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Abstract—Edge Computing has emerged from the Cloud to
tackle the increasingly stringent latency, reliability and scalability
imperatives of modern applications, mainly in the Internet of
Things arena. To this end, the data centers are pushed to the
edge of the network to diversify and bring the services closer
to the users. This spatial distribution offer a wide range of
opportunities for allowing self-consumption from local renewable
energy sources with regard to the local weather conditions.
However, scheduling the users’ tasks so as to meet the service
restrictions while consuming the most renewable energy and
reducing the carbon footprint remains a challenge. In this
paper, we design a nationwide Edge infrastructure, and study its
behavior under three typical electrical configurations including
solar power plant, batteries and the grid. Then, we study a
set of techniques that collaboratively allocates resources on
the edge data centers to harvest renewable energy and reduce
the environmental impact. These strategies also includes energy
efficiency optimization by means of reasonable quality of service
degradation and consolidation techniques at each data center in
order to reduce the need for brown energy. The simulation results
show that combining these techniques allows to increase the self-
consumption of the platform by 7.83% and to reduce the carbon
footprint by 35.7% compared to the baseline algorithm. The
optimizations also outperform classical energy-aware resource
management algorithms from the literature. Yet, these techniques
do not equally contribute to these performances, consolidation
being the most efficient.

Index Terms—Resources Scheduling, Renewable energy, self-
consumption, consumption scaling, consolidation

I. INTRODUCTION

The advent of Cloud Computing proved to be a great
technological evolution, as it allowed machines to delegate
their computational and storage load to remote data cen-
ters (DCs). From the first connected appliance experimented
in 1990 by John Romkey, one could estimate the number
of internet-connected objects in 2020 at 20 billion world-
wide [1]. While they tend to be miniaturized for portability
and discretion, they run more sophisticated and resource-
demanding applications such as augmented reality, gaming,
video streaming and artificial intelligence-based applications.
The Cloud has become a bottleneck in terms of timeliness
of the service, inducing a latency usually higher than 100ms
which is not supportable in use cases like real-time video
analytics [2]. Therefore, the Edge Computing paradigm has
been designed to push the service provider to the edge of
the network, close to the connected objects. It is materialized

by the massive deployment of a few nodes to micro-DCs
at various locations, near the end users. One of the greatest
challenges is to build a scalable latency-efficient infrastructure
with locality and application-type awareness, where the sites
can make collaborative decisions while keeping a high level
of independence.

The Edge concept also raises electrical and environmental
concerns. In fact, the global DCs electricity use in 2020 was
estimated to 200-250TWh, or approximately 1% of the world
electricity consumption [3], and this can be accelerated by
expanding them to the network edges. Fossil (such as natural
gas, oil) energies are currently the main sources used to supply
them at a global scale [3]. Consequently, they represent a
source of greenhouse gas (GHG) emissions. Some efforts
are being made to improve DCs energy efficiency and to
progressively power them from renewable energies, of which
one major constraint is intermittency. Given that most DCs
powered from renewables use photovoltaic energy which may
be variable during the day and is not generated during the
night, a secondary source of power is required for continuous
power supply. This source may be either a battery or the
national/regional electrical grid. In this context, the question is
how to allocate workload onto computing resources in order
to reduce the footprint of the edge infrastructure.

Several techniques have been explored in the literature to
decrease either the overall energy consumption or the carbon
footprint of Edge infrastructures [4]. The geographical distri-
bution of edge data centers and their solar panels can be lever-
aged to increase the renewable part of energy consumption
through follow-the-sun techniques or location-aware resource
allocation [5], [6]. Consolidation techniques combine energy-
efficient scheduling algorithms with shut down strategies to
consolidate the workload on the fewest number of servers and
switch off unused ones [7], [8]. On a given server, dynamic
voltage and frequency scaling (DVFS) techniques can also be
employed to reduce the power consumption [9]. Yet, this latter
technique may increase the runtime of CPU-intensive appli-
cations and can thus be contraindicated for latency-sensitive
edge applications. While these various popular techniques have
been extensively studied in the energy-efficient edge context,
we propose to study another promising solution which has yet
receive little attention: application performance degradation.
Contrarily to DVFS, the runtime of the application is not



affected, but the quality of service (QoS) is. For instance, for
a video streaming service, it means reducing temporarily the
video resolution in order to save energy and to reduce the
carbon footprint.

In this paper, we design a large-scale Edge Computing
infrastructure powered from renewable energy sources asso-
ciated with energy storage devices and the main electrical
grid. We explore three techniques to optimize its power
consumption: 1) reducing the power consumption by rea-
sonably reducing the applications’ QoS when necessary, 2)
consolidating the workload to switch off unused servers, and
3) negotiation between nearby data centers to move jobs
while limiting latency degradation. In particular, we examine
whether performance degradation is useful in practice (without
always opting for the lowest QoS) and whether it can be
combined with the two other techniques. In order to provide
a quantitative analysis of the gains reachable through each
technique independently and all together, we chose to focus on
an emblematic application of Edge computing infrastructures
(and previously Content Delivery Networks): video streaming,
video traffic representing nearly four-fifths of global mobile
data traffic in 2022 [10].

Our main contributions are as follows:
• measuring the impact of performance degradation on the

power consumption of video streaming servers through
real measurements

• investigating the level of power consumption reduction
available through performance degradation, consolidation
and location-aware allocation, independently and jointly.

• quantifying the carbon footprint reduction and self-
consumption increase available through performance
degradation, consolidation and location-aware allocation,
independently and jointly.

• investigating the impact of the electrical infrastructure
(i.e. battery sizing) on these techniques’ performance.

The rest of this paper is organized as follows. Section II
presents recent work optimizing performance and energy
management in Edge infrastructures. Section III describes
the computing and electrical infrastructures considered in this
study. Section IV presents the models of power consumption
used to realize the study. Section V presents the methodol-
ogy and algorithms and Section VI presents the algorithms
performance.

II. RELATED WORK

A. Edge infrastructures and performances optimization

Edge Computing is presented as gathering the concepts of
Fog Computing, Cloudlets and Multi-Access Edge Comput-
ing [11], all distributed. Many contributions have been made
with partially distributed infrastructures [12], [13] composed
of two levels: an Edge layer that performs full processing
or prepossessing of requests, and a Cloud layer to which
the requests are forwarded when the Edge resources are
insufficient. Others implement fully distributed infrastructures,
made of edge clusters of few nodes [13]. Edge Computing is

meant to address concerns with Cloud Computing such as cost,
latency, bandwidth congestion, scalability, and privacy [4].
These features are necessary in critical applications such as
autonomous driving, real-time video analytics, surveillance,
virtual reality, real-time traffic monitoring [11]. Their de-
ployment is mainly based on virtualization technologies [14],
containers (e.g. Docker, unikernel) [15], and Software-Defined
Network based solutions [16] in order to hide the physical
complexities of the infrastructure to the end-users and ap-
plications. In large-scale networks, many candidate locations
may host edge nodes. However, they may not lead to an
optimal operation. Thus, several authors proposed to deploy
edge servers in strategic locations (which may rely on existing
Internet Service Providers’ infrastructures) that optimize the
access delay between the end users and edge servers [5], [17],
[18]. Considering the small size of the edges sites and the
multiplicity of applications to be run on them, it is beneficial to
adequately distribute the instances of each application across
the nodes through service placement optimization [19]. One
approach is to use a centralized controller with a global knowl-
edge of the infrastructure to balance the load on the suitable
resources, yet providing limited scalability and introducing
bandwidth congestion due to the volume of data exchanges.
The second approach is a distributed resource scheduling that
provides each site with a controller capable of coordinating
with the others through peer-to-peer communications [14],
at the inconvenience of losing the global knowledge of the
system and adding communication overheads. Sahn et al. [4]
wrote a comprehensible survey on these strategies. The con-
troller can be designed to support and optimize the application
requirements such as latency [20] and cost [21].

In this work, we rely on a fully distributed infrastructure and
manage the task allocation in a fully distributed manner, thus
ensuring scalability. We design a large-scale infrastructure in
which the edge clusters are able to collaboratively exchange
tasks without increasing significantly their latency.

B. Energy aware optimizations

Service providers expect a high energy efficiency and an
economical attractiveness of their facilities, hence the necessity
to achieve a dual computer-electrical Edge design. Jiang
et al. [7] published a survey on energy-aware Edge Computing
in which they show a set of operating systems, hardware and
software level technologies allowing to reach high computing
performances with a low power consumption. Over the system
layer, one can enumerate energy-aware server [22] and virtual
machine [23] placement scheme. Several techniques have also
emerged to dynamically migrate tasks to the sites with the
lowest energy cost and/or power consumption while maintain-
ing a high-level QoS. In this direction, Suryadevara et al. [24]
explored a range of machine learning algorithms and classifiers
for managing and balancing load deployed on a Fog platform,
in the sense of reducing latency and energy consumption in an
IoT context. However, this work solely relies on the electrical
grid, which, despite being permanent, is generally a source of
pollution (with electricity mixes based on fossils).



Another variety of work aims to maximize the renewable
energy consumption. These projects are part of broader de-
carbonization programs including data centers, such as the
Green Deal [25]. Toor et al. [9] proposed a framework that
dynamically adjusts the frequency of the compute nodes in
a partially distributed infrastructure, following the on-site
solar and battery energy availability. Karimiafshar et al. [6]
used Lyapunov optimization techniques to dispatch the users’
requests among the nearby fog nodes and remote DCs, increas-
ing the on-site solar energy consumption. This type of multi-
participant oriented renewable energy consumption is known
as collaborative self-consumption [26].

In this work, we propose a two-phase methodology to
increase the on-site power consumption and reduce the carbon
footprint. We first use the heterogeneity and distribution of
the Edge DCs’ electrical configurations to balance the load
in order to increase the collective self-consumption (i.e. to
reduce exchanges with the electrical grid), while ensuring an
acceptable latency for the running applications. In a second
step, we reduce or differ the power consumption of the
compute nodes by dynamically adapting the jobs’ QoS and
consolidating them on a minimal set of nodes.

III. SYSTEM DESCRIPTION

A. Edge infrastructure

The infrastructure is based on several edge DCs, referred
to as Edge-DCs, linked together by a telecommunication
network. We considered the national Internet service provider’s
network topology presented in [27]. It is a hierarchical network
consisting of four layers of routers located in Points-of-
Presence (PoP) distributed throughout the national territory.
From the core of network to its edges, their are 8 core
routers of 50Gbps with a 30ms latency, 52 backbone routers
of 20Gbps with 20ms latency, 52 metro routers of 10Gbps
with 15ms latency and and 260 feeder routers of 10Gbps with
5ms.In particular, the feeder routers receive and transmit data
flows at the scale of a city or a set of districts. So the PoPs that
host them represent an opportunity exploited in this work to
place micro data centers in order to provide local computing
services. We refer to them as edge data centers (Edge-DCs).

An edge data center contains a few racks of homogeneous
compute nodes (servers) communicating through a wired intra-
DC network. For sake of simplicity, all the Edge-DCs are
assumed homogeneous, i.e they have the same number of
compute nodes and the same internal network topology. We
consider location awareness in order to reduce the transmission
delays. Just like an ISP client has access to the Internet via
the nearest PoP, the users are linked to the nearest Edge-DC
to submit jobs and/or requests. The response is also received
from the Edge-DC to which the user is linked.

Each Edge-DC has a local task manager which is a con-
tainerized process in charge of allocating resources to the
submitted jobs, controlling the servers parameters and state,
optimizing their power consumption, and coordinating with the
neighboring sites to harvest renewable energy. In this study,
we do not consider over-commitment, i.e the jobs allocated on

a given server cannot exceed its physical capabilities. Inside
Edge-DCs, we employ a redundant tree network topology
using identical switches. As shown in Figure 1, the topology
contains three layers of switches: core, aggregated and edge.
This topology is suitable for the considered DCs size of this
study and ensures a high redundancy, a key parameter in Edge-
DCs to overcome bandwidth bottlenecks. In the example of
Figure 1, each edge switch of 12 ports can handle 10 servers.

... ... ... ... ... ...

Figure 1: Intra-Data center network topology, each Edge router links
10 servers.

We consider a real-time applications in this work, precisely
video-streaming. This type of applications is characteristic of
the trend towards Edge Computing [10] and features several
flexibilities for reducing the hosts power consumption.

B. Electrical infrastructure and Energy management policy

The Edge-DCs are connected to the electrical grid with
which they can transact electrical power. The energy man-
agement strategy comprises two modes: normal operation and
degraded operation. In this section, we only describe the nor-
mal operation and explain the degraded mode in Section V-C.
The Edge-DCs are divided into three categories with respect
to their electrical system, following a round robin policy. One
third of them contain only on-site photovoltaic (PV) power
plant, a configuration based on some service providers like
Apple [28] that associate the electrical grid with renewables
to ensure electrical security in much of their data centers. In
the normal operating mode, these Edge-DCs first consume
power from the PV plant and inject the rest to the grid if
any. In the reverse, they import power from the grid to fill the
shortfall. The second third of Edge-DCs is designed without
any additional energy source (no PV nor battery). In fact,
this is the configuration of many of today’s data centers. In
a normal mode, they permanently purchase electrical power
from the grid to meet their load. The Edge-DCs of the last
category are equipped with a battery and a PV plant. These
Edge-DCs consume from the PV plant, then from the battery
when the PV generation is insufficient and lastly from the
electrical grid when the battery is too low. In the reverse, they
use the surplus of PV generation (if any) to charge the battery
and injects the rest to the grid if the battery gets fully charged.

Figure 2 summarizes the electrical infrastructure with three
Edge-DCs, each representing one category. For an Edge-DC
i, Pg,p,i(t) and Pg,s,i(t) represent the power imported and
exported from/to the grid at time t respectively. However, an
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Figure 2: Electrical infrastructure with three categories of Edge-DCs.

edge-DC cannot import and export electrical power simultane-
ously. Moreover, the DCs are not collective self-consumption
agents as per the French law considered in this paper, because
their mutual distances exceed the maximum allowed limit of 2
km [29], since we focus on a nation-wide edge infrastructure.
Pch,i(t) and Pdisch,i(t) stand respectively for the power of
charge and discharge of the battery (when it exists on Edge-
DC i). Pload,i(t) is the power consumed by compute nodes and
the intra-DC network. PPV,i(t) represents the power generated
by the on-site PV plant (when it exists on Edge-DC i). The
batteries and the PV plants are respectively identical in all the
edge-DCs where they are present.

IV. MODELING POWER CONSUMPTION OF EDGE-DCS

This section presents the models of the energy sources and
the load. We adopt a classical time-slotted approach in which
the time is divided into timestamps of duration ∆t.

A. Edge-data centers power consumption

Three main components contribute to the energy consump-
tion in the Edge-DCs: the compute nodes, the switches and the
cooling system. The power consumption of a compute node
is made up of two terms: a static consumption that accounts
for the power consumed when the server is powered on but
not running any load or running background activities, and
a dynamic consumption that depends linearly on the CPU
frequency and the nature of the compute load [30]. Adelin
et al. [31] showed that a switch consumes more than 80% of
its nominal power when it is switched on, including when there
is no traffic (static state). Hence, we assume that the switches
operate at their rated power that can be estimated using the
Cisco Power Calculator [32]. Thus, the power consumed by
the intra-DC network is assumed to be the power rating of a
single switch multiplied by the number of switches required
in the topology. This may represent a minor overestimation
of the intra-DC network power consumption. In addition,
we consider the power consumption of other equipment of
the data center, such as the cooling system, facility lighting,
etc. To do so, we employ the Power Usage Effectiveness
(PUE). It represents the ratio between the total facility power
consumption and the IT power consumption (i.e. server and

switch power consumption). Thus, an Edge-DC overall power
consumption can be estimated by multiplying the cumulative
power consumption of the compute nodes and switches by its
PUE value.

B. Workload power consumption analysis

A client job k submitted to the platform is modeled as a
tuple (t0,k, dtk, ck, uk, ramk) where t0,k is the arrival date,
dtk is the service duration assumed to be known in advance,
ck is the number of cores required, uk is the percentage of the
requested cores usage which is assumed to be constant during
the computation time, ramk is the size of memory in Bytes
required to load and run the application accessed by the job.
We consider that the resource controllers are 4 core and 4GB
processes using 100% of the resources. The number of jobs
arriving at each Edge-DC follows Poisson distribution with a
constant arrival rate λar = 5/mn. The service duration dtk
follows an exponential distribution with a constant mean time
λdt = 30mn. ck, uk and ramk are random integer values
respectively selected from the ranges [1 - 4], [5 - 100]%,
[109 − 4.109] Bytes following a normal law. By choosing
randomly CPU and memory, we avoid jobs to be proportional
in terms of CPU/RAM request and make the computing and
energy patterns more realistic.

The workload power consumption can be considered as
linearly dependent on its CPU usage [30]. For a video-
streaming application, the CPU usage is a function of the
images size streamed. Let Pmin and Pmax be a server’s
respective static and dynamic power consumption. Let also
n be the number of cores in the server and uk(px, t) the CPU
usage of the job k streaming images of size px (the default
value is px0 = 1980x1080) pixels. Equation 1 where Pk(px, t)
is the power of k can be derived from [30].

uk(px, t)

uk(px0, t)
=

Pk(px, t)− Pmin

Pk(px0, t)− Pmin
(1)

C. Electrical components models

A PV panel converts sunlight into electrical power through
PV cells arrayed on the panel. The source generates power
which value is the product of its surface, its conversion
efficiency and the solar irradiance [33]. We consider an ho-
mogeneous solar irradiance on all the PV panels of the same
plant. We also neglect the aging effect on the performance
of the panels. Thus, the power generated by the PV plant is
obtained by multiplying the number of panels by the power
production of a single panel.

We consider a Lithium-ion battery located at Edge-DC
i whose operation, degradation and economical models are
further described in previous work [33]. The energy stored in
it relative to its capacity is called its state-of-charge SoCi(t).
The power of charge and that of discharge are respectively
named Pch,i(t) and Pdisch,i(t).

V. RESOURCE ALLOCATION AND WORKLOAD ADAPTATION

The resource and energy management are fully decentral-
ized: each Edge-DC has a controller that manages its local



resources. The controllers collaborate in order to increase the
overall renewable energy consumption. The resource manage-
ment strategy combining all the energy-efficient techniques
contains 4 steps. First, each site allocates computing resources
to the jobs submitted during the time slot (Algorithm 1),
then negotiation between nearby Edge-DCs is initiated (Algo-
rithm 2) in order to relocate some jobs to consume more on-
site energy while limiting the response delays. Then the sites
with a green energy deficit switch to a power saving mode
by degrading the running and allocated containers’ activity
to reduce their power consumption (Algorithm 3). In the last
step, the controllers consolidate the containers on the minimum
number of compute nodes and switch off the empty ones if
any (Algorithm 4).

A. Resource allocation

During time slot t, the controller of each data center i
receives a set of jobs from its clients (assigned by their
geographical proximity), allocates the required resources to
them and evaluates the power consumption Pload,i(t) of the
Edge-DC for that time slot. The resource allocation follows
a best fit policy as shown in Algorithm 1. The algorithm
looks sequentially in the active nodes queue Lon,i, for the
most loaded nodes with enough computing resources that can
host each job k. When none is found among the active nodes,
an idle node is switched on from the inactive nodes queue
LOff,i, to host the incoming job. In the same order, when no
node is found in the Edge-DC i, the resource allocation is a
failure, so the job k is kept in a pending queue Lpend,i, to be
forwarded to another location in the context of collaboration.

Algorithm 1: Resources allocation phase
Input: i,k
Output: Allocation status
Allocation(i, k)
Sort Lon,i by increasing free CPU and RAM
for S ∈ Lon,i do

if free CPU of S ≤ ck & free RAM of S ≤ ramk then
Reserve resources on S and return Success

end
if S is tail of Lon,i then

if Loff,i not empty then
remove the first machine from Loff,i, add it to Lon,i.

Switch on the machine, reserve the resources on it and
return Success

else
Add the job to Lpend,i and return Failure

end
end

end

B. Inter Edge-DCs Negotiation

An Edge-DC i negotiates in peer-to-peer manner with
its neighborhood Ni (by increasing distance) to exchange
jobs. Regarding the performance requirements, we limited the
perimeter of job exchange in order to ensure that a forwarded
job latency is contained within a predefined threshold L0

(Eq. 2f). In this study, Ni is the set of Edge-DCs sharing
the same tuple of metro router.

The negotiation consists in synchronously finding in Ni

a set of Edge-DCs with available computing resources and

renewable energy to host some jobs of i. Thus, the Edge-DCs
collaboratively minimize their dependence on the electrical
grid (Eq 2a) –imports and exports that are mutually exclusive
(Eq. 2c) – as shown in Equation 2 and increases the self-
consumption. Let’s consider i with a deficit of on-site power.
For i equipped with only a PV plant (first category), that cor-
responds to when the PV plant does not generate sufficiently
to meet the load. When i has no PV nor battery (second
category), the deficit is permanent. Lastly, for i having a PV
and a battery (third category), the deficit happens when both
sources cannot meet the load demand. The negotiation between
i and j ∈ Ni follows this process : i provides a list of its
pending and allocated jobs to j sorted by increasing power
consumption. Then j attempts to allocate resources to each
job (Algorithm 1) within the physical limits (Eq. 2b). Hence,
j sends back a list of the non allocated jobs to i that releases
the resources of jobs successfully deployed on j and continue
the negotiation with other sites ∈ Ni if some jobs remain non
forwarded. No simultaneous negotiation with several remote
sites is allowed by the same Edge-DC.

min
Pload,i,j(t),Pload,j,i(t)

(Pg,p,i(t)− Pg,s,i(t)) ∀j ∈ Ni

s.t
(2a)

PPV,i(t) + Pdisch,i(t) + Pg,p,i(t) = Pch,i(t) + Pg,s,i(t)
+PUE.(Pload,i(t) +

∑
j∈Ni

(Pload,j,i(t)− Pload,i,j(t))) (2b)

Pg,p,i(t).Pg,s,i(t) = 0 (2c)
Pload,i,j(t).Pload,j,i(t) = 0 (2d)

Pload,i,j(t) = 0 if PPV,j(t)− PUE.Pload,j(t) < 0 (2e)
Lk,i,j ≤ L0 (2f)

Where Pload,i,j(t) and Pload,j,i(t) are respectively the
power load forwarded from site i to j and from site j to
i, Pg,p,i(t) and Pg,s,i(t) are respectively the amount of power
imported and exported from/to the grid, Lk,i,j is the latency
of job k submitted to site i and forwarded to site j.

Algorithm 2: Negotiation algorithm
Input: i , Ni

Negociation(i , Ni)
SavePendJobs ← false
for j ∈ Ni with priority on the categories do

Lpend,i,j ∪ Lalloc,i,j ← Send Lpend,i∪ Allocated Jobs
for k ∈ Lin,i,j do

if Allocation(j, k) with success then
if PPV,j(t) > PUE.Pload,j(t) OR SoCj(t) > SoCL

OR SavePendJobs=true then
Remove k from Lpend,i,j ∪ Lalloc,i,j and continue

with next job
else

Release the Resources allocated on j
end

end
end
Send back Lpend,i,j ∪ Lalloc,i,j to i

end
if Lpend,i,j not empty then

SavePendJobs ← true
Repeat Negociation(i,Ni)

end
Release the resources on i previously allocated to the forwarded jobs.

During day time (8am to 6pm), all the negotiations are first
held with the sites equipped with only a PV plant. At night,



this step is skipped as the weather conditions do not allow PV
power generation. In a second instance, i may forward jobs to
the sites of third category with a surplus of PV generation
or a battery state of charge above a predefined threshold
SoCL (Eq. 2e) that represents a security margin. If after the
negotiations some pending jobs remain non scheduled, the
controllers proceed another round and resources are allocated
on the Edge-DCs with enough computing resources, regardless
the on-site energy status. However, the search is still carried
out in the following order: 1st (PV only), 3rd (PV and
battery) and 2nd (no onsite source) categories of DCs, with a
perspective of increasing on-site consumption later on. In order
to minimize the traffic in the telecommunication network, jobs
are only sent in one direction, i.e from the deficient Edge-DC
(in our example, from site i to j) as presented in Equation 2d.
The negotiation process is summarized in Algorithm 2.

C. Performance degradation

Performance degradation allows Edge-DCs with energy
production deficit (or no production), to reasonably lower their
QoS and to reduce their consumption of brown energy. One
can use hardware level service degradation called Dynamic
Voltage and Frequency Scaling [30]. However, it extends the
duration of the jobs and consequently increases the probability
for the servers to operate for longer, which could offset the
energy savings. Here, we dynamically adjust the images size to
degrade the quality of the video in order to reduce the energy
consumption. The degraded mode is used in the following
situations according to the edge-DC category: 1) with a PV
plant and a battery, the degradation intervenes when there is a
deficit of PV generation and the battery is below the security
margin (PPV,i(t) < Pload,i(t) and SoCi(t) < SoCL), 2) with
only a PV plant, the degraded mode is used when the PV
plant does not generate sufficiently (PPV,i(t) < Pload,i(t))
and 3) with no additional energy source, the degraded mode
is always active. In future works, more moderate requirements
will be explored (arbitration for instance between cost and on-
site generation).

To guarantee that the performance degradation does not
cause too much discomfort to the end-users, the service
provider concludes a Service Level Agreement (SLA) with
them to define the expected QoS and the efforts they are
willing to make to enjoy a decarbonized service (green-SLA).
For real-time applications such as video-streaming, the green-
SLA defines for a given job, the minimum resolution (pxmin)
bearable by the user. To simplify, we consider that all the jobs
are subject to the same green-SLA. For sake of generality,
let’s consider an Edge-DC with a battery and a PV plant.
The degraded mode is represented as an optimization problem
which aims to simultaneously minimize the battery use (it
degrades), the power importations and the performance degra-
dation (Pshed,i(t)) as represented in Equation 3a. Equation 3b
represents the energy balance and Equation 3c stands for the

QoS requirement of each job.

min
Pdisch(t),Pg,p(t),Pshed,i(t)

αPdisch(t) + βPg,p(t) + γ.Pshed,i(t)

s.t
(3a)

PUE.Pload,i(t)− Pshed,i(t) = Pdisch,i(t) + PPV,i(t) + Pg,p,i(t) (3b)
pxk(t) ≥ pxmin (3c)

Where α, β, γ ≤ 1 are variable coefficients with α + β +
γ = 1. We consider β = CI(t)

CI0
where CI(t) (kgCO2/kwh)

is the carbon intensity of the grid electricity, CI0 a carbon
intensity value above which no energy may be imported from
the grid as it is heavily carbonized.

We propose heuristics to solve the optimization problem
in Equation 3. The trivial solution for edge-DCs without on-
site generation and those with only a PV sources at night
(6am to 8pm) is when all the containers operate with the
minimum resolution pxmin. In the sites without a battery,
α = 0 and Pdisch,i(t) = 0. Otherwise, α = γ = 1−β

2 .
In the later configuration, when the carbon intensity is high
(CI(t) ≥ 80%CI0), no power importation from the grid
is allowed, unless a minimum QoS cannot be met. Hence,
Pg,p(t) = 0 and β = 0. The controller in each Edge-DC first
estimates a theoretical envelope of power P th

shed,i to degrade
(Eq. 4a), with regard to the PV generation, the battery state
and the grid carbon intensity. Then it evaluates the average
ratio of CPU usage for each server in the site (Eq. 4b) and
determines the theoretical resolution pxth matching that CPU
usages. However, as the resolution is a standard, the controller
chooses the normalized px so that px ≥ max(pxth, pxmin) for
a given server. Lastly, the contribution of the grid to the Edge-
DC can be derived from Equation 3b if applicable.

Pshed,i(t) ≤ P th
shed,i = (1− γ).(PUE.Pload,i(t)− PPV,i(t)) (4a)

u(pxth,t)
u(px0,t)

=
PUE.Pload,i(t)−P th

shed,i−Ns,i.Pmin

PUE.Pload,i(t)−Ns,i.Pmin
(4b)

Pdisch,i(t) = min{Pmax
Bat ; CBat,i(t−∆t).ηdisch.(SoCi(t)−SoCmin)

∆t ;
(1− α).(PUE.Pload,i(t)− Pshed,i(t)− PPV,i(t))}

(4c)

Where Ns,i is the number of active servers in i.
Algorithm 3 summarizes resolution-based performance

degradation strategy. As shown in Equation 4c, the battery
outputs the minimum value among: its nominal power (first
term), the power available in it (second term) and the theoret-
ical optimum (last term).

Algorithm 3: Degradation phase
Input: i
Degradation (i)
if SoCi(t) < SoCL and PPV,i(t) < Pload,i(t) then

if CI(t) > 0.8CI0 then
β = 0 ; Pg,p(t) = 0

else
β = CI(t)/CI0

end
α = γ = (1− β)/2

Evaluate the theoretical power to shed P th
shed,i (Eq. 4a)

Determine theoretical pxth 4b) and identify the feasible px
Calculate the actual Pshed and the contribution of the battery
Pdisch,i(t).

Assess Pg,p(t) using Equation 3b).
end



D. Consolidation

The consolidation strategy consists in migrating the running
containers to the smallest number of physical machines and
shutting down idle ones. Not only does this make better
use of the computing resources, it also reduces the energy
demand. The container live migration considered in this work
is an abstraction of the mechanism proposed by Pickartz
et al. [34] using the Checkpoint/Restore In Userspace (CRIU)
technology. As summarized in Algorithm 4, the controllers
seek to reserve resources on the most loaded servers in order
to relocate containers from the least loaded ones. Jobs on a
given server are therefore migrated when all its containers are
assigned a new node.

Algorithm 4: Consolidation phase
Input: i
Consolidation(i)
Sort Lon,i in increasing free CPU and RAM
H = head of Lon,i T = tail of Lon,i

while H ̸= T do
while H ̸= T do

if the containers of H can be moved to the servers [H, T[ then
move them and switch off T
Lon,i = Lon,i − T and Loff,i = Lof,i + T

end
if H is fully loaded then

H= server of position |H| +1
end

end
T = server of position |T| -1

end
End Function

VI. EVALUATION

A. Experimental environment

This study is conducted with the simulation toolkit Sim-
Grid [35]. We used a timestep of 5 minutes to perform
simulations for a full month and we consider here the last week
only (i.e. the steady state). The compute nodes are based on
the Nova cluster of the Grid’5000 experimental platform [36].
They are equipped with 32 Intel Xeon E5-2620 v4 with 8 cores
each, 64GB memory, 598GB HDD, 2.1GHz frequency and an
Intel Ethernet 10G Ethernet card. We measure Pmin = 78W
and Pmax = 151W. Each Edge-DC has 45 nodes. The intra-DC
network is designed with 13 C8500-12X Cisco switches of 12
ports and their nominal power consumption is 200W according
to the Cisco Power Calculator [32]. We consider a PUE value
of 1.2 which is slightly more than the Google current data
centers having a PUE ranging from 1.09 to 1.12 [37]. Yet
Google DCs are much larger than Edge-DCs. We consider a
minimum acceptable resolution pxmin = 1080x720.

To instantiate a model of the CPU usage of a real video-
streaming application, we measure the power consumption of
a VLC media server1, streaming a 10min video on all its CPUs
with a bit rate of 7GBps. We performed this operation on the
Grid’5000 testbed [36] for several standard image size px.
Figure 3 shows the power consumption of the VLC server
for each video size. Then, we used Equation 1 to compute

1https://www.videolan.org/vlc/index.en.html

the ratio uk(px,t)
uk(px0,t)

. For sake of generality, we modeled that
ratio as a third-order polynomial a(px)3+ b(px)2+ c(px)+d
where a, b, c, d are constants. We obtain through polynomial
regression, a = 5.16 10−3, b = - 7.36 10−2, c = 0.41, d = 5.18
10−2 with an error rate of less than 2%.
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Figure 3: Average node power consumption as a function of the
frames size (0 × 0 represents the idle power consumption of the
VLC server).

We use real rooftop solar power trace collected in 2018, in
Austin, Texas, and available on the Pecan street website [38].
To simulate the diversity of PV production in our large-scale
platform, we split the data by week and periodically (every
week), each Edge-DC provided with a PV plant composed
of 250 solar panels randomly selects from the split data. The
carbon intensity data is provided by the British national grid
Electricity System Operator’s carbon intensity API [39]. We
use here the month of August 2022 which corresponds to the
most polluting period of that year. The carbon intensity profile
for the last week of August 2022 is shown in Figure 4. The
peak value is CI0 = 308gCO2/kWh. We consider a battery
consisting of unit modules of 1kWh capacity (CBat(0)) and
500kW nominal power (PBat

max).

B. Results

In this section, we evaluate the performance of the proposed
strategies together first and then separately in order to evaluate
their individual gains.

1) A single Edge data center analysis:
First, let’s consider one randomly selected Edge-DC equipped
successively with three sizes of battery that are 400kWh,
600kWh and 800kWh. The objective is to analyze both the
performance of the algorithms and the impact of the electrical
system infrastructure on the QoS. Figure 5a presents the power
generation of the PV plant and the load trace when the Edge-
DC functions with the medium battery (600kWh). Figure 5b
represents the SoC of the batteries during the week where
the dotted bar is the margin threshold set to 35%. Figure 5c
presents the average power consumption of the Edge-DC over
three time periods of the day: 0AM to 8AM, 8AM to 6PM and
6PM to 0AM. These time zones correspond to the potential
power generation patterns. Figures 5d shows the average image
resolution on the site.

On the first day, the PV generation and the batteries
charge/discharge power are all low, making all the jobs stream
at the minimal resolution most of the time, with only sporadic
improvement of images quality when the generation meets the
demand. The second day is sunnier, allowing the batteries to
be charged. The 400kWh battery leaves the safety margin,
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Figure 4: Carbon intensity collected from British national grid
Electricity System Operator’s carbon intensity API [39]

followed by the 600kWh. In both cases, the images are streams
with the maximum resolution and the controller receives new
jobs in the negotiation process (more jobs are accepted for
400kWh), which increases the average consumption. From
the fourth to the last day, the smallest battery leaves the
safety zone, followed by the medium battery. Thus, the power
consumption in the two configurations is similar as the same
jobs can be accepted from the neighborhood and the images
resolution is maximal. However, using the largest battery
(800kWh), the image sizes fluctuate between the maximum
and minimum resolution, reducing the power consumption in
the site. In the middle of the last day, the gap between server
demand and PV production does not necessitate a maximum
degradation, hence 1280x1024 is chosen. The configurations
with a 600kWh and 800kWh batteries allowed energy savings
of 0.27% and 0.51% respectively compared to the 400kWh
battery which is negligible, especially when considering the
battery financial cost. In addition, they require more degrada-
tion of the QoS to achieve these savings.

2) Collective Power and carbon profiles analysis:
We define the instantaneous collective self-consumption rate as
the proportion of the aggregated edge-DCs power consumption
originating from on-site sources at a given time t (Equation 5:

1−
(

NDC−1∑
i=0

Pg,p,i(t)

)/(
NDC∑
i=0

PUE.Pload,i(t)

)
(5)

where NDC is the number of Edge-DCs.
Using 600kWh batteries, we compute this rate at each time

step over a one-week horizon in the following scenarios: 1) all
the optimization are performed (CDN) – i.e the inter-site nego-
tiation, the performance degradation and the consolidation are
active –, 2) the controllers perform degradation and negotiation
(DN) 3) none of the proposed optimizations is performed
(None). We compare these scenarios with the state-of-the-
art Modified Best Fit Decreasing (MBFD) [8] energy-aware
algorithm that combines energy-based resource allocation and
consolidation strategies. The results are presented in Figure 6a.
(None) has a self-consumption rate ranging from 1.24% to
63.3%, (DN) from 1.35% to 63.6%, MBFD from 18.9%
to 64.7% and (CDN) from 20.1% to 65.1%. The strategies
of combining spacial collaborative load balancing and QoS
degradation which is an interesting opportunity to harvest
renewable energy, increases the self consumption by only
0.4% compared to (None). In the opposite, (CDN) allows to
consume more on-site energy and outperforms the MBFD al-
gorithm. In fact, (CDN) reaches up to 39.6% self consumption

in average during the week, representing an improvement of
7.83% compared to None. However, the benefit is restricted to
the extent that the switches in the non-heavily loaded Edge-
DCs remain operational, as does the cooling system, and are
mainly powered from the grid.

Figure 6b shows the equivalent CO2 attributable to the
platform in the scenarios described above. It shows that (CDN)
accounts for less CO2 than the others, in particular, it exhibits
a 35.7% smaller footprint than the (None) scenario. That is
due to the fact that (CDN) reduces considerably the need
for importing electrical power from the grid. It represents in
average 5.2% of carbon savings compared to the MDFD. As
for the self-consumption, (DN) leads to a slight reduction of
the carbon footprint by 4.2kgCO2/h which, extrapolated in an
annual basis represents 252,526km of car driving.

To figure out an upper bound of the savings brought by the
degradation in the platform, let’s introduce a scenario (Dmax)
in which only degradation is performed with images streamed
at the lowest resolution (320x240 pixel). For a given server,
running at the lowest resolution represents a power consump-
tion reduction of 37% compared to the highest resolution as
shown in Figure 3. The average power consumption over one
week in the four scenarios is presented in Table I. In terms
of energy savings, (D-max) outperforms the (DN) that uses
a reasonable resolution. However, it still remains less energy
efficient than MBFD and (CDN). Moreover, this scenario is
not realistic as this quality of image might not be acceptable by
the user despite their will to enjoy a low carbon service. Thus,
the degradation and negotiation are more beneficial when
associated with consolidation. Indeed, consolidating reduces
considerably the static power consumption and reorganizes the
resources, freeing some space for new jobs to be exchanged.

Table I: Average power consumption over one week for several
scenarios

Scenario CDN MBFD Dmax DN None
Power consumption (MW) 1.602 1.66 2.06 2.17 2.205

The last analysis of the entire platform concerns the profile
of power injected into the grid in the strategies (CDN, MBFD,
DN and None). As shown in Figure 6c, peaks of up to
1.6MW are injected in all four cases. The scenarios including
consolidation inject the most power into the grid. In fact, by
switching off the idle servers, the load is reduced leading
to a high surplus that, in the Edge DCs with no battery,
is directly injected into the grid. Such power peaks may be
difficult to handle for the electrical network, as they may
not be synchronized with the consumption at a large scale.
So, consolidation is the best option from an edge computing
provider to reduce both its energy consumption and its carbon
footprint, yet these high peak injections may be costly in
terms of infrastructure for the electricity provider [33] and
consequently, they can induce a higher electricity bill for the
edge provider despite its energy injection into the grid.

In this study, we proposed a fully distributed energy,
location and carbon-aware resource allocation strategy that
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Figure 5: Impact of streaming on the infrastructure, example on one Edge-DC with respectively 400kWh, 600kWh and 800kWh batteries.
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Figure 6: Impact of the strategies on the edge infrastructure: no optimization (None), consolidation, degradation and negotiation (CDN),
degradation and negotiation (DN), Modified Best Fit Decreasing (MBFD).

show promising performances. However, it leaves openings
for enrichment in order to incorporate the critical aspects of
system security and reliability. In fact, in distributed systems,
node failures are commonplace. Establishing fault detection
and recovery mechanisms is crucial to ensure the reliability
and stability of task allocation and when migrating containers.
The fault tolerance and recovery mechanism should have the
ability to handle cases where container migration failures or
the shutdown of physical machines lead to issues.

VII. CONCLUSION

In this paper, we have designed a large-scale edge comput-
ing infrastructure where the data centers are brought close to
the end user while being grouped according to their close-
ness in order to guarantee latency tolerance when jobs are
moved among them. We presented a strategy that allow the
infrastructure to consume less energy by consolidating the
load on the smallest number of servers and degrading the
application quality of service when their is shortage of on-site
power generation, while respecting service level agreements.
This strategy also increases the self-consumption within the
edge infrastructure by forwarding the incoming jobs to the
nearest data center with enough on-site power available. The
results show that the combination of these three techniques
increases the collective self-consumption and reduces signifi-
cantly the carbon footprint of the infrastructure compared to
the literature. Although the degradation and negotiation strate-
gies achieve energy savings, they remain less efficient than
consolidation and are even greatly improved by combination
with consolidation. Also, we found that using large batteries
may lead to very frequent degradation, which may be counter-
productive, as one invests in large storage to increase the
efficiency. In future work, we aim to investigate the sizing of

the battery and the PV plant in order to optimize the electrical
infrastructure. In the Edge-DCs with no onsite-source, the
network switches continuously consume from the grid, even
with less load. Hence, we will investigate the flexibility to
optimize the network in order to reduce its consumption, thus
the imports from the electrical grid.
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[29] “Arrêté du 21 novembre 2019 fixant le critère de proximité
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