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When releasing a droplet onto a distinct nonmiscible liquid layer, for positive spreading
parameter S, a surface tension driven spreading arises. Here, for positive S, we report the
reverse after the initial spreading phase: a secondary receding of the deposited volatile
droplet. This behavior is found to result from the competition between two opposite effects:
solutal and thermal Marangoni stresses, with the latter built from droplet’s evaporation.
To clarify the effects of evaporation-induced Marangoni, accurate infrared thermography
tests are performed. These tests reveal a maximal temperature gradient at the droplet
edge near the recession time. Also, universal scaling laws are proposed for the spreading
dynamic of a law-viscous insoluble drop onto a more viscous oil, with droplet volume
variation resulting from the evaporation and typical receding time. These predictions are
successfully compared with experiments.
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I. INTRODUCTION 20

Droplet interfacial dynamics over wetting solid substrates or liquid layers is a sophisticated 21

phenomenon that has attracted much attention both because of its fundamental and practical 22

interest [1]. It is relevant in many applicative contexts such as coating processes, inkjet printing, 23

biocontamination, etc. In dynamical situations, the isothermal spreading of liquids produces com- 24

plex dynamics associated with interfacial instabilities and fascinating pattern formations [2–7]. This 25

spreading can also lead to a secondary instability of the interfacial front and beautiful fingering 26

instability [8–10]. The spreading of a droplet after deposition on a liquid layer arises from a positive 27

spreading coefficient, S [11], 28

S = γl − γd − γld , (1)

with γl , γd , and γld being respectively the liquid layer/air, droplet/air, and liquid layer/droplet 29

surface tension. It determines the energy per unit area of spreading, which is mostly balanced by 30

the viscous forces in the liquid [12]. As opposed to these dynamical configurations, quasisteady 31

ones such as evaporating sessile droplets have been studied where thermal Marangoni stress built 32

from surface tension’s dependence on temperature slightly deforms the interface, whereas creeping, 33

convectively coupled evaporation flows are also observed [13]. 34

Either from capillary forces acting at triple line associated with surface tension or from (solutal or 35

thermal) dynamical Marangoni stress, the dynamics of droplet interfaces are governed by interfacial 36

forces which can possibly play a synergetic role, or, on the contrary, an opposite one. Examples 37

and illustrations of complex effects arising from interfacial forces at low Reynolds number are, in 38

fact, numerous. An opposite effect is for an example found for the dewetting instability of a flat 39

interface nearby a solid surface where capillary forces stabilize the interface from the action of 40

Laplace pressure, but, at the same time, destabilize it from disjoining pressure. On the one hand, the 41

physical system tries to minimize the air/liquid area favorable to a flat interface, while, on the other 42
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hand, it is also favorable for creating a new solid/air interface (dewetting) for energy minimization.43

A synergetic effect is on the contrary known for an oil film spreading over a hot solid surface (the44

so-called “pan spreading” problem) both resulting from positive spreading coefficient and thermal45

Marangoni forces acting in the same direction eventually leading to a central dry spot [14].46

When considering interfacial spreading onto a fluid layer, two distinct spreading mechanisms47

have been described [15]: Laplace spreading [16] and Marangoni spreading [12]. The first one48

has been found relevant for surface tension driven forces at triple line such as those arising for an49

oil drop deposited onto a much lower viscous deep liquid. In this case the spreading drop radius50

R(t ) dynamics display a power law R(t ) ∼ (t/tcv )n, where tcv is the capillary-viscous time (built51

upon the capillary length �c and the kinematic viscosity of the oil deposited drop, i.e., tcv = �2
c/νo).52

Exponent n has been found experimentally in the range n ∈ [0.25–0.4] [16], while the theoretical53

prediction for very deep layers is n = 1/8 = 0.125 [17]. Considering the distinct case of solutal54

driven monolayer spreadings either onto a single liquid [18,19] or at the interface between two55

liquids [12,15], the spreading mechanism arises from the coupled effect of Marangoni stress and56

Marangoni flow driving the solutal concentration dynamics at the interface. For this Marangoni57

spreading, a distinct spreading regime R(t ) ∼ (t/tcv )3/4 has also been found. Recent experiments58

also found both regimes to happen depending on the relative importance of solutal Marangoni59

compared to Laplace spreading [15].60

Here, we examine the spreading of a low viscous volatile liquid drop into a more viscous layer.61

For a volatile droplet, the induced thermal Marangoni force can indeed counteract the solutal ones.62

This was first studied by Keiser et al. [20], who experimentally investigate the flow dynamics of a63

water-IPA (isopropyl alcohol) mixture deposited on a thick layer of sunflower oil. Varying the mass64

fraction of water-IPA mixture, they reported a minimum concentration of IPA for which it spreads65

and fragments into a myriad of minuscule droplets. They also performed a scaling analysis to predict66

the spreading radius of the droplet, but their model failed to capture the self-similar behavior of the67

radius dynamic. Keiser et al. also used methylene blue to enhance the imaging contrast between IPA68

solution and substrate oil. In a subsequent study, Seyfert and Marin [21] performed experiments to69

examine the influence of this added dye on the Marangoni driven fingering instability. They found70

that increasing the concentration of methylene blue led to an increase in the instability wavelength.71

Keeping the same experimental configuration, Hasegawa and Manzaki [22] further explored the72

flow dynamics of an IPA droplet on sunflower oil. Measuring the temperature field, they reported73

a temperature gradient near the spreading front attributed to the induced thermal Marangoni stress74

after the first two seconds.75

Despite these studies, there is still a lack of understanding regarding Marangoni-driven spreading76

of volatile droplets on an oil layer. Here, we report that the volatile drop deposited onto the oil77

layer experiences an outward motion that progressively slows down, stops, and finally reverses. To78

our knowledge, this recession of the deposited droplet has neither been reported, discussed, nor79

explained in previous studies.80

The paper is organized as follows. Section II describes the various experimental setups and81

the calibration method for the optical measurements of the deposited droplet volume. Section III82

describes the experimental observations for the spreading dynamics, receding, and volume change,83

as well as the deposited edge temperature measurements. This section also analyzes the fingering84

instability. Section IV details the scaling analysis for the obtained spreading dynamics as well as its85

self-similar solution, further compared with measurements in Sec. V.86

II. MATERIALS AND METHODS87

A. Optical and thermal setups for the analysis of spreading dynamics88

A schematic diagram of the experimental setup is presented in Fig. 1(a). This setup was used for89

all experiments, excluding infrared imaging. A 5 ml plastic syringe filled with methanol was put90

into an ExiGo microfluidic pump. The physical properties of the methanol are outlined in Table I.91
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FIG. 1. Schematic illustrations of the experimental setup for (a) flow visualization tests and (b) infrared
thermography tests. Experiments were performed in a room with controlled temperature and humidity.

Also, for providing a better visualization, methanol was colored with a 0.3 g/l volume concentration 92

of methylene blue. To clamp the needle and precisely control its tip position, a Scientifica PatchStar 93

micromanipulator was employed. A stand was utilized to hold an 88 mm diameter glass petri dish, 94

which was filled with olive oil at different thicknesses ranging from 3 mm to 8 mm. The volume of 95

oil was measured using a high precision balance (Mettler Toledo, ME3002). Before each test, the 96

petri dish was emptied of any remnants from the previous test, carefully washed, and then dried. 97

Four height controllers were used to ensure the stand was completely level. A diffused backlight 98

imaging technique was implemented to visualize the liquid development. A high-lumen LED was 99

placed beneath the diffuser to create a uniform bright background. Images were captured using 100

a Nikon D850 camera equipped with a Micro Nikkor 105 mm lens. Once a droplet was released 101

onto the oil surface, the needle was immediately removed from the field of view to avoid any optical 102

shadowing or blockage. Taken photos were subsequently analyzed using an in-house image analysis 103

program to identify the key characteristics of the liquid flow. 104

The main dimensionless numbers characterizing the physics of the problem are reported in 105

Table II. Capillary number, Péclet number, and Reynolds number are tabulated for both methanol 106

and olive oil. Also, the lubricated Reynolds number which is appropriate to quantify inertia effects 107

within lubricated flow is provided [23]. To do so, the characteristic velocity of the methanol 108

spreading was considered to be Um = 10 mm/s (from experimental measurements). Using the 109

tangential shear stress continuity condition along the methanol/oil interface provides the scaling 110

μoUo/H ∼ μdUm/h0 and, for typical H/h0 ≈ 20, the characteristic velocity of oil is evaluated as 111

Uo ≈ 2.4 mm/s. The maximum thickness of the methanol droplet (h0) holds a value around 10−4 m. 112

Considering the importance of thermal effects induced by the methanol evaporation, infrared 113

thermography experiments were also conducted. Temperature field of the upper surface of the oil 114

layer was most desired, but due to the physical limitations associated with direct thermography 115

of a liquid surface, such measurements were not possible. To address this issue, we designed and 116

TABLE I. Physical properties of the methanol and olive oil.

Property Symbol Value (unit)

Methanol vapor pressure pv 13.02 (kPa)
Methanol density ρd 792 (kg/m3)
Methanol surface tension γd 22.5 (mN/m)
Methanol viscosity μd 5 × 10−4 (Pa s)
Olive oil density ρo 917 (kg/m3)
Olive oil surface tension γo 32 (mN/m)
Olive oil viscosity μo 0.084 (Pa s)

003600-3



JABERI, DEBENEST, AND PLOURABOUÉ

TABLE II. Main dimensionless numbers characterizing the physics of both methanol and oil flows. In the
formulas, H stands for either the maximum thickness of methanol (h0) or the olive oil height (H ).

Number Methanol Olive oil

Capillary number Ca = μU/γ 2 × 10−4 63 × 10−4

Thermal Péclet number Pe = HU/α 19 89.3
Reynolds number Re = HU/ν 3.0 0.1
Lubricated Reynolds number (h0/�c )Re 0.3 0.01

built a unique setup, as depicted schematically in Fig. 1(b). Accordingly, we used a double mirror117

configuration for reflecting thermal effects onto the infrared camera (FLIR X8501 sc). Both mirrors118

were held at the constant angle of 45◦. Instead of a petri dish, the olive oil was poured into a119

polymer ring with a 0.05 mm thick steel foil as the bottom surface. The exterior surface of the120

foil was painted in black and, thus, its emissivity coefficient was exactly known. Since the heat121

diffusivity of this solid surface is αs = 64 m2/s, diffusion time within it was approximately h2
s /αs ≈122

10−6 s, signifying that the steel foil almost instantaneously reflected the temperature at the liquid123

bottom. However, the upper mirror was inevitably implemented to detect the droplet deposition124

time and spreading/receding dynamics, enabling us to synchronize it with the signals received from125

the lower mirror. Furthermore, it took some time for any thermal signature to be advected from126

the methanol/oil interface into the oil and ultimately to the bottom. From the upper mirror signals,127

we were able to precisely detect when the methanol droplet reached the oil surface. A comparison128

between the signals recorded from the upper and lower mirrors is provided in Fig. 2.129

However, the first detectable signal on the lower mirror appeared after some delay �t , which is130

the time for temperature changes to travel along the oil layer. To estimate this delay we calculated131

the L2-norm difference of the temperature field between consecutive frames after droplet deposition.132

Temperature field before drop deposition was considered as the base condition. Figure 3 provides the133

L2-norm variations starting from droplet deposition time t = 0. The increase in L2-norm difference134

indicates the emergence of thermal effects at the bottom of the oil. At t = 2.9 s, the L2 norm was135

twice its average initial value. Therefore, �t = 2.9 s was considered as the delay time between the136

first and second mirrors. Aside from this experimental observation, a more detailed investigation137

of the delay time was necessary to determine whether it originated in conduction heat transfer or138

convection. In Appendix, a theoretical discussion is provided which clearly demonstrates that, for139

a pure conduction mechanism, the delayed time would be at least ten times bigger. Based on this140

theoretical analysis we came to the conclusion that convection is the primary mechanism for heat141

transfer.142

FIG. 2. Comparison of recorded signals from upper and lower mirrors. The upper mirror provided a
qualitative description of the temperature field, while data obtained from the lower mirror were quantitatively
accurate.
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FIG. 3. L2-norm difference of temperature field calculated from temperature field before droplet deposi-
tion. At t = 2.9 s, the L2 norm is doubled compared to its early time value. The subset plot shows an example
of temperature difference between the base condition and temperature field at t = 5.5 s.

B. Optical measurement of the deposited evaporating drop volume 143

Visualization photographs were further processed by the Beer-Lambert-Bouguer (BLB) law to 144

estimate the droplet thickness at different stages of development. When light interacts with a liquid 145

(herein, methanol), its intensity decays along its propagation from absorption and scattering. As 146

methanol was dyed in our experiment, its absorption was increased and hence measurable. The 147

BLB law relates the light intensity reduction to the traveling path within the medium. According to 148

the BLB law, the radiant intensity of a beam after traveling a distance of h through a medium is 149

I (h) = I0e−βh, (2)

where I0 is the incident intensity and β is the attenuation or extinction coefficient. The calibration 150

of the attenuation coefficient β for dyed methanol permits the use of the BLB law to evaluate the 151

local thickness of the droplet. To do so, we deposited different dyed methanol volumes using the 152

microfluidic pump ranging from 6 to 12 µL. Using the first image of the droplet after deposition, we 153

could evaluate the intensity distribution, I (r, θ ), from RGB values of the image. Images taken from 154

the oil surface before the droplet release provided the constant intensity, I0(r, θ ) = I0. Rearranging 155

Eq. (2) leads to 156

h(r, θ ) = − 1

β
ln

(
I (r, θ )

I0

)
. (3)

Up to here, both h(r, θ ) and β are unknown. Due to the symmetry of the droplet both thickness and 157

intensity very weakly depend on the azimuth, θ , so that an average intensity over θ can be computed. 158

Since the exact volume of the deposited volume is known and also because we use the first image 159

where evaporated mass is negligible, we can complete the calibration from computing the droplet 160

volume, 161

V = 2π

∫ R

0
h(r)r dr, (4)

replacing h(r) from Eq. (3), which leads to 162

V = −2π

β

∫ R

0
ln

(
I (r)

I0

)
r dr. (5)

For a given volume, there is only one single value of β satisfying Eq. (5). Obtaining β for a set 163

of experiments with different deposited volumes permits one to find an averaged value for the 164
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FIG. 4. Calibration of attenuation coefficient, β, in Beer-Lambert-Bouguer law.

attenuation coefficient. For this unique β, the volumes predicted by Eq. (5) are compared with the165

experiments in Fig. 4. Given Fig. 4, a good agreement is found between prediction and prescribed166

volume (central diagonal depicts perfect agreement). This confirms the validity of this droplet167

thickness’ evaluation method. Results of volume measurements are discussed in Sec. V.168

III. EXPERIMENTAL OBSERVATIONS169

As soon as the methanol drop reaches the oil surface, a series of instabilities happen consecutively170

and in very short duration. A temporal sequence of the flow development is illustrated in Fig. 5(a).171

In this figure, a 30 µL droplet was deposited over an 8 mm thick oil layer. Methanol drop172

spontaneously spreads over the oil surface because of the small interfacial tension between the173

two liquids and the positive spreading coefficient, S = γo − γd − γod > 0. Segments with red and174

blue arrows, respectively, indicate spreading (t < 12.9 s) and receding (t > 12.9 s) phases of the175

FIG. 5. Dynamics of a methanol droplet deposited on an olive-oil layer. (a) Top-view droplet development
over oil layer. When the outer rim reaches a maximum extent from solutal Marangoni tangential stress it starts
receding from the thermal one. Capillary length has been estimated to be �c = 4 mm. (b) Transverse schematic
representation of the rim fragmentation steps arising within the short-time period depicted in (a) as I, II, and
III. (I) The rim is first detached by Marangoni-stress arising between the free-stress region τ = 0 on the right
to the nonzero one τ �= 0 on the left. This stress also induces a reverse backflow inside the oil depicted with
blue arrows. (II) After detachment, a secondary rim develops and progressively wrinkles circumferentially. (III)
After a finite time, the secondary rim destabilizes, leading to the formation of smaller daughter drops hereafter
continuously shed from the secondary rim.
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FIG. 6. Wavelength measurements of the fingering instability for different depths of oil, H .

flow development. Ahead of the bulk flow, a shear-free precursor film propagates very fast over the 176

whole oil surface [24,25]. This far propagating precursor region being shear free (τ = 0) needs to 177

match with the nonzero stress (τ �= 0) zone within the droplet, leading to a strongly localized solutal 178

Marangoni stress resulting from positive spreading coefficient, S, and leading to the formation of 179

a rim at the interface of the two regions [step I, Fig. 5(b)]. This primary rim forms shortly after 180

the drop deposition and thickens as it moves outward until detaching from the main droplet by 181

capillary rupture [step II, Fig. 5(b)]. Resulting from detachment, a thinner secondary rim develops 182

at the periphery of the main droplet. The circumferential shape of this secondary rim, at early stages 183

being smooth, soon enough destabilizes and adopts a wavy shape. Along this unstable rim, liquid 184

accumulates at the crest points from surface tension and circumferentially develops a large number 185

of ligaments which then break as also studied in [26,27]. The process thus repeats itself, leading to 186

small droplet detachment, fed by the rim resulting in a train of small, almost equal size, droplets 187

[step III, Fig. 5(b)]. The zoom region in Fig. 5(a) illustrates the trains of these droplets detaching 188

from the secondary rim and progressively merging outward within large pearlized drops. 189

As discussed in the Introduction, this bursting of the volatile droplet into a large number of small 190

droplets was first observed by Keiser et al. [20]. Uncertain about the mechanism responsible for 191

the bursting, they attributed it to some moving contact line instabilities. In later studies carried 192

out by Hasegawa and Manzaki [22] and Seyfert and Marin [21], the origin of this instability 193

was disregarded. Here we investigate if the Rayleigh-Plateau instability acts on the secondary 194

rim and triggers its fragmentation. Rayleigh-Plateau instability can be recognized by a universal 195

characteristic ratio known as Rayleigh ratio, which is stated as [26] 196

c = λ

W
, (6)

where λ is the instability wavelength and W is the rim width. If this ratio is found to be around 2.4, 197

the instability results from a Rayleigh-Plateau mechanism. Two sets of experiments for measuring 198

the wavelength and the width have been performed. In the first set, a camera has been equipped with 199

an AF Micro Nikkor 200 mm f /4D lens that remarkably magnified the instability features along 200

the interfacial front. An example of the magnified visualizations is provided in the subset of Fig. 6. 201

As seen, the fingering instabilities were captured in great detail, making wavelength measurements 202

reliable. These measurements are reported in Fig. 6 for various oil depths ranging from H = 3 mm 203

to H = 8 mm. It reveals that the observed wavelength very weakly varies with H , with a nearly 204

constant value of λ ≈ 0.16 mm. Measurements of rim width, W , are much more delicate, since it 205

is very thin and hardly identifiable with direct visualization. To address the issue, an interferometric 206
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FIG. 7. Typical measurement of rim width using an interferometric confocal sensor.

method which can perform fast and accurate scans of transparent fluid layers has been chosen. A207

CHRocodile 2S sensor unit equipped with a 3 mm chromatic confocal has been used. This material208

can perform measurements with a frequency up to 50 kHz and with a vertical resolution of 100 nm.209

A typical measurement of the rim is provided in Fig. 7. The sensor tip is fixed at 5 mm away210

from the droplet deposit center so as to ensure the rim capture. We assume that the rim shape211

follows a parabolic shape nearby its maximum, so that a quadratic relation is supposed h(x) =212

h0[1 − x2/(2Rrh0)], where h0 is the maximum height of the rim, so that the second derivative h(x)213

is precisely the curvature equal to the inverse of the curvature radius 1/Rr . The curvature radius of214

the rim is considered to be Rr ; then the width of the rim is obtained from condition h(±W/2) = 0,215

i.e.,216

W = 2
√

2Rrh0, (7)

where Rr = U�tw. From interferometric measurements, �tw � 0.027 s (shown with a red line in217

Fig. 7), and typical velocity of the spreading is around 10 mm/s. Having Rr and replacing it back into218

Eq. (7) with h0 � 2.8 µm, we get to W = 0.078 mm. Using the measured value of wavelength, the219

universal characteristic ratio is obtained to be 2.03, which is close to the criterion for the Rayleigh-220

Plateau instability. Therefore, the fingering instability observed around the droplet edge is most221

probably resulting from the Rayleigh-Plateau instability mechanism. As complex as it may be, the222

spreading dynamics was not much of a surprise as previously reported in similar configurations [20].223

Nevertheless, the reversed flow associated with the drop recession observed after time trc reported224

in Fig. 5, as well as the subsequent shrinkage due to evaporation leading to final disappearance, was225

quite unexpected. With the methanol evaporation, solutal Marangoni forces weakened and were226

unable to spread the liquid further after a certain time. Concurrently, the cooling resulting from the227

methanol phase change induced a low-temperature region where strong evaporation fluxes arose.228

This interpretation is supported by the results obtained from the infrared thermography experiments.229

The main results from temperature measurements are reported in Fig. 8. These measurements are230

obtained from the lower mirror and synchronize with the signal recorded from the top mirror. As231

explained in Sec. II, drop radius R(t ′) at delayed time t ′ = t + �t can be detected from the upper232

mirror. Identification of R(t ′) was critically important as the temperature gradients near the edge of233

the spreading drop are of the most interest. Also, it was shown in Sec. II that the time delay, �t , is234

provided by a convection dominated (dimensionless Péclet number and pure diffusion computation235

provided in Table II) transfer associated with the Stokes-flow induced by the top drop Marangoni236

tangential shear down into the oil layer. The general pattern of this flow is depicted in Fig. 5(b) as237

blue arrows and also discussed in the Supplemental Material of [20]. To provide a more detailed238

description, we made a quantitative estimation of the convection time and compared it with the239
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FIG. 8. (a) Radial distribution of temperature during the spreading stage and (b) during the receding stage.
(c) Radial gradient of temperature measured at the front, R(t ′), plotted against t ′/t ′

rc. (d) Radial gradient of the
temperature measured at the front plotted versus R/Rrc.

experimental value. Convection time, tcv , is defined as 240

tcv = H

U0
, (8)

where H is the oil thickness and U0 is the typical velocity of the oil layer backflow, which will be 241

evaluated from the tangential-stress continuity condition 242

Uo = μd

μo

H

h
Ud , (9)

wherein Ud is the typical deposited drop velocity and h0 is the typical drop height. Using the 243

experimental values μd/μo ≈ 6.5 × 10−3, H/h0 ≈ 20, and Ud ≈ 10−2 m/s, it is found that the 244

convection time for the oil thickness of H = 3.8 mm used in the infrared thermography experiments 245

gives a delay time of �t ≈ 2.9 s. This �t is completely consistent with the one obtained from 246

experimental observations. 247

Radial variations of temperature are given in Figs. 8(a) and 8(b), respectively, during the 248

spreading and receding stages. In both plots, results are presented at different times with the 249

corresponding front positions R(t ′ = t + �t ) indicated by yellow symbols. For a better comparison, 250

temperature profile at t ′ = 7.5 s is provided in both plots. Moving away from the droplet center, 251

temperature constantly decreases, reaches a minimum, and then increases gradually until settling 252

back to the room temperature. As seen, the minimum temperature happens just before the drop edge. 253
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Actually, not only the largest radial temperature gradients are found nearby the drop edge during254

the spreading stage [Fig. 8(a)] but also in the receding one [Fig. 8(b)]. Using the synchronization255

between the upper and lower image recordings, we can also reconstruct the Lagrangian temperature256

gradient of the moving droplet edge, as represented in Figs. 8(c) and 8(d). It can be observed that257

this temperature gradient increases during the spreading phase (for t < trc), to reach its maximum258

nearby the receding time t = trc [Fig. 8(c)]. A similar observation can be raised for the temperature259

gradient at the drop edge being maximal at the receding maximal radius R = Rrc [Fig. 8(d)].260

Moreover, comparing temperature gradient results for different volumes ranging from 8 µL to 12 µL261

also suggests that the gradient is independent of droplet volume. Consequently, the nonuniform262

evaporation of the droplet from the apex to the contact line created both temperature and surface263

tension gradients. These gradients built an inward thermal Marangoni stress responsible for the264

receding reported in Fig. 5(a).265

In the following, we focus on a quantitative understanding of the physics behind the266

spreading/recession dynamics.267

IV. THEORETICAL ANALYSIS268

This section considers some aspects of the reported experimental observations, but does not269

have the aim to provide an extensive theoretical analysis of the considered spreading problem. In270

fact such an aim is quite involved and deserves an extended analysis per se. Here we focus on271

the following aspects: early-time spreading dynamic, evaporation rate/volume decaying rate, and272

receding time. We then consider first the early-time behavior of the deposited drop, ignoring thermal273

Marangoni effects induced by the volatile droplet evaporation. This approximation is built upon the274

isothermal initial condition between the two liquids. This has been accurately confirmed by direct275

thermography experimental measurements and therefore it is a sensible assumption.276

Thin-film lubrication dynamics (dimensionless numbers given in Table II that support a lubri-277

cated noninertial flow) for the axisymmetric spreading drop height h(r, t ) in cylindrical coordinates278

centered at the drop deposit center reads as follows:279

∂h

∂t
+ 1

r

∂

∂r
{rQ} + j

ρd
= 0, (10)

where Q is the radial fluid flux defined as the integral of the radial velocity ur , Q = ∫ h
0 ur (z)dz, j280

is the evaporation mass flux, and ρd the deposit drop density. The Stokes lubrication equations in281

r direction are solved applying a free-stress condition at z = h and assuming negligible velocity at282

the oil-methanol interface z = 0 to find the flux Q in (10). This assumption is, in fact, based upon an283

asymptotic approximation of tangential shear-stress continuity since the velocity ratio between the284

deposit methanol to the oil is O(μd/μo) 	 1 small. The radial velocity field within the deposited285

droplet can then be found [up to O(μd/μo) corrections]:286

ur (r, z) = 1

μd

∂ p

∂r

(
z2

2
− zh

)
+ 1

μd

∂γ

∂r
z, (11)

wherein p is the z-invariant pressure within the spreading deposited droplet, μd its dynamic287

viscosity, and γ the (spatially varying) deposited droplet/air surface tension. Using Eq. (11) to288

find the radial fluid flux Q substituted in Eq. (10) leads to289

∂h

∂t
+ 1

r

∂

∂r

{
− r

3μd

∂ p

∂r
h3 + r

2μd

∂γ

∂r
h2

}
+ j

ρd
= 0. (12)

Equation (12) is the nonlinear evolution equation of the deposit droplet taking into account the ther-290

mal effects, embedded into the surface tension gradient and the evaporation mass flux j. Realizing291

that the pressure provided by normal-stress continuity at the deposited drop free surface is given292

by the (linearized) Laplace law p = γ�rh associated with the radial component of the cylindrical293
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Laplacian, it is possible to find that the hydrodynamic pressure gradient term in Eq. (12) is always 294

negligible compared to the Marangoni one associated with the surface tension gradient. Since 295

radial variations are associated with the capillary length �c, with h being related to some reference 296

thickness h0 (with lubrication small parameter condition h0/�c 	 1), we can scale pressure and 297

Marangoni terms as 298

h3 ∂ p

∂r
∼ h3

0
1

�c

γd h0

�2
c

∼
(

h0

�c

)2
γd h2

0

�c
, (13)

h2 ∂γ

∂r
∼ γd h2

0

�c
, (14)

implying that the pressure gradient is (h0/�c)2 smaller than the Marangoni one, with the latter being 299

the leading order term to consider. Negligible evaporation at early time and consequently insignif- 300

icant thermal effects at the early stage of methanol development (this assumption is confirmed by 301

the volume measurements provided in the following section) leads to a simplification of (12) as 302

∂h

∂t
+ 1

r

∂

∂r

(
r

2μd

∂γ

∂r
h2

)
≈ 0. (15)

Now considering that the solutal Marangoni spreading is convectively dominated and thus La- 303

grangian invariant, one gets 304

Dγ

Dt
= ∂γ

∂t
+ ur

∂γ

∂r
= 0. (16)

It is then possible to derive a similarity solution for the early-time spreading of the methanol droplet. 305

More precisely, from defining the spreading typical time as given by the capillary-viscous time tcv 306

built upon the capillary length �c and the kinematic viscosity of the deposited drop, i.e., tcv = �2
c/νd 307

(as used in many various other studies [28]), an approximate solution for dimensionless time t/tcv 	 308

1 is searched for. For methanol, at room temperature T = 293.15 K, one finds tcv = 4.2 s, which is 309

precisely of the order of the receding time trc which is found in the range trc ∼ 3–9 s for deposited 310

drop volume V0 in the range 8–12 µl. 311

We then seek a self-similar solution h(r, t ) = t−α f (ζ ) with rescaled variable ζ = r/tβ in (15) (as 312

also suggested by recent numerical computations of lubrication’s analysis of a close problem [29]), 313

where the surface tension gradient term ∂γ /∂r needs to be evaluated. Chain rule thus provides 314

∂γ

∂r
= ∂ζ

∂r

∂γ

∂ζ
+ ∂t

∂r

∂γ

∂t
= 1

tβ

(
∂γ

∂ζ
+ t

βζ

∂γ

∂t

)
. (17)

Furthermore, considering (16) and the Marangoni-dominated velocity field (12) leads to ∂γ /∂t ≈ 315

− h
μd

(∂γ /∂r)2. This leads to evaluating the last right-hand side (RHS) term of Eq. (17) to scale as 316

(t/β )(h0/�c)(γd/μd�c)(γd/ζ ) to be compared with ∂γ /∂ζ ∼ γd/ζ . Defining the capillary number 317

as Ca = μd�c/γdtcv , one finds that the last term of Eq. (17) is small compared with ∂γ /∂ζ 318

with the early-time assumption (h0/�c)(t/tcv )/Ca 	 1. Then, within this early-time approxima- 319

tion, ∂γ /∂r ≈ ∂γ /∂ζ/tβ , and Eq. (15) satisfies self-similarity, i.e., becomes time independent, 320

if 2β + α = 1. To complete the system of equations, we use the assumption of thin droplets to 321

approximate the deposited droplet of radius R(t ) and initial volume V0 with V0 ∼ R(t )2h. Using 322

again an early-time assumption for which the volume is considered constant, seeking self-similar 323

R(t ) and h(r, t ) in the constant volume constraint, one gets α = 2β. This finally provides α = 1/2, 324

β = 1/4, so that, at early time, 325

R(t )
√

h0√
V0

∼
(

t

tcv

)1/4

. (18)

In order to find an estimation for the recession time trc, we now consider the evaporation rate. As- 326

suming a thin droplet with a diffusion-limited evaporation, local flux of evaporation is approximated 327
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FIG. 9. (a) Log-log plot of the spreading drop radius R(t ) versus time measured for different initial volumes
V0. The similarity solution, R(t ) ∼ t1/4, is provided with dotted lines. (b) Recession time, trc, plotted versus V 4/7

0

confirming scaling of Eq. (22).

as [28,30]328

j(r, t ) = j0

R(t )
√

[1 − (r/R)]2
, (19)

where j0 is a constant dependent on the liquid properties and R(t ) is again the droplet radius.329

Integrating along r in cylindrical coordinates, the total evaporation flux is proportional to the radius,330

i.e., J (t ) = ∫ R
0 j(r, t )r dr = 2π j0R(t ). The time variation of the droplet volume then reads331

dV

dt
= −Ad

ρd
J (t ), (20)

wherein Ad is the surface area of the droplet. Through the assumption of spherical cap one gets332

Ad = π [R2(t ) + h2(0, t )] and, from R2 � h2, Ad ≈ πR2(t ). Using the scaling R(t ) ∼ t1/4 a relation333

for droplet volume as a function of time is suggested,334

V (t ) − V0 ≈ −
(

2π2 j0
ρd

)
t7/4. (21)

Based on experimental observations, the recession happens nearly around the complete evaporation335

of the droplet. Therefore, solving Eq. (21) from t = 0 where V = V0 to t = trc with V (trc) � 0, one336

gets337

trc ∼ V 4/7
0 . (22)

It is worth mentioning that this recession time has been derived from the assumption of complete338

evaporation at recession time, based upon experimental observations (from 90 to 95% as provided in339

Fig. 10). Finally, it is also interesting to pinpoint that, nearby the receding time, the final evaporation340

behavior differs from Eq. (22) since, nearby this point, the drop radius is almost immobile, so that341

R(t ) ≈ Rrc. In this case the RHS of Eq. (20) scales as R3(t ) ∼ R3
rc and is thus almost constant leading342

to both a linear time variation of the film height h(t ) ∼ t and volume V (t ) ∼ R2
rch(t ) ∼ t .343

V. COMPARISON BETWEEN THEORETICAL MODELs AND EXPERIMENTS344

Figure 9(a) displays the time variation of the deposited drop radius R(t ) for initial volumes of 8,345

10, and 12 µL, and convincingly compares it to the early-time similarity prediction R(t ) ∼ t1/4.346

Given that the capillary-viscous time is tcv = 4.2 s, deviations from this scaling behavior can347

be observed after a few seconds have elapsed. As seen, experimental measurements follow the348

theoretical power-law trend up to nearby the receding time, which justifies the implementation of the349

self-similar solution into Eq. (21). To investigate further the universality of this self-similar solution,350
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FIG. 10. Time variation of the deposited droplet volume for three distinct deposited initial volumes
V0 = 8, 10, 12 µL. The solid line represents the early-time approximated model (22) without any adjustable
parameters. Dotted lines give late-time drop volume prediction V ∼ τ ∗ nearby receding time trc. The inset
displays these volume variations in log-log plot for a better identification of this late-time linear variation.

supplementary experiments have been carried out with different fluid couples as illustrated in the 351

inset of Fig. 9(a). As in previous contributions using organic oils [20–22], sunflower oil has been 352

used instead of olive oil for the deep layer fluid with a methanol deposited drop and, furthermore, 353

ethanol deposited drop over olive oil has also been tested. In both cases the experimental results 354

are very consistent with the power-law prediction (18). It is also worth mentioning that silicone 355

oil (350 cst) deep layer coupled with methanol deposited droplet has also been tested. In this case, 356

as expected from the resulting spreading parameter S, the methanol droplet did not spread on the 357

silicone oil. In fact, due to the low surface tension of silicone oil (γs � 20–25 mN/m), S is negative in 358

this configuration so that the methanol droplet remains still on the oil surface and gently evaporated 359

as a sessile drop. 360

Examining the theoretical model suggested by Eq. (22), recession time was measured for a wider 361

range of initial deposited volumes of methanol. Considering the scaling proposed by the model, 362

recession time measurements were plotted against V 4/7
0 . The dashed line represents a linear fit of 363

the experimental data, confirming the linear relationship between trc and V 4/7
0 and thus validating 364

the theoretical analysis that was performed. 365

As discussed in Sec. III, Beer-Lambert-Bouguer law was used to obtain a detailed map of droplet 366

thickness and consequently volume. Figure 10 illustrates the temporal variations of droplet volume 367

are plotted for initial volumes of 8, 10, and 12 µL. Corresponding recession times, trc, are also 368

reported in this figure. It is noticeable that receding occurs when the droplet has almost completely 369

evaporated. This confirms the assumption made in deriving Eq. (22) that V (trc) � 0. Depicted by 370

solid lines, the droplet volume variations predicted in (21) (compared without adjusted parameters) 371

quite surprisingly closely follows the experimental observation very near to the receding time. 372

Finally, the late-time dynamics of the volume shrinkage is also compared with measurements in 373

the figure inset. In this log-log plot, τ ∗ is defined as (trc − t )/trc and accordingly the linear trend 374

with volume nicely supports the ouput of the volume theory in the previous section. 375

VI. CONCLUSIONS 376

Simultaneous effects of interfacial tensions and nonuniform evaporation of a droplet can give 377

rise to highly complex flows and surprising patterns of spreading dynamics. In the present study, 378
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the dynamics of a methanol droplet deposited on an immiscible layer of oil, with positive spreading379

parameter S, has been studied both experimentally and theoretically.380

Upon releasing, the methanol droplet first spreads due to the solutal Marangoni stress. Even381

though spreading was expected, the succeeding reverse flow and droplet recession was not. To382

understand the mechanism underneath this secondary recession, a specific experimental setup383

has been designed using infrared thermography analysis. The resulting measurements revealed384

that preferential cooling evaporation at the drop edge induces a temperature gradient reaching385

a maximum at the recession time, consequently creating an inward thermal Marangoni stress.386

Losing most of its volume by evaporation, the thermal Marangoni overcame the diminishing solutal387

one, finally causing recession. Moreover, using Beer-Lambert-Bouguer law for processing flow388

visualizations, the temporal variations of droplet volume have been tracked. In addition to the389

experimental investigations, a theoretical model has been developed using lubrication approxi-390

mation. A self-similar solution for the early time spreading phase, for which the droplet radius391

follows a power-law behavior R ∼ t1/4, has been found. This power-law prediction matches very392

well with experimental results. Based on this solution, a second prediction for the deposited drop393

volume variation has been derived taking into account the evaporation rate in the framework of a394

diffusion-limited evaporation model for droplet shape semispherical cap approximation. The result-395

ing predictions also satisfactorily compare with experiments. A complete theoretical understanding396

of the considered problem is nevertheless far from complete and deserves extended attention for a397

more comprehensive understanding of the reported thermal Marangoni building temperature at the398

spreading drop’s edge.399
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APPENDIX: THERMAL DIFFUSION CROSS EVALUATION405

As discussed in Sec. II, a time delay of 2.9 s was experimentally observed between temperature406

signals of upper and lower mirror. This delay was attributed to the time required for the transfer407

of temperature effects from the upper surface to the lower surface of the oil. In this Appendix, we408

conducted a theoretical evaluation to determine if conduction is the primary mechanism of heat409

transfer or not. We begin by considering pure conduction heat transfer in the oil layer in order to410

estimate the time delay arising without advection. Heat-transfer energy conservation within a thin411

layer of thickness H reads412

k

[
∂2T

∂x2
+ ∂2T

∂y2
+ ∂2T

∂z2

]
= ρcp

∂T

∂t
. (A1)

Nondimensionalizing this equation by defining φ = (T − T0)/T0, where T0 is the room temperature,413

while also using414

x = LX,

y = LY,

z = HZ,

t = t0τ,

003600-14



MARANGONI-DRIVEN SPREADING AND RECEDING OF A …

where H is the thickness of the oil bath, t0 the typical diffusive time evaluated from ρcpH2/k, and 415

L the characteristic length such that ε ≡ H/L 	 1, leads to 416[
ε2

(
∂2φ

∂X 2
+ ∂2φ

∂Y 2

)
+ ∂2φ

∂Z2

]
= ∂φ

∂τ
, (A2)

where α = k/ρcp is the thermal diffusivity. We then seek an asymptotic approximation of (A.2), 417

which at leading order reduces to 418

∂2φ

∂Z2
= ∂φ

∂τ
. (A3)

A separation of variable for φ solution leads to 419

(X,Y, Z, τ ) = ψ (X,Y )�(Z, τ ). (A4)

Using (A.4) in (A.3) leads to 420

∂2�

∂Z2
= ∂�

∂τ
. (A5)

The boundary conditions for the temperature applied from methanol into the oil layer at Z = 0 are 421

then split into a spatially varying part taken care of by ψ (X,Y ) and a homogeneous part associated 422

with �(Z, t ), so that the boundary conditions associated with �(Z, t ) are 423

∂�

∂Z
= Bi�, Z = −1,

� = 1, Z = 0, (A6)

where the boundary condition at Z = −1 comes from the free convection heat transfer where Bi 424

stands for the Biot number as Bi = hcvH/k, with hcv as the convection heat transfer coefficient. 425

The initial condition is homogeneous, i.e., �(Z, τ = 0) = 0. Equation (A.6) is a nonhomogeneous 426

boundary value problem that can be transformed into a homogeneous one following decomposition 427

�(Z, τ ) = �̃(Z, τ ) + �′(Z ), (A7)

with �́(Z = 0) = 1 and ∂Z�′ = Bi�′ at Z = −1. Solving for �′, we find 428

�′(Z ) = 1 + Bi(Z + 1)

1 + Bi
. (A8)

Then the equation and boundary conditions for �̃ are now homogeneous: 429

∂2�̃

∂Z2
= ∂�̃

∂τ
, (A9)

430

∂�̃

∂Z
= Bi�̃, Z = −1,

�̃ = 0, Z = 0.

We again seek for a separation of variables solution for �̃ upon a discrete set of modes θn from the 431

infinite series 432

�̃(Z, τ ) =
∞∑

n=1

Anθne−λ2
nτ , (A10)

where modes θn are decomposed into the discrete eigenfunctions of (A.9) 433

θn = sin(λnZ ) (A11)
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FIG. 11. Variation of � at Z = −1 for Biot numbers of 0.01, 0.05, and 0.1.

for which the associated eigenvalue λn permits one to fulfill the homogeneous boundary conditions434

from the (transcendental) spectral problem435

λn = −Bi tan(λn). (A12)

The amplitude of decomposition (A.10) is found from projection into modes θn,436

An = 〈�′(Z ), θn〉
〈θn, θn〉 = −4

Biλnsin(λn) + λ2
ncos(λ) − λ2

n(1 + Bi)

(1 + Bi)λ2
n[2λn − sin(2λn)]

. (A13)

From (A.7) we finally have437

�(Z, τ ) = 1 + Bi(Z + 1)

1 + Bi
+

∞∑
n=1

An[sin(λnZ )]e−λ2
nτ (A14)

and at Z = −1438

�(−1, τ ) = 1

1 + Bi
−

∞∑
n=1

Ansin(λn)e−λ2
nτ . (A15)

The value of �(−1, τ ) matters most since its time variations indicate when the temperature of the439

upper surface �(0, τ ) = 1 reaches the lower surface through conductive heat transfer. �(−1, τ )440

for several Biot numbers is given in Fig. 11. As seen, τ must be higher than 20 for �(Z = −1) to441

approach 1.0. From experiments, we had a translational time of 2.9 s; if divided by the reference442

time we can find the corresponding value of �(−1, τ = 2.9/t0). As plotted in Fig. 11 with a blue443

dashed line, the corresponding �(−1, τ ) is nearly zero for τ = 2.9/t0, which clearly indicates that444

conduction cannot be the heat transfer mechanism from the upper surface to the lower one.445
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