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Proceedings of Symposia in Pure Mathematics

Shimura varieties (version of November 7, 2023)

Sophie Morel

Abstract. Lecture 1 gives an introduction to Shimura varieties over the com-
plex numbers (defined here as a special type of locally symmetric spaces) and
to the general theory of canonical models; it also discusses in more detail
the example of the Siegel modular varieties. Lecture 2 presents some families
of Shimura varieties (PEL type, Hodge type, abelian type) and the results
that are known about their canonical and integral models. Finally, lecture 3
discusses the cohomology of Shimura varieties, concentrating mostly on the
compact non-endoscopic case.

1. Lecture 1: locally symmetric spaces and Shimura varieties

1.1. Locally symmetric spaces. Let G be a semi-simple algebraic group
over Q, for example SLn, Sp2n, or a special orthogonal or special unitary group.
Locally symmetric spaces for G(R) are “nice enough” spaces whose cohomology is
related to automorphic representations of G. A good reference for locally symmetric
spaces is the introductory paper [51] by Ji.

To simplify the presentation, we will assume here that G(R) is connected. Let
K∞ be a maximal compact subgroup of G(R), and let X = G(R)/K∞. If Γ is
a discrete subgroup of G(R) such that Γ\G(R) (or equivalently Γ\X) is compact
and that Γ acts properly and freely on X , 1 then there is a classical connection
between the cohomology of Γ\X and automorphic representations of G(R), called
Matsushima’s formula (see Matsushima’s paper [81]). We will state a modern re-
formulation in Lecture 3 (see Theorem 3.1), but roughly it relates the Betti numbers
of Γ\X and the multiplicities of representations of G(R) in L2(Γ\G(R)).

In fact, Matsushima’s paper deals with semi-simple real Lie groups. Here, we
have an algebraic group defined over Q, so we have a particularly nice way to
produce discrete subgroups of G(R). Remember that a subgroup Γ of G(Q) is
called an arithmetic subgroup if there exists a closed embedding of algebraic groups
G ⊂ GLN such that, setting G(Z) = G(Q) ∩ GLN(Z), we have that Γ ∩ G(Z) is
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2 SOPHIE MOREL

of finite index in Γ and in G(Z). 2 If Γ is small enough, then it acts properly
and freely on X ([51, Proposition 5.5]), so the quotient Γ\X is a real analytic
manifold. Also, the quotient Γ\G(R) is compact if and only if G is anisotropic
(over Q), which means that G has no nontrivial parabolic subgroup defined over Q
([51, Theorem 5.10]). If Γ\X is not compact but G(R) has a discrete series, then
there is an extension of Matsushima’s formula, due to Borel and Casselman in [19],
that involves L2 cohomology of Γ\X ; see 3.5.3.

We actually would like to see automorphic representations of G(A) (not just
G(R)) in the cohomology of our spaces, so we will use adelic versions of Γ\X .
Let K be an open compact subgroup of G(Af ), where Af is the ring of finite
adèles; for example, if we have chosen an embedding G ⊂ GLN , then we could take

K = G(Af ) ∩Ker(GLN (Ẑ)→ GLN (Z/nZ)), for some positive integer n (these are
called principal congruence subgroups). Let

MK = G(Q)\X ×G(Af )/K,
where the group K acts by right translations on the factor G(Af ), and the group
G(Q) acts by left translations on both factors simultaneously. Choose a system
of representatives (xi)i∈I of the finite 3 quotient G(Q)\G(Af )/K, and set Γi =

G(Q) ∩ xiKx−1
i for every i ∈ I. Then the Γi are arithmetic subgroups of G(Q),

and we have
MK =

∐

i∈I
Γi\X,

so MK is a real analytic manifold if K is small enough. But now we have an
action of G(Af ) on the projective system (MK)K⊂G(Af ), so we get an action on
lim−→K

H∗(MK), where H∗ is any “reasonable” cohomology theory, for example Betti

cohomology. If G is anisotropic over Q, then Matsushima’s result can be refor-
mulated to give a description of this action in terms of irreducible representations
of G(A) appearing in L2(G(Q)\G(A)); this is the version we give in Theorem 3.1.
There is also a version of the Borel-Casselman generalization (see 3.5.3).

There is another way to think about the action of G(Af ) on (MK)K⊂G(Af ),
which does not involve a limit on K. Fix a Haar measure on G(Af ) such that
open compact subgroups of G(Af ) have rational volume (this is possible because
these groups are all commensurable); then every open subset of G(Af ) has ratio-
nal volume, because it is a finite union of translates of open compact subgroups.
The Hecke algebra of G is the space HG of locally constant functions with com-
pact support from G(Af ) to Q; if f, g ∈ HG, then the convolution product f ∗ g
still has rational values by the choice of Haar measure, so convolution defines a
multiplication on HG. For every open compact subgroup K of G(Af ), the Hecke
algebra at level K is the subalgebra HG,K of bi-K-invariant functions in HG; we
have HG =

⋃
K HG,K .

Fix K small enough. Then H∗(MK) is the set of K-invariant vectors in
lim−→K′⊂G(Af )

H∗(MK′), so it has an action of HG,K . 4 We can describe this ac-

tion using Hecke correspondences: let g ∈ G(Af ) and let K ′ be an open compact

2We can check that this definition does not depend on the embedding G ⊂ GLN , see [51,
Proposition 4.2].

3See Lemmas 5.11 and 5.12 of [87].
4In fact, we can recover the action of G(Af ) on lim

−→K⊂G(Af )
H∗(MK) from the action of

HG,K on MK for every K small enough.
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subgroup of G(Af ) such K ′ ⊂ K ∩ gKg−1. Then we have a Hecke correspondence
(T1, Tg) : MK′ → M2

K sending the class of (x, h) in MK′ to that of ((x, h), (x, hg))
in MK ×MK , and T1, Tg are both finite covering maps if K is small enough. Then
the action of 1

vol(K′)1lKgK on H∗(MK) is given by pulling back cohomology classes

along T1, then pushing them forward along Tg (see Section 16 of [64]).
We can also ask whether there is more structure on the spaces Γ\X (or MK).

For example, suppose that G = SL2 and K∞ = SO(2). Then, for Γ an arithmetic
subgroup of SL2(Z), the space Γ\X is a modular curve, so it is the set of complex
points of an algebraic variety defined over a number field F , and we can use the
commuting actions of Hecke correspondences and of the absolute Galois group of
F on the étale cohomology of this variety to construct some instance of the global
Langlands correspondence for GL2. See for example Deligne’s Bourbaki seminar
[34].

In order to generalize this picture, as outlined in Langlands’s papers [69] and
[70], we first need to know when the spaces Γ\X or MK are the set of C-points
of an algebraic variety, and whether this algebraic variety is defined over a number
field. As we will see in the section on canonical models (1.4), another advantage of
MK over Γ\X is that, when the answer to both questions above is “yes”, then the
MK for K varying tend to all be defined over the same field, while this is not the
case for the Γ\X .

Remark 1.1. The first step is to check whether Γ\X has the structure of a
complex manifold, and there are obvious obstructions to that. For example, if
G = SL3 and K∞ = SO(3), then Γ\X is 5-dimensional as a real manifold, so it
cannot have the structure of a complex manifold.

Choose a G(R)-invariant Riemannian metric on X = G(R)/K∞ (such a metric
is unique up to rescaling on each irreducible factor). Then X is a symmetric space,
that is, a Riemannian manifold such that:

(a) The group of isometries of X acts transitively on X ;
(b) For every p ∈ X , there exists a symmetry sp of X (i.e. an involutive

isometry) such that p is an isolated fixed point of sp.

Moreover, the symmetric space X is of noncompact type, that is, it has negative
curvature. For Γ a small enough arithmetic subgroup of G(Q), the Riemannian
manifold Γ\X is a locally symmetric space; in particular, it does not satisfy condi-
tion (a) anymore, and it satisfies a variant of condition (b) where we only ask for
the symmetry to be defined in a neighborhood of the point. See Ji’s notes [51] for
a review of locally symmetric spaces.

We say that X is a Hermitian symmetric domain if it admits a G(R)-invariant
Hermitian metric. See Section 1 of Milne’s notes [87] for a review of Hermitian
symmetric domains.

Example 1.2. Let d be a positive integer. The Siegel upper half space h+d is
the set of symmetric d × d complex matrices Y ∈ Md(C) such Im(Y ) is positive
definite; if d = 1, then this is just the usual upper half plane. We claim that h+d is

a Hermitian symmetric domain. For the proofs of the basic properties of h+d that
we state below, a good reference is Siegel’s paper [112].

We first need to see h+d as a symmetric space. Let Sp2d be the symplectic group

of the symplectic form with matrix

(
0 Id
−Id 0

)
, where Id ∈ GLd(Z) is the identity
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matrix. For every commutative ring R, we have

Sp2d(R) =

{
g ∈ GL2d(R) | tg

(
0 Id
−Id 0

)
g =

(
0 Id
−Id 0

)}
.

Note that Sp2 = SL2. We make Sp2d(R) act on h+d by the following formula:
(
A B
C D

)
· Y = (AY +B)(CY +D)−1,

where A,B,C,D are d × d matrices such that

(
A B
C D

)
∈ Sp2d(R) (see page 9

of [112]). Then this action is transitive (see page 10 of [112]). Let K∞ be the
stabilizer in Sp2d(R) of iId ∈ h+d . Then K∞ = O(2d) ∩ Sp2d(R) (this is easy to
check directly), so it is a maximal compact subgroup of Sp2d(R),

5 and we have
h+d ≃ Sp2d(R)/K∞ as real analytic manifolds.

Also, the space h+d is an open subset of the complex vector space of symmetric
matrices in Md(C), so it has an obvious structure of complex manifold. It remains
to construct a Sp2d(R)-invariant Hermitian metric on h+d . Let Dd be the set of
symmetric matrices A ∈ Md(C) such that Id − A∗A is positive definite, this is
a bounded domain in the complex vector space of symmetric matrices in Md(C),
hence is equipped with a canonical Hermitian metric called the Bergman metric,
which has negative curvature (see for example [87, Theorem 1.3]); in particular,
this metric is invariant by all holomorphic automorphisms of Dd. Now note that
we have an isomorphism h+d

∼→ Dd sending X ∈ h+d to (iId−X)(iId+X)−1 (whose
inverse sends A ∈ Dd to i(Id −A)(Id +A)−1), see pages 8-9 of [112]. We can give
a formula for the resulting Hermitian metric on h+d : up to a positive scalar, it is
given by

ds2 = Tr(Im(Y )−2dY Im(Y )−1dY )

(see formula (28) on page 17 of [112]).

The isomorphism h+d
∼→ Dd is called a bounded realization of h+d .

We now state the classification of Hermitian symmetric domains in terms of
real algebraic groups. Let U(1) = {z ∈ C | |z| = 1}.

Theorem 1.3. [87, Theorem 1.21] Suppose that G(R) is adjoint and connected.
The locally symmetric space X is a Hermitian symmetric domain if and only if there
exists a morphism of real Lie groups u : U(1)→ G(R) such that:

(a) The only characters of U(1) that appear in its representation on Lie(G(R))
via Ad ◦ u are 1, z and z−1;

(b) Conjugation by u(−1) is a Cartan involution of G(R), which means that
the real Lie subgroup {g ∈ G(C) | g = u(−1)gu(−1)−1} of G(C) is
compact;

(c) The image of u(−1) in every simple factor of G(R) is nontrivial.

Moreover, we can choose u such that K∞ is the centralizer of u in G(R), which
means that X is isomorphic to the set of conjugates of u by elements of G(R).

5In fact, we have an isomorphism U(d)
∼
→ K∞ sending X+ iY ∈ U(d) (with X, Y ∈ GLd(R))

to

(
X Y
−Y X

)
.
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We explain the construction of the morphism u. Suppose that X is a Hermitian
symmetric domain, and let p ∈ X . For every z ∈ C with |z| = 1, multiplication by
z on TpX preserves the Hermitian metric and sectional curvatures, so there exists
a unique isometry up(z) of X fixing p and such that Tpup(z) is multiplication by
z. The uniqueness implies that up(z)up(z

′) = up(zz
′) if |z| = |z′| = 1, so we get a

morphism of groups from U(1) to the group of isometries of X , which is equal to
G(R)0ad = G(R).

Remark 1.4. If we don’t assume that G(R) is adjoint, then u goes from U(1) to
G(R)ad, as we see in the sketch above, and it will not necessarily lift to a morphism
from U(1) to G(R).

Example 1.5. (1) If G = Sp2d, let h : C× → G(R) be defined by

h(a+ ib) =

(
aId −bId
bId aId

)
.

Then we can take u : U(1) → PSp2d(R) given by u(z) = h(
√
z). Note

that u does not lift to a morphism from U(1) into G(R).
(2) If G = PGLn with n ≥ 3, then the centralizer of a character u : U(1)→

G(R) cannot be a maximal compact subgroup of G(R) (exercise), so the
locally symmetric space of maximal compact subgroups of G(R) is not
Hermitian.

Theorem 1.3 puts some pretty strong restrictions on the root systems of the
simple factors of G(R), see Theorem 1.25 of [87] and the table following it. In
particular, the type A simple factors of G(R) must be of the form PSU(p, q), and
G(R) can have no simple factor of type E8, F4 or G2.

The natural next step would be to wonder for which Hermitian symmetric
domains X the quotients Γ\X are algebraic varieties, but in fact it turns out that
the answer is “for all of them”, as was proved by Baily and Borel. Borel later
proved that this structure of algebraic variety is unique.

Theorem 1.6 (Baily-Borel and Borel, [12] and [17]). Suppose that X =
G(R)/K∞ is a Hermitian symmetric domain. Then, for any torsion free arith-
metic subgroup Γ of G(Q), the quotient Γ\X has a unique structure of algebraic
variety over C compatible with its structure of complex analytic manifold.

The very rough idea is that the sheaf of automorphic forms on Γ\X of suffi-
ciently high weight will define an embedding of Γ\X into a projective space. Borel’s
uniqueness theorem actually says that, if V is a quasi-projective complex algebraic
variety, then any holomorphic map V → X is regular; see the discussion below
Theorem 3.14 of [87] for more details on its proof.

Remember that we did not just want the locally symmetric spaces Γ\X to be
algebraic varieties, we also wanted them to be defined over a number field, and we
would ideally like the number field in question to only depend on G and K∞. For
this, it will actually be easier to work with reductive groups instead of semi-simple
groups. As a motivation for this, and for the definition of Shimura varieties, we
now spend some more time on the case of the symplectic group.

1.2. The Siegel modular variety. :
See the end of this subsection (1.2.6 on page 13) for some background on abelian

schemes.
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1.2.1. Symplectic groups. We use the notation of Example 1.2. It is well-known
that h+1 parametrizes elliptic curves over C: an element τ ∈ h+1 is sent to the elliptic
curve Eτ = C/(Z + Zτ), and Eτ ≃ Eτ ′ if and only if τ, τ ′ ∈ h+1 in the same orbit
for the action of SL2(Z) = Sp2(Z); so we can recover τ from Eτ and the data of a
symplectic isomorphism H1(Eτ ,Z) ≃ Z2 where Z2 is equipped with the standard
symplectic form. We want to give a similar picture for higher-dimensional abelian
varieties; in fact, the analogy works best if we consider abelian varieties with a
principal polarization (Definition 1.30).

We first introduce some notation and recall the definition of the (general) sym-
plectic group as a group scheme over Z. If R is a commutative ring, we denote by

ψR the perfect symplectic pairing on R2d with matrix

(
0 Id
−Id 0

)
. So we have

ψR((x1, . . . , xd, y1, . . . , yd), (x
′
1, . . . , x

′
d, y

′
1, . . . , y

′
d)) =

d∑

i=1

xiy
′
i −

d∑

i=1

x′iyi.

The general symplectic group GSp2d is the reductive group scheme over Z whose
points over a commutative ring R are given by:

GSp2d(R) = {g ∈ GL2d(R) | ∃c(g) ∈ R×, ψR(g·, g·) = c(g)ψR}.
The scalar c(g) is called the multiplier of g ∈ GSp2d(R). Sending g to c(g) defines
a morphism of group schemes c : GSp2d → GL1, whose kernel Sp2d is called the
symplectic group.

Example 1.7. We have GSp2 = GL2, c = det and Sp2 = SL2.

1.2.2. Complex abelian varieties. Let A be complex abelian variety of dimen-
sion d; we identify A and its set of complex points. Then A is a connected complex
Lie group of dimension d, so we have A ≃ Lie(A)/Λ, with Lie(A) ≃ Cd the universal
cover of A and Λ = π1(A) = H1(A,Z) ≃ Z2d a lattice in the underlying R-vector
space. Let A∨ be the dual abelian variety, i.e. the space of degree 0 line bundles on
A (Definition 1.28). We can identify Lie(A∨) with the space of semi-linear forms on
Lie(A) and H1(A

∨,Z) with the subspace Λ∨ of forms whose imaginary part takes in-
teger values on Λ (see [92], §9). For every positive integer n, we have A[n] = 1

nΛ/Λ

and A∨[n] = 1
nΛ

∨/Λ∨, and the canonical pairing A[n]×A∨[n]→ µn(C) is given by

(v, u) 7→ e−2iπn Im(u(v))

(see [92], §24). We then have a bijection between the set of polarizations on A
(Definition 1.30) and the set of positive definite Hermitian forms6 H on Lie(A)
such that the symplectic form Im(H) takes integer values on Λ; given such a form
H , the corresponding isogeny λH from A to A∨ is given on C-points by:{

λH : Lie(A)/Λ → Lie(A∨)/Λ∨

w 7→ (v 7→ H(v, w))

It follows that the Weil pairing (see Remark 1.31(2)) corresponding to λH is the
map

(1.1)

{
A[n]×A[n] → µn(C)

(v, w) 7→ e−2iπn Im(H(v,w)).

6We take Hermitian forms to be semi-linear in the first variable and linear in the second
variable.
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As v, w ∈ 1
nΛ, we have Im(H(v, w)) ∈ 1

n2Z, so the formula does define a nth root
of 1 in C.

In particular, the polarization λH is principal if and only if Λ is self-dual with
respect to the symplectic form Im(H), that is,

Λ = {w ∈ Lie(A) | ∀v ∈ Λ, Im(H(v, w)) ∈ Z}.

In that case, the symplectic Z-module (Λ, Im(H)) is isomorphic to Z2d with the
form ψZ.

Let M̃d be the set of isomorphism classes of triples (A, λ, ηZ), where A is a
d-dimensional complex abelian variety, λ is a principal polarization on A and ηZ is
an isomorphism of symplectic spaces from H1(A,Z) to (Z2d, ψZ). We have an action

of Sp2d(Z) on M̃d: if c = (A, λ, ηZ) ∈ M̃d and x ∈ Sp2g(Z), set x ·c = (A, λ, x◦ηZ).
Let (A, λ, ηZ) ∈ M̃d. Then Λ = H1(A,Z) is a lattice in the real vector space

Lie(A), we have A = Lie(A)/Λ and, if Hλ is the Hermitian form associated to the
polarization λ, then the symplectic form Im(Hλ)|Λ is sent to the form ψZ on Z2d by

the isomorphism ηZ : Λ
∼→ Z2d. So, if we see R2d as a complex vector space via the

isomorphisms (of real vector spaces) Lie(A)
∼→ Λ⊗Z R

∼→ R2d, then the Hermitian
form on R2d corresponding to Hλ is (v, w) 7→ ψR(iv, w) + iψR(v, w).

This shows ηZ determines all the data of the isomorphism class of (A, λ, ηZ),
except for the structure of complex vector space on R2d ≃ Lie(A). This structure
of complex vector space is equivalent to the data of an R-linear endomorphism
J of R2d such that J2 = −1 (the endomorphism J corresponds to multiplication
by i). We also need the R-bilinear map R2d × R2d → C defined by (v, w) 7→
ψR(J(v), w) + iψR(v, w) to be a positive definite Hermitian form on R2d, which is
equivalent to the following conditions:

(a) ψR(J(v), J(w)) = ψR(v, w) for all v, w ∈ R2d;
(b) the R-bilinear form (v, w) 7→ ψR(J(v), w) on R2d (which is symmetric by

(a)) is positive definite.

Conversely, if we have a complex structure J on R2d satisfying (a) and (b),
then we get a positive definite Hermitian form H on R2d whose imaginary part
takes integer values on the lattice Z2d, so the complex torus A = R2d/Z2d has
a polarization λ induced by H , hence is an abelian variety (for example by the

Kodaira embedding theorem), and we get an element (A, λ, idZ2d) of M̃d.

To sum up, we have defined a bijection from M̃d to the setX
′ of endomorphisms

J of R2d such that J2 = −1 and that J satisfies conditions (a) and (b).
Now observe that, if W is a R-vector space, then the data of an endomorphism

J of W such that J2 = −1 (i.e. of the structure of a C-vector space on W ) is
equivalent to the data of a C-linear endomorphism JC ofW⊗RC such thatW⊗RC =

Ker(JC−i·idW )⊕Ker(JC+i·idW ) and Ker(JC+i·idW ) = Ker(JC − i · idW ), where
v 7→ v is the involution of W ⊗R C induced by complex conjugation on C. This is
equivalent to giving a C-vector subspace E of W ⊗R C such that W ⊗RC = E⊕E,
i.e. a d-dimensional complex subspace E of W ⊗R C such that E ∩ E = {0} (take
E = Ker(JC − i · idW )). 7

7In fancier terms, we are saying that putting a structure of complex vector space on W is the
same as putting a pure Hodge structure of type {(−1, 0), (0,−1)} on it (or of type {(1, 0), (0, 1)},
depending on your normalization). When W = R2d and the complex structure comes from an
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We apply this to W = R2d. Let J be a complex structure on R2d, and let E
be the corresponding C-vector subspace of W ⊗R C = C2d. Then condition (a) on
J is equivalent to the fact that:

(a’) ψC(v, w) = 0 for all v, w ∈ E
(i.e. to the fact that E is a Lagrangian subspace8 of C2d), and condition (b) on J
is equivalent to the fact that

(b’) −iψC(v, v) ∈ R>0 for all v ∈ E \ {0}.
Note that these two conditions on a C-vector subspace E of C2d imply that E∩E =
{0}. So we get a bijection from X ′ to the set of Lagrangian subspaces E of C2d

satisfying (b’).
If we represent Lagrangian subspaces of C2d by their bases, seen as complex

matrices of size 2d × d, then the action of Sp2d(R) is just left multiplication. For

example, if we see R2d as a complex vector space via the isomorphism R2d ∼→ Cd

sending (x1, . . . , xd, y1, . . . , yd) to (x1 + iy1, . . . , xd + iyd), then the corresponding

endomorphism of R2d is

(
0 −Id
Id 0

)
∈ X ′, and the corresponding subspace of C2d

is the one with basis

(
iId
Id

)
.

More generally, if Y ∈ h+d , the subspace of C
2d with basis

(
Y
Id

)
is a Lagrangian

subspace satisfying condition (b’), and every such Lagrangian subspace is of that

form. So we get bijections M̃d ≃ X ′ ≃ h+d , and we can check that the second

bijection is Sp2d(R)-equivariant. Unraveling the definitions, we see that Y ∈ h+d
corresponds to the element (AY , λY , ηZ,Y ) of M̃d such that AY = Cd/(Zd + Y Zd),
λY is the principal polarization given by the Hermitian form with matrix Im(Y )−1

on Cd, and ηZ,Y : Zd + Y Zd
∼→ Z2d is the isomorphism sending a ∈ Zd to (a, 0) ∈

Zd × Zd = Z2d and Y a ∈ Y Zd to (0, a) ∈ Zd × Zd = Z2d.
Now we want an interpretation of the quotients Γ\h+d , for Γ an arithmetic

subgroup of Sp2d(Q). We will do this for the groups Γ(n) = Ker(Sp2d(Z) →
Sp2d(Z/nZ)), where n is a positive integer (Γ(n) is called the principal congruence
subgroup at level n). An arithmetic subgroup of Sp2d(Q) that contains some Γ(n)
is called a congruence subgroup. For d = 1, there exist arithmetic subgroups that
are not congruence subgroups (see the introduction of Raghunathan’s paper [101]
for a counterexample, attributed to Fricke-Klein); for d ≥ 2, it is known that every
arithmetic subgroup is a congruence subgroup (this was proved independently by
Bass-Lazard-Serre in [13] and Mennicke in [82]).

We will need the notion of a level structure; we give the general definition here.

Definition 1.8. Let S be a scheme, (A, λ) be a principally polarized abelian
scheme of relative dimension d over S, and n be a positive integer. A level n

structure on (A, λ) is a couple (η, ϕ), where η : A[n]
∼→ Z/nZ2d

S
and ϕ : Z/nZ

S

∼→
µn,S are isomorphisms of group schemes such that ϕ ◦ ψZ/nZ ◦ (η × η) is the Weil
pairing associated to λ on A[n].

element (A,λ, ηZ) of M̃d, then this Hodge structure is the one coming from the Hodge structure

on H1(A,R) via the isomorphism H1(A,R)
ηZ⊗R
→ Z2d ⊗Z R

∼
→ R2d.

8A maximal isotropic subspace.
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Remark 1.9. A level n structure on (A, λ) can only exist if n is invertible on
S and µn,S is a constant group scheme.

Note that isomorphisms ϕ : Z/nZ
S

∼→ µn,S correspond to sections ζ ∈ µn(S)
generating µn,S (i.e. to primitive nth roots of 1 over S), by sending ϕ to ζ = ϕ(1).
So we will also see level structures as couples (η, ζ), with ζ ∈ µn(S) primitive.

Let ζn = e−2iπ/n ∈ µn(C). If Y ∈ h+d , then
1
nηZ,Y defines an isomorphism of

groups ηY : AY [n]
∼→ (Z/nZ)2d, and it follows from formula (1.1) that (η, ζn) is a

level n structure on (AY , λY ).
Using the fact that Sp2d(Z)→ Sp2d(Z/nZ) is surjective for every n ∈ N, which

follows from strong approximation for Sp2d,
9 we finally get:

Proposition 1.10. Let n be a positive integer. The map Y 7→ (AY , λY , ηY ) in-
duces a bijection from Γ(n)\h+d to the set of isomorphism classes of triples (A, λ, η),
where (A, λ) is a principally polarized complex abelian variety of dimension d and

η : A[n]
∼→ (Z/nZ)2d is an isomorphism of groups such that (η, ζn) is a level n

structure on (A, λ).

So we have reinterpreted Γ(n)\h+d as the set of C-points of a certain moduli
problem. Considering this moduli problem over more general bases, we have an
“obvious” way to make Γ(n)\h+d into an algebraic variety, which we now review.

1.2.3. The connected Siegel modular variety. Let On = Z[1/n][T ]/(T n − 1). If

S is a scheme over On, we denote by ϕ0 : Z/nZ
S

∼→ µn,S the isomorphism sending

1 to the class of T .

Definition 1.11. LetM′
d,n be the contravariant functor from the category of

On-schemes to the category of sets sending S to the set of isomorphisms classes of
triples (A, λ, η), where (A, λ) is a principally polarized abelian scheme of relative

dimension d over S and η : A[n]
∼→ Z/nZ2d

S
is an isomorphism of group schemes

such that (η, ϕ0) is a level n structure on (A, λ).
An isomorphism from (A, λ, η) to (A′, λ′, η′) is an isomorphism of abelian vari-

eties u : A
∼→ A′ such that λ′ ◦ u = u∨ ◦ λ and η′ = η ◦ (u, u), and, for f : T → S a

morphism of On-schemes, the mapM′
d,n(S)→M′

d,n(T ) is base change along f .

Theorem 1.12 (Mumford, cf. [41]). Suppose that n ≥ 3. Then the functor
M′

d,n is representable by a smooth quasi-projective On-scheme purely of dimension

d(d+ 1)/2 and with connected geometric fibers, which we still denote byM′
d,n and

call the connected Siegel modular variety of level n.

Remark 1.13. If n ∈ {1, 2}, then triples (A, λ, η) as in Definition 1.11 may have
automorphisms, so we should see M′

d,n as a stack. It will then be representable
by a smooth Deligne-Mumford stack over On that is a finite étale quotient of the
schemeM′

d,3n.

We can now strengthen Proposition 1.10 to the following result.

Proposition 1.14. Let n ≥ 3 be an integer. Then the map Y 7→ (AY , λY , ηY )
induces an isomorphism of complex algebraic varieties from Γ(n)\h+d toM′

d,n(C).

Let α be the map of the proposition. To show that α is regular, we use the
fact that the triples (AY , λY , ηY ) are obtained as the fibers of an abelian scheme

9See the papers [99] and [100] of Platonov.
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A → Γ(n)\h+d given together with a polarization λ and a level n structure η.
The abelian scheme A is a locally symmetric space for the non-reductive group
Q2d ⋊ Sp2d, where Sp2d acts on Q2d via its standard representation, and is an
example of a mixed Shimura variety (see for example Pink’s thesis [96] for the
theory of mixed Shimura varieties and their compactifications), and λ and η can
also be given by explicit formulas interpolating those for λY and ηY . Once we have
this fact, the map α corresponds to the Γ(n)\h+d -point ofM′

d,n defined by (A, λ, η),
hence it is a morphism of algebraic varieties.

Let us explain why α−1 is holomorphic (for more details, see the proof of
Proposition 1.1 in Milne’s [88]); by Borel’s uniqueness theorem (see Theorem 1.6),
this will imply that it is an isomorphism of algebraic varieties. We don’t know
anything explicit about the algebraic variety structure onM :=M′

d,n(C), but we
do know that we have a universal abelian scheme f : A →M of relative dimension
d, with a principal polarization λ and a level n structure η. By definition, the
map α−1 sends x ∈ M to the element of Γ(n)\h+d corresponding to the triple
(Ax, λx, ηx), so we need to understand how to construct this. The exponential map
gives a surjective morphism exp : Lie(A/M) → A of abelian groups schemes over
M (where the source is the relative Lie algebra of A → M), whose kernel is the
relative homology of A → M with coefficients in Z. So we get an exact sequence
of abelian sheaves overM:

0→ L := (R1f∗Z)
∨ → Lie(A/M)

exp→ A→ 0

Let x ∈ M. The level structure ηx defines an isomorphism (Z/nZ)2d
∼→ Ax[n],

that is, a basis of Ax[n]; we can see the entries e1, . . . , e2d of this basis as elements

of 1
nLx/Lx ⊂ Lie(Ax/Mx)/Lx ∼→ Ax, and lift them to a basis ẽ1, . . . , ẽ2d of 1

nLx,
which gives an isomorphism Z2d ∼→ Lx, hence an isomorphism R2d ∼→ Lie(Ax/Mx).
Now we go back to the discussion in Subsection 1.2.2 and we see that the element
Yx of h+d whose class is equal to α−1(x) is basically a basis of the Lagrangian

subspace corresponding to the complex structure on R2d coming from the isomor-
phism R2d ∼→ Lie(Ax/Mx) that we just defined. So we need to show that we can
find a neighborhood U of x such that ẽ1, . . . , ẽ2d extend to holomorphic sections
of 1

nL|U → U that define a level n structure on Ay at each point y of U . The

extensions exist because the morphism 1
nL →M is étale, and the condition on the

extensions is open because it only involves finite groupe schemes overM.
In particular, we showed that Γ(n)\h+d is the set of complex points of an alge-

braic variety defined over the number field Q(ζn). Unfortunately, this number field
depends on the level n. The issue is that we need a fixed primitive nth root of 1
in order to define the moduli problemM′

d,n, so we need to be over a basis where
such a primitive nth root exists. To fix this problem, we will allow the primitive
nth root of 1 to vary.

1.2.4. The Siegel modular variety.

Definition 1.15. Let n be a positive integer. The Siegel modular varietyMd,n

is the contravariant functor from the category of Z[1/n]-schemes to the category
of sets sending a scheme S to the set of isomorphism classes of triples (A, λ, η, ϕ),
where (A, λ) is a principally polarized abelian scheme of relative dimension d over
S and (η, ϕ) is a level n structure on (A, λ).
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An isomorphism from (A, λ, η, ϕ) to (A′, λ′, η′, ϕ′) is an isomorphism of abelian

varieties u : A
∼→ A′ such that λ′ ◦ u = u∨ ◦ λ and η′ = η ◦ (u, u).

The group GSp2d(Ẑ) acts onMd,n: if g ∈ GSp2d(Ẑ) and (A, λ, η, ϕ) ∈ Md,n(S),
then

g · (A, λ, η, ϕ) = (A, λ, g ◦ η, c(g)−1ϕ).

The kernel of this action is the group K(n) = Ker(GSp2d(Ẑ)→ GSp2d(Z/nZ)). If
n divides m, then we have a morphismMd,m →Md,n that forgets part of the level
m structure; this morphism is representable finite étale, and in fact it is a torsor
under the finite group K(n)/K(m).

We have the following variant of Theorem 1.12.

Theorem 1.16 (Mumford, cf. [41]). Suppose that n ≥ 3. Then the functor
Md,n is representable by a smooth quasi-projective Z[1/n]-scheme purely of dimen-
sion d(d+ 1)/2, which we still denote byMd,n and call the Siegel modular variety
of level n.

Remark 1.17. The schemeMd,n is the Shimura variety for GSp2d with level

K(n) = Ker(GSp2d(Ẑ) → GSp2d(Z/nZ)), or rather its integral model. If K is an
open compact subgroup of GSp2d(Af ) that is small enough, 10 then we can also
define the Shimura varietyMd,K with level K, and even its integral model: choose
n such that K(n) ⊂ K. Then K(n) is a normal subgroup of K, so the group
K/K(n) ⊂ GSp2d(Z/nZ) acts on Md,n, and we setMd,K =Md,n/(K/K(n)). It
is easy to check thatMd,K,Q does not depend on the choice of n; however, with our
definition, the localization of Z over whichMd,K is defined depends on the choice
of n, so this is not ideal.

In fact, for K an open compact subgroup of GSp2d(Af ), we have a direct
definition of a level K structure on a principally polarized abelian scheme (see
Section 5 of Kottwitz’s paper [64]). For K small enough, the scheme Md,K,Q is
the moduli space of principally polarized abelian schemes with level K structure.
In general, this moduli space is representable by a Deligne-Mumford stack. We can
also define the moduli space over a localization of Z, but the primes that we invert
depend on K; see the discussion in Subsubsection 2.1.4.

Let us explain the relationship between Md,n and M′
d,n. We define a map

s : (Z/nZ)× → GSp2d(Z/nZ) by s(α) =

(
0 αId
Id 0

)
; note that s is a section of the

multiplier c : GSp2d(Z/nZ)→ (Z/nZ)×, and that it is not a morphism of groups.

Proposition 1.18. The morphismM′
d,n×(Z/nZ)× →Md,n,On

sending ((A, λ, η), α)

to (A, λ, s(α) ◦ η, ϕ0 ◦ α) (where we see α as an automorphism of Z/nZ
S
for any

scheme S) is an isomorphism.

As a corollary, we get a description of the complex points of Md,n. Let hd =

h+d ∪(−h+d ) be the set of symmetric matrices Y ∈Md(C) such that Im(Y ) is positive
definite or negative definite. The action of Sp2d(R) on hd extends to a transitive
action of GSp2d(R), given by the same formula. The stabilizer of iId ∈ hd in
GSp2d(R) is R>0K∞, where K∞ is as before the stabilizer of iId in Sp2d(R), so
hd ≃ GSp2d(R)/R>0K∞ as real analytic manifolds.

10For example, K ⊂ K(N) with N ≥ 3.
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Corollary 1.19. We have an isomorphism of complex algebraic varieties

Md,n(C) ≃ GSp2d(Q)\(hd ×GSp2d(Af )/K(n)

extending the isomorphism of Proposition 1.14, where K(n) = Ker(GSp2d(Ẑ) →
GSp2d(Z/nZ)) and GSp2g(Q) acts diagonally on hd ×GSp2d(Af ).

This follows from the fact that

GSp2d(Q)\(hd ×GSp2d(Af )/K(n) ≃ GSp2d(Q)+\(h+d ×GSp2d(Af )/K(n)),

where GSp2d(Q)+ = {g ∈ GSp2d(Q) | c(g) > 0}, and from strong approximation
for Sp2d,

11 which implies that c induces a bijection

GSp2d(Q)+\GSp2d(Af )/K(n)
∼→ Q>0\A×

f /c(K(n)) ≃ Ẑ×/(1 + nẐ) ≃ (Z/nZ)×.

For every i ∈ (Z/nZ)×, we choose xi ∈ GSp2d(Af ) lifting i and we set

Γ(n)i = GSp2d(Q)+ ∩ xiK(n)x−1
i = Sp2d(Q) ∩ xiK(n)x−1

i .

Then the Γ(n)i are arithmetic subgroups of Sp2d(Q), and we have

GSp2d(Q)\(hd ×GSp2d(Af )/K(n) ≃
∐

i∈(Z/nZ)×

Γ(n)i\h+d

as complex manifolds.

In fact, for i ∈ (Z/nZ)×, we can take xi =

(
0 aiId
Id 0

)
with ai ∈ Ẑ× lifting i.

In particular, we have xi ∈ GSp2d(Ẑ); as K(n) is a normal subgroup of GSp2d(Ẑ),
we get xiK(n)x−1

i = K(n), hence Γ(n)i = Γ(n), and finally

GSp2d(Q)\(hd ×GSp2d(Af )/K(n) ≃
∐

i∈(Z/nZ)×

Γ(n)\h+d .

Remark 1.20. If K is a small enough open compact subgroup of GSp2d(Af ),
then we get an isomorphism of complex manifolds:

Md,K(C) ≃ GSp2d(Q)\(hd ×GSp2d(Af )/K).

1.2.5. Hecke correspondences. We can also descend the Hecke correspondences
of Subsection 1.1 to morphisms of schemes.

We proceed as in Section 3 of Laumon’s paper [74]. Let g ∈ GSp2d(Af ), and
let K,K ′ be small enough open compact subgroups of GSp2d(Af ) such that K ′ ⊂
K ∩ gKg−1. We want to define finite étale morphisms T1, Tg : Md,K′ → Md,K ,
and the Hecke correspondence associated to (g,K,K ′) is the couple (T1, Tg).

Choose n ≥ 3 such that K(n) ⊂ K ′; then Md,K′ = Md,n/(K
′/K(n)) and

Md,K = Md,n/(K/K(n)). The morphism T1 should just forget part of the level
structure: as K ′/K(n) ⊂ K/K(n), we have an obvious choice for T1 : Md,K′ →
Md,K : we take the morphism induced by the identity ofMd,n.

To define Tg, we first consider the following special case: if g ∈ M2d(Ẑ) ∩
GSp2d(Af ), let x = (A, λ, η, ϕ) ∈ Md,n(S). Let u be the endomorphism of
(Z/nZ)2d with matrix g. Then Tg sends the class of x inMd,K′(S) to the class of
(A′, λ′, η′, ϕ) ∈ Md,n(S), where A

′ is the quotient of A by the finite flat subgroup
scheme η−1(Keru) of A[n] and λ′, η′ are the morphisms deduced from λ, g ◦ η.

11See the papers [99] and [100] of Platonov.
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Note that, if g = a · I2d with a ∈ Ẑ ∩ A×
f and K ′ = K, then the morphism

Tg :Md,K →Md,K is an isomorphism.

Finally, for a general g ∈ GSp2d(Af ), we write g = g−1
0 g1 with g0 ∈ (Ẑ∩A×

f )I2d

and g1 ∈M2d(Ẑ) ∩GSp2d(Af ), and we set Tg = T−1
g0 ◦ Tg1 .

Remark 1.21. If we use instead the general definition of a level K structure
from Section 5 of [64], then it becomes much easier to define the Hecke correspon-
dences on the moduli problems; see Section 6 of loc. cit.

Remark 1.22. We have two ways to think of Md,n(C): as an adelic double

quotient or as finite disjoint union of spaces Γ(n)\h+d , which are locally symmetric
spaces associated to the semi-simple group Sp2d. The first description is more
convenient to see the action of adelic Hecke operators, and the second description
is a bit more concrete and has simpler combinatorics. Note also that the complex
manifold Γ(n)\h+d is isomorphic to the set of C-points of the algebraic varietyM′

d,n,

but this algebraic variety is defined over the field Q[T ]/(T n− 1), which depends on
n. On the other hand, the adelic double quotient GSp2d(Q)\(hd×GSp2d(Af )/K(n)
is isomorphic to the set of C-points of the algebraic varietyMd,n, which is defined
overQ (and even Z[1/n]). So if we want to consider Shimura varieties as a projective
system of algebraic varieties over a number field, then it makes sense to use the
adelic double quotients, because they are all defined over the same field.

1.2.6. Background on abelian schemes. Let S be a scheme. We denote by Sch/S
the category of S-schemes.

Definition 1.23. An abelian scheme over S is an S-group schemeA→ S which
is smooth and proper with geometrically connected fibers. If S is the spectrum of
a field k, an abelian scheme over S is also called an abelian variety over k.

A morphism of abelian schemes over S is a morphism of S-group schemes
between abelian schemes over S.

Proposition 1.24. Let A be an abelian scheme over S. Then the S-group
scheme A→ S is commutative.

Definition 1.25. Let A be an abelian scheme over S, and let e : S → A be its
zero section. We consider the following two functors from (Sch/S)op to the category
of sets:

(a) The functor PicA/S,e sending an S-scheme T → S to the set of isomor-
phism classes of couples (L, ϕ), where L is an invertible sheaf on A×S T
and ϕ : OT ∼→ e∗TL is an isomorphism, with eT = e ×S T : T → A×S T .
An isomorphism from (L, ϕ) to (L′, ϕ′) is an isomorphism of OT -modules

α : L ∼→ L′ such that (e∗Tα) ◦ ϕ = ϕ′;
(b) The subfunctor Pic0A/S,e of PicA/S,e sending an S-scheme T → S to the

set of isomorphism classes of couples (L, ϕ) as in (a) such that, for every
point t of T , every smooth projective curve over the residue field κ(t) of
t and every morphism of κ(t)-schemes f : C → A ×S t, the line bundle
f∗(L|A×St) is of degree 0 on C.

Remark 1.26. (1) The functor PicA/S,e can be made into a functor
into the category of abelian groups: if T is an S-scheme and (L, ϕ),
(L′, ϕ′) represent elements of PicA/S,e(T ), their product is represented
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by (L ⊗OT
L′, ϕ⊗ ϕ′), where ϕ⊗ ϕ′ is the isomorphism

OT OT ⊗OT
OT ∼

ϕ⊗ϕ′

// (e∗TL)⊗OT
(e∗TL′) e∗T (L ⊗OT

L′).

Moreover, for every S-scheme T , the set Pic0A/S,e(T ) is a subgroup of

PicA/S,e(T ).
(2) If X → S is a scheme over S, then the relative Picard functor PicX/S on

Sch/S is the fppf sheafification of the functor T 7→ Pic(X ×S T ), where,
for Y a scheme, we denote by Pic(Y ) the set of isomorphism classes
of line bundles on Y (that is an abelian group for the tensor product);
see [114, Situation 0D25]. We can also define a subfonctor Pic0X/S of

PicX/S as in Definition 1.25. By [114, Lemma 0D28], if A is an abelian
scheme over S, then there is an isomorphism of functors in abelian groups
PicA/S ≃ PicA/S,e, inducing an isomorphism Pic0A/s ≃ Pic0A/S,e.

(3) We can upgrade A 7→ PicA/S,e and A 7→ Pic0A/S,e to contravariant func-
tors in A: if f : A → B is a morphism of abelian schemes over S, then
it induces a natural transformation f∗ : PicB/S,e → PicA/S,e sending

(L, ϕ) to (f∗(L), f∗(ϕ)), and f∗ sends Pic0B/S,e to Pic0A/S,e.

Theorem 1.27. Let A be an abelian scheme over S. Then Pic0A/S,e is repre-
sentable by an abelian scheme over S.

Proof. We know that Pic0A/S,e is representable by an algebraic space over S

by a result of M. Artin (see [10] or [114, Proposition 0D2C]). We can check on the
moduli problem that this algebraic space is proper and smooth, and its fibers over
points of S are abelian varieties by the classical theory of the dual abelian variety
(see sections II.8 and III.13 of Mumford’s book [92]). It remains to prove that the
algebraic space representing Pic0A/S,e is a scheme; this is due to Raynaud, and a

proof is given in Theorem 1.9 of [41].
�

Definition 1.28. Let A be an abelian scheme over S. The abelian scheme over
S representing Pic0A/S,e is called the dual abelian scheme of A and denoted by A∨.

In particular, we get a couple (PA, ϕA) representing the element of Pic0A/S,e(A
∨)

corresponding to idA∨ , with PA a line bundle on A×S A∨, called the Poincaré line
bundle.

If f : A→ B is a morphism of abelian schemes over S, we denote by f∨ : B∨ →
A∨ the morphism corresponding to the natural transformation f∗ : Pic0B/S,e →
Pic0A/S,e of Remark 1.26.

Remark 1.29. Let e : S → A∨ be the unit section. Then the pullback of PA
by A×S e : A = A×S S → A×S A∨ is the line bundle on A corresponding to the
element e of A∨(S) = Pic0A/S,e(S); in other words, it is isomorphic to the trivial

line bundle OA. So PA defines an element of Pic0A∨/S,e(A), that is, a morphism

of S-schemes A→ A∨∨, called the biduality morphism. The biduality theorem says
that the biduality morphism is an isomorphism. For S the spectrum of a field, this
is proved in Section III.13 of [92], and the general case reduces to this by looking
at the fibers over points of S.

https://stacks.math.columbia.edu/tag/0D25
https://stacks.math.columbia.edu/tag/0D28
https://stacks.math.columbia.edu/tag/0D2C
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Let A be an abelian scheme over S and let L be a line bundle on A. We
denote by µ, p1, p2, ε : A ×S A → A the addition morphism, the first projection,
the second projection and the zero morphism respectively. Then the line bundle
(µ∗L)⊗(p∗1L⊗−1)⊗(p∗2L⊗−1)⊗(ε∗L) on A×SA is trivial when restricted to S×SA
via the zero section of A, hence it defines an element of Pic

0
A/S,e(A), corresponding

to a morphism of S-schemes λ(L) : A → A∨, which is a morphism of abelian
varieties by the theorem of the cube (see for example Section III.10 of [92]).

Definition 1.30. Let A be an abelian scheme over S. A polarization on A is
an isogeny λ : A → A∨ (i.e. a finite faithfully flat morphism of abelian schemes)
such that, for every algebraically closed field k and every morphism Spec k → S,
the morphism λ×S Spec k : A×S Spec k → A∨×S Spec k = (A×S Spec k)∨ is of the
form λ(L), for L an ample line bundle on A×S Spec k. We say that a polarization
is principal if it is an isomorphism.

A principally polarized abelian scheme over S is a pair (A, λ), where A is an
abelian scheme over S and λ is a principal polarization on A.

Remark 1.31. Let λ be a polarization on A, and let n be a positive integer.
Then, composing λ : A[n] → A∨[n] with the canonical Cartier pairing A[n] ×
A∨[n] → µn,S ,

12 we get a pairing A[n] × A[n] → µn,S , called the Weil pairing
associated to λ. If λ is principal. this is a perfect pairing.

1.3. Shimura varieties over C. Remember the upshot of Subsection 1.2: if
we want algebraic varieties that are all defined over the same number field, and
Hecke correspondences that are also defined on this number field, it is better to
work with adelic double quotients for a reductive group such as GSp2d rather than
with locally symmetric spaces for a semi-simple group such as Sp2d. This (and
Theorem 1.3) motivates the definition of Shimura data, due to Deligne in [35].

1.3.1. The Serre torus. Let S be C× seen as an algebraic group over R; this is
called the Serre torus. In other words, the group S is the Weil restriction of scalars
from C to R of GL1, so that S(R) = (R ⊗R C)× for every R-algebra R. We denote
by w the injective morphism GL1,R → S corresponding to the inclusion R× ⊂ C×.

We have S(C) = (C⊗RC)×
∼→ C××C×, where the isomorphism sends a⊗1+b⊗i

to (a + ib, a − ib). So the abelian group Hom(SC,GL1,C) of characters of S is
free of rank 2 and generated by the characters z and z corresponding to the two
projections of C××C× on C×. We denote by r : GL1,C → SC the injective morphism
corresponding to the injection of the first factor in C× × C×.

If V is a real vector space and ρ : S→ GL(V ) is a morphism of algebraic groups
(i.e. a representation of S on V ), then we have VC := V ⊗RC =

⊕
p,q∈Z V

p,q, where

V p,q is the subspace of VC on which SC acts by the character z−pz−q; moreover, as
ρ is defined over R, we have V p,q = V q,p for all p, q ∈ Z. Let m ∈ Z. We say that
ρ is of weight m if ρ ◦ w : GL1 → GL(V ) is equal to x 7→ x−midV .

Remark 1.32. If ρ : S → GL(V ) is of weight m, we have V p,q = 0 unless
p + q = m, so the decomposition VC =

⊕
p,q V

p,q is a pure Hodge structure of
weight m on V . In fact, representations of weight m of S on V are in bijection with
pure Hodge structures of weight m on V .

12See page 183 of Mumford’s book [92] for the case of abelian varieties over a field. For the
case of general abelian schemes, see the beginning of Section 1 of Oda’s paper [95], applied to the
isogeny given by multiplication by n.
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1.3.2. Shimura data.

Definition 1.33. A Shimura datum is a couple (G, h), where G is a connected
reductive algebraic group over Q and h : S → GR is a morphism of real algebraic
groups such that:

(a) The image of h ◦ w : GL1,R → GR is central;
(b) If g = Lie(GR) and gC =

⊕
p,q∈Z g

p,q is the decomposition induced by

the representation Ad ◦ h : S → GL(g), then we have gp,q = 0 unless
(p, q) ∈ {(−1, 1), (0, 0), (1,−1)};

(c) Conjugation by h(i) induces a Cartan involution of Gder(R) (see Theo-
rem 1.3);

(d) Gad has no normal subgroup (defined over Q) whose group of R-points
is compact. 13

Note that condition (b) implies condition (a), because it implies that the image
of h ◦ w centralizes Lie(GR).

Let (G, h) be a Shimura datum. We denote by K∞ the centralizer of h in
G(R) and by X the set of G(R)-conjugates of h. Then K∞ contains the center of
G(R), and K∞ ∩Gder(R)0 is equal to the centralizer of h(i) in Gder(R)0, hence is a
maximal compact subgroup of Gder(R)0 by condition (c). We have X ≃ G(R)/K∞,
and Theorem 1.3 implies that there is a G(R)-invariant complex structure on X
such that the connected components of X are Hermitian symmetric domains.

Remark 1.34. There are many variants in the definition of a Shimura datum.
The definition we gave here is equivalent to Definition 5.5 of Milne’s notes [87], but
it is possible to impose additional conditions to make some statements simpler; see
for example the discussion of additional axioms on page 63 of [87]. On the other
hand, some authors use a slightly more general definition, where X is allowed to
be finite over the set of morphisms S → GR. This is for example the case of Pink
in [96] (see Definition 2.1) and [97] (see (3.1)); in the first of these references, Pink
also generalizes the definition to include groups that are not necessarily reductive.

Example 1.35. Take G = GSp2d. Up to conjugation, there exists a unique
morphism h : S → GSp2d satisfying conditions (a)-(c) of Definition 1.33 and such
that (h ◦ w)(x) = xI2d for every x ∈ R×. An element of that class is given by

h(a+ ib) =

(
aId −bId
bId aId

)
.

For this h, we have K∞ = GSp2d(R) ∩ GO(2d), and we can check that the map

GU(d) → K∞ sending X + iY ∈ GU(d) (with X,Y ∈ Md(R)) to

(
X Y
−Y X

)
is

an isomorphism of Lie groups. So K∞ = R>0K
′
∞, where K ′

∞ = Sp2d(R) ∩ O(d) is
the maximal compact subgroup of Sp2d(R) that was called K∞ in Subsections 1.1
and 1.2. This implies that X ≃ hd.

The couple (GSp2d, h) is called a Siegel Shimura datum.

Let K be an open compact subgroup of G(Af ). We set

MK(G, h)(C) = G(Q)\X ×G(Af )/K,

13Note that Gad(R) could still have compact normal algebraic subgroups, as long as they are
not defined over Q.
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where the group K acts by right translations on the factor G(Af ), and the group
G(Q) acts by left translations on both factors simultaneously. This is the Shimura
variety at level K associated to the Shimura datum (G, h).

As in Subsection 1.1, if (xi)i∈I is a system of representatives of the finite quo-
tient G(Q)\G(Af )/K, and if Γi = G(Q) ∩ xiKx−1

i for every i ∈ I, then the Γi are
arithmetic subgroups of G(Q), and we have

MK(G, h)(C) =
∐

i∈I
Γi\X.

Hence it follows from Theorem 1.6 that MK(G, h)(C) is the set of complex points
of a quasi-projective algebraic variety over C, smooth if K is small enough.

Again as in Subsection 1.1, we have Hecke correspondences between the vari-
eties MK(G, h)(C), which are finite maps, hence morphisms of algebraic varieties.
This defines an action of G(Af ) on the projective system (MK(G, h)(C))K⊂G(Af ),
or on its limit

M(G, h)(C) = lim←−
K

MK(G, h)(C).

Under the additional assumption that the R-split andQ-split maximal subtori of the
center of G are equal (which is sometimes required in the definition of a Shimura
datum), the limit is equal to G(Q)\X × G(Af ) (see Proposition 4.19 of [87]).
Moreover, for every open compact subgroup K of G(Af ), we have MK(G, h)(C) =
M(G, h)(C)/K.

1.3.3. Morphisms of Shimura varieties. Let (G1, h1), (G2, h2) be Shimura data,
and let u : G1 → G2 be a morphism of algebraic groups such that u ◦h1 and h2 are
conjugated under G2(R); we say that u is a morphism of Shimura data. Then u
induces a morphism of complex manifolds X1 → X2. Hence, for all K1 ⊂ G1(Af ),
K2 ⊂ G2(Af ) open compact subgroups such that u(K1) ⊂ K2, we get a morphism
of quasi-projective varieties u(K1,K2) : MK1(G1,K1)(C) → MK2(G2, h2)(C). We
can also think of the collection of all u(K1,K2) as a morphism of C-schemes u :
M(G1, h1)(C)→M(G2, h2)(C).

Proposition 1.36 (Deligne, see Proposition 1.15 of [35]). If G1 is an algebraic
subgroup of G2 and u is the inclusion, then, for every open compact subgroup K1

of G1(Af ), there exists an open compact subgroup K2 ⊃ K1 of G2(Af ) such that
u(K1,K2) :MK1(G1,K1)(C)→MK2(G2, h2)(C) is a closed immersion.

1.3.4. Connected components. For (G, h) equal to the Shimura datum of Exam-

ple 1.35 andK = Ker(GSp2d(Ẑ)→ GSp2d(Z/nZ)), we have seen that the multiplier
c : GSp2d → GL1 induces a bijection

π0(MK(G, h)(C))
∼→ Q>0\A×

f /c(K) = Q×\A×/c(K∞K).

In fact, it follows from real approximation and the Hasse principle that this
works for many Shimura varieties:

Theorem 1.37 (Deligne, see [35] 2.7). Let ν : G → T := G/Gder be the
quotient morphism, and suppose that Gder is simply connected. Then, for every
open compact subgroup K of G(Af ), the map ν induces a bijection

π0(MK(G, h)(C))
∼→ T (Q)\T (A)/ν(K∞ ×K).
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1.4. Canonical models. In the situation of Example 1.35, we have seen that
the algebraic varieties MK(G, h)(C) and all the Hecke correspondences are defined
over Q. We would like to generalize this kind of result to other Shimura varieties.

1.4.1. Model of a Shimura variety. First we need to say what we mean by a
model.

Definition 1.38. Let (G, h) be a Shimura datum, and F be a subfield of C.
A model of the projective system (MK(G, h)(C))K over F is the data:

• for every open compact subgroup K of G(Af ), of a quasi-projective va-

riety MK over F and an isomorphism ιK :MK ⊗F C
∼→MK(G, h)(C);

• for every g ∈ G(Af ) and all open compact subgroupsK,K ′ of G(Af ) such
that gK ′g−1 ⊂ K, of a morphism of F -varieties Tg,K,K′ :MK′ →MK ,

such that:

(i) For all g,K,K ′ as above, the morphism ιK◦Tg,K,K′,C◦ι−1
K′ :MK′(G, h)(C)→

MK(G, h)(C) sends the class of (x, h) in MK′(G, h)(C) to the class of
(x, hg) in MK(G, h)(C);

(ii) If K is an open compact subgroup of G(Af ) and g ∈ K, then Tg,K,K =
idMK

;
(iii) If K,K ′,K ′′ are open compact subgroups of G(Af ) and g, h ∈ G(Af ) are

such that gK ′g−1 ⊂ K and hK ′′h−1 ⊂ K ′, then Tg,K,K′ ◦ Th,K′,K′′ =
Tgh,K,K′′ ;

(iv) If K,K ′ are open compact subgroups of G(Af ) such that K ′ is a normal
subgroup ofK, then the morphisms Tg,K′,K′ for g ∈ K define an action of
K/K ′ onMK′ (this follows from (ii) and (iii)), and T1,K′,K :MK′ →MK

induces an isomorphism MK′/(K/K ′)→MK .

Remark 1.39. We phrased Definition 1.38 in this way to stay close to the def-
inition of a canonical model given by Deligne in Définition 3.1 of [35]. In Deligne’s
words, a family of E-schemes (MK) with a family of morphisms (Tg,K,K′) satisfying
conditions (ii), (iii) and (iv) is a scheme over E with a continuous action of G(Af ),
and the family of isomorphisms (ιK) satisfying condition (i) is an isomorphism
of (MK) ⊗F C with M(G, h)(C) compatible with the G(Af )-actions. However, we
did not not phrase the conditions in the most optimal way possible; for example,
condition (i) implies conditions (ii) and (iii).

If we have a model (MK)K of (MK(G, h)(C))K over F , we writeM = lim←−KMK

(where the transition morphisms are given by the T1,K′,K). This is an F -scheme

with an action of G(Af ), and we have a G(Af )-equivariant isomorphismM⊗F C ∼→
M(G, h)(C).

In particular we get an action of Gal(F/F ) on π0(M(G, h)(C))
∼→ π0(M⊗F F ),

which must commute with the action of G(Af ). Under the hypothesis of Theo-

rem 1.37, we have π0(M ⊗F F )
∼→ π0(T (A)/T (Q))/π0(K∞) with T = G/Gder,

and G(Af ) acts transitively on this set of connected components (Proposition 2.2

of [35]). So every element of Gal(F/F ) acts by translation by an element of
π0(T (A)/T (Q))/π0(K∞), and the action of Gal(F/F ) comes from a morphism of
groups Gal(F/F )→ π0(T (A)/T (Q))/π0(K∞), that necessarily factors through the
maximal abelian quotient Gal(F/F )ab.
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Suppose that F is a number field. Then global class field theory 14 gives an
isomorphism

Gal(F/F )ab
∼→ π0(F

×\A×
F )

where AF is the ring of adeles of F , so the action of Gal(F/F ) on π0(M ⊗F F )
comes from a morphism of groups

λM : π0(F
×\A×

F )→ π0(T (Q)\T (A))/π0(K∞),

called the reciprocity law of the model.
1.4.2. The case of tori. We consider the case where G = T is a torus. Let

h : S → TR be any morphism of real algebraic groups. Then h trivially satisfies
the conditions of Definition 1.33, so we get a Shimura datum (T, h), and X =
T (R)/CentT (R)(h) is a singleton. For every open compact subgroup K of T (Af),

MK(T, h)(C) = T (Q)\T (Af)/K
is a finite group. Let T (Q) be the closure of T (Q) in T (Af ); then

M(T, h)(C) = T (Q)\T (Af),
which is a profinite group isomorphic to π0(T (Q)\T (Af)) by the obvious map.
Giving a model of the Shimura variety of (T, h) over a subfield F of C is the same
as giving an action of Gal(F/F ) over π0(T (Q)\T (Af)) (commuting with the action

of T (Af) by translations), i.e. a morphism of groups Gal(F/F )→ π0(T (Q)\T (Af)).
If F is a number field, this is equivalent to giving a morphism of groups

λM : π0(F
×\A×

F )→ π0(T (Q)\T (A)).
It is natural to construct such a morphism from a morphism of algebraic groups

F× → T , where F× is seen as an algebraic group over Q (so that, for example,
we have F×(A) = (A ⊗Q F )

× = A×
F ). We already have a morphism h : S → TR,

which gives a morphism of complex algebraic groups hC : SC → TC. Remember
that SC ≃ GL1,C ×GL1,C, and that we denoted by r : GL1,C → SC the embedding
of the first factor (see page 15). We get a morphism hC◦r : GL1,C → TC. As T is an
algebraic group over Q, this morphism is defined over a finite extension of Q in C,
and we call this extension F . We get a morphism of F -algebraic groups GL1,F →
TF , hence a morphism of Q-algebraic groups F× → ResF/Q TF , where ResF/Q TF
is the algebraic group that sends a Q-algebra R to T (R ⊗Q F ). Composing this
with the norm NF/Q : ResF/Q TF → T , we finally get a morphism r(h) : F× → T ,

called the reciprocity morphism for (T, h). We take λM to be induced by r(h). 15

So if (G, h) is a Shimura datum with G a torus, we get a canonically defined
model of the associated Shimura variety over the field of definition of hC ◦ r.

1.4.3. The reflex field. Let (G, h) be a Shimura datum satisfying the hypothesis
of Theorem 1.37, and let ν : G → T := G/Gder be the quotient morphism. For
every open compact subgroup K of G(Af ), we have a bijection, induced by ν:

π0(MK(G, h)(C))
∼→ T (Q)\T (A)/ν(K∞ ×K).

Suppose that we have a model (MK)K of the Shimura variety of (G, h) over a
number field F ⊂ C. We would expect the Shimura variety of (T, ν ◦h) to also have
a model over F , and the isomorphism above to be Gal(F/F )-equivariant, where

14Normalized so that local uniformizers correspond to geometric Frobenius elements.
15This is the opposite of Deligne’s convention in [35] (3.9.1); I have chosen to follow Pink’s

convention in [96] Chapter 11.
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the action on the right hand side is given by the morphism r(ν ◦ h) : F× → T
constructed in 1.4.2.

Remember that r : GL1,C → SC ≃ GL1,C ×GL1,C is the embedding of the first
factor (see page 15). By the previous paragraph, we would expect F to contain the
field of definition of νC ◦ hC ◦ r. In fact it would make sense to take F to be the
field of definition of hC ◦ r : GL1,C → GC, except that h is only significant up to
conjugation. This motivates the following definition.

Definition 1.40. Let (G, h) be a Shimura datum. The reflex field F (G, h) of
(G, h) is the field of definition of the conjugacy class of hC ◦ r : GL1,C → GC.

Let F = F (G, h). Then F is a finite extension of Q in C, and, for every
morphism ρ of G into a commutative algebraic group, the morphism ρC ◦ hC ◦ r is
defined over F . Note that hC ◦ r itself is not necessarily defined over F .

Example 1.41. Let E = Q[
√
−d] be an imaginary quadratic extension of Q,

let p ≥ q ≥ 1 be integers, and set n = p + q. Let J =

(
Ip 0
0 −Iq

)
∈ GLn(Z). For

every commutative ring R, we denote by x 7→ x the involution of R⊗ZOE induced
by the nontrivial element of Gal(E/Q), and, for every Y ∈ Mn(R ⊗Q E), we write
Y ∗ = tY .

The general unitary group GU(p, q) is the Z-group scheme defined by

GU(p, q)(R) = {g ∈ GLn(R⊗Z OE) | ∃c(g) ∈ R×, g∗Jg = c(g)J}
for every commutative ring R. Then GU(p, q)Q is a connected reductive algebraic
group, and we have a morphism of group schemes c : GU(p, q)→ GL1, whose kernel
is the unitary group U(p, q).

Let h : S→ GU(p, q)R be the morphism defined by

h(z) =

(
zIp 0
0 zIq

)
∈ GU(p, q)(R).

Then (G, h) is a Shimura datum, and K∞ is the set of matrices

(
g1 0
0 g2

)
such that

g1 ∈ GLp(C), g2 ∈ GLq(C) and there exists c ∈ R with g∗1g1 = cIp and g∗2g2 = cIq .

We use the isomorphism C ⊗Q E
∼→ C × C sending x ⊗ 1 + y ⊗

√
−d to (x +√

−dy, x−
√
−dy) to identify GU(p, q)(C) to a subgroup of GLn(C)×GLn(C); note

that the involution g 7→ g of GU(p, q)(C) corresponds to switching the two factors.

With this convention, we have hC ◦ r(z) =

((
zIp 0
0 Iq

)
,

(
Ip 0
0 zIq

))
for every

z ∈ C×.
It is easy to see that hC ◦ r is defined over E but not over Q. On the other

hand, the reflex field of (G, h) is E if p > q and Q if p = q.

Example 1.42. Let (G, h) be the Shimura datum of Example 1.35 (so that
G = GSp2d). For every z ∈ C×, we have

hC ◦ r(z) =
(

1
2 (z + 1)Id − 1

2i(z − 1)Id
1
2i (z − 1)Id

1
2 (z + 1)Id

)
= P

(
zId 0
0 Id

)
P−1,

where

P =

(
1√
2
Id

i√
2
Id

i√
2
Id

1√
2
Id

)
.
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So the reflex field of (G, h) is Q.

1.4.4. Canonical models. We are now ready to define canonical models.

Definition 1.43. Let (G, h) be a Shimura datum and let F = F (G, h). A
canonical model of M(G, h)(C) is a model (MK)K over F such that, for every
torus u : H ⊂ G and every h′ : S → HR such u ◦ h′ and h are G(R)-conjugated
(i.e. such that u induces a morphism of Shimura data from (H,h′) to (G, h)), the
morphism

u :M(H,h′)(C)→M(G, h)(C)

is defined over the compositum F · F (H,h′) ⊂ C, where we use as model of
M(H,h′)(C) over F (H,h′) the one defined in 1.4.2.

Examples 1.44. (1) If G is a torus, then the model of 1.4.2 is a canonical
model of M(G, h)(C).

(2) If (G, h) is the Shimura datum of Example 1.35 (so that G = GSp2d),
then the schemes (Md,K,Q)K⊂GSp2d(Af ) of 1.2.4 form a canonical model
of M(G, h)(C). This is not obvious but follows from the main theorem
of complex multiplication; see Section 4 of [35].

At the time of Deligne’s paper [35], it was not known whether all Shimura
varieties have canonical models (spoiler: this is now known to be true, see Theo-
rem 2.30), but it was possible to prove their uniqueness. If u : (H,h′) → (G, h)
is a morphism of Shimura data as in Definition 1.43 (so that H is a subtorus of
G), the points of the image of M(H,h′)(C) in M(G, h)(C) are called special points.
The fact that canonical models are unique if they exist relies on the following two
points:

(i) The set of all G(Af )-translates of special points are dense in M(G, h)(C)
(see Proposition 5.2 of [35]; in fact, we just need to take G(Af )-translates
of one special point);

(ii) For every finite extension F ′ ⊂ C of F (G, h), there exists u : (H,h′) →
(G, h) as above such that F (H,h′) and F ′ are linearly disjoint over
F (G, h) (Théorème 5.1 of [35]).

From this, we can deduce:

Theorem 1.45 (Corollaire 5.4 of [35]). Let u : (G1, h1) → (G2, h2) be a mor-
phism of Shimura data, and suppose that the Shimura varieties of (G1, h1) and
(G2, h2) have canonical models. Then the morphismM(G1, h1)(C)→M(G2, h2)(C)
of Shimura varieties corresponding to u is defined over any common extension F
of F (G1, h1) and F (G2, h2) in C.

Corollary 1.46. Let (G, h) be a Shimura datum. Then a canonical model of
M(G, h)(C) is unique up to unique isomorphism if it exists.

Corollary 1.47. Let (G, h) be a Shimura datum satisfying the hypothesis of
Theorem 1.37, let ν : G → T := G/Gder be the quotient morphism, and let F =
F (G, h). Then the action of Gal(F/F ) on π0(M(G, h)(C)) ≃ π0(T (Q)\T (A))/π0(K∞)
is given by the reciprocity morphism for (T, ν ◦ h).

Proof. Apply Theorem 1.45 to ν : (G, h)→ (T, ν ◦ h).
�
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Using the same techniques as for Theorem 1.45, we also get the following very
useful result.

Proposition 1.48 (Corollaire 5.7 of [35]). Let u : (G1, h1) → (G2, h2) be a
morphism of Shimura data such that the underlying morphism of algebraic groups
is a closed immersion and that F (G1, h1) ⊂ F (G2, h2). If M(G2, h2)(C) has a
canonical model, then so does M(G1, h1)(C).

2. Lecture 2: arithmetic Shimura varieties

In lecture 1, we have defined Shimura varieties over C and introduced the
notion of canonical model of a Shimura variety. We also discussed in some detail
the example of the Siegel modular varieties, which have canonical models coming
from their modular interpretation. In this lecture, we first want to present different
types of Shimura varieties, with each type being contained in the next one:

• The Siegel modular variety: it is a moduli space of principally polar-
ized abelian schemes with some level structure;
• PEL type Shimura varieties: they have an interpretation as moduli
spaces of polarized abelian schemes with multiplication by the ring of
integersO of some number field and some level structure (here “P” means
“polarization”, “E” means “endomorphisms” in reference to the action
of O and “L” means “level structure”);
• Hodge type Shimura varieties: they come from Shimura data (G, h)
that have an injective morphism into a Siegel Shimura datum (Exam-
ple 1.35);
• Abelian type Shimura varieties: their Shimura datum is “isogenous”
to a Hodge type Shimura datum (in a way to be made precise later);
• General Shimura varieties: all Shimura varieties.

The further we go down in the list, the less is known about the geometry of the
Shimura variety (and the higher the price for what we know), because many of the
techniques we have rely on the interpretation of the Shimura varieties as moduli
spaces of abelian schemes, and this is only really available for PEL type Shimura
varieties (there is a modular interpretation for Hodge type Shimura varieties, but
it is harder to use).

For example, PEL type Shimura varieties naturally come with an integral model
defined over a localization of the ring of integers of their reflex field, but it took a
lot of effort to construct integral models for Hodge type and abelian type Shimura
varieties, and to formulate their properties (see 2.1.4 and Theorems 2.22 and 2.29);
as far as we know, nothing is known for general Shimura varieties.

We are not claiming that the classification above is the only measure of the
complexity of a Shimura variety, whatever that means. For example, as we will
discuss in lecture 3, if one wants to study the cohomology of Shimura varieties
and their zeta functions, then the simplest case is not the case of Siegel modu-
lar varieties, but rather of compact PEL type Shimura varieties whose group has
no endoscopy and a simply connected derived subgroup; we will introduce some
examples of these, known as Kottwitz’s simple Shimura varieties, in 2.4.

2.1. PEL type Shimura varieties. These Shimura varieties were introduced
by Kottwitz in [64], but we will follow the presentation of Lan for the moduli
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problems (cf. [67] 1.4.1), which is closer to our definition of the Siegel moduli
problem. The equivalence between the two definitions is proved in [67] 1.4.3.

2.1.1. PEL data.

Definition 2.1 (see [68] 5.1 or Definition 1.2.13 of [67]). An (integral) PEL
datum is a quintuple (O, ∗,Λ, 〈·, ·〉, h), where:

(1) O is an order in a finite-dimensional semisimple Q-algebra B (that is, O
is a subring of B that is a free Z-module and spans the Q-vector space
B);

(2) ∗ is a positive involution of O, i.e. an anti-automorphism of rings of order
2 such that, for every x ∈ O \ {0}, we have Tr(B⊗QR)/R(xx

∗) > 0;
(3) Λ is an O-module that is finitely generated and free as a Z-module;
(4) 〈·, ·〉 : Λ×Λ→ Z is a Z-bilinear alternating map such that, for all x, y ∈ Λ

and b ∈ O, we have

〈bx, y〉 = 〈x, b∗y〉;
(5) h : C→ EndB⊗QR(Λ ⊗Z R) is an R-algebra morphism such that:

(a) For z ∈ C and x, y ∈ Λ⊗Z R, we have

〈h(z)(x), y〉 = 〈x, h(z)(y)〉;
(b) The R-bilinear pairing 〈·, h(i)(·)〉, which is symmetric by (a), is also

positive definite.

Let (O, ∗,Λ, 〈·, ·〉, h) be a PEL datum. We define a group scheme G over Z by

G(R) = {g ∈ EndO⊗ZR(Λ⊗Z R) | ∃c(g) ∈ R×, 〈g(·), g(·)〉 = c〈·, ·〉}
for every commutative ring R. We also get a morphism of group schemes c : G→
GL1. The morphism of R-algebras h : C→ EndB⊗QR(Λ⊗Z R) induces a morphism
of R-algebraic groups h : S→ GR.

Proposition 2.2. The couple (G0
Q, h) satisfies conditions (a)-(c) in the defi-

nition of a Shimura datum (Definition 1.33).

Let us explain why this proposition is true. Condition (a) of Definition 1.33
follows from the fact that h : C× → EndB⊗QR(Λ⊗ZR) is a morphism of R-algebras,
and condition (c) of loc. cit. follows from condition (5)(b) of Definition 2.1. We
prove condition (b), on the decomposition of Lie(GC) into eigenspaces for the action
of Ad ◦ hC. Let V = Λ ⊗Z R, a finite-dimensional R-vector space. Then h : C →
EndR(V ) is a morphism of R-algebras, hence defines a structure of C-vector space
on V . In particular, we have V ⊗R C = V1 ⊕ V2, where C acts on V1 (resp. V2) via
multiplication by z 7→ z (resp. z 7→ z). Condition (b) follows from this, because
End(V ) ≃ V ∗ ⊗R V and g := Lie(GR) ⊂ EndR(V ).

We keep the same notation. Then A := V/Λ is a complex torus. We would
like this torus to be an abelian variety, so we need a polarization on it, that is, a
positive definite Hermitian form H on V such that Im(H) takes integer values on
Λ. But we already have an alternating form on Λ, so we know from 1.2.2 how to
proceed: define H by

H(v, w) = 〈h(i)(v), w〉 + i〈v, w〉.
The fact that Im(H) takes integral values on Λ is clear, the pairing H is Hermitian
by condition (5)(a) and positive definite by condition (5)(b). So the torus A is an
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abelian variety, with dual abelian variety A∨ = V/Λ∨, where Λ∨ = {v ∈ V | ∀w ∈
Λ, 〈v, w〉 ∈ Z} is the dual lattice of Λ. The polarization λ : A → A∨ defined by
H is then just the map induced by Λ ⊂ Λ∨. We have a morphism of algebraic

groups S
h→ GR ⊂ GL(V ), and the decomposition V ⊗R C =

⊕
p,q∈Z V

p,q induced

by this morphism (see 1.3.1) is the same as the Hodge structure coming from the
isomorphism V ≃ H1(A,R). Note also that the action of O on L defines a morphism
of rings ι : O → EndC(A) satisfying the Rosati condition, which means that, for
every b ∈ O, we have

λ ◦ i(b∗) = i(b)∨ ◦ λ.
Remark 2.3 ([64], sections 5 and 7). Let (O, ∗,Λ, 〈·, ·〉, h) be a PEL datum,

and let G be the associated group scheme. If the Q-algebra B = O⊗Z Q is simple,
then all the simple factors of Gder(C) are of the same type, which is A, C or D. If
we are in type A or C, then GQ is connected and reductive. In type D, the group

GQ is reductive and has 2[F0:Q] connected components, where F0 is the field of fixed
points of ∗ in the center of O ⊗Z Q, so it is never connected.

We now give some examples covering all the types.

Example 2.4. Take O = Z, ∗ = idO, Λ = Z2d, 〈·, ·〉 the perfect symplectic

pairing with matrix

(
0 Id
−Id 0

)
in the canonical basis of Z2d, and h : C→M2d(R)

defined by

h(a+ ib) =

(
aId −bId
bId aId

)
.

Then we get a PEL datum, and the couple (GQ, h) is the Siegel Shimura datum of
Example 1.35.

Example 2.5. Let B = E ⊂ C be an imaginary quadratic extension of Q,
O be an order in E (for example the ring of integers OE), ∗ be the restriction to
O of complex conjugation, 16 Λ = Op+q with p ≥ q ≥ 0. Choose ε ∈ O such

that −iε ∈ R>0, let H be the Hermitian pairing on Λ with matrix

(
Ip 0
0 −Iq

)

and 〈·, ·〉 be the alternating pairing TrO/Z(εH) on Λ. Finally, define h : C →

EndC(Λ⊗ZR) =Mp+q(C) by h(z) =

(
zIp 0
0 zIq

)
. Then we get a PEL datum, and

the couple (GQ, h) is the Shimura datum of Example 1.41.
If q = 0, then (G, h) does not satisfy condition (d) of Definition 1.33.

Example 2.6. At the other extreme of type A, we have the PEL data consid-
ered by Kottwitz in [63] (see the beginning of Section 1 of that paper). Let F0 be
a totally real number field, F be a totally imaginary quadratic extension of F0 and
B be a division algebra with center F ; we suppose given a positive involution ∗ on
B whose restriction to F is the nontrivial element of Gal(F/F0).

We take Λ⊗Z Q = B with its action by left translations. The alternating form
〈., .〉 on Λ⊗Z Q is given by 〈x, y〉 = TrB/Q(xby

∗), where b is an element of B× such

that b∗ = −b. We have EndB(Λ ⊗Z Q) = Bop, so GQ = {x ∈ (Bop)×|xx‡ ∈ Q×},

16If (1, a) is a Z-basis of OE , then every order O of E is contained in OE and of the form
Z ⊕ faZ, where f = [OE : O] is the conductor of O. In particular, the order O is stable by the
nontrivial element of Gal(E/Q), which is the restriction of complex conjugation to E.
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where (.)‡ is the involution of Bop define by x‡ = bx∗b−1 (which is not positive in
general).

Warning: What Kottwitz calls D and ∗ in [63] is what we call Bop and ‡ here,
so in particular the involution ∗ of [63] is not assumed to be positive (and the PEL
datum is not defined there). We changed the notation to be consistent with the
rest of the text and with Kottwitz’s other paper [64].

We have F0 ⊗Q R ≃ Rr, F ⊗Q R ≃ Cr and B ⊗Q R ≃ Mn(C)r , where n =√
dimQB; the involution ∗ is conjugate on each factor to the positive involution

A 7→ tA. So, if G0 = {x ∈ (Bop)×|xx‡ = 1}, then G0,R is isomorphic to a product∏r
i=1 U(pi, qi) of unitary groups, and GR is isomorphic to the corresponding general

group (i.e. the subgroup of
∏
i=1 GU(pi, qi) where all the multipliers are equal).

We define h : C× → GR by sending z ∈ C× to element of G(R) corresponding

to the family of matrices

((
zIpi 0
0 zIqi

))

1≤i≤r
. This extend to a morphism of

R-algebras h : C→ Bop ⊗Q R sending 0 to 0; as C is commutative, we can also see
h as a morphism of R-algebras C→ B ⊗Q R.

We have defined what is known as a rational PEL datum. To get an integral
PEL datum, we must suppose that there exists an order O in B such that O∗ = O
and 〈., .〉 takes integer values on O.

Example 2.7. Let B be a quaternion algebra over Q such that B ⊗Q R ≃
H, and let O be an order in B that is stable by the involution of H defined by
(x + iy + jz + kt)∗ = x − iy − jz − kt. Let Λ = O2n, let 〈·, ·〉 be TrO/Z ◦H ,

where H is the skew-Hermitian pairing on Λ with matrix

(
0 In
−In 0

)
. Define

h : C→ EndB⊗QR(Λ⊗Z R) =Mn(H) by h(a+ ib) =

(
aIn −bIn
bIn aIn

)
.

The group (G0)R,der is often denoted by SO∗
2n; it is a quasi-split outer form of

the split orthogonal group SO2n, hence is of type Dn. But note that the algebraic
group GQ is not connected.

Definition 2.8. We say that a Shimura datum is of PEL type if it is of the
form (G0

Q, h), where (G, h) comes from a PEL datum. The corresponding Shimura
varieties are called PEL type Shimura varieties.

2.1.2. PEL moduli problems. Just as in the case of the Siegel modular variety,
PEL type Shimura varieties are the solution of a moduli problem, 17 known as a
PEL moduli problem. We now discuss these.

Let (O, ∗,Λ, 〈·, ·〉, h) be a PEL datum, and let (G, h) be defined as before. If
V = Λ ⊗Z R, then we saw that the morphism h : C → EndO⊗ZR(V ) defines a
decomposition V ⊗R C = V −1,0 ⊕ V 0,−1. The reflex field F of the PEL datum is
the field of definition of the isomorphism class of V −1,0 as an O⊗Z C-module, that
is, the subfield of C generated by the elements Tr(b, V 1,0), for b ∈ O. It is also
equal to the field of the definition of the conjugacy class of hC ◦ r : GL1,C → GC,
that is, the reflex field of (G0

Q, h) when this couple is a Shimura datum.

Definition 2.9. We say that a prime number p is good for the PEL datum if:

• p is unramified in O (i.e. it does not divide the discriminant of O/Z);

17Well, almost. See Proposition 2.14 below for a more precise statement.
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• p does not divide [Λ∨ : Λ], where Λ∨ is as before the lattice {v ∈ V |
∀w ∈ Λ, 〈v, w〉 ∈ Z};
• p 6= 2 if the PEL datum has a factor of type D (i.e. if O ⊗Z R has a
simple factor isomorphic to an algebraMn(H) with its canonical positive
involution).

If p is not good we say that it is bad. Note that, if p is good, then F and
GQ are unramified at p; in fact, the group G(Zp) is then a hyperspecial maximal
compact subgroup of G(Qp).

Let T be a set of good primes (finite or infinite), and letOF,T be the localization
OF [ 1p , p 6∈ T ].

Definition 2.10. Let n be a positive integer that is prime to all the elements
of T . Then the PEL moduli problem at level n defined by the fixed PEL datum is
the contravariant functor Mn from the category of OF,T -schemes to the category
of sets sending an OF,T -scheme S to the set of isomorphism classes of quadruples
(A, λ, ι, (η, ϕ)), where:

• A is an abelian scheme over S;
• λ : A→ A∨ is a polarization whose degree is prime to all the elements of
T ;
• ι : O → EndS(A) is a morphism of rings satisfying the Rosati condition:
for every b ∈ O, we have λ ◦ ι(b∗) = ι(b)∨ ◦ λ;
• (η, ϕ) is a level n structure on A, i.e., η : A[n]

∼→ (Λ/nΛ)S is an O-
equivariant isomorphism of group schemes and ϕ : Z/nZ

S

∼→ µn,S is an

isomorphism of group schemes such that ϕ ◦ 〈·, ·〉 ◦ η is the Weil pair-
ing defined by λ on A[n]S , and moreover (η, ϕ) are liftable to level m
structures for every prime-to-T multiple m of n, in the sense of [67]
Definition 1.3.6.2.

We furthermore require that this quadruple satisfy the following determinant con-
dition (see Definition 1.3.4.1 of [67]): let α1, . . . , αt be a basis of the Z-module O,
and let X1, . . . , Xt be indeterminates. Then det(ι(α1)X1 + . . . + ι(αt)Xt,Lie(A))
is a polynomial in OS [X1, . . . , Xt], and the condition says that this polynomial is
equal to the image by the map OF,T → OS of the polynomial det(α1X1 + . . . +
αtXt, V

1,0) ∈ OF,T [X1, . . . , Xt].
18

Remark 2.11. (1) We did not specify the relative dimension of the abelian
schemeA in the moduli problem, because it is necessarily equal to dimC(V

1,0)
by the determinant condition.

(2) For n ∈ {1, 2}, the objects of the moduli problemMn can have nontrivial
automorphisms, so it would make more sense to seeMn as a functor with
values in groupoids, i.e. as a stack. See Remark 1.13.

(3) As in Remark 1.17, it is also possible to define the moduli problemMK

for more general levels K, i.e. for open compact subgroups K of G(Af ),
though there is a condition on K corresponding to the condition that n
be prime to T . Let ATf be the ring of prime-to-T adeles of Q, i.e. the
restricted product of the Qp for p 6∈ T , and AT be the restricted product

18It is not totally obvious that the second polynomial, which is a priori in F [X1, . . . ,Xt], has
its coefficients in OF,T . But it is also not too hard to check. See for example pages 389-390 of

[64].
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of the Qp for p ∈ T . We have Af = AT × ATf , and the condition on

K is that K = KTK
T , where KT ⊂ G(ATf ) and KT =

∏
p∈T Kp with

Kp = G(Zp) for every p ∈ T .
The following theorem is a consequence of Mumford’s representability result

(Theorem 1.16), as explained in Section 5 of Kottwitz’s paper [64]. See also Corol-
laries 1.4.1.12 and 7.2.3.10 of Lan’s book [67] for more details.

Theorem 2.12. If n ≥ 3, then the functor Mn is representable by a smooth
quasi-projective scheme over OF,T .

In fact, by Theorem 1.4.1.11 and Corollary 7.2.3.10 of [67], the functorMK is
representable by a smooth quasi-projective scheme for K small enough.

Remark 2.13. We also have an action of the Hecke operators defined by ele-
ments g ∈ G(ATf ) (i.e. the Hecke operators that are trivial at primes of T ) on the

tower (MK); as for the Siegel moduli problem, the element g acts on the level struc-
ture. See Remark 1.4.3.11 of [67] (and the comparison result of Proposition 1.4.3.4
of loc. cit.).

2.1.3. PEL moduli problems and canonical models. Consider the PEL datum
of Example 2.4. The associated couple (GQ, h) is the Siegel Shimura datum of
Example 1.35, and we have seen in Example 1.44(2) that the corresponding moduli
problem, with T = ∅, defines a canonical model of the Shimura variety of (GQ, h).

We would like something like this to be true for general PEL data, but one ob-
struction is that the moduli problem only depends on the completions of the sym-
plectic O-module (Λ, 〈., , 〉) at the places of Q; this is not obvious in Definition 2.10,
but it becomes so if we use the moduli problem of Definition 1.4.2.1 of [67] or of
Section 5 of [64] (the equivalence of the two moduli problems is proved in [67]
1.4.3). Suppose that we have a finitely generated O-module Λ′ that is free as a Z-
module, with a symplectic form 〈., .〉′ satisfying condition (4) of Definition 2.1 and
such that, for every place v of Q, Λ⊗ZQv and Λ′⊗ZQv are isomorphic as symplectic
B⊗QQv-modules. Then we can see h as a morphism C→ EndB⊗QR(Λ

′⊗ZR), and it
will satisfy condition (5) of Definition 2.1, so we get a PEL datum (O, ∗,Λ′, 〈., .〉′, h)
that defines the same moduli problem as the original PEL datum. In particular,

we will get a Shimura datum (G′0
Q, h), and we should also see the canonical model

for the Shimura variety of (G′0
Q, h) in the PEL moduli problem. A priori, there is

no reason for G and G′ to be isomorphic, and they won’t be in general; we only
know that GQv

≃ G′
Qv

for every place v of Q.
In fact, we have the following result.

Proposition 2.14. Suppose that the semisimple Q-algebra O ⊗Z Q has no
simple factor of type D (see Definition 2.9). Then:

(i) (Remark 1.4.4.4 of [67].) Let T ⊂ T ′ be two sets of good prime num-

bers, let KT ′

be an open compact subgroup of G(AT
′

f ), and let K =

KT ′ ∏
p∈T ′ G(Zp). Let MK (resp. M′

K) be the moduli problem over

Spec(OF,T ) (resp. Spec(OF,T ′)) from Definition 2.10, where we take
the set of good primes to be T (resp. T ′). Then the forgetful functor
MK →M′

K ×Spec(OF,T ′) Spec(OF,T ) is an isomorphism.

(ii) (Sections 7-8 of [64].) Let Ker1(Q, G) be the kernel of the diagonal map
H1(Q, G) →

∏
v H

1(Qv, G), where we take the product over all places
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v of Q; this is a finite set. Suppose that (GQ, h) is a Shimura datum,
19 and use T = ∅ to define the moduli problem of Definition 2.10, so
that it is a moduli problem over Spec(F ). 20 Then the projective system
(MK)K⊂G(Af ) is a disjoint union indexed by i ∈ Ker1(Q, G) of projective

systems (M(i)
K )K⊂G(Af ), and each (M(i)

K )K⊂Gi(Af ) is a canonical model
of the Shimura variety of (GQ, h).

Remark 2.15. (1) For every i ∈ Ker1(Q, G), let Gi be the corresponding
inner form of GQ;

21 we have Gi,v ≃ Gv for every place v of Q, and we

denote by hi the morphism S
h→ GR ≃ Gi,R. If (GQ, h) is a Shimura

datum, then all (Gi, hi) are, and the projective system (M(i)
K )K⊂G(Af ) in

(ii) of the proposition is actually a canonical model of the Shimura variety
of (Gi, hi) (note that Gi(Af ) ≃ G(Af )). But, as noted by Kottwitz at
the end of Section 8 of [64], under our hypothesis that O ⊗Z Q has no
factor of type D, all the groups Gi are isomorphic to GQ and the hi
correspond to h. (In fact Kottwitz calculates Ker1(Q, G) in Section 7
of [64], and finds that in our situation it is either trivial or isomorphic
to Ker1(Q, Z(G)) by the canonical map, where Z(G) is the center of G.)

(2) As mentioned in (1), there is some information about Ker1(Q, G) in Sec-
tion 7 of [64], and ways to calculate it. For example, if O⊗Z Q is simple
of type C, we have Ker1(Q, G) = {1}, which explains why the moduli
problem of Definition 1.15 gives a canonical model of the Siegel Shimura
variety and not of a finite disjoint union of copies of it. If O ⊗Z Q is
simple of type A, then Ker1(Q, G) is automatically trivial in “half” of
the cases, and it is always isomorphic to Ker1(Q, Z(G)); for example, it
is trivial for the Shimura datum of Example 1.41.

(3) Kottwitz does not say much about the case where O ⊗Z Q has simple
factors of type D. The situation is complicated for many reasons: the
group GQ is not connected, Ker(Q, G) is not trivial, and point (i) of
Proposition 2.14 is not true in general, so we must also be careful about
the choice of T . In any case, it is still true that the Shimura varieties
MK(G0

Q, h)(C) are open and closed subschemes ofMK,C (see [66] 2.5),
and we might even get canonical models out of this, but we will not pursue
this here because there are other ways to construct canonical models for
these Shimura data (see 2.2.1).

(4) If we want (GQ, h) to be a PEL Shimura datum, then this puts pretty
strict conditions on the center of GQ. For example, if F is a nontriv-
ial totally real extension of Q, then the group ResF/Q GL2 (defined by
ResF/Q GL2(R) = GL2(R ⊗Q F )) is part of a Shimura datum, but this
Shimura datum cannot be PEL; more generally, we have the issue with
the group ResF/Q GSp2d. This is somewhat annoying, as sometimes we
really do want to consider the Shimura varieties for these precise groups
(see for example Nekovar and Scholl’s [93]). Fortunately, these Shimura

19As we excluded case D, the group GQ is connected. So, by Proposition 2.2, the only

obstacle to (GQ, h) being a Shimura datum is condition (d) of Definition 1.33.
20By (i), this moduli problem is the generic fiber of the moduli problems defined by nonempty

sets T .
21See 2.4.1 for the definition of inner forms.
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data are of abelian type (see 2.2.2), so their Shimura varieties are still
understood reasonably well.

2.1.4. Canonical integral models. PEL moduli problems don’t just give canon-
ical models of Shimura varieties, they also give models over various localizations of
the ring of integers of the reflex field, at least when Ker1(Q, G) is trivial. Here are
some things that we can learn from this example:

(1) The ring of integers over which we can expect to have a “good” integral
model depends on the level K. More precisely, to have a good integral
model defined over OF,(p), we need K to be of the form KpKp, where
Kp ⊂ G(Apf ) and Kp is a hyperspecial maximal compact subgroup of

G(Qp). Likewise, the Hecke correspondences that will extend to finite
étale morphisms between integral models over OF,(p) are the ones that
are trivial at p, i.e. defined by elements of G(Apf ).

(2) We need a notion of what a “good” integral model is. If the Shimura
varieties for (G, h) are compact, then we can just ask for the integral
model to be projective smooth over the localization of OF that we are
using. But this does not suffice in the noncompact case.

Remark 2.16. In these notes, we will only talk about integral models at places
of good reduction, so we want these models to be smooth over the base ring and this
is why we impose the conditions of (1). There is of course a (much more difficult
and very interesting) theory for places of bad reduction.

To solve problem (2), Milne suggested only looking at models with a certain
extension property. Let (G, h) be a Shimura datum, let F = F (G, h), let p be a
prime number at which G is unramified, and let Kp ⊂ G(Qp) be a hyperspecial
maximal compact subgroup. 22 For every level K, write MK = MK(G, h). We
want to define the notion of a canonical integral model MKp

over OF,(p) of the
projective system (MKpKp)Kp⊂G(Ap

f
), or of its limit MKp

. The idea, first suggested

by Milne in [85] (see also Moonen’s paper [90]), is to require that, for every S in a
class of “admissible test schemes” over OF,(p), any morphism S ⊗OF,(p)

F → MKp

should extend to a morphism S → MKp
. The problem is to decide what class of

admissible test schemes one should use. We will follow Kisin’s presentation in [54].

Definition 2.17 (See [54] 2.3.7.). A canonical integral model of the projective
system (MKpKp)Kp⊂G(Ap

f
) (or of its limit MKp

) over OF,(p) is a projective sys-

tem (MKpKp)Kp⊂G(Ap

f
) of smooth OF,(p)-schemes with finite étale transition maps,

given with finite étale morphisms Tg,Kp,K′p :MKpK′p →MKpKp for all g ∈ G(Apf )
and Kp,K ′p open compact subgroups of G(Apf ) such that K ′p ⊂ Kp ∩ gKpg−1,

and with an isomorphism of projective systems ι : (MKpKp)⊗OF,(p)
F

∼→ (MKpKp),
such that:

(a) The morphisms Tg,Kp,K′p satisfy the analogues of conditions (ii), (iii) and
(iv) of Definition 1.38, and they correspond to the morphisms Tg,KpKp,KpK′p

between canonical models by the isomorphism ι (in other words, ι is
G(Apf )-equivariant);

22The condition on p means that G extends to a reductive group scheme G over Zp, and then

we can take Kp = G(Zp).
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(b) The scheme MKp
:= lim←−Kp

MKpKp satisfies the following extension

property: if S is a regular formally smooth OF,(p)-scheme, then any mor-
phism S ⊗OF,(p)

F →MKp
extends to a morphism S →MKp

.

As in the definition of canonical models, the properties listed in this definition
are redundant, see Remark 1.39.

In particular, by applying the extension property with S =MKp
, we see that

integral canonical models are unique up to unique isomorphism. Now the prob-
lem is existence. For PEL type Shimura varieties of type A or C satisfying the
condition that Ker1(Q, G) is trivial, the PEL moduli problem will give a canonical
integral model, though that is not trivial: the main ingredient is the Néron-Ogg-
Shafarevich criterion on the good reduction of abelian varieties. For more details,
see Theorem 2.10 of [85], and also Corollary 3.8 and Example 3.12(ii) of [90].

But what about other Shimura varieties ?

2.2. Hodge type and abelian type Shimura varieties.

2.2.1. Hodge type Shimura varieties. For every d ≥ 1, we denote by (GSp2d, hd)
the Siegel Shimura datum of Example 1.35.

The following condition was introduced in Deligne’s paper [37] (Section 2.3)
and named in Milne’s paper [84] (at the end of Section 3).

Definition 2.18. A Shimura datum (G, h) is of Hodge type if there exists an
integer d ≥ 1 and a morphism of Shimura data u : (G, h)→ (GSp2d, hd) such that
the underlying morphism of algebraic groups G→ GSp2d is injective. In this case,
we also say that the corresponding Shimura varieties are of Hodge type.

Example 2.19. (1) Every Shimura datum of PEL type is of Hodge type,
pretty much by definition (or by Proposition 2.3.2 of [37]): if (O, ∗,Λ, 〈·, ·〉, h)
is a PEL datum and G is the corresponding group scheme, then G embeds
into the group scheme H defined by

H(R) = {g ∈ EndR(Λ ⊗Z R) | ∃c(g) ∈ R×, 〈g(·), g(·)〉 = c(g)〈·, ·〉}
for every commutative ring R. As the alternating pairing 〈·, ·〉 is nonde-
generate by condition (5)(b) of Definition 2.1, and as all nondegenerate
alternating pairings on Λ⊗ZQ are equivalent, we have HQ ≃ GSp2d,Q for
2d = dimQ(Λ⊗Z Q). Let h′ be the composition of h : S→ GR and of the
embedding GR → HR = GSp2d,R. We have seen in the discussion after
Proposition 2.2 that h : C → EndR(Λ ⊗Z R) induces a Hodge structure
of type {(−1, 0), (0,−1)} on Λ ⊗Z C, 23 so h′ satisfies condition (b) of
Definition 1.33. It also satisfies condition (c) of loc. cit. because the
R-bilinear pairing 〈·, h(i)(·)〉 on Λ ⊗Z R is symmetric definite positive.
Finally, for every a ∈ R×, the element h(a) of EndR(Λ ⊗Z R) is a · id
(because h is a morphism of R-algebras), so h′(a) = aI2d ∈ GSp2d(R).
This implies that h′ and hd are conjugated by GSp2d(R).

(2) The list of groups G that have Shimura data of Hodge type is given (at
least in theory) in Section 2.3 of [37]. For example, the group G can be
of type B, while that is not possible for PEL type Shimura data.

23Which means that, in the decomposition Λ ⊗Z C =
⊕

p,q∈Z V
p,q induced by h, we have

V p,q = 0 unless (p, q) ∈ {(−1, 0), (0,−1)}.
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The following result is due to Deligne; it follows from Corollaire 5.7 of [35],
which was already cited as Proposition 1.48.

Proposition 2.20. Every Shimura variety of Hodge type admits a canonical
model.

Remark 2.21. There is a general philosophy that Shimura varieties should be
moduli spaces of motives (the conditions that we put on a Shimura datum (G, h)
are basically there to force the G(R)-conjugacy class of h to be a parameter space
for Hodge structures); see Section 3 of [84] for more precise hopes.

For (G, h) of Hodge type, we are a bit closer to that hope: Milne has proved
that MK(G, h)(C) is a moduli space of abelian varieties with Hodge cycles of a
certain type and level structure (see Theorem 3.11 of [84]). As Hodge cycles on
complex abelian varieties are absolute by a theorem of Deligne (see Theorem 2.11
of Chapter I of [38]), we can also see the action of Aut(C/F ) (where F = F (G, h))
on this modular interpretation. So far, this has not allowed people to give a moduli
interpretation of the integral models of the Shimura variety of (G, h), but it does
help with the construction of integral models, that we now discuss.

Let (G, h) be a Shimura datum of Hodge type, and let u : G → GSp2d be an
injective morphism inducing a morphism of Shimura data (G, h) → (GSp2d, hd).
Let F = F (G, h) be the reflex field of (G, h). We fix a prime number p such that
GQp

extends to a reductive group scheme G over Zp. To simplify the presentation,
we will assume that the embedding GQp

→ GSp2d,Qp
extends to an embedding G →

GSp2d,Zp
, though that is not necessary. We set Kp = G(Zp) and K ′

p = GSp2d(Zp).

For each sufficiently small open compact subgroup Kp of G(Apf ), we fix an

open compact subgroup K ′p of GSp2d(A
p
f ) such that, setting K = KpK

p and K ′ =

K ′
pK

′p, the morphism u defines a closed immersionMK(G, h)→MK′(GSp2d, hd)F
(this is possible by Proposition 1.15 of [35]).

Let MK′ be the model of MK′(GSp2d, hd) over OF,(p) given by base change
from its canonical integral model over Z(p). We denote byMK the normalization
of the closure of the image ofMK(G, h) inMK′ ⊃MK′(GSp2d, hd)F . Kisin proved
the following result.

Theorem 2.22 (Theorem 2.3.8 of [54]). Suppose that p > 2. Then lim←−Kp
MKpKp

is a canonical integral model of the Shimura variety of (G, h).

In particular, the schemesMK do not depend on the choice of K ′p or on the
embedding G→ GSp2d.

Remark 2.23. In fact, Theorem 2.3.8 of [54] is more general, and gives a con-
struction of a canonical integral model without the assumption on the embedding
GQp

→ GSp2d,Qp
. It even allows the case p = 2 under some conditions.

Remark 2.24. We have given the original construction of Kisin, but Yujie Xu
recently proved in [123] that the normalization step is unnecessary, soMK is just
a closed subscheme ofMK′ .

2.2.2. Abelian type Shimura varieties.

Definition 2.25. Let (G, h) be a Shimura datum. We say that (G, h) is of
abelian type if there exists a Shimura datum of Hodge type (G1, h1) and a central

isogenyG1,der → Gder that induces an isomorphism of Shimura data (G1,ad, h1,ad)
∼→
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(Gad, had), where h1,ad (resp. had) is the composition of h1 (resp. h) and of the
quotient morphism G1 → G1,ad (resp. G → Gad). In this case, we also say that
the corresponding Shimura varieties are of abelian type.

Another way to formulate the definition is to say that a Shimura variety
MK(G, h)(C) is of abelian type if all its connected components are finite quotients
of connected components of Shimura varieties of Hodge type (see Section 9 of [37]).
Deligne has classified all connected Shimura varieties of abelian type in 2.3 of [37].
The very rough upshot is that all Shimura data (G, h) with G of type A, B and C
are of abelian type; if G is of type D, it’s complicated, and if G is of type E6 or
E7, then the Shimura datum is never of abelian type. See page 61 of [68] for more
details.

Theorem 2.26 (Deligne, see Corollaire 2.7.21 of [37]). Let (G, h) be a Shimura
datum of abelian type. Then the Shimura variety of (G, h) admits a canonical model.

In fact, Deligne reduces the construction of a canonical model of MK(G, h)(C)
to that of canonical models of its connected components (over finite extensions of
F (G, h)). See for example Corollaire 2.7.18 of [37].

Remark 2.27. Shimura varieties of abelian type are not moduli spaces of
abelian varieties in general. However, Milne proved in [86] that they are moduli
spaces of motives if h ◦w : GL1,R → GR is defined over Q, and this leads to a more
direct proof of existence of their canonical models even without that condition.

Theorem 2.28 (Milne, see Theorem 3.31 of [86]; see also Brylinski’s paper
[26]). Let (G, h) be a Shimura datum of abelian type such that h ◦w : GL1,R → GR

is defined over Q. Then each MK(G, h) is a moduli space of abelian motives (over
the reflex field of (G, h)).

By reducing to the case of Shimura varieties of Hodge type, Kisin was able to
prove the existence of canonical integral models of Shimura varieties of abelian type
for p > 2. The case p = 2 was then settled by Kim and Madapusi.

Theorem 2.29 (Corollary 3.4.14 of [54] and Theorem 1 of [53]). Let (G, h) be
a Shimura datum of abelian type, let p be a prime number such that GQp

extends
to a reductive group scheme G over Zp, and let Kp = G(Zp). Then MKp

:=
lim←−Kp⊂G(Ap

f
)
MKpKp(G, h) admits a canonical integral model over OF,(p), where F =

F (G, h).

2.3. General Shimura varieties. Let (G, h) be a Shimura datum that is not
of abelian type. Then we know very little, but we do know that canonical models
exist. This result was first announced by Milne (based on earlier results of Kazhdan
and Borovoi), but there was a gap in the proof, which was fixed by Moonen.

Theorem 2.30 (Deligne, Borovoi, Milne-Shih, Milne, Moonen, cf. [90] Sec-
tion 2.). Let (G, h) be a Shimura datum. Then the Shimura variety of (G, h) admits
a canonical model.

In fact, Section 2 of [90] contains a good summary of the different construction
methods of canonical models. The proof in the general case does not proceed by
reduction to the case of Siegel modular varieties (unlike the previous proofs in the
abelian type case), but uses results of Borovoi (see [22] and [23]), Deligne, Milne-
Shih (Chapter V of the book [38]) and Milne ([83]) on a conjecture of Langlands,
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that says that a conjugate of a Shimura variety over C by an automorphism of C
is still a Shimura variety (Langlands’s conjecture is much more precise than this,
see for example Theorem 2.14 of [90]).

2.4. Kottwitz’s simple Shimura varieties. After considering more and
more complicated Shimura varieties in the previous subsections, we will now in-
troduce a very simple PEL family, that has been studied by Kottwitz in [63]; their
PEL datum already appeared in Example 2.6. These Shimura varieties are simple
for several reasons:

• they are compact;
• they are PEL of type A, hence moduli spaces of abelian schemes with
extra structures;
• their reductive group “has no endoscopy” (see Proposition 2.40 for a
precise statement).

2.4.1. Inner forms of unitary groups. We fix a totally real extension F0 of Q
and a totally imaginary quadratic extension F of F0. Such an extension F of Q is
called a CM extension. We denote by z 7→ z the nontrivial element of Gal(F/F0).

Let n be a positive integer. The quasi-split unitary group U∗(n) over F0 is
defined to be the unitary group of the Hermitian F0-space F

n, with the form

((x1, . . . , xn), (y1, . . . , yn)) 7→
n∑

i=1

xiyn+1−i.

In other words, for every commutative F0-algebra R, we have

U∗(n) = {g ∈ GLn(F ⊗F0 R) | tgJg = J},
where J is the n× n antidiagonal matrix with all nonzero coefficients equal to 1.

We want to describe all inner forms of U∗(n). Remember that, if G and H are
algebraic groups over a field k, we say that they are inner forms of each other if
there exists an isomorphism ϕ : Gk

∼→ Hk such that, for every σ ∈ Gal(k/k), the

automorphism ϕ−1 ◦σϕ of G(k) is inner (σϕ is the isomorphism σϕσ−1 : Gk
∼→ Hk,

where σ acts on Gk and Hk via its action on k). Inner forms of G are in bijection

with elements of H1(k,Gad) := H1(Gal(k/k), Gad), where Gad = G/Z(G) and Z(G)
is the center of G. See Section III.1 of Serre’s book [110] and Section 3 of Springer’s
Corvallis notes [113] for more about (inner) forms.

Here, observing that U∗(n)ad is the group of automorphisms of the couple
formed by the central simple algebra Mn(F ) over F and the involution g 7→ J tgJ ,
we see that inner forms of U∗(n) are all of the form U(B, ∗), where B is a central
simple algebra of dimension n2 over F and ∗ is an involution on B extending the
involution z 7→ z on F , and U(B, ∗) is the F0-group defined by

U(B, ∗)(R) = {g ∈ B ⊗F0 R | gg∗ = 1},
for every commutative F0-algebra R. As the notation indicates, the group U(B, ∗)
is a unitary group. More precisely, we can write B = Mn/m(D) where m is a

divisor of n and D is a division algebra of dimension m2 over F ; if we choose a
simple B-module V , then we can take D = EndB(V )op and see V as a Dop-module.
By Theorem 4.1 of the lecture notes [117] of Tignol, there exists an involution on
Dop that restricts to z 7→ z on F and a nondegenerate bilinear form 〈., .〉 on the
Dop-module V , Hermitian with respect to that involution, such that ∗ is equivalent
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to the involution ‡ on B ≃ EndDop(V ) corresponding to the Hermitian form 〈., .〉,
i.e. defined by the condition 〈bx, y〉 = 〈x, b‡y〉 for b ∈ B and x, y ∈ V .

On the other hand, if G is an inner form of U∗(n), then GF0,v is an inner form
of U∗(n)F0,v for every place v of F0, and GF0,v is isomorphic to U∗(n)F0,v itself for
all but finitely many v. Inner forms over local fields are easier to classify (because
the absolute Galois groups of local fields are simpler); but then we must be able to
decide when a family of inner forms of the U∗(n)F0,v comes from a “global” inner
form of U∗(n) (defined over F0). Using Galois cohomology calculations and the
calculation of the Brauer groups of local and global fields, we get the following two
propositions (see for example Section 2 of Clozel’s paper [30], and see Gille and
Szamuely’s book [43] for more information on central simple algebras and Brauer
groups):

Proposition 2.31. Let v be a place of F0.

(i) Suppose that v is finite and does not split in F . If n is odd, then the only
inner form of U∗(n)F0,v is U∗(n)F0,v itself (up to isomorphism). If n is
even, then there are two isomorphism classes of inner forms of U∗(n)F0,v .

(ii) Suppose that v splits in F (in particular, v is finite), and let w be a place
of F above v. Then U∗(n)F0,v ≃ GLn,F0,v ≃ GLn,Fw

, and its inner forms
are (up to isomorphism) the groups GLm(D), for m dividing n and D a
central division algebra over Fw of dimension (n/m)2.

(iii) Suppose that v is infinite, hence a real place of F0. Then the inner forms
of U∗(n)F0,v are (up to isomorphism) the real unitary groups Up,q of
signature (p, q), for p + q = n, and we have Up,q ≃ Ur,s if and only if
(r, s) = (p, q) or (r, s) = (q, p).

Suppose that n is even, let v be a place of F0 and let G be an inner form of
U∗(n)F0,v .

• If v is finite and does not split in F , set ǫ(G) = 1 if G ≃ U∗(n)F0,v and
ǫ(G) = −1 otherwise;
• If v is finite and splits in F , set ǫ(G) = (−1)m if G ≃ GLm(D) with m
dividing n and D a central division algebra over Fw of dimension (n/m)2

(note that m only depends on v, not on w);
• If v is infinite, set ǫ(G) = (−1)n/2−p if G ≃ Up,q.

Proposition 2.32. For every place v of F0, let Gv be an inner form of U∗(n)F0,v .
Suppose that Gv ≃ U∗(n)F0,v for all but finitely many v.

(i) If n is odd, there exists an inner form G of U∗(n) such that GF0,v ≃ Gv
for every v.

(ii) If n is even, there exists an inner form G of U∗(n) such that GF0,v ≃ Gv
for every v if and only if

∏
v ǫ(Gv) = 1.

Remark 2.33. Let G be an inner form of U∗(n). We know that G ≃ U(B, ∗),
with B a central simple algebra over F and ∗ an involution on B extending the
involution z 7→ z on F . In the next subsubsection, it will be of interest to us to
know when B is a division algebra. Let v be a place of F0, and let Gv = GF0,v .

• If v does not split in F , let w be a place of F above v. By the discussion
at the beginning of 2.4.1 (i.e. Theorem 4.1 of [117], which applies to any
field), there exists a division algebra Dv over Fw with an involution ex-
tending the nontrivial element of Gal(Fw/F0,v) and a Hermitian module
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(V, 〈., .〉) over Dv such that Gv is the unitary group of (V, 〈., .〉). As Fw is
a local field, we must haveDv = Fw, and then V ≃ Fnw and the Hermitian
form 〈., .〉 is characterized by its determinant (up to isomorphism).
• If v splits in F , then we have Gv ≃ Mmv

(Dv), with mv dividing n and
Dv a central division algebra of dimension (n/mv)

2 over F0,v.

We can now deduce from the classification of central simple algebras over F
that B is a division algebra if the gcd of the family (mv) is equal to 1, because it
forces the order of the class of B in the Brauer group of Q to be equal to n. (See
Corollary 6.5.4 of [43] for the classification of central simple algebras over a number
field.) The simplest way to make sure that this condition is satisfied is to take one
of the mv equal to 1, for example to take Gv of the form D×

v for a place v of F0

split in F , where Dv is a central division algebra over F0,v.

2.4.2. Simple Shimura varieties.

Definition 2.34 (See §1 of [63].). A Kottwitz simple Shimura variety is a
Shimura variety defined by the Shimura datum (GQ, h) associated to a PEL datum
(O, ∗,Λ, 〈·, ·〉, h) as in Example 2.6.

In particular:

(a) D := O ⊗Z Q is a division algebra with center a CM extension F of Q;
(b) ∗ extends the nontrivial automorphism of F/F0, where F0 is the maximal

totally real subextension of F ;
(c) Λ = O;
(d) 〈x, y〉 = TrO/Z(xby

∗) for all x, y ∈ Λ, where b ∈ D× is such that b∗ = −b.
We have EndO(Λ) = Oop (acting by right multiplication), so, for every com-

mutative ring R,
G(R) = {g ∈ (Oop ⊗Z R)

× | gg∗ ∈ R×}.
We have a morphism c : G → GL1 sending g ∈ G(R) to gg∗ ∈ GL1(R), and, if
we denote its kernel by G0, then G0,R is a product of unitary groups of the form
U(p, q). We gave the formula for h in Example 2.6: if z ∈ C has absolute value 1,

then the projection of h(z) to the U(p, q) factor of G0(R) is

(
zIp 0
0 zIq

)
. (There is

a choice here, as the couple (p, q) is only determined up to order.)
Note that we can choose the signatures of G0,R arbitrarily, by manipulating

what happens at finite places. On the other hand, the Shimura varieties of (GQ, h)
are always compact, because of the following lemma. Here we use the fact that the
Shimura varieties defined by a Shimura datum (G, h) are compact if and only if
Gder has Q-rank 0, which was recalled in 1.1 (see for example [51, Theorem 5.10]).

Lemma 2.35. The group Gder is of Q-rank 0.

Proof. Let N : D× → F× be the reduced norm, seen as a morphism of
algebraic groups over F . We have Gder = ResF0/Q SU, where SU = {g ∈ U |
N(g) = 1}, 24 so Gder,F ≃ (KerN)[F0:Q]. Let T be a maximal torus of Gder. Then

TF is a maximal torus of (KerN)[F0:Q], hence a product of maximal tori of KerN .
Let T ′ be a maximal torus of KerN . As D is a division algebra, there exists a
degree n extension F ′ of F such that T ′ = {x ∈ F ′× | NF ′/F (x) = 1}, and so the

24We can do the calculation after base changing to C, where it reduces to the fact that
GLn,der = SLn.
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maximal split subtorus of T ′ is trivial. This implies that the maximal split subtorus
of T is trivial.

�

We now discuss endoscopy.

2.4.3. Endoscopy. In its simplest form, endoscopy is the following phenomenon:
let G be an algebraic group over a field k. Then the G(k)- conjugacy classes in G(k)

can be larger than the G(k)-conjugacy classes. Some vocabulary: G(k)-conjugacy
classes in G(k) are often called stable conjugacy classes, and G(k)-conjugate ele-
ments are called stably conjugate. Actually we are cheating here, and our definition
is only correct if the semisimple elements of G have connected centralizers; the
correct definition is in Section 3 of Kottwitz’s paper [58]. Note that semisimple el-
ements of G have connected centralizers if Gder is simply connected: this is a result
of Steinberg (see Corollary 8.5 of [115]) for G semisimple, and Kottwitz explains
in Section 3 of [58] how to extend it to the case of a reductive group.

Examples 2.36. (1) Suppose that G = GLn. It is then a classical exer-
cise that any two elements of G(k) that are G(k)-conjugate are actually
G(k)-conjugate. We say that GLn has no endoscopy.

(2) We can generalize (1) to inner forms of GLn, i.e. algebraic groups of the
form B×, where B is a central simple algebra over k.

(3) Take k = R and G = SL2. As GL2(C) = C× · SL2(C), elements of
G(R) are G(C)-conjugate if and only if they are GL2(C)-conjugate. For

example, the matrices

(
0 1
−1 0

)
and

(
0 −1
1 0

)
are in the same SL2(C)-

conjugacy class, but we can check by a direct calculation that they are
not in the same SL2(R)-conjugacy class. So SL2 has endoscopy, and we
can generalize that example to SLn for n ≥ 2.

(4) If k = R and G = Un := {g ∈ GLn(C) | g∗g = In}, then again it is a
classical exercise to check that Un(C)-conjugacy classes in Un(R) coincide
with Un(R)-conjugacy classes.

Remark 2.37. We care about stable conjugacy classes because, in the Lang-
lands philosophy, groups are related via their L-groups (see 3.2.1 and 3.3.2). As
inner forms have the same L-groups, this means that we should be able to move
information between inner forms; but we cannot compare conjugacy classes in two
inner forms, only stable conjugacy classes. More generally, if G and H are algebraic
groups over k and there is a morphism LH → LG between their L-groups, then we
can use this to transport stable conjugacy classes of regular semisimple elements
from H to G.

It quickly becomes tiring to calculate conjugacy classes by hand, so we need
more efficient methods to check for endoscopy. Let γ ∈ G(k), and let Gγ ⊂ G be
the centralizer of γ.

Let δ ∈ G(k) be stably conjugate to γ, and let g ∈ G(k) such that δ = gγg−1.
For every σ ∈ Gal(k/k), we have

gγg−1 = δ = σ(δ) = σ(g)σ(γ)σ(g)−1 = σ(g)γσ(g)−1,
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hence g−1σ(g) ∈ Gγ(k). So we get a 1-cocyle c : Gal(k/k)→ Gγ(k), σ 7→ g−1σ(g),
and we can check that the image inv(γ, δ) of this 1-cocyle in H1(k,Gγ) does not
depend on the choice of g. Moreover, the image of inv(γ, δ) in H1(k,G) is trivial.

Proposition 2.38. (See Section 3 of [58].) Suppose that γ is semisimple and
that Gγ is connected. Then the map δ 7→ inv(γ, δ) gives a bijection from the set
of stable conjugacy classes in the G(k)-conjugacy class of γ to Ker(H1(k,Gγ) →
H1(k,G)).

This is particularly useful when Gder is simply connected and γ is regular and
semisimple, as the centralizer of γ is then a maximal torus (because it is connected,
as explained before Example 2.36).

Example 2.39. (1) 25 Let p ≥ q ≥ 0 be integers. Take k = R and
G = Up,q, the unitary group of the Hermitian form on Cp+q with matrix(
Ip 0
0 −Iq

)
, where Ir denotes as usual the identity matrix in GLr(Z).

One can show that any maximal torus T of G is isomorphic to Sr × Us1,
with 2r + s = p + q. (Remember that S = ResC/R GL1,C, i.e. it is C×

regarded as an algebraic group over R.) By Shapiro’s lemma, we have

H1(R, S) = H1(C,GL1,C) = 0.

Using the exact sequence

1→ U1 → S
Nm→ GL1,R → 1

where Nm : C× → R× is the map z 7→ zz, we see that H1(R,U1) =
R×/Nm(C×) = Z/2Z. So

H1(R, T ) = (Z/2Z)s.

Let T0 be the group of diagonal matrices in G. Then T0 is a maximal
torus of G and T0 ≃ U(1)p+q, so we get that H1(R, T0) = (Z/2Z)p+q.
On the other hand, by the main result (Theorem 3.1) of Borovoi’s paper
[24], we have

H1(R, G) = H1(R, T0)/W0(R),

and W0 is the Weyl group scheme WT0 = NG(T0)/ZG(T0). It is also
proved in Section 3 of the same paper that W0(R) = W0(C), so W0(R)
is isomorphic to the symmetric group Sp+q. However, as permutation
matrices are not always inside Up,q, the group Sp+q does not act on T0
by permuting the entries.

We calculate the quotient H1(R, T0)/Sp+q. Note that H1(R, T0) ≃
T0(R)2, where T0(R)2 = {diag(z1, . . . , zp+q) ∈ T0(R) | ∀i, zi ∈ {±1}}, so
we need to understand the action of Sp+q on T0(R)2. We have T0(R)2 =
{cΞ, Ξ ⊂ {1, 2, . . . , p+ q}}, where, for every subset Ξ of {1, 2, . . . , p+ q},
we write cΞ for the matrix diag(z1, . . . , zp+q) such that zi = −1 for i ∈ Ξ
and zi = 1 for i 6∈ Ξ. We regard Sp × Sq as a subgroup of Sp+q by
identifying Sq to the permutation group on {p+1, p+2, . . . , p+q}. Then
Sp+q is generated by Sp ×Sq and by the transposition σ := (1, p+ 1).
Also, elements of Sp ×Sq act on T0(R)2 by permuting the coordinates,

25I am very grateful to Mikhail Borovoi for patiently explaining how to deduce this example
from Example 4.4 of his paper [24]. Any remaining mistakes are all mine.
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because the corresponding permutation matrices are in Up,q. So two
elements cΞ, cΞ′ of T0(R)2 are in the same Sp ×Sq-orbit if and only if
card(Ξ ∩ {1, . . . , p}) = card(Ξ′ ∩ {1, . . . , p}) and card(Ξ ∩ {p+ 1, . . . , p+
q}) = card(Ξ′ ∩ {p+ 1, . . . , p+ q}).

It remains to understand the action of σ. It will be represented by
an element of NT0(C), so we need a convenient representation of G(C).
For this we consider the R-algebra embeddingM : C→M2(R), a+ ib 7→(
a b
−b a

)
. Applying this to every matrix entry, we get an embedding of

real algebraic groups G ⊂ GL2(p+q),R, hence also GC ⊂ GL2(p+q),C.

Suppose that (p, q) = (1, 1). Then the matrix n = i

(
0 I2
I2 0

)
∈

GL4(C) is in NT0(C) ⊂ G(C) and represents σ, so the action of σ on
T0(R)2 is given by c 7→ n−1cn. It is then easy to see that σ fixes c{1}
and c{2}, and exchanges c∅ = 1 and c{1,2} = −1. So H1(R, G) has three
elements.

The general case is similar: we write an explicit representative n ∈
NT0(C) ⊂ GL2(p+q)(C) of σ by putting the I2 blocks in the correct posi-
tions. For every Ξ ⊂ {1, 2, . . . , p+q}, write pΞ = card(Ξ∩{1, . . . , p}) and
qΞ = card(Ξ ∩ {p+ 1, . . . , p+ q}). By a calculation similar to that of the
previous paragraph, we get that cΞ and cΞ′ are in the same Sp+q-orbit
if and only Ξ,Ξ′ satisfy the following three conditions:




pΞ = pΞ′

qΞ = qΞ′

pΞ − qΞ = pΞ′ − qΞ′ .

So a set of representations for the Sp+q-orbits in T0(R)2 is given by
{c∅} ∪ {c1r, 1 ≤ r ≤ p} ∪ {c2s, 1 ≤ s ≤ q}, where c1r = c{1,2,...,r} and

c2s = c{p+1,p+2,...,p+s}.
We deduce that H1(R, G) is of cardinality p+ q + 1, and that

Ker(H1(R, T0)→ H1(R, G)) = {cΞ | pΞ = qΞ}.
Alternatively, to calculate H1(R, G), one can use the fact that H1(R, G)

for G = Up,q classifies isomorphism classes of non-degenerate Hermitian
forms on Cp+q (see Serre [109], Section X.2, Proposition 4), and one
can classify the isomorphism classes of such forms using the Hermitian
version of Sylvester’s law of inertia.

(2) We take k to be a finite extension of Qp, E to be an unramified quadratic
extension of k, and G = U∗(n)E/k to be the quasi-split unitary group
defined by that extension, i.e. the unitary group of the Hermitian k-
space En, with the form

((x1, . . . , xn), (y1, . . . , yn)) 7→
n∑

i=1

xiyn+1−i,

where x 7→ x is the nontrivial element of Gal(E/k). Any maximal torus
T of G is isomorphic to (ResE/kGL1)

r ×U(1)sE/k, where U(1)E/k is the

subgroup of norm one elements in ResE/k GL1 and 2r+s = n. As before,

we have H1(k,ResE/kGL1) = 0 and H1(k,U(1)E/k) = k×/NE/k(E
×) =

Z/2Z.
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But now we have H1(k,G) = Z/2Z, and the map H1(k, T )→ H1(k,G)
is the sum map. Indeed, the derived group Gder = SU∗(n)E/k of G is

simply connected, so H1(k,Gder) = 0 by a theorem of Kneser (see [57]),
and then we use the fact that G = Gder ⋊U(1)E/k.

So we see that, for some maximal tori T , the set Ker(H1(k, T ) →
H1(k,G)) is not a singleton, hence there are stable conjugacy classes
containing more than one conjugacy class. As in (1), the more anisotropic
factors the torus T has, the bigger its H1.

The examples show that, if G is the general unitary group of a Kottwitz simple
Shimura variety as in Definition 2.34, then it is not reasonable to expect that G
will behave as GLn and have absolutely no endoscopy over any field. In fact, what
Kottwitz actually proved about these groups is the following:

Proposition 2.40 (Lemma 2 of [63] and Theorem 6.6 of [61]). Let A be the
restricted product of the Qv, for v a place of Q. Let γ be a semisimple element of
G(Q), and let δ be an element of G(A) that is G(A)-conjugate to γ. Then there
exists an element of G(Q) that is G(A)-conjugate to δ. 26

This implies that in the trace formula for G (see 3.4.4), we will be able to group
the orbital integrals on the geometric side by stable conjugacy class and obtain an
expression that is easier to transfer between groups. See Section 4 of [63].

The proof of Proposition 2.40 is a more complicated global version of the Galois
cohomology calculations of Example 2.39. First Kottwitz reduces to the case of
Gder = ResF0/Q U, where U is the unitary group (over F0) given by U(R) = {g ∈
(D ⊗F0 R)

× | gg∗ = 1}. Then he reduces to a similar result for U, now involving
F0-rational points and the ring of adeles of F0. The main point is that, if T is a
maximal torus of U, then TF is a maximal torus of D×, and maximal tori of D×

are all of the form ResK/F GL1, for K a degree n extension of F . This allows us to
control the Galois cohomology of T .

3. Lecture 3: the cohomology of Shimura varieties

In this lecture, we discuss techniques to calculate the cohomology of Shimura
varieties, concentrating on the compact non-endoscopic case (see 3.5 for a short
survey of the general case).

We fix a connected reductive group G over Q; let Z(G) be the center of G, and
let SG be the maximal Q-split torus in Z(G). Except in Subsection 3.5, we will
often assume that Gder is of Q-rank 0, which means that G has no proper parabolic
subgroup.

3.1. Matsushima’s formula.

3.1.1. Discrete automorphic representations. Let AG = SG(R)0. If Gder is
of Q-rank 0, then the quotient G(Q)\G(A)/AG is compact; this follows from the
theorem on page 461 of the paper [91] by Mostow and Tamagawa and from the fact
that, with the notation of that paper, we have G(A) = AG · G(A)1 (which is easy
to prove). Without this assumption, the quotient G(Q)\G(A)/AG is still of finite
volume. 27 We denote by L2

G the space of complex L2 functions on G(Q)\G(A)/AG.
26Note however that this new element of G(Q) may not be G(Q)-conjugate to γ.
27This is due to Borel in this generality once we know about the relation to locally symmetric

spaces (cf 1.1); see [16] 8.4 and 13.2.
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The group G(A) acts on L2
G by right translation on the argument, and this defines

a continuous unitary representation of G(A).
If G(Q)\G(A)/AG is compact, the representation L2

G decomposes as a Hilber-
tian sum of irreducible representations π of G(A), with finite multiplicities m(π).
28 This is not true in general, but we can still consider the part L2

G,disc of L2
G that

decomposes discretely, and we still denote bym(π) the multiplicity of an irreducible
representation π of G(A) in L2

G,disc.
We denote by ΠG the set of equivalences classes of irreducible representations

π of G(A) such that m(π) 6= 0. Elements of ΠG are called discrete automorphic
representations of G(A) (or just of G). If Gder is of rank 0, then the concepts
of automorphic representations, discrete automorphic representations and cuspidal
automorphic representations coincide.

If π ∈ ΠG, then, as G(A) = G(Af )×G(R), we can write π = πf ⊗ π∞, where
πf (resp. π∞) is an irreducible representation of G(Af ) (resp. G(R)).

3.1.2. The theorem. To state Matsushima’s formula, we first need some defini-
tions. Let g be the Lie algebra of GR, let K

′
∞ be a maximal compact subgroup of

G(R), and set K∞ = AG ·K ′
∞. If π ∈ ΠG, then we denote by H∗(g,K∞;π∞) the

(g,K∞)-cohomology of π∞, i.e. the cohomology of the complex Cq(g,K∞;π∞) =
HomK∞

(∧q(g/k), (π∞)∞), where k = Lie(K∞) and (π∞)∞ is the space of smooth
vectors in π∞ (which is stable by K∞ because π∞ is K ′

∞-finite and AG acts triv-
ially). 29

The following theorem for connected components of complex Shimura varieties
is Corollary VII.3.4 of [21], and the adelic reformulation can be found in Section 2
of Arthur’s paper [6].

Theorem 3.1 (Matsushima’s formula). Let (G, h) be a Shimura datum with
Gder of Q-rank 0. Then we have a G(Af )-equivariant isomorphism of graded C-
vector spaces

lim−→
K

H∗(MK(G, h)(C),C) ≃
⊕

π∈ΠG

πf ⊗H∗(g,K∞;π∞)m(π),

where G(Af ) acts on the factors πf on the right hand side.

Here H∗(MK(G, h)(C),C) is Betti cohomology with coefficients in C.
The theorem is equivalent to the following corollary: LetK be an open compact

subgroup of G(Af ), and remember from page 2 of Lecture 1 that the Hecke algebra
HG,K at level K is the space of bi-K-invariant functions from G(Af ) to Q with
compact support, with the convolution product as multiplication.30 If π ∈ ΠG,
then πKf is a finite-dimensional representation of HG,K ⊗Q C.

Corollary 3.2. Let (G, h) be as in Theorem 3.1, and let K be an open compact
subgroup of G(Af ). Then we have an isomorphism of graded HG,K ⊗Q C-modules

H∗(MK(G, h)(C),C) ≃
⊕

π∈ΠG

πKf ⊗H∗(g,K∞;π∞)m(π).

28This is because nice enough functions on G(A) act on L2
G by compact operators, see for

example Proposition 2.2.1 and Corollary 2.2.2 of Booher’s notes [15].
29See Section I.5 of Borel and Wallach’s book [21] for more about (g, K)-cohomology. The

main point for us is that this is something that can in theory be calculated.
30Here we fixed any Haar measure on G(Af ) such that open compact subgroups of G(Af )

have rational volume.



SHIMURA VARIETIES (VERSION OF November 7, 2023) 41

3.2. Étale cohomology of canonical models: the Kottwitz conjecture.

Let ℓ be a prime number.
If (G, h) is a Shimura datum, then the projective system (MK(G, h)(C))K with

its action of G(Af ) has a model over the reflex field F = F (G, h). So the ℓ-adic étale

cohomology H∗
ét(MK(G, h)F ,Qℓ) has commuting actions of HG,K and Gal(F/F ).

For every isomorphism Qℓ ≃ C, we have comparison isomorphisms

H∗
ét(MK(G, h)F ,Qℓ) ≃ H∗(MK(G, h)(C),C)

equivariant for the action of HG,K , because this action comes from the geometric
Hecke correspondences (see Subsection 1.1). So, when Gder is of Q-rank 0, Mat-
sushima’s formula tells us that the action of HG,K⊗QQℓ on the cohomology groups

Hiét(MK(G, h)F ,Qℓ) is semi-simple, that the only representations of HG,K that ap-
pear are the πKf for π ∈ ΠG, and that the corresponding πKf -multiplicity space

HiK(πf ) := HomHG,K
(πKf ,H

i
ét(MK(G, h)F ,Qℓ)) is of dimension
∑

π′∈ΠG|π′

f
≃πf

m(π′) dimHi(g,K∞;π′
∞).

We would like to calculate the action of Gal(K/K) on HiK(πf ). Kottwitz has
a very precise conjecture describing HiK(πf ), and we want to state that conjecture
in the simplest case. We need some preparation.

3.2.1. The Langlands group of F . The Langlands group LF of F is a conjec-
tural group scheme over C whose irreducible representations on n-dimensional vec-
tor spaces should classify the cuspidal automorphic representations of GLn(AF ).
Remember that we defined discrete automorphic representations of GLn(AF ) =
GLn(F ⊗Q A) in 3.1.1; roughly speaking, cuspidal automorphic representations are
discrete automorphic representations that don’t arise from an automorphic rep-
resentation of a Levi subgroup of GLn via parabolic induction. Langlands con-
jectures that there is a bijection π 7→ φπ from the set of cuspidal automorphic
representations π of GLn(AF ) to the set of equivalence classes of representations
φπ : LF → GLn(C), and that this correspondence is determined by local compati-
bilities. We call φπ the Langlands parameter of π.

More precisely, if π is a discrete automorphic representation of GLn(AF ), then
we can write π as a restricted tensor product

⊗′
v πv over all places of F , where

πv is an irreducible admissible representation of GLn(Fv). On the other hand,
for each place v of F , we have the (non conjectural) Langlands groups LFv

of
Fv, with a (conjectural) embedding LFv

⊂ LF , and the (non conjectural) local
Langlands correspondence relates irreducible admissible representations of GLn(Fv)
and n-dimensional representations of LFv

(“local Langlands parameters”). The
local Langlands correspondence over R and C was proved by Langlands in [71] (for
all groups, not just GLn). The local Langlands correspondence over p-adic local
fields was proved independently by Harris-Taylor ([49]), Henniart ([50]) and Scholze
([105]). For our purposes it is enough to understand the unramified local Langlands
correspondence (over p-adic fields), which is just given by the Satake isomorphism;
see Dick Gross’s notes [47] for an introduction to the Satake isomorphism. If π is
a cuspidal automorphic representation and we write π =

⊗′
v πv, then we expect

that, for every place v of F , the restriction φπ|LFv
corresponds to πv by the local

Langlands correspondence, and that this uniquely determines φπ . In fact, it should
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be enough to know φπ at the finite places v such that πv is unramified (hence the
corresponding representation of LFv

is given by the Satake isomorphism).
It is also expected that LF canonically surjects to GF,C, where GF is the motivic

Galois group of F , a group scheme overQ defined as the Tannakian group of the con-
jectural category of mixed motives over F . 31 The irreducible representations of LF
factoring through GF,C are supposed to correspond to automorphic representations
satisfying a certain condition at the infinite places of F , called algebraic automor-
phic representations. On the other hand, for every prime number ℓ, the étale ℓ-adic
realization functor defines a continuous morphism of groups Gal(F/F )→ GF (Qℓ),
that is supposed to be injective (by the conservativity conjecture) and have dense
image (by the Tate conjecture).

Remark 3.3. The philosophy behind the Langlands group of a number field,
and its relation to the motivic Galois group, are explained much better in Clozel’s
paper [29]. The extension of Clozel’s ideas to groups other than GLn was worked
out in the paper [27] by Buzzard and Gee.

Now we come back to the case of a connected reductive group G. We need to
define the L-group of G; a good reference for this is Part I of [18] or Section 1 of
[60]. Let T a be maximal torus of G

Q
and B be a Borel subgroup of G

Q
containing

T . The based root datum of G is the family R(B, T ) := (X∗,Φ,∆, X∗,Φ∨,∆∨),
where X∗ = X∗(T

Q
), Φ ⊂ X∗ is the set of roots of T

Q
in G

Q
, ∆ is the set of simple

roots corresponding to B, X∗ = X∗(TQ) and ∆∨ ⊂ Φ∨ ⊂ X∗ are the set of simple

coroots and coroots. The based root datum is independent of the choice of (T,B) in
the following sense: if T ′ is a maximal torus of G

Q
and B′ ⊃ T ′ is a Borel subgroup

of GQ, then there exists g ∈ G(Q) such that B′ = gTg−1 and T ′ = gTg−1, and

the isomorphism R(B, T )
∼→ R(B′, T ′) induced by g is independent of the choice of

g. So we just write R(G) instead of R(B, T ). In particular, we get a morphism of
groups from Aut(G

Q
) to the group of automorphisms of the based root datum of G,

which turns out to be surjective with kernel the group of inner automorphisms; any
pinning of G gives a splitting of the surjective morphism Aut(G

Q
)→ Aut(R(G)).

The dual group Ĝ of G is the complex connected reductive group with based
root datum (X∗,Φ∨,∆∨, X∗,Φ,∆).

Until now, we just needed G to be a connected reductive group over Q. But as
G is defined over Q, we get an action of Gal(Q/Q) on its based root datum R(G),

and if we fix a pinning of Ĝ, then this defines an action of Gal(Q/Q) on Ĝ. The

L-group of G is LG = Ĝ⋊WQ, where WQ ⊂ Gal(Q/Q) is the Weil group of Q. 32

Remark 3.4. If ℓ is a prime number, we could define Ĝ to be the connected
reductive group over Qℓ with root datum (X∗,Φ∨, X∗,Φ), and we would get a

group LG over Qℓ. We write Ĝ(Qℓ) and
LG(Qℓ) for the resulting groups, when we

want to distinguish them from the complex versions. Which form of the L-group
we use depends on the context: for Langlands parameters defined on LF , we use
the complex form, and for Langlands parameters defined on Gal(F/F ), we use the
ℓ-adic form.

31To make this precise, we need a fiber functor. We fix an embedding of F into C and take
the fiber functor given by the corresponding Betti realization with Q-coefficients.

32For the Weil group, see for example Tate’s Corvallis notes [116].
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Example 3.5. If G is of type A, D, E, F or G, then Ĝ is of the same type as

G. If G is of type Bn (resp. Cn), then Ĝ is of type Cn (resp. Bn). We can also

relate other properties of G and Ĝ: for example, the derived group Gder is simply

connected if and only if Z(Ĝ) is connected, and in that case Z(Ĝ) is the dual group
of G/Gder.

Here are some examples of dual groups:

• ĜLn = Û(p, q) = GLn(C) if p+ q = n;

• ŜLn = ̂SU(p, q) = PGLn(C) if p+ q = n;

• P̂GLn = SLn(C);

• Ŝp2n = SO(2n+ 1,C), ĜSp2n = GSpin2n+1(C);

• ̂GU(p, q) = GL1(C)×GLn(C).

We see that different groups can have isomorphic dual groups. In fact, if G′ is
an inner form of G, then the L-groups LG and LG′ are isomorphic. However, as
U(p, q) is not an inner form of GLn, the actions of Gal(Q/Q) on their dual groups
are not the same, and we get non-isomorphic L-groups. If G = GLn (or more

generally if G is split over Q), then Gal(Q/Q) acts trivially on Ĝ. On the other
hand, if G = U(p, q) and if E is the imaginary quadratic extension of Q that we

used to define G, then G splits over E, so Gal(Q/Q) acts on Ĝ = GLp+q(C) via
its quotient Gal(E/Q), and the nontrivial element of Gal(E/Q) acts as a non-inner
automorphism of GLp+q(C), i.e. a conjugate of the automorphism g 7→ tg−1 (which
conjugate depends on the choice of the pinning).

Coming back to the Langlands correspondence for G, there are several compli-
cations:

• A cuspidal automorphic representation π of G(A) should now have a
Langlands parameter φπ with values not in GLn(C) but in LG;
• There is a still a characterization of algebraic automorphic representa-
tions (conjecturally corresponding to the parameters that factors through
GF,C), but it is more complicated, see Buzzard and Gee’s paper [27];
• Distinct cuspidal automorphic representations can have the same Lang-
lands parameter. We say that they are in the same L-packet.

If π is an algebraic cuspidal automorphic representation of G, then we expect
φπ : GQ,C → LG to be defined over a finite extension L of Q in C. Choosing a finite

place λ of L over a prime number ℓ, we get a morphism from GQ(Qℓ) into the ℓ-adic

version of LG, and this gives a morphism σπ : Gal(Q/Q)→ LG(Qℓ), also called the
Langlands parameter of π, and whose value on the Frobenius elements at almost all
prime numbers p is predicted by the Satake parameter of πp. Now the conjecture
only involves well-defined objects, and we can actually try to prove it !

Remark 3.6. If we are very brave and want to classify all discrete automorphic
representations of G(A), then there is an extension of the Langlands conjecture due
to Arthur. Now a discrete automorphic representation π should have a parameter
ψπ : LF × SL2(C) → LG, satisfying a long list of properties (in particular com-
patibility with a local version of the Arthur conjectures), and there is a somewhat
explicit formula to calculate the multiplicity m(π). For a quick review of Arthur’s
conjectures, see Section 8 of Kottwitz’s paper [62]. Warning: if π is cuspidal, then
we can recover φπ from ψπ and vice versa, but the two parameters are not equal.
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3.2.2. The Kottwitz conjecture. Let (G, h) be a Shimura datum, and let F =
F (G, h) be its reflex field. We assume that Gder is of Q-rank 0, so that the Shimura
varieties MK(G, h)(C) are compact.

The conjugacy class of the cocharacter µ := hC ◦r : GL1,C → GC is defined over

F (see 1.4.3), hence it defines a finite-dimensional representation rµ of LGF (Qℓ) :=

Ĝ(Qℓ) ⋊ WF in the following way (see Lemma 2.1.2 of Kottwitz’s paper [59]):

choose a maximal torus T̂ of Ĝ and a Borel subgroup B̂ containing T̂ that are
part of a splitting fixed by WF . The cocharacter hC ◦ r corresponds to a unique

dominant character µ of T̂ , an we denote by Vµ the corresponding highest weight

representation of Ĝ(Qℓ). The action of Ĝ(Qℓ) on Vµ extends to a unique action rµ
of LGF (Qℓ) such that WF acts trivially on the highest weight subspace.

Examples 3.7. (1) If G = GSp2d and (G, h) is the Shimura datum of

Example 1.35, then Ĝ = GSpin2d+1(C) and rµ : Ĝ → GL2d(C) is the
spin representation.

If d = 1, then GSp2d = GL2 and rµ is the standard representation if

ĜL2 = GL2(C).
If d = 2, then we have an exceptional isomorphism GSpin5(C) ≃

GSp4(C), and rµ is isomorphic to the standard representation of GSp4(C).
(2) If G = GU(p, q) and (G, h) is the Shimura datum of Example 1.41, then

Ĝ ≃ GL1(C) × GLp+q(C) and rµ is, up to twists by characters, the qth
exterior power of the standard representation of GLp+q(C).

Let K be an open compact subgroup of G(Af ), let d = dimMK(G, h), and let
π be a cuspidal automorphic representation of G(A) such that the πKf -multiplicity

space HiK(πf ) of the ith cohomology group Hi(MK(G, h)(C),C) is nonzero for at
least one i ∈ Z. Then π should be algebraic, so its Langlands parameter should
give rise to a Galois representation σπ : Gal(Q/Q)→ LG(Qℓ) as above.

Here we give a simplified version of the conjecture (from Section 1 of Kottwitz’s
paper [63]); the general version of the conjecture, also due to Kottwzitz, can be
found in Section 10 of [62], and we will discuss it in 3.5.

Conjecture 3.8. Under some assumptions on the Shimura datum (see Re-
mark 3.9(1)), there is an explicitly defined integer a(πf ) such that we have an

equality of virtual representations of Gal(F/F ):

2d∑

i=0

(−1)i[HiK(πf )(d/2)] = a(πf )[(rµ ◦ σπ)].

Moreover, the integers i such that HiK(πKf ) 6= 0 all have the same parity.

Remark 3.9. (1) The conjecture as stated is in a very naive form and
false for general Shimura varieties. In fact, we only expect it to be true
when Gder has Q-rank 0 and G has no endoscopy, i.e. satisfies Propo-
sition 2.40 (the correct technical condition is that G should admit no
nontrivial elliptic endoscopic triple).

As the Shimura varieties are then projective (and smooth forK small
enough), by the Weil conjectures (proved by Deligne, see [36]), the rep-
resentation HiK(πf ) of Gal(F/F ) is pure of weight i for every i ∈ Z, so
we can separate the degrees in the formula of Conjecture 3.8 by using
Frobenius weights.
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(2) While we cannot hope to prove the Kottwitz conjecture without first
constructing the Langlands parameter of σπ , we do know what the image
by σπ of the Frobenius element Frob℘ at a place ℘ of F over almost
every prime number p should be, so we can try to prove that Frob℘
has the correct characteristic polynomial on the HiK(πf ). For the simple
Shimura varieties of Subsection 2.4, Kottwitz proved this consequence of
his conjecture in [63, Theorem 1].

(3) If we know the local Langlands correspondence for G, we can also try
to check that the restriction to all local Galois groups of the represen-
tations HiK(πf ) are as predicted by the Kottwitz conjecture. This is a
much harder problem and we won’t discuss it here; see for example the
book [49] of Harris-Taylor for an example among many of this kind of
calculation.

3.3. Applications of the Kottwitz conjecture.

3.3.1. The zeta function of a Shimura variety.

Definition 3.10. Let X be a smooth proper variety over a finite field Fq. The
Hasse-Weil zeta function of X is the following formal power series in q−s:

Z(X, s) = exp(
∑

n≥1

card(X(Fqn))

n
q−sn).

Using the Grothendieck-Lefschetz fixed point formula (cf. Theorem 3.15), we
get the following result.

Theorem 3.11 (Grothendieck, see Theorem 3.1 of [32]). Let Frobq ∈ Gal(Fq/Fq)
be the geometric Frobenius (the inverse of the arithmetic Frobenius a 7→ aq). Then

Z(X, s) =

2 dim(X)∏

i=0

det(1− q−sFrobq,Hiét(XFq
,Qℓ))

(−1)i+1

.

In particular, the formal power series Z(X, s) is actually a rational function in
q−s. (This last corollary was already known by work of Dwork, see [40].)

Remark 3.12. We can define the zeta function of any algebraic variety over
Fq by the same formula, and Theorem 3.11 still holds providing we use étale coho-
mology with proper supports.

Now let X be a proper smooth algebraic variety over a number field F . For all
but finite many finite places ℘ of F , the variety X has a proper smooth model X
over OF,℘ (we say that X has good reduction at ℘), and we set

ζX,℘(s) = ζXκ(℘)
(card(κ(℘))−s),

where κ(℘) = OF /℘ is the residue field of ℘. By Theorem 3.11 and the special-
ization theorem for étale cohomology, 33 this does not depend on the choice of the
model.

If v is a finite place of F where X does not have good reduction or an infinite
place, we will not give the definition of ζX,v(s); we will just say that ζX,v(s) is a
rational function of card(κ(v))−s if v is finite and a product of Γ functions if v

33Which follows from the proper and smooth base change theorems, see [1] Exposés XII and
XVI.
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is infinite. See Serre’s notes [108] for the definitions and for the conjectures on
Hasse-Weil zeta functions.

Definition 3.13. The Hasse-Weil zeta function of X is the infinite product

ζX(s) =
∏

v place of F

ζX,v(s).

Example 3.14. If X = SpecQ, then ζX is the Riemann zeta function.

A priori this product only makes sense for ℜ(s) big enough. The Hasse-Weil
conjecture predicts that ζX(s) has a meromorphic continuation to C and a func-
tional equation similar to the one of the Riemann zeta function.

This conjecture seems to be out of reach in general, but for Shimura varieties
we can approach it using the Kottwitz conjecture. The general idea goes as follows:

(1) Essentially by Theorem 3.11, we have an equality

ζX(s) =

2 dim(X)∏

i=0

L(Hiét(XF ,Qℓ), s)
(−1)i+1

,

where, for every continuous representation ρ of Gal(F/F ), we denote by
L(ρ, s) the L-function of ρ. (See Section 3 of Tate’s Corvallis notes [116].)

(2) Suppose that (G, h) is a Shimura datum such that Gder has Q-rank 0,
that F = F (G, h) and X = MK(G, h). For every i, we have up to
semi-simplification

Hiét(MK(G, h)F ,Qℓ) ≃
⊕

π∈ΠG

HiK(πf )
dim(πK

f )

as representations of Gal(F/F ).
(3) The Kottwitz conjecture predicts that HiK(πf ) is a sum of copies of rµ◦σπ,

where σπ : Gal(F/F ) → LG(Qℓ) is the Langlands parameter of π and
rµ is the algebraic representation of LG defined in 3.2.2. But the local
compatibility between π and σπ implies immediately that

L(rµ ◦ σπ , s) = L(π, s, rµ),

where the L-function L(π, s, rµ) is defined in Borel’s survey [18].
(4) In theory we understand the analytic properties of L-functions of auto-

morphic representations better, so we get some information on the zeta
function of MK(G, h).

In practice the automorphic L-functions that appear are usually not standard
L-functions and so our understanding of them is still limited. However, this method
can still go through when rµ is the standard representation of a classical group,
such as in the case of modular curves (when G = GL2) or Picard modular surfaces
(when G = GU(2, 1)), or more generally when GR is a unitary group of signature
(n − 1, 1) × (n, 0)r−1, as can be the case for Kottwitz’s simple Shimura varieties
(see 2.4.2).

3.3.2. The global Langlands correspondence. Let (G, h) be a Shimura datum,
and let F = F (G, h). In a way, the Kottwitz conjecture says that the cohomology
lim−→K

H∗
ét(MK(G, h)F ,Qℓ) realizes the global Langlands correspondence for those

automorphic representations of G(A) that contribute to Matsushima’s formula for
MK(G, h)(C). So we could try to use this cohomology to construct the global
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Langlands correspondence in that case, and then use results like the main theorem
of Kottwitz’s [63] to check that this does satisfy the desired compatibility with the
local correspondence (at least in the unramified case).

For GL2 and its inner forms, this is older than Kottwitz’s conjecture; see for
example the papers [65] and [34] of Kuga-Shimura and Deligne, respectively. For
GLn with n ≥ 3, we have no Shimura variety, so we have to use other groups, and
we run into several problems:

(1) The representation of Gal(F/F ) that appears in the cohomology ofMK(G, h)
is not σπ (this would not even make sense, as σπ is a morphism into
LG(Qℓ)) but rµ ◦ σπ;

(2) There are multiplicities (the integer a(πf ) in the Kottwitz conjecture);
(3) We want to construct the Langlands correspondence for GLn, not some

strange unitary or symplectic group;
(4) We want to get a representation of Gal(Q/Q), not Gal(F/F );
(5) This will only ever work for “cohomological” automorphic representa-

tions, i.e. those π that appear in the cohomology of Shimura varieties.
This is a condition on π∞: roughly, we need it to have nontrivial (g,K∞)-
cohomology.

All of these can be somewhat addressed, at some cost. For point (1), we can

choose the group such that Ĝ is classical and rµ is the standard representation.
This will for example be the case if G = GU(n− 1, 1), although in practice we will
rather want G to be a more complicated unitary group (defined by a CM extension
of Q of degree 2r > 2) of signature (n− 1, 1)× (n, 0)r−1 at infinity, so that we can
get a simple Shimura variety. Of course, this solution puts even greater restrictions
on the groups that we can use, so it seems that we are making problems (3) and
(4) worse. For problem (2), we can sometimes calculate the multiplicities, and they
tend to be equal to 1 for nice unitary groups.

Problem (3) can be attacked using the Langlands functoriality principle. The
idea is that, if discrete automorphic representations of G(A) are parametrized by
morphisms LQ×SL2(C)→ LG, then, if H is another connected reductive algebraic
group over Q and if we have a morphism LG → LH , then we should be able to
“transfer” discrete automorphic representations from G to H . As with the global
Langlands correspondence or the Arthur conjectures, this principle can be made
very precise at “good” primes (i.e. primes where both groups and all automorphic
representations we consider are unramified) using the Satake isomorphism, so we
can pin down the conjectural transfer using a local-global compatibility principle.
Of course, things are not so simple: the conjectural Arthur parametrization is not
bijective in general so we can only expect to transfer L-packets, and the heuristic
does not tell us how to actually construct the transfer.

One favorable case is when Ĝ is the set of fixed points of an automorphism of Ĥ,
because then we can use the (twisted) Arthur-Selberg trace formula to construct the
transfer map, although this is very technically difficult; see 3.4.4 for a very simple
instance of the (untwisted) trace formula. This is for example the case if G = Sp2d

and H = GL2d+1 (see Arthur’s book [8]), if G is the group U(p, q) constructed using
a quadratic imaginary extension E of Q and H = GLp+q(E), seen as an algebraic
group over Q (see the works by Mok [89] and Kaletha-Minguez-Shin-White [52]),
or if G = GLn and H = GLn(E) (seen as an algebraic group over Q) for E/Q a
cyclic extension (see the book [9] of Arthur-Clozel). Using trace formula techniques,
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we can transfer discrete automorphic representations of GLp+q(A) to GLp+q(AE),
then back down to U(p, q)(A), and then use the cohomology of Shimura varieties
for this unitary group to construct Galois representations. One caveat is that this
only works for representations of GLp+q(AE) that are conjugate self-dual (because

their parameter should be stable by the involution of ̂GLp+q(E) whose set of fixed

points is equal to Û(p, q)). This kind of construction will also work for more general
unitary groups defined using other CM fields or division algebras over them, and
in fact we want to use some of them rather than U(p, q) because of problem (1).
Again, this is difficult and there are many technical problems, including annoying
congruence conditions on p + q. The first results that we are aware of on the
construction of parts of the Langlands correspondence using the cohomology of
Shimura varieties, outside of the case of GL2, are due to Clozel (see [30], which
rests on the results of Kottwitz from [63]). More recent and more powerful results
can be found in the papers [111] of Shin and [107] of Scholze-Shin; these feature
unitary Shimura varieties that are not simple, so they use a more complicated form
of the Kottwitz conjecture (see Subsection 3.5), as well as the fundamental lemma.
See Dat’s Bourbaki notes [31] for a statement of the fundamental lemma and some
context; the fundamental lemma is known by work of Laumon-Ngo ([76]), Ngo
([94]) and Waldspurger ([119], [120]).

Problem (4) can be addressed by “gluing” Galois representations constructed
using different Shimura varieties. More precisely, suppose that you have a discrete
automorphic representation π of GLn(A), and that you know that it is self-dual
and that π∞ satisfies all the required conditions for π to transfer to cohomological
automorphic representations of unitary groups. By varying the CM field Ei (and the
corresponding unitary group), we get a family of representations σi of Gal(Ei/Ei),
and σi should be the restriction of σπ. We can check that these representations are
compatible by looking at what happens at “nice” prime numbers, and then glue
them if we chose the Ei disjoint enough.

Problem (5) is already an issue for GL2 and requires new techniques, as in the
paper [39] of Deligne and Serre.

An additional problem, mentioned in the discussion of (3), is that we can only
ever transfer self-dual automorphic representations of GLn to groups that have
Shimura varieties, but we will not try to explain the solution to this problem here.
See for example the papers [28] of Chenevier-Harris, [48] of Harris-Lan-Taylor-
Thorne, [106] of Scholze, or [25] of Boxer.

3.4. Proving the Kottwitz conjecture. We will present the original ap-
proach to the Kottwitz conjecture, due to Ihara, Langlands and Kottwitz. We
will not talk about the more refined approaches through Igusa varieties or through
Scholze’s methods (see for example the book [49], or the papers [111] and [107]
already cited above), that also allow us to understand the cohomology at ramified
primes.

The situation is the following: we have a Shimura datum (G, h) such that
Gder is of Q-rank 0 (so that the Shimura varieties MK(G, h) are projective), and
a discrete automorphic representation π of G(A). We fix a small enough open
compact subgroup K of G(Af ), and we write F = F (G, h). We are trying to

understand the representation of Gal(F/F ) on the πKf -multiplicity spaces HiK(πf )

in the cohomology groups Hiét(MK(G, h)F ,Qℓ).



SHIMURA VARIETIES (VERSION OF November 7, 2023) 49

3.4.1. The specialization theorem. We restrict our attention to the action of
the local Galois group at finite places ℘ of F that are “nice enough”, i.e. such
that MK(G, h) has a proper smooth integral model MK over OF,℘. Remember
from 2.2.2 that, if (G, h) is of abelian type, then we have control (in terms of G
and K) over the places ℘ where we have a smooth integral model; when (G, h) is
of Hodge type and Gder has Q-rank 0, we also know that this integral model is
projective by the work of Madapusi Pera (see [80]). However, in general we only
know that we have smooth projective integral models for all but finitely many ℘.

Fix ℘ as in the previous paragraph, and let κ(℘) be the residue field of ℘. Then
we have an exact sequence

1→ I℘ → Gal(F℘/F℘)→ Gal(κ(℘)/κ(℘))→ 1,

where I℘ is the inertia group at ℘. Moreover, as κ(℘) is a finite field, its absolute
Galois group is topologically generated by the geometric Frobenius Frob℘, which is

the inverse of the arithmetic Frobenius a 7→ acard(κ(℘)).
The specialization theorem for étale cohomology (which follows from the proper

and smooth base change theorems, see [1] Exposés XII and XVI) tells us that
the representations Hiét(MK(F, h)F℘

,Qℓ) of Gal(F℘/F℘) are unramified, i.e. that

I℘ acts trivially on them, and that we have isomorphisms of representations of

Gal(κ(℘)/κ(℘)):

(3.1) Hiét(MK(F, h)F℘
,Qℓ) ≃ Hiét(MK,κ(℘),Qℓ).

If we have a Hecke correspondence defined by g ∈ G(Af ) and K ′ ⊂ K∩gKg−1,
then these isomorphisms will be compatible with the corresponding Hecke operator,
provided that MK′(G, h) also has a proper smooth model over OF,℘ and that the
Hecke correspondence extends to the models over OF,℘.

So we can now work over the finite field κ(℘).

3.4.2. The Grothendieck-Lefschetz fixed point formula and Deligne’s conjecture.
Suppose that we were only trying to understand the representation of Gal(F℘/F℘)

on H∗
ét(MK(G, h)F℘

,Qℓ) (and not on the multiplicity spaces HiK(πKf )), and that we

only cared about semisimplications. Then, by the isomorphism (3.1), it would suf-
fice to calculate the characteristic polynomial of Frob℘ acting on H∗

ét(MK,κ(℘),Qℓ).

We can do this thanks to the Grothendieck-Lefschetz fixed point formula (already
mentioned before Theorem 3.11):

Theorem 3.15 (Grothendieck, cf. Théorème 3.2 of [32]). Let Fq be a finite

field, Fq be an algebraic closure of Fq, ℓ be a prime number different from the

characteristic of Fq and Frobq be the geometric Frobenius automorphic of Fq. Then,
for every separated Fq-scheme of finite type X and every positive integer r, we have

2 dim(X)∑

i=0

(−1)iTr(Frobrq,Hiét,c(XFq
,Qℓ)) = card(X(Fqr )),

where Fqr is the unique extension of Fq of degree r in Fq.

If we want instead to understand the action of Gal(F℘/F℘) on the Hecke iso-
typic components, we need to calculate the traces of Hecke operators multiplied
by powers of Frob℘ on H∗

ét(MK(G, h)F℘
,Qℓ). For this, we use a generalization of
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the Grothendieck-Lefschetz fixed point formula. We will not state the most general
version here, but just the consequence that we need.

We use the notation of Theorem 3.15. Let X,X ′ be separated Fq-schemes of
finite type, and let a, b : X ′ → X be finite morphisms. Suppose that the trace
morphism Trb : b∗b∗ → id exists. 34 Let u be the endomorphism of H∗

ét,c(XFq
,Qℓ)

that is the composition of the pullback by a map H∗
ét,c(XFq

,Qℓ) → H∗
ét,c(X

′
Fq
,Qℓ)

and of the map H∗
ét,c(X

′
Fq
,Qℓ)→ H∗

ét,c(XFq
,Qℓ) induced by Trb. Finally, we denote

by FX : X → X the Frobenius morphism (which is identity on the underlying
topological spaces and raises functions to the qth power).

Theorem 3.16. For any big enough positive integer r, we have

2 dim(X)∑

i=0

(−1)iTr(Frobrq·u,Hiét,c(XFq
,Qℓ)) = card({x′ ∈ X ′(Fq) | a(x′) = F rX◦b(x′)}).

Although it is still often refereed to as “Deligne’s conjecture”, this statement is
a theorem: if X,X ′ are reductions of Shimura varieties and a, b are Hecke operators,
it was proved by Pink in [98]. In the general case, it was proved independently by
Fujiwara ([42]) and Varshavsky ([118]).

So we now need to understand the set of points of the Shimura varieties
MK(G, h) and MK′(G, h) (or rather of their integral models) over κ(℘), as well
as the action of the Frobenius morphism and of Hecke correspondences on these
points.

3.4.3. The Langlands-Rapoport conjecture. The Langlands-Rapoport conjec-
ture gives a purely group-theoretical description of the set of points of a Shimura
variety over the algebraic closure of the residue field at a good place ℘ of the reflex
field, as well as a description of the action of the Frobenius at ℘ and of Hecke
operators on this set. We only give a rough statement here. We actually present a
corollary of the original conjecture, that is, a description of the points of a Shimura
variety over a finite field (not its algebraic closure); the derivation is explained in
Section 5 of Milne’s paper [85]. As a consequence, our notation is not the same
as in the paper of Langlands and Rapoport or the book of Reimann (see the next
paragraph), in fact we follow Kottwitz’s notation in [62]. We will also restrict to
the case of groups with simply connected derived subgroups.

The original paper of Langlands and Rapoport on their conjecture is [72];
another good source is Milne’s survey paper [85]. A more compact presentation of
the conjecture can be found in Appendix B of Reimann’s book [102], where the
author also fixes some technical mistakes in the previous references.

Let (G, h) be a Shimura datum with reflex field F , let p be a prime number
and ℘ a place of F above p. Suppose that G and F are unramified at p, and let
K = KpKp be a level with Kp ⊂ G(Qp) hyperspecial. Then we expect the Shimura
variety MK(G, h) to have a “nice” model MK over OF,℘, and the Langlands-
Rapoport conjecture gives a description of MK(Fq), where Fq is an extension of
O/℘. The description has the rough shape

(3.2) MK(Fq) =
∐

ϕ

Iϕ(Q)\(Xp(ϕ)×Xp(ϕ)),

34This holds for example if b is flat or if X, X′ are normal; this is due to Deligne, see SGA 4
XVII 6.2 in [1].
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where ϕ is in a certain set of parameters, Iϕ is an algebraic group over Q (the
centralizer of ϕ), Xp(ϕ) involves the finite adeles outside of p and Xp(ϕ) is a purely
p-adic object. The conjecture also includes a description of the actions of the
Frobenius morphism and of the Hecke operators.

It would take too long to explain what the parameters ϕ are, but we can say
that they give rise to triples (γ0, γ, δ), where:

• γ0 is a semisimple element of G(Q), given up to G(Q)-conjugacy;
• γ = (γℓ)ℓ 6=p is an element of G(Apf ), given up to G(Apf )-conjugacy, and

such that γℓ and γ0 are conjugated under G(Qℓ) for every ℓ 6= p;
• δ is an element of G(L), where L is an unramified extension of degree
r = [Fq : O/℘] of F℘, such that, if we denote by σ ∈ Gal(L/Qp) the lift

of the (arithmetic) Frobenius, then N(δ) = δσ(δ) . . . σr−1(δ) is G(Qp)-
conjugate to γ0.

There are some more conditions on the triple (γ0, γ, δ), see for example Section 2
of [62]. One of these conditions is that a certain invariant α(γ0; γ, δ) defined by
Kottwitz should vanish, and it implies that there exists an inner form I of Gγ0 , the
centralizer of γ0 in G, such that IQv

≃ GQv ,γv for v 6= p,∞, IQp
is isomorphic to

the twisted centralizer of δ (see page 169 of [62]) and IR is anisotropic modulo the
center of G. We then take Iϕ = I,

Xp(ϕ) = {g ∈ G(Apf )/Kp | g−1γg ∈ Kp}

and

Xp(ϕ) = {g ∈ G(L)/G(OL) | g−1δσ(g) ∈ G(OL)µh(̟L)G(OL)},
where we extended G to a reductive group scheme over Zp, ̟L is a uniformizer
of L, and µh is the morphism hC ◦ r : GL1,C → GC, seen as a conjugacy class of

morphisms GL1,Qp
→ GQp

that is stable by Gal(Qp/L); as G is quasi-split over L

for r big enough, we may assume up to taking r big enough that µh is defined over
L (see Lemma 1.1.3 of [59]).

If the Shimura datum (G, h) is PEL of type A or C, so thatMK has a modular
description as in Definition 2.10, then the triples (γ0, γ, δ) should parametrize the Q-
isogeny classes of triples (A, λ, ι) as in the moduli problem. This parametrization
rests on Honda-Tate theory, which classifies abelian varieties A over finite fields
using their Frobenius, seen as a central element of End(A) ⊗Z Q. See Part III of
[62] for the case of Siegel modular varieties, and [64] for the PEL cases of type A
and C.

The Langlands-Rapoport conjecture is not known for general Shimura varieties,
because we do not even have integral models for general Shimura varieties. It is also
not known for Shimura varieties of abelian type, except in some particular cases
such as the case of quaternionic Shimura varieties (see the paper [102] of Reimann),
but there are some weaker versions that are proved and suffice for the application
to the Kottwitz conjecture. Here is my understanding of the current situation:

• If (G, h) is of PEL type andGder is simply connected (i.e. G is of typeA or
C), then Kottwitz formulated a (strictly) weaker form of the Langlands-
Rapoport conjecture in [62] and proved this reformulation in [64]. This
version is enough to provide a counting-point formula that can be com-
pared to the Arthur-Selberg trace formula (see below).
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• Dong Uk Lee (see [77]) generalized Kottwitz’s results for Shimura vari-
eties of Hodge type. The methods, and even the formulation itself, do
not seem to be generalizable to Shimura varieties of abelian type.
• Before that, Kisin has proved his own weaker version of the Langlands-
Rapoport conjecture in [55] for Shimura varieties of abelian type. This
version of the conjecture is not obviously weaker or stronger than Kot-
twitz’s version. One of its advantages is that it makes it easier to go from
Shimura varieties of Hodge type to Shimura varieties of abelian type, and
one drawback is that it does not imply a counting-point formula that we
can use with the Arthur-Selberg trace formula.
• In [56], Kisin, Shin and Zhu, working with Shimura varieties of abelian
type, formulated and proved a version of the Langlands-Rapoport con-
jecture that is weaker than the original conjecture but stronger than
Kottwitz’s and Kisin’s previous versions, and that is enough for the ap-
plication to the Kottwitz conjecture. (In fact they did more than that, as
they also “stabilized” the expression that they got; see Remark 3.17(1).)

The upshot is that, if g ∈ G(Af ) has a trivial component at the prime number
p under ℘ and f∞ = 1lKgK ∈ HK , we get a formula for the trace of Frobr℘ · f∞ on
the ℓ-adic cohomology ofMK(G, h) involving terms such as orbital integrals for f∞

(i.e. integrals of f over G(Af )-conjugacy orbits of elements of G(Q)) and twisted
orbital integrals of a function (depending on r) at p; a priori we only get this for r
big enough, but then the identity can be extended to all non-negative r. 35 This
is the kind of input that we can plug into the geometric side of the Arthur-Selberg
trace formula, see 3.4.4. The spectral side of the trace formula will then give us
an expression that can be massaged into what we want, that is, in cases when the
simplest form of the Kottwitz conjecture applies, the trace of Frobr℘ · f∞ on the
virtual representation

∑

i≥0

(−1)i
∑

π∈ΠG

a(πf )π
K
f ⊗ (rµ ◦ σπ)

of HK ×Gal(F/F ). So we win.

Remark 3.17. (1) The sentence “This is the kind of input that we can
plug into the geometric side of the Arthur-Selberg trace formula” in the
previous paragraph is sweeping a lot of difficulties under the rug. If we are
looking at cases where G has no endoscopy (such as the simple Shimura
varieties of Kottwitz), then the formula given by the Langlands-Rapoport
conjecture is not too far from the geometric side of the trace formula
(see Section 4 of [63]). In general, we must first perform a complicated
process known as “stabilization”, which uses difficult results such as the
fundamental lemma, cf. 3.3.2. See Section 4 of Kottwitz’s paper [62] for
an explanation of stabilization in the simpler case when Gder is simply
connected, and the book [56] of Kisin-Shin-Zhu for the case of general
Shimura data.

(2) Note that we never used Matsushima’s formula in our outline of the
proof of the Kottwitz conjecture. In fact, though it serves as a guide,
Matsushima’s formula is not logically necessary to the proof.

35This does require some work. We need to see that both sides are finite sums of terms of
the form a · br with a, b ∈ C, which is not obvious for the twisted orbital integrals.
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3.4.4. The Arthur-Selberg trace formula for a compact quotient. We consider
the situation of 3.1.1, so G is a connected reductive group over Q, SG is the
maximal Q-split torus in the center of G and AG = SG(R)0. We write L2

G for
L2(G(Q)\G(A)/AG,C), with the action of G(A) given by right translations.

We also assume that Gder is of Q-rank 0, so that the quotient G(Q)\G(A)/AG
is compact. Then the representation L2

G is semi-simple, and we have

(3.3) L2
G ≃

⊕̂

π∈ΠG

πm(π).

Fix a Haar measure onG(A). If f is a smooth function with compact support on
G(A), then we write R(f) for the action of f on L2

G by right convolution. Thanks
to our hypothesis on G, the operator R(f) is of trace class, and the goal of the
Arthur-Selberg trace formula is to give two expressions of its trace.

Theorem 3.18 (See Section 1 of [7] or [15]). We have

Tr(R(f)) =
∑

π∈ΠG

m(π)Tr(π(f))

=
∑

γ∈G(Q)/∼
vol(Gγ(Q)\Gγ(A)/AG)

∫

Gγ(A)\G(A)

f(x−1γx)dx,

where, in the first formula, π(f) is the operator
∫
G f(x)π(x)dx acting on the space

of π and, in the second formula, the sum is over all elements of G(Q) modulo
conjugation and, if γ ∈ G(Q), we denote by Gγ the centralizer of γ in G.

Note that we need to choose Haar measures on the groups Gγ(A) to make sense
of the second formula for R(f) (we also use the counting measure on Gγ(Q)), but
that the result does not depend on that choice.

The first formula for R(f) is called the spectral side. It follows from the iso-
morphism of (3.3).

The second formula for R(f) is called the geometric side. We can deduce it by
noting that R(f) is an integral operator with kernel

K(x, y) =
∑

γ∈G(Q)

f(x−1γy),

so the trace of R(f) must be equal to
∫
GK(x, x)dx. See Section 1 of [7] for more

details.

3.5. The general Kottwitz conjecture. Let us finally explain briefly how
the Kottwitz conjecture generalizes to arbitrary Shimura varieties. There are two
sources of difficulty:

• The fact that general Shimura varieties are not compact, which introduces
complications in the geometry: we will have to deal with compactifica-
tions and choose which cohomology theory to use.
• Endoscopy, which will make the Arthur-Selberg trace formula harder to
analyze.

Remark 3.19. Although we are concentrating on the case of constant coeffi-
cients for simplicity, we could also consider cohomology with coefficients in a local
system defined by a representation of the group G, as in Section 5 of Pink’s pa-
per [97]. In fact, it is necessary to work in this more general situation to make some
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inductive arguments work, but it does not complicate the calculation of cohomology
in an essential way.

3.5.1. Compactifications. There are many ways to compactify locally symmet-
ric spaces, see for example the book [20] of Borel and Ji for a detailed presentation.
However, in these notes we are interested in compactifications of Shimura varieties
that have the structure of an algebraic variety, and then there are two choices:

(1) The Baily-Borel compactification, also called minimal Satake compactifi-
cation, Satake-Baily-Borel compactification or just minimal compactifica-
tion. Its main advantage is that it is canonical, so for example Hecke cor-
respondences will extend to the Baily-Borel compactifications of Shimura
varieties, and that its boundary is stratified by lower-dimensional Shimura
varieties.36 Its main drawback is that it is very singular in general; for
example, the boundary of the Baily-Borel compactification of the Siegel
modular varietyMd,n has codimension d.

(2) The toroidal compactifications, which map to the Baily-Borel compacti-
fication. As the plural indicates, they are not canonical and depend on
extra data, so we cannot extend the action of the Hecke algebra to the co-
homology of any fixed toroidal compactification. On the other hand, we
can always find toroidal compactifications which are smooth projective
and whose boundary is a divisor with normal crossings, and the bound-
ary of a toroidal compactification is stratified by so-called mixed Shimura
varieties, which are a generalization of Shimura varieties to certain non-
reductive groups. Even if we were only interested in the Baily-Borel
compactification, the toroidal compactifications would be a very useful
tool to study it; they are also interesting in their own right.

Sections I.4, I.5 and III.4 of the book [20] contain a review of Satake and
Baily-Borel compactifications of locally symmetric spaces as topological spaces and
complex analytic spaces. The fact that the Baily-Borel compactification is a pro-
jective algebraic variety over C was proved by Satake for Siegel modular varieties,
and by Baily and Borel in general, see the paper [12]. As for toroidal compacti-
fications of complex Shimura varieties, they are studied in the book [11] of Ash,
Mumford, Rapoport and Tai. In his thesis [96], Pink constructed canonical mod-
els of the toroidal compactifications over the reflex field, and deduced that the
Baily-Borel compactification also descends to a projective algebraic variety over
that field. As in the case of Shimura varieties, the story of integral models is not
yet complete,37 and as for canonical models, the crucial part is to construct models
of the toroidal compactifications (we then get a model of the Baily-Borel compact-
ification as a byproduct). The case of modular curves is treated in the paper [33]
of Deligne-Rapoport, and that of Siegel modular varieties in the book [41] of Chai
and Faltings. The next case to be handled systematically was that of PEL type
Shimura varieties, in Lan’s thesis [67]. Then Madapusi Pera treated the case of
Hodge type Shimura varieties in his paper [80]. The case of abelian type Shimura
varieties seems to be within reach, but as far as I know it has not been written yet.

36Almost: the boundary strata are actually quotients of Shimura varieties by finite groups.
37And as in the case of Shimura varieties, we only discuss places of good reduction here.
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3.5.2. Intersection cohomology and Zucker’s conjecture. It is perfectly possible
to try calculating compact support cohomology of noncompact Shimura varieties
with the methods oulined in 3.4, this is for example what Laumon does in [73],
[75]. The issue is that the Arthur-Selberg trave formula will be harder to use,
because there is no simple spectral description of the cohomology such as the one
given by Matsushima’s formula in the compact case. Indeed, the generalization of
Matsushima’s formula, which is a theorem of Borel and Casselman (see [19]) gives
a spectral description of the L2 cohomology of the Shimura variety, so it would be
simpler to study that. The next problem is that L2 cohomology has a very non-
algebraic definition (it is the cohomology of the complex of L2 differential forms,
for a certain metric on the locally symmetric space); it has an action of the Hecke
algebra, but it is not clear at all a priori how to make the absolute Galois group of
the reflex field act on it.

Fortunately, this problem is solved by Zucker’s conjecture, which says that there
should be a Hecke-equivariant isomorphism between L2 cohomology of a Shimura
variety and intersection cohomology of its Baily-Borel compactification. Intersec-
tion cohomology is a cohomology theory adapted to singular spaces. It was first
introduced by Goresky and MacPherson (see [45]) as a modification of Betti co-
homology for stratified spaces, and then further studied by them in [46] using a
sheaf-theoretic interpretation due to Deligne. Then, in the book [14], Beilinson,
Bernstein, Deligne and Gabber put intersection cohomology into the wider context
of perverse sheaves: if X is a possibly singular space, its intersection cohomology
is the cohomology of a particular complex of sheaves on it, called the intersection
complex, which is a simple object in the abelian category of perverse sheaves (for
the middle perversity). We have been deliberately vague about the precise nature
of X , as one of the advantages of the sheaf-theoretic point of view is that it can
be adapted to many different situations; for example, X could be an algebraic
variety over a field and the intersection complex could be an étale complex with
Qℓ-coefficients; or X could be an algebraic variety over C and the intersection com-
plex could be a complex of Q-vector spaces for the analytic topology, or a mixed
Hodge module. 38 In any case, the intersection cohomology of X satisfies some of
the properties that we would expect from the cohomology of a nonsingular variety:

• Poincaré duality if X is proper;
• the hard Lefschetz theorem if X is projective;
• purity if X is proper (in the appropriate sense, e.g. in the sense of Deligne
(see [36]) if X is a variety over a finite field or as a Hodge structure if X
is a variety over C and we are using mixed Hodge modules).

It also satisfies comparison theorems between the different cohomology theories.
(See for example Chapter 6 of [14] for the comparison between the étale and Betti
theories.)

3.5.3. The Borel-Casselman theorem. We come back to Shimura varieties. Let
(G, h) be a Shimura datum, K ⊂ G(Af ) be a small enough level, X be the Shimura
variety MK(G, h), X∗ be the Baily-Borel compactification of X and IH∗(X∗) be
its intersection cohomology. We have seen that Hecke correspondences extend to

38We are avoiding the cases of non-algebraic X or integral coefficients, as there is no unique
“middle perversity” there. But the theory still makes sense, it is just slightly more complicated.
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Baily-Borel compactifications. Although intersection cohomology is not as func-
torial as usual cohomology, we can still make the Hecke algebra at level K act
on IH∗(X∗) (because Hecke operators are finite morphisms between Baily-Borel
compactifications and become finite étale when restricted to Shimura varieties).
Zucker’s conjecture (see [125, (6.20)]) says that, if we use the Betti version of
IH∗(X∗) with complex coefficients, then there is a Hecke-equivariant isomorphism
between IH∗(X∗) and L2 cohomology of X . Also, Zucker’s conjecture is actu-
ally a theorem, as it has been proved (at least) four times: by Looijenga ([78]),
Looijenga-Rapoport ([79]), Saper-Stern ([104]) and Saper ([103]). If we combine
it with the generalization of Matsushima’s formula due to Borel and Casselman
([19]), we finally get the following theorem (note the similarity with Theorem 3.1):

Theorem 3.20. Let (G, h) be a Shimura datum. Then we have a G(Af )-
equivariant isomorphism of graded C-vector spaces

lim−→
K

IH∗(MK(G, h)∗(C)) ≃
⊕

π∈ΠG

πf ⊗H∗(g,K∞;π∞)m(π),

where G(Af ) acts on the factors πf on the right hand side, MK(G, h)∗ is the Baily-
Borel compactification of MK(G, h) and we are using the Betti version of intersec-
tion cohomology (with constant coefficients for simplicity).

3.5.4. The Kottwitz conjecture. Let F be the reflex field of (G, h). If we use
the étale ℓ-adic version of intersection cohomology, then we get cohomology groups
lim−→K

IH∗(MK(G, h)∗
F
,Qℓ) equipped with commuting actions ofG(Af ) and Gal(F/F ),

which become isomorphic as G(Af )-modules to the cohomology groups of Theo-

rem 3.20 if we choose any isomorphism Qℓ ≃ C. We introduce the following virtual
representation of G(Af )×Gal(Qℓ/Qℓ):

IH =
∑

i≥0

(−1)i[lim−→
K

IHi(MK(G, h)∗
F
,Qℓ)],

where the brackets denote the class of a representation in the group of virtual
representations. The sum is actually finite, because the intersection cohomology
group vanishes for i ≥ 2 dim(MK(G, h)), and this dimension is independent of the
level K. We have a decomposition

IH =
∑

πf

[πf ]⊗ σ(πf ),

where πf goes through the set of equivalence classes of irreducible representations

of G(Af ) and each σ(πf ) is a virtual representation of Gal(F/F ). By Theorem 3.20,
we know that the only πf that can occur are the finite parts of discrete automorphic
representations of G, and we have a formula for the dimension of σ(πf ). The
Kottwitz conjecture, stated on page 201 of [62], gives a precise description of σ(πf ).

We will not state a precise form of the conjecture, as it would require introduc-
ing too much notation, but we will try to give its flavor. The most naive guess is
that we should have something like

σ(πf ) = ±
∑

π′∈ΠG, π′

f
≃πf

m(π′)[(rµ ◦ σπ′)],

where rµ and σπ are as in Conjecture 3.8, but this is not true because of en-
doscopy. What we actually expect is as follows. As mentioned in Remark 3.6,
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discrete automorphic representations of G should be classified by Arthur parame-
ters ψ : LQ × SL2(C)→ LG. The parameters corresponding to the representations
appearing in the cohomology of Shimura varieties are expected to factor through
the motivic Galois group of Q and to be defined over a finite extension of Q in C,
and there is an explicit recipe giving σπ from the parameter corresponding to π;
we denote by Vψ the space of the representation rµ with the action of Gal(F/F )

coming from σπ .
39 Let Sψ be the centralizer of ψ in Ĝ; this group, or rather its

quotient Sψ/S
0
ψZ(Ĝ)Gal(Q/Q), should control the structure of the Arthur packet of

representations associated to ψ and the multiplicities of these representations. We
can decompose Vψ as a direct sum

Vψ =
⊕

ν

Vψ,ν ,

where ν runs over characters of Sψ and Vψ,ν is the part where Sψ acts by ν−1.
Then the Kottwitz conjecture says that

σ(πf ) =
∑

ψ

∑

ν

n(πf , ν)[Vψ,ν ],

where ψ runs over Arthur parameters whose packets contains a representation with
finite part πf , and n(πf , ν) is the product of a sign and of a multiplicity (which is
the multiplicity of ν in some finite-dimensional representation of Sψ depending on
πf ).

3.5.5. Proving the Kottwitz conjecture. The general strategy of 3.4 still applies
with some adaptations:

(1) The specialization theorem still holds for intersection cohomology, as long
as we have toroidal compactifications that are proper and smooth over
the base ring (which is the case for Hodge type Shimura varieties at places
of good reduction). This follows from the specialization theorem for the
cohomology of the toroidal compactifications and from the decomposi-
tion theorem (see Corollaires 5.4.2 and 5.4.6 of [14]), which says that
intersection cohomology of the Baily-Borel compactification is a direct
factor of this cohomology.

(2) Deligne’s conjecture makes sense (and is known) for general complexes
and cohomological correspondences, not just for constant coefficients.
It reduces the calculation of the trace of a Hecke operator twisted by
a power of the Frobenius on intersection cohomology to counting fixed
points (in the Baily-Borel compactification) and calculating the stalks of
the intersection complex at these fixed points.

(3) The Langlands-Rapoport conjecture makes no distinction between com-
pact and noncompact Shimura varieties. It also theoretically gives a de-
scription of points of the Baily-Borel compactification over a finite field,
as this compactification is stratified by Shimura varieties (or explicit finite
quotients thereof).

39We are cheating here: if we want an action of Gal(F/F ) and not of the motivic Galois
group of F , we have to take as coefficients an ℓ-adic completion of the field of definition of ψ.
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(3’) The intersection complex can be quite difficult to calculate, but in the
case of Shimura varieties there is an explicit description given by the the-
ory of weighted cohomology of Goresky-Harder-MacPherson (see [44]);
in particular, it is a complex of local systems on each stratum of the
Baily-Borel compactification. Once the Langlands-Rapoport conjecture
(or an appropriate weakening) is known, this reduces the calculation of
the cohomology to a complicated combinatorial problem.

(4) As for the Arthur-Selberg trace formula, we now need to use the stable
trace formula for a noncompact quotient, fortunately in a somewhat sim-
ple form (see Section 29 of Arthur’s overview [7] for an introduction to
the stable trace formula, and Arthur’s paper [6] for the simplifications
that occur when calculating the cohomology of Shimura varieties). The
stabilization process that we must apply to the point-counting formula
coming from (3) and (3’) is also more complicated, because we need to
stabilize the terms coming from the boundary. 40 For an example of this
process, see Yihang Zhu’s thesis [124].

In the end, we expect to get the following formula for h ∈ HK a
Hecke operator trivial at p, Frob℘ the geometric Frobebius at a place ℘
of F above p and j ∈ N:

(3.4) Tr(h× Frob℘, IH
∗(MK(G, h)

Fp
,Qℓ)) =

∑

H

ι(G,H)STH((hp)Hϕp,jϕ∞),

where H runs over elliptic endoscopic groups of G (to be more precise, it
should run over elliptic endoscopic triples), ι(G,H) is a positive rational
number, STH is the stable trace formula for H , (hp)H is the so-called en-
doscopic transfer to H(Apf ) of the prime-to-p part of h, ϕp,j is a function

in the spherical Hecke algebra of G(Qp) that only depends on j (not on
h), and ϕ∞ is a function on G(R) that depends only on the coefficients
of the cohomology (here we are taking constant coefficients, but we could
take coefficients in any algebraic representation of G).

(5) The last step is to transform the right-hand side of the previous formula

into an expression of the form
∑
πf

Tr(h, πf )Tr(Frob
j
℘, σ(πf )). Kottwitz

explains a way to do this in Section 10 of [62], but his method requires
Arthur’s conjectural classification of discrete automorphic representa-
tions, which is only available for classical and unitary groups (see [8],
[89] and [52]) so far, while the groups of Shimura varieties of PEL type
(i.e. the best understood Shimura varieties) tend to be general sym-
plectic, orthogonal or unitary groups (i.e. GSp, GO and GU); there are
some results for general symplectic groups, see Bin Xu’s thesis [121] and
his paper [122], though as far as I understand they are not sufficient
to completely prove the Kottwitz conjecture. It also requires the agree-
ment of the various constructions of the classification of representations
of real groups, that was proved for classical and unitary groups in papers

40Some of these complications already arise in the compact case with endoscopy. Indeed, even

when the group G has no nontrivial parabolic subgroups, its endoscopic groups almost certainly
do because they are quasi-split, and this produces “boundary terms” in their stable trace formulas
on the right-hand side of identity (3.4). These terms must cancel each other out, as there are no
corresponding terms on the left-hand side of (3.4).
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of Arancibia-Moeglin-Renard ([5]), Arancibia ([3]), Arancibia-Mezo ([4])
and Adams-Arancibia-Mezo ([2]).
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14. A. A. Bĕılinson, J. Bernstein, and P. Deligne, Faisceaux pervers, Analysis and topology
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modèles canoniques, Automorphic forms, representations and L-functions (Proc. Sympos.
Pure Math., Oregon State Univ., Corvallis, Ore., 1977), Part 2, Proc. Sympos. Pure Math.,
XXXIII, Amer. Math. Soc., Providence, R.I., 1979, pp. 247–289. MR 546620

38. Pierre Deligne, James S. Milne, Arthur Ogus, and Kuang-yen Shih, Hodge cycles, motives,
and Shimura varieties, Lecture Notes in Mathematics, vol. 900, Springer-Verlag, Berlin-New
York, 1982. MR 654325

39. Pierre Deligne and Jean-Pierre Serre, Formes modulaires de poids 1, Ann. Sci. Éc. Norm.
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