s)Ln−m−1(s)

+

n−1∑
m=0

Lm(s)K̂ ′(s)L′
n−m−1(s)

and therefore (see appendix C)

〈
T 2
n

〉
= 2

n−1∑
m=1

(n−m)
〈
1|D−1M̃mD−1|ψ

〉
+ 2n

〈
1|D−2|ψ

〉
(55)

As the matrix M̃ has one eigenvalue equal to 1, we can-
not explicitly compute the geometric series (55) as it is.
However, we can use the shifted matrix method used in
the preceding section and write

M̃ = |ψ⟩ ⟨1|+ F

By the above de�nition, we have

⟨1|F = ⟨0| ; F |ψ⟩ = |0⟩ (56)

and therefore

M̃m = |ψ⟩ ⟨1|+ Fm

The Matrix (F − I) is therefore invertible and

n−1∑
m=1

(n−m)Fm = F (I − F )−2 [I − Fn − n(I − F )]

All the eigenvalues of F are ∈ [−1, 1[ and in the limit of
large n, Fn → 0 exponentially. Note that the special case
when F has a -1 eigenvalue does not change the result
(see for example, the two states system below). Finally,
grouping all terms, it is found that

1

n
Var(Tn) = 2

〈
1|D−1 (I − F )

−1
D−1|ψ

〉
−
〈
1|D−1|ψ

〉2
− 2

n

〈
1|D−1F (I − F )

−2
D−1|ψ

〉
(57)

where Var(Tn) =
〈
T 2
n

〉
− ⟨Tn⟩2. We observe that

Var(Tn)/n converges as 1/n toward its limit. We stress
that expression (55) involves only simple matricial opera-
tions: inversion, and left and right multiplication by row
and column vectors.
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Figure 7. Comparison between theoretical and numerical val-
ues of Var(Tn)/n for a two states system (eq. 58) for four dif-
ferent values of q. Each matrix is normalized in order to have
m̄ = 1. A standard Gillespie algorithm[19] is used to simu-
late 106 path for each matrix for a duration of nmax = 100.
The Variance at each index n is computed using these paths.
For each random matrix, its numerical variance (symbols) is
compared to the theoretical prediction of eq. 59).

C. Applications.

As a �rst example, consider the two state system
(equation 36). From the de�nition of the matrix M , it is
trivial to show that

M̃ =

(
0 1
1 0

)
; |ψ⟩ = 1

2

(
1
1

)
(58)

This is a particular case where M̃ possesses a −1 eigen-
value with the left and right associated eigenvector ⟨i| =
(1,−1) and |ψ1⟩ = (1/2)(1,−1)T . The matrix M̃ can
therefore be written as

M̃ = |ψ⟩ ⟨1| − |ψ1⟩ ⟨i|
M̃m = |ψ⟩ ⟨1|+ (−1)m |ψ1⟩ ⟨i|

For this simple system, we don't have to use the large n
approximation and the result is found to be

m̄2

n
Var(Tn) = 1 + (1− 2q)2

(
1 +

an
n

)
(59)

where

an =
1

2
(1 + (−1)n)

�gure 7 shows the excellent agreement between the above
expressions and numerical simulations of the stochastic
process.
For higher dimensional matrices, the symbolic expres-

sions are too cumbersome to compute explicitly. Figure
3 shows the comparison of the numerical simulations to
the theory for random 4 × 4 substitution matrices, and
the excellent agreement between them.

A �nal remark is in order. We saw in section III that
the variance to mean ratio for the random variable Nt

is always superior to 1 and is overdispersed compared
to a Poisson process. For the random variable Tn, the
situation is reversed. We can write

Tn =

n∑
i=1

τi

where the random variable τi is the time the system takes
to make one transition. These variables are exponentially
distributed and in particular,

Var(τi) = 2
〈
1|D−2|ψ

〉
−
〈
1|D−1|ψ

〉2
If τi were independent, we would have

Var(Tn) = nVar(τ)

Our numerical simulations show that, although Var(Tn)
is linear in n,

Var(Tn) < nVar(τ)

i.e. correlations between τi decreases the variance for Tn
.

V. DISCUSSION AND CONCLUSIONS.

The characterization of the random variable �substitu-
tion number� Nt is a problem that is stated simply, but
its solution has proved, until now, to be extremely di�-
cult. In this article, we have developed a simple matrix
shift method, that allows for the exact computation of
the moments of this random variable and its associated
variable Tn : the results obey a moment closure scheme,
i.e. results from step k, which are obtained by simple
matrix algebra, are used to obtain results for step k + 1.
Even though we have restricted the computation to the
�rst four moments, a formal algebra software can be pro-
grammed in principle to derive the result for arbitrary
moments.
Note that in molecular evolution, the main observable

is the probability pd(t) that two di�erent sequences are
di�erent at a given site [20] :

pd(t) = 1− tr(eQtΠ) (60)

where Π is the diagonal matrix formed by the elements
of the vector |π⟩. One can estimate pd(t) from the frac-
tion of observed di�erences between two sequences p̂. By
eliminating time in relations (7,60), it is then possible to

relate the estimators d̂ (of ⟨n⟩) and p̂

d̂ = f(p̂) (61)

For sequences of length L, p̂ is given by a binomial distri-
bution B(L, p) and the variance of the distance estimator
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d̂ can be deduced from relation (61). This quantity how-
ever is very di�erent from the intrinsic variance of the
substitution number that we have computed here.
The above method is very general and can be used

for any stochastic process that has a unique equilibrium
probability.

Appendix A: Deriving the moments equation for Nt

Consider the system of equations

d

dt
|Pn⟩ =M |Pn−1⟩ −D |Pn⟩ (A1)

with the initial condition

|P 0(t = 0)⟩ = |π⟩

In order to simplify the computations involving index
shift and without loss of generality, we extend the domain
of N to negative integers :

|Pn(t)⟩ = |0⟩ n < 0

First, let us note that∑
n

|Pn(t)⟩ = |π⟩ (A2)

as the left hand side is the probability of �nding the sys-
tem in a given state, whatever the number of substitu-
tion.
We de�ne the moment-vector of order k as

|Nk⟩ =
∑
n

nk |Pn⟩

The moments of the random variable N are obtained
simply by summing over all the components of the cor-
responding vector-moment :

〈
Nk
〉
=

K∑
α=1

|Nk⟩α =
〈
1|Nk

〉
(A3)

Consider the mean-vector

|N⟩ =
∑
n

n |Pn(t)⟩

Applying
∑

n n to both sides of equations (A1) we obtain

d

dt
|N⟩ = Q |N⟩+M |π⟩ (A4)

where Q =M −D and we have used the change of index
n→ n+ 1 to simplify the expression

M
∑
n

n |Pn−1⟩ = M
∑
n

(n+ 1) |Pn⟩

= M |N⟩+M |π⟩

Summing over the component of |N⟩ by applying the
left form ⟨1| to expression (A4), we have

d

dt
⟨N(t)⟩ = d

dt
⟨1|N(t)⟩ = ⟨1|M |π⟩ = m̄ (A5)

As ⟨1|M = ⟨1|D, the coe�cient

m̄ =

K∑
α=1

mαπα

is simply the weighted average of the leaving rates. Inte-
grating equation (A5), we have the linear growth law of
the average :

N̄(t) = ⟨N(t)⟩ = m̄t

We apply the same method to obtain higher orders
moments. We de�ne the central moment-vector of order
k as

|µk(t)⟩ = |
(
N − ¯N(t)

)k⟩ =∑
n

(n− m̄t)k |Pn(t)⟩ (A6)

Deriving the above expression as a function of time, we
have

d

dt
|µk(t)⟩ = −m̄k |µk−1(t)⟩+

∑
n

(n− m̄t)k
d

dt
|Pn(t)⟩

We can now use equation (A1) to develop the last term
of the above expression. To compute the term∑

n

(n− m̄t)k |Pn−1⟩

we make the usual change of index n → n + 1 and use
the binomial expression

(n− m̄t+ 1)
k
=

k∑
ℓ=0

(
k
ℓ

)
(n− m̄t)

k−ℓ

Grouping all the terms and recalling that Q = M − D,
we obtain

d

dt
|µk⟩ = Q |µk⟩+ k (M − m̄I) |µk−1⟩

+ M

k∑
ℓ=2

(
k
ℓ

)
|µk−ℓ⟩ (A7)

The above expression is an exact moment closure : the
di�erential equation of moments-vector of order k de-
pends only in moments-vector of order ≤ k. Projecting
on the ⟨1| form and recalling that ⟨1|Q = ⟨0|, we get
�nally the expression for the centered moments

d

dt

〈
µk
〉

= k
(〈
1|M̄ | |µk−1⟩

〉)
+

k∑
ℓ=2

(
k
ℓ

)〈
1|M |µk−ℓ

〉
(A8)

where M̄ =M − m̄I.
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Appendix B: Computation of the fourth moment of

Nt

From the expression for the central moments µ̂ℓ (ℓ =
0, . . . , 3) and the vectorial moments |µ̂j⟩(j = 0, . . . , 2),
we can compute the third vectorial moment :

|µ̂3⟩ =
m̄

s+ m̄
µ̂3 |π⟩+ UsM̄

(
3 |µ2⟩+ 3 |µ1⟩+ |µ0⟩

)
+ m̄Us

(
3 |µ1⟩+ |µ0⟩

)
To compute the fourth moment, we only need to compute

〈
1|M̄ |µ̂3

〉
=

3m̄A1
s

(
m̄+A1

s

)
s2(s+ m̄)

+
m̄2

s(s+m)

+
1

s
A1

s +
6

s
A2

s +
6

s
A3

s +
3m̄

s
B2

s (B1)

where

Ak
s =

〈
1|M̄

(
UsM̄

)k |π〉
Bk

s =
〈
1|M̄Uk

s M̄ |π
〉

The expression for the fourth moment deduced from (A8)
is :

µ̂4 =
4

s

〈
1|M̄ |µ̂3

〉
+

6

s

〈
1|M̄ |µ̂2

〉
+

4

s

〈
1|M̄ |µ̂1

〉
+

1

s

〈
1|M̄ |µ̂0

〉
+

6m̄

s
µ̂2 +

4m̄

s
µ̂1 +

m̄

s
µ̂0 (B2)

As we are mostly interested in the long time limit, we
only need to collect the higher order terms in 1/s3 in the
above expression. Only two terms are of order 1/s3 (the
�rst term from the relation (B1) and the term from µ̂2 )
; collecting these terms leads to

µ̂4 =
6m̄2

s3

(
1 + 4

A1
s

m̄
+ 2

(
A1

s

m̄

)2
)

(B3)

As s→ 0, A1
s → δ2, where δ2 was de�ned in relation (11).

Taking the inverse Laplace transform, we obtain

µ4(t)(
N̄t

)2 = 3

(
1 + 4

δ2
m̄

+ 2

(
δ2
m̄

)2
)

(B4)

Appendix C: deriving
〈
T 2
n

〉
To compute

〈
T 2(n)

〉
we have to compute explicitly

L′′
n(s) =

n−1∑
m=0

L
′

m(s)K̂ ′(s)Ln−m−1(s) (C1)

+

n−1∑
m=0

Lm(s)K̂ ′′(s)Ln−m−1(s) (C2)

+

n−1∑
m=0

Lm(s)K̂ ′(s)L′
n−m−1(s) (C3)

where

K(s) = M(D + sI)−1

Ln(s) = K(s)n (C4)

L′
n(s) =

n−1∑
m=0

Lm(s)K̂ ′(s)Ln−m−1(s) (C5)

and its matrix element ⟨1|L′′(0)|ψ⟩. Using the relation
(C5), the �rst line (C1) of the above relation is :

J1(s) =

n−1∑
m=1

m−1∑
j=0

Lj(s)K
′(s)Lm−j−1(s)K

′(s)Ln−m−1(s)

Using the simpli�cations

⟨1|Lk(0) = ⟨1| ; Lk(0) |ψ⟩ = |ψ⟩

we obtain

⟨1|J1(0)|ψ⟩ =

n−1∑
m=1

m−1∑
j=0

〈
1|D−1M̃m−jD−1|ψ

〉

=

n−1∑
j=1

n−1∑
m=j

〈
1|D−1M̃ jD−1|ψ

〉

=

n−1∑
j=1

(n− j)
〈
1|D−1M̃ jD−1|ψ

〉
where the second line has been obtained by re-indexing
and changing the order of summation.

Appendix D: Numerical simulations.

Numerical simulations are performed by a classical
Gillespie algorithm[19]. The algorithm is implemented
using the Julia language[21]. The process is simulated as
described in �gure 1. To generate one path for a given
substitution matrix M , we begin with a state α0 drawn
from the equilibrium state |π⟩or |ψ⟩ depending on the
problem. The time t1 to the the next transition is drawn
from an exponential distribution with parameter mα0 ;
the next state α1 is drawn at random using the α0 col-
umn of the matrix M̃ of transition probabilities. A loop
until the �nal index n is used to continue the process and
the path is recorded as the vector (t1, . . . tn).
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