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Abstract 

Direct three-dimensional Numerical Simulations (DNS) are performed to calculate the inertial 

lift forces on a single particle in a straight rectangular microchannel of Newtonian fluid and 

xanthan gum solutions. The shear-thinning behavior of xanthan gum solutions is demonstrated 

experimentally and represented mathematically using the power-law and Carreau-Yasuda 

models. Similar to Newtonian fluids, our simulations delineate the dominant region of shear 

gradient and wall-induced lift forces for power-law and Carreau-Yasuda fluids. The variable 

viscosity of non-Newtonian fluids allows us to better control the particle motion which seems 

promising in the inertial focusing method. Owing to their different formulations, power-law 

and Carreau-Yasuda models result in inconsistent lift forces. This incompatibility appears to 

intensify at higher concentrations of xanthan gum (higher shear-thinning characteristics) 

solutions and stems from the fact that the power-law viscosity considerably diverges from the 

experimental and Carreau-Yasuda viscosity in both low and high shear-rate regions. The 

power-law model is more sensitive to the Re number compared to the Carreau-Yasuda model, 

especially for high concentrations of xanthan gum solutions. Furthermore, the results indicate 

the presence of two equilibrium positions for both Newtonian fluid and xanthan gum solutions 

in the microchannel cross-section. By increasing the Re number, the Newtonian and Carreau-

Yasuda fluids push the particle equilibrium positions toward the center of the microchannel 

while the power-law model pushes the equilibrium positions toward the microchannel wall. 

Furthermore, both power-law and Carreau-Yasuda models indicate the shift of equilibrium 

positions to the microchannel wall by increasing the shear-thinning characteristics. 

Key words: Particle separation, Inertial microfluidics, Inertial lift forces, Newtonian fluid, 

Power-law model, Carreau-Yasuda model 
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1 Introduction 

With its improved portability, high efficiency and throughput, and low costs, microfluidic 

technology has outperformed all other particle separation platforms (e.g., centrifuge, flow 

cytometry, etc.) in recent years [1]. Inertial microfluidics is the intermediate regime between 

the Stokes regime and the turbulent regime, where both inertial and viscous forces are 

comparable. Inertial migration and secondary flow are the fundamental elements of inertial 

microfluidics that account for its striking characteristics [2]. Inertial migration, which was 

primarily observed by Segre and Silberberg [3], is the lateral movement of randomly dispersed 

particles to several equilibrium positions in a straight microchannel. Following this 

observation, numerous articles in the literature have suggested the underlying reasons for this 

phenomenon [4–9].  

Generally, the final lateral position of the particles in a straight microchannel is pinpointed by 

the balance of four different lift forces exerted on the particle: (1) Saffman force, which results 

from velocity gradient in a simple shear flow [10], (2) Magnus force, which only acts on 

rotating particles in a fluid [11], (3) wall-induced lift force, which repels the particles away 

from the wall [12], and (4) shear gradient lift force, which arises from the curvature of the 

velocity profile [13]. Saffman and Magnus forces are usually negligible for particles immersed 

in a Poiseuille flow. Shear gradient lift force pushes the particles toward the wall, while wall-

induced lift force repels them. The balance between these forces creates four and two 

equilibrium positions in a straight microchannel with square cross-section and rectangular 

cross-section, respectively [14]. 

Analytical studies have been conducted to calculate the lift forces on a small sphere using 

perturbation methods to solve Navier-Stokes equations, but they were limited to low Reynolds 

(Re) numbers [15–17]. Ho and Leal [18] explained the focusing pattern in tube flows and 

derived an explicit formula for the lift force in low-Re-number flows. Di Carlo et al. [19] 

introduced position-dependent scaling for the inertial lift in microchannels by defining two 

different scales for particles near the channel center and near the channel wall, but these scales 

were limited to straight square microchannels. Liu et al. [20] conducted experimental and 

numerical simulations to predict the inertial lift forces on a single particle in a Newtonian fluid 

over a wide range of Re numbers, and based on these results, they derived a generalized 

formula, which is applicable for certain ARs and Re numbers, for calculating the inertial lift 

on a sphere in a microchannel [21]. Similarly, Mashhadian and Shamloo [22] predicted the 

focusing pattern of particles in a straight microchannel with different cross-sections based on 
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the numerical results of the lift force of a Newtonian fluid on a particle in a rectangular 

microchannel. Furthermore, the advent of machine learning algorithms has enabled researchers 

to accurately predict the inertial lift forces on the particles in Newtonian fluids due to a wide 

range of available databases of these fluids [23]. 

Unlike Newtonian fluids, inertial focusing of particles and cells in non-Newtonian fluids is not 

studied thoroughly and thus requires further examinations. The use of non-Newtonian fluids 

allows for better control of particle motion due to their rheological characteristics, ranging from 

shear-thinning to plastic and elastic behaviors [24–28]. Hu et al. [29] determined the effects of 

Re number, power-law index, and blockage ratio on the particle trajectory in a two-dimensional 

Poiseuille flow of a power-law fluid using immersed boundary-lattice Boltzmann method and 

showed that an increase in the power-law index and the blockage ratio and a decrease in the Re 

number reduces the particle spacing. In a similar study [30], they incorporated the effects of 

microchannel AR into their previous results and found different particle trajectories in three-

dimensional straight microchannels. They observed that the equilibrium positions in a straight 

microchannel move toward the center by increasing the power-law index and the blockage ratio 

and decreasing the Re number, and this pattern does not change with the microchannel AR. 

Chrit et al. [31] investigated the role of particle elasticity in its final equilibrium position in the 

Poiseuille flow of shear-thinning and shear-thickening fluids. According to their results, the 

particle elasticity does not exert a decisive effect on the final equilibrium position, especially 

for small capillary (Ca) numbers. Hu et al. [32] determined the effect of the particle shape on 

its final equilibrium position in a channel flow of power-law fluids. Their results show that the 

shortest distance between the initial position and the equilibrium position is achieved for the 

rectangular particle, then followed by elliptical, circular, and square particles, respectively. 

Based on the mentioned studies, the shear-thinning and shear-thickening behaviors shift the 

equilibrium position of the particle toward the wall and center of the microchannel, respectively 

[29–32].  

As mentioned previously, the particle focusing in microfluidics has attracted a great deal of 

attention during the past years. There are multiple factors, like the microchannel geometry, 

particle size and shape, flow rate, rheological characteristics of the fluid, among others 

determining the behavior of the particle in microfluidics. To study these complex dynamics, 

there are two general approaches; first, one can release the particle in the flow and track its 

movement based on the forces exerted on the particle. The second approach, on the other hand, 

treats the particle as a stationary obstacle in the flow and aims to solve the flow around it. The 
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first approach provides the particle trajectory toward its equilibrium position and the time 

required to reach the equilibrium position. In contrast, the second approach cannot grant the 

history of the particle movement in the microchannel but can calculate the inertial lift forces 

exerted on it. Although the equilibrium position of different particles in Newtonian and power-

law fluids with different Re numbers has been extensively studied with the first approach, to 

the best of our knowledge, the magnitude of inertial lift forces is not calculated for a particle 

in a non-Newtonian fluid, especially in moderate and high Re numbers. Obtaining the 

dependence of inertial lift forces on the mentioned factors will deepen our understanding of 

particle dynamics and facilitate future studies in this direction. As a concrete example, by 

having these forces, an enormous amount of computational cost is reduced, and one can easily 

simulate the particle separation in curved microchannels by integrating the obtained inertial lift 

forces into the Lagrangian tracking method for each cross-section and Re number. This 

approach relies on the fact that the channel bends produce a minimal effect on the lift force but 

a significant effect on the secondary drag force, so these two forces can be analyzed separately 

[33–37]. 

In this paper, a numerical simulation of inertial lift forces exerted on a single particle in a 

straight microchannel with a rectangular cross-section is carried out for a Newtonian fluid and 

xanthan gum solutions at two different Re numbers, and the results are interpreted. Xanthan 

gum solutions are frequently employed for the purpose of particle separation and as viscosity 

thickener in the food processing industry [38–42]; however, this is the first time in the literature 

that the inertial lift forces are calculated for a particle in these solutions. The choice of these 

solutions is due to their strong shear-thinning characteristics, which can trigger the emergence 

of rich phenomena in particle migration. For this purpose, two different xanthan gum solutions 

are experimentally tested, and the power-law and Carreau-Yasuda models are used for the 

prediction of their behavior, and viscosity fitting results and the calculated lift forces are 

compared. The results of the present study not only can serve as a benchmark for calculating 

the inertial lift forces on the particles in non-Newtonian fluids but also, as discussed earlier, 

can be beneficial for obtaining particle trajectory even in curved microchannels. Furthermore, 

the obtained results can be used in particle and cell separation in many biological fluids, such 

as blood, due to their shear-thinning characteristics, which can be represented by the Carreau-

Yasuda model for different Hematocrit (Hct) percentages [43]. 



6 
 

2 Xanthan Gum Preparation 

Xanthan gum solutions are strongly shear-thinning fluids with small normal stress differences 

and are frequently used in industrial applications [44–46]. Two solutions of xanthan gum 

(Rhodigel USP, viscosity of 0.876	𝑃𝑎. 𝑠 at 24°𝐶 at a concentration of 1%) of 300 and 500 ppm 

were prepared by introducing the xanthan gum in distillated water and gently stirring the 

solutions with a helical ribbon for 24 hours. The viscosities of these solutions were measured 

on an AR2000 rheometer (TA Instruments) with a 60𝑚𝑚 steel cone of 1° angle by a steady-

state point by point measurement. 

3 Mathematical Modeling and Numerical Procedure 

In this part, the 3D DNS procedure for the calculation of the inertial lift force is stated. The 

continuity, momentum, and constitutive equations are numerically solved based on an iterative 

algorithm through the coupling of a FEM solver with a MATLAB code. 

3.1 Case Study 

The schematic of the particle in the microchannel and the geometrical characteristics are 

presented in Fig. 1 and Table 1, respectively. A straight rectangular microchannel with a high 

aspect ratio is used, and the particle is placed far from the inlet and outlet of the microchannel. 

 

Fig. 1: Schematic of the microchannel with a single particle 
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Table 1: Geometrical characteristics of the microchannel and the particle 

Geometrical Parameter Value (𝜇𝑚) 

Channel Height	(𝐻) 48 

Channel Width	(𝑊) 200 

Channel Length (𝐿) 300 

Particle Diameter	(𝐷) 10 

 

The simulations are carried out for a Newtonian fluid with constant viscosity of 𝜇 =

0.001	𝑃𝑎. 𝑠 and the two mentioned xanthan gum solutions as non-Newtonian fluids. To 

correctly represent the behavior of xanthan solutions, the non-Newtonian model must have a 

defining shear-thinning characteristic. As a result, the power-law and Carreau-Yasuda models 

are used in this study. The general form of Ostwald and de Waele power-law model [47] can 

be represented as follows: 

𝜂 = 𝑚 ?𝐼𝐼Ȧ?
(CDE)
F

 (1) 

where 𝜂 is the fluid dynamic viscosity, 𝑚 is the consistency index, 𝑛 is the power-law index, 

and 𝐼𝐼Ȧ  is the second invariant of the rate of strain tensor, 𝛾̇, and is defined as 

𝐼𝐼Ȧ =
E
F
IJ𝑡𝑟𝛾̇M

F
− 𝑡𝑟 J𝛾̇M

F
O. (2) 

For simple shear flows, the absolute value of the second invariant becomes: 

|𝐼𝐼Ȧ| = 	 ?𝛾̇?
F
 (3) 

and thus simplifies the power-law model to the popular form of 

𝜂 = 𝑚 ?𝛾̇?
CDE

. (4) 

This model can represent the shear-thinning behavior with great accuracy in intermediate 

shear-rate regions but is not able to display the shear-thinning characteristics of fluids in the 

near-zero or infinite shear-rate regions. To overcome this problem, the well-known Carreau-

Yasuda model [48] is used as well, in which the fluid viscosity is expressed as follows: 
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𝜂 = 𝜂Q + (𝜂S − 𝜂Q) I1 + T𝜆 ?𝐼𝐼Ȧ?
E/F
W
X

O

CYZDE
X

 (5) 

where  𝜂∞ is the infinite shear-rate viscosity, 𝜂0 is the zero shear-rate viscosity, 𝜆 is a time 

constant, 𝑛\] is the power-law index, and 𝑎 is a dimensionless fitting parameter introduced by 

Yasuda et al. [48]. Furthermore, all simulations are repeated for two different Re numbers of 

48 and 90, a constant fluid density of 𝜌` = 1000	𝑘𝑔/𝑚c, and particle density of 𝜌d =

1050	𝑘𝑔/𝑚c. 

3.2 Inertial Lift Force Calculation 

The total inertial lift force is a function of microchannel geometry, particle diameter, and the 

shape of the velocity profile and can be expressed as follows: 

𝐹g = 𝐹	(𝐷, 𝑦, 𝑧, 𝐻,𝑊, 𝑉j, 𝜂, 𝜌`)	 (6) 

where 𝑦 and 𝑧 are the positions of the center of the particle in the microchannel cross-section 

and 𝑉j  is the characteristic velocity of the fluid. Using the Buckingham Pi theorem, the non-

dimensional form of the inertial lift force is 

𝐹g∗ = 𝐹	(𝜅, 𝑦∗, 𝑧∗, 𝐴𝑅, 𝑅𝑒) (7) 

where 𝜅 = p
q

 is the blockage ratio, 𝑦∗ = r
q

 and 𝑧∗ = s
q

 are the non-dimensional position of the 

particle, 𝐴𝑅 is the aspect ratio of the microchannel, and 𝑅𝑒 is the Re number of the flow, 

generally defined as 𝑅𝑒 = tuvgv
wv

, where 𝐿j and 𝜂j are the characteristic length and characteristic 

viscosity of the fluid, respectively [49]. The characteristic values should be selected in a way 

to represent the fluid behavior. There are several definitions of the Re number based on these 

characteristic values, two of which are shown in Table 2 for Newtonian and power-law fluids. 

It is worth mentioning that, except for some simplified models [50–52], there is no 

comprehensive Re number for Carreau-Yasuda constitutive equation. Thus, to be more 

consistent with the power-law model, the Re number is considered the same for the power-law 

and Carreau-Yasuda models. In addition, one can also use the local values of mentioned 

parameters to obtain the local Re number of the flow [53]. 

Table 2: Different definitions of characteristic values for the calculation of Re number 

Fluid model Characteristic velocity, 𝑉j Characteristic viscosity, 𝜂j Characteristic length, 𝐿j 

Newtonian 

[2,54,55] 
Maximum velocity, 𝑈yXz Newtonian viscosity, 𝜇 𝐷{  
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Power-law 

[29,56,57] 
Mean velocity, 𝑈SFDC Consistency index, 𝑚 𝐷{C 

 

Moreover, the inertial lift force can be expressed as a function of the non-dimensional lift 

coefficient 𝐶g as 

𝐹g = 𝐶g𝜌`𝑉jF𝐷F𝜅F. (8) 

The inertial lift forces are calculated based on a popular iterative approach in which the particle 

is considered an obstacle that can only have free rotational motion [36,58,59]. Due to the 

symmetry, the lift forces are only calculated for the particle in the upper half of the short wall. 

Furthermore, the torque-free condition and the force-free condition in the flow direction are 

considered the equilibrium state of the particle. The particle velocity in the flow direction is 

taken into account by moving the flow and the microchannel walls. For this purpose, laminar 

inflow and outflow boundary conditions are prescribed for the inlet and outlet of the 

microchannel, respectively with a velocity of 𝑉| − 𝑉d(𝑡), and the walls of the microchannel are 

considered moving with a velocity of −𝑉d(𝑡), which 𝑉|  and 𝑉d(𝑡) are the mean velocity of the 

inlet flow and the time-dependent velocity of the center of the particle, respectively. Also, a 

slip velocity of 	𝜔~~⃗ × 𝑟 is set for the particle surface, which 𝜔~~⃗  and 𝑟 are the vector of angular 

velocity and the vector of surface position of the particle with respect to its center, respectively. 

The momentum and continuity equations for a generalized Newtonian fluid and a three-

dimensional incompressible flow with no external forces are as follows: 

𝛻. 𝑉~⃗ = 0 (9) 

𝜌` T
𝜕𝑉~⃗
𝜕𝑡

+ 𝑉~⃗ . 𝛻𝑉~⃗ W = 	−𝛻𝑝 + 	𝛻. 𝜏 (10) 

𝜏 = 𝜂𝛾̇ (11) 

𝛾̇ = (𝛻𝑉~⃗ ) + (𝛻𝑉~⃗ )� (12) 

where 𝑉~⃗  is the fluid velocity, 𝑝 is the pressure, and 𝜏 is the stress tensor. In addition, Newton’s 

second law of motion governs the forces 𝐹⃗ and torques 𝑀~~⃗  exerted on the particle: 

�𝐹⃗ =	��−𝑝𝐼 + 𝜏� . 𝑛�𝑑𝑠 (13) 

�𝑀~~⃗ = 	�(𝑥⃗ − 𝑥⃗j) ×�−𝑝𝐼 + 𝜏� . 𝑛�𝑑𝑠 (14) 
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where 𝐼 is the identity matrix, 𝑛� is the unit normal vector at the particle surface, 𝑥~~⃗  is the position 

of the particle surface, and 𝑥⃗j is the position of the center of the particle. The initial values of 

the particle’s translational and angular velocities are set to zero. Then, after solving the 

governing equations of the flow, the force and torque distribution around the particle are 

obtained, and the particle velocity is updated as below: 

𝑢dC�� = 𝑢d��� +
𝐹z × Δ𝑡
𝑚d

 (15) 

𝜔~~⃗ dC�� = 𝜔~~⃗ d��� +
𝑀 × Δ𝑡
𝐼d

 (16) 

where Δ𝑡 is the time step considered 1𝜇𝑠 in this study, 𝑚d is the particle mass, and 𝐼d is the 

moment of inertia of the particle. This process continues until the equilibrium state of the 

particle is reached in which the values of the forces and torques exerted on the particle find 

their final values, satisfying the force-free condition in the flow direction and torque-free 

condition, respectively. This condition is fulfilled when the absolute value of the force in the 

flow direction, i.e., |𝐹z|, becomes less than 1.5 × 10DEE𝑁, and the absolute value of the torques 

exerted on the particle in 𝑦 and 𝑧 directions, i.e., |𝑀r| and |𝑀s|, become smaller than 

1 × 10DE�	𝑁.𝑚. [36]. Finally, the last value of the lateral force is considered as the inertial lift 

force on the particle in the corresponding position. By changing the position of the particle and 

repeating the same procedure, the range of inertial lift forces across the microchannel cross-

section is obtained. The flowchart in Fig. 2 concludes the mentioned algorithm. The 

generalized minimal residual (GMRES) iterative method is used as the solver with the 

Incomplete Lower-Upper (ILU) preconditioner to reduce the number of iterations (time steps). 

In addition, a second order of accuracy is considered for solving the velocity field in the 

domain. The simulations are validated by comparing our numerical results with the results from 

Liu et al. [21] The details of this validation along with a mesh dependence study to verify the 

accuracy of the results are provided in the validation section. Fig. 3 depicts a sample of mesh 

configuration utilized in the simulations. An optimized mesh is generated which is finer around 

the particle and coarser away from the particle to increase the accuracy of the results and reduce 

the computational time simultaneously. It is worth mentioning that to obtain the equilibrium 

positions along the short axis, all the inertial lift forces are calculated at 𝑦 = 0. 
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Fig. 2: Flowchart of the inertial lift force calculation 

 

 

Fig. 3: Sample mesh configuration of (a) microchannel and (b) particle 

4 Results and Discussion 

In this part, the results are obtained for different meshes and validated by the literature. The 

power-law and Carreau-Yasuda parameters are obtained based on the experimental viscosity 

of xanthan gum solutions. Then, the values of inertial lift forces as a function of the particle 

(a) (b) 
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position as well as the final equilibrium positions are reported and compared for different 

viscosity models. 

4.1 Validation 

The results are validated by the lift formula proposed by Liu et al. [21] for a single particle with 

a diameter of 𝐷 = 15	𝜇𝑚 in a square straight microchannel with a side of 50	𝜇𝑚 and a length 

of 300	𝜇𝑚. This widely used formula includes the four different inertial lift forces, i.e., 

Saffman force, Magnus force, wall-induced lift force, and shear gradient lift force, and is 

obtained by fitting the proposed formula to DNS solutions. Also, a mesh dependence study is 

carried out to check the accuracy of the results. The selected meshes for this section are 

presented in Table 3. It was observed that decreasing the size of elements around and far from 

the particle has negligible effects on the results. 

Table 3: Selected meshes for the mesh dependence study 

Parameter Coarse Mesh Medium Mesh Fine Mesh 

Maximum element size on the particle surface 2.65	𝜇𝑚 1.15	𝜇𝑚 0.65	𝜇𝑚 

Maximum element size around the particle 2.65	𝜇𝑚 2.65	𝜇𝑚 2.65	𝜇𝑚 

Maximum element size far from the particle 5	𝜇𝑚 5	𝜇𝑚 5	𝜇𝑚 

Total number of elements 102636 137590 252765 

 

Fig. 4 draws the comparison between the obtained results and the lift formula proposed by Liu 

et al. [21] Since the results of the coarse mesh differ considerably from Liu’s lift formula, it is 

not repeated for other points in the microchannel cross-section. The medium mesh correctly 

matches Liu’s lift formula. The consistency between the fine mesh and the medium mesh 

results verifies the validity of the medium mesh for simulations. The medium grid size can 

capture the lift forces around the particle with acceptable accuracy, so it is selected as the 

optimal grid size in the study.  
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Fig. 4: Lift coefficient for different meshes compared with Liu’s formula for the test geometry 

4.2 Convergence Results 

Based on the procedure adopted for the calculation of the inertial lift forces, a convergence 

history for dependent variables can be obtained (Fig. 5). At the beginning of the calculations, 

due to the initial assumption of the variables, the error values of the calculations are high in the 

first iterations. Then, errors in the calculations sharply decrease and meet the convergence 

criteria. These errors are calculated based on the differences in the parameters between the two 

consecutive iterations. As the number of iterations increases, the variation of each parameter 

decreases resulting in a decrease in the error values of each parameter. Needless to say, the 

convergence history varies with particle position, the Re number of the flow, and the viscosity 

model. 
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Fig. 5: Convergence history of inertial lift and velocity components (sample case: Newtonian fluid, 𝑅𝑒 = 90, Fs
q
= 0.7) 

4.3 Xanthan Gum Viscosity 

By fitting different parameters in both power-law and Carreau-Yasuda models, the viscosity of 

xanthan gum solutions with different concentrations can be represented mathematically. Table 

4 shows the fitting results and the parameters obtained from the two non-Newtonian models to 

show the behavior of xanthan gum solutions. The power-law representation shows stronger 

shear-thinning behavior for higher concentrations, which is in agreement with previous results 

[38]. Furthermore, the Carreau-Yasuda model converges to the original Carreau model  

(𝑎 = 2) for the higher concentration of xanthan gum solution. Fig. 6 shows the prediction of 

xanthan gum viscosity with Carreau-Yasuda and power-law models for 300 ppm and 500 ppm 

concentrations on a logarithmic scale. As expected, the power-law model cannot accurately 

capture the xanthan gum viscosity at low and high shear rates, but the Carreau-Yasuda model 

accurately describes the viscosity over the entire range of shear rates. More specifically, in 

theory, the power-law model overpredicts and underpredicts the viscosity in the low and high 

shear-rate regions, respectively. However, we were not able to test the xanthan gum solutions 

at very low shear rates due to the limitations of the rheometer, but by extending the 

experimental data to lower shear rates, the power-law model loses its validity to represent the 

zero shear-rate viscosity. On the other hand, the range of flow rates studied in this study lies 
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within intermediate and high values of shear rates (greater than 1	𝑠DE), so there is no need to 

extend the power-law and Carreau-Yasuda viscosities to infinitesimal shear rates.  

Table 4: Power-law and Carreau-Yasuda fitting results for xanthan gum solutions 

Fluid 
Power-law Carreau-Yasuda 

𝑚	(𝑃𝑎. 𝑠) 𝑛	 𝜂S(𝑃𝑎. 𝑠) 𝜂�C`	(𝑃𝑎. 𝑠) 𝜆	(𝑠) 𝑛\] 𝑎 

Xanthan gum solution – 300 ppm 0.0320 0.6805 0.0703 0.0020 0.2079 0.2392 0.3968 

Xanthan gum solution – 500 ppm 0.0685 0.5027 0.6491 0.0016 49.70 0.4303 1.9900 

 

(a) (b) 

  
Fig. 6: Experimental and fitting viscosity of (a) 300 ppm and (b) 500 ppm xanthan gum solution as a function of shear 

rate  

4.4 Inertial Lift Forces 

Fig. 7 represents the coefficient of inertial lift forces as a function of the particle position for 

two different Re numbers of the Newtonian fluid. The equilibrium position of the particle can 

be considered as the one where the inertial lift forces exerted on the particle change direction, 

i.e., become zero. Consequently, our results show an equilibrium position of s
{
= 0.4504	and 

s
{
= 0.4446 for a single particle in the straight microchannel of Newtonian fluid with 𝑅𝑒 = 48 

and 𝑅𝑒 = 90, respectively, which leads to a shift of the equilibrium position toward the center 

of the microchannel with increasing the Re number and is in full agreement with the literature 

[60,61]. It can also be inferred that the equilibrium position is not a strong function of the Re 

number for inertial focusing in a straight microchannel of Newtonian fluids. Although the 
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inertial lift forces are almost zero at the center of the microchannel, this position cannot be 

considered a stable equilibrium position since the particle moves easily with small 

upward/downward forces. Starting from the center of the microchannel (𝑧 = 0), the particle 

tends to move toward its equilibrium position, so the total inertial lift force is positive 

(dominant region of the shear gradient lift forces). As the particle approaches its equilibrium 

position, the magnitude of inertial lift force becomes small. As the particle moves away from 

the equilibrium position to the microchannel wall, a total negative inertial lift force is exerted 

on the particle (dominant region of wall-induced lift forces). The magnitude of this negative 

lift force increases rapidly as the particle approaches the wall due to strong wall-induced lift 

forces. Furthermore, in agreement with the literature [62], the magnitude of the inertial lift 

forces decreases with increasing the Re number of the Newtonian fluid. 

 

Fig. 7: Inertial lift coefficient for a particle in Newtonian fluid 

The coefficients of inertial lift forces are calculated and shown in Fig. 8 as a function of the 

particle center position for power-law and Carreau-Yasuda representation of xanthan 300 ppm 

and 500 ppm solutions in two different Re numbers. As expected, the positive and negative 

inertial lift regions representing the dominant region of the shear gradient and the wall-induced 

lift forces, respectively, yield the final equilibrium position of the particle in the microchannel. 

Similar to the Newtonian fluid for both Re numbers, moving from the center of the 

microchannel toward the equilibrium position of the particle, an increase followed by a 

decrease in the positive inertial lift forces is observed. Additionally, moving from the particle 
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equilibrium position toward the microchannel wall, a sharp increase in negative inertial lift 

forces is observed, again similar to the Newtonian fluid. Furthermore, it can be concluded that 

each non-Newtonian viscosity model exerts different inertial lift forces on the particle, thus 

providing more control over the particle motion in the passive method of inertial microfluidics. 

An interesting observation is that in the power-law model, by increasing the Re number, the 

magnitude of inertial lift forces increases. This change in inertial lift force behavior with respect 

to the Re number is in contrast with that of Newtonian and Carreau-Yasuda fluids. This new 

pattern of behavior has been indirectly addressed by Hu [29,30] as an increase in the particle 

migration velocity with increasing the Re number in the power-law model and also an increase 

in the oscillatory amplitude of particle spacing with increasing/decreasing the Re number of 

the Newtonian/power-law fluid. However, this is the first time that the shift in the Re 

dependence of inertial lift forces in the power-law model is explicitly detected by calculating 

the inertial lift forces. Since the Carreau-Yasuda model assures a more accurate representation 

of xanthan gum viscosity (Fig. 6), the power-law model may not be a reliable model to account 

for the inertial focusing in shear-thinning fluids in real-world problems. Furthermore, with the 

exception of the power-law representation of xanthan 500 ppm (Fig. 8c), the inertial lift forces 

are weakly dependent on the Re number. In this case, the power-law viscosity faces a more 

dramatic change with respect to the shear rate (Fig. 6). As a result, even small changes in the 

shear rate, i.e., the Re number, lead to considerable changes in the viscosity and consequently 

the inertial lift forces exerted on the particle. This prediction may as well explain another 

drawback of the power-law model in real-world rather than mathematical representation of 

inertial focusing in shear-thinning fluids. In a nutshell, although the power-law model serves 

as a baseline for representing the shear-thinning rheology, it cannot provide an accurate 

representation of inertial lift forces in shear-thinning fluids. On the other hand, the Carreau-

Yasuda model can accurately represent the shear-thinning rheology for the entire range of shear 

rates and thus generates true representation of inertial lift forces in shear-thinning fluids. The 

main reason behind the discrepancies between the two models lies within their viscosity 

differences and is explained in depth in the following.   
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(a) (b) 

  
(c) (d) 

  
Fig. 8: Inertial lift coefficients for a particle in (a) power-law model of xanthan 300 ppm, (b) Carreau-Yasuda model of 
xanthan 300 ppm, (c) power-law model of xanthan 500 ppm, and (d) Carreau-Yasuda model of xanthan 500 ppm 

Fig. 9 compares the coefficient of inertial lift forces exerted on the particle calculated by power-

law and Carreau-Yasuda models for xanthan gum solutions in two different Re numbers. 

Although theoretically, the inertial lift forces are constant for a specific flow of each 

concentration of xanthan gum solutions, due to striking differences in the mathematical 

formulation of power-law and Carreau-Yasuda models, a marked discrepancy in the magnitude 

of the inertial lift forces is observed for the specified models, which calls for further 

explanations. Based on formulation, the power-law model can only represent the power-law 

region of the viscosity. On the other hand, the Carreau-Yasuda model can accurately represent 

the viscosity at the entire range of shear rate by being able to exhibit the plateau regions of the 

viscosity. Based on the considerable differences between the magnitude of inertial lift forces 

reported by the two models, we can conclude that the viscosity of the solution is a determinant 

factor for the inertial lift forces exerted on the particles. To elaborate that, the power-law model 

in the center of the microchannel cross section, i.e., the low shear-rate region, overestimates 

the viscosity of the xanthan gum solutions. As a result, the particle faces a high viscous medium 
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in the initial nodes of Fig. 9a and Fig. 9b, resulting in smaller shear gradient lift forces. In 

contrast, the Carreau-Yasuda model fits the viscosity of the xanthan gum solutions in the same 

region, resulting in higher shear gradient lift forces to traverse a less viscous medium (Fig. 9a 

and Fig. 9b). A similar explanation can be proposed for the wall region, i.e., the high shear-rate 

region. In this situation, the power-law model underestimates the viscosity which results in a 

low viscous medium for the particle. Thus, the positive shear gradient lift forces increase and 

aim to decrease the negative wall-induced lift forces. Concretely, in the wall region, smaller 

lift forces (in magnitude) are exerted on the particle in the power-law model compared with 

the Carreau-Yasuda model which does not show this underprediction of xanthan gum viscosity. 

Since the 500 ppm solution has a more dominant shear-thinning characteristic, the difference 

in the prediction of xanthan gum viscosity by the power-law and Carreau-Yasuda models 

becomes more noticeable, leading to a greater divergence in the prediction of the inertial lift 

forces by the two models (Fig. 9b). 

A point which requires further elaboration is the primary factors affecting the differences 

between the inertial lift forces of the two viscosity models. Generally speaking, each factor 

which has a potential effect on the viscosity can develop discrepancies between the results of 

the two models. One factor which is studied is the shear-thinning characteristics. As the shear-

thinning rheology becomes more dominant (for example switching from xanthan 300 ppm to 

xanthan 500 ppm) the degree to which the power-law model over/underestimates the viscosity 

increases. Consequently, the differences between the results of the two models become more 

noticeable. Another parameter is the Re number or the flow rate in the microchannel. This 

directly relates to the range of shear rate of the flow. If the Re number is in a range which 

mostly includes intermediate shear rates, the differences between the two models should 

decrease because in this region power-law viscosity and Carreau-Yasuda viscosity almost 

match each other. In contrast, if the Re number, i.e., the shear rate, is either in low or high 

regions, the inertial lift forces reported by the two models greatly differ from each other. 

Needless to say, all the mentioned results and predictions apply to inertial microfluidics in 

which the Re number is neither very small nor very large representing the importance of both 

inertial and viscous forces. 
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(a) (b) 

  
Fig. 9: Comparison between inertial lift coefficients of power-law and Carreau-Yasuda models for a particle in (a) 

xanthan 300 ppm and (b) xanthan 500 ppm 

4.5 Equilibrium Positions 

Table 5 lists the equilibrium position of the particle (2𝑧��/𝐻	) in the two simulated Re numbers 

of Newtonian, power-law, and Carreau-Yasuda fluids. The reported values are measured from 

the center of the microchannel, i.e., Fs
q
= 0 represents the microchannel center. Due to the 

symmetry, each value in Table 5 expresses two equilibrium positions for the particle, one above 

and the other below the microchannel centerline. As mentioned earlier, the Newtonian fluid 

tends to push the equilibrium position of the particle toward the microchannel center by 

increasing the Re number. However, in the studied range of Re number, a slight movement of 

equilibrium position regarding the Re number is observed in the Newtonian fluid. A similar 

trend is detected for the xanthan gum solution as both equilibrium positions emerge across the 

microchannel cross-section in the studied range of Re number. The power-law model pushes 

the particle equilibrium position toward the microchannel wall by an increase in the Re number. 

On the contrary, the Carreau-Yasuda model slightly moves the particle equilibrium position 

toward the microchannel center by increasing the Re number. This contrast can be clarified by 

further exploring the combination of fluid inertia and shear thinning. In inertial focusing in 

rectangular microchannels, due to pure inertial forces, the particles migrate to two equilibrium 

positions in the short length of the microchannel cross-section by the same distance from the 

centerline. On the other hand, the pure shear-thinning characteristic pushes the particles toward 

the corners of the microchannel cross-section [39,41]. In this study, the combined effect of 

fluid inertia and shear thinning governs all the simulated cases. Since the power-law model 

exaggerates the shear-thinning characteristics compared to the Carreau-Yasuda model, the 

balance in the combination of inertia and shear thinning is altered from one model to another 
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at each Re number. Another discrepancy between the two shear-thinning models is the effect 

of Re number on the equilibrium positions. The Re number produces a powerful effect on the 

equilibrium positions in the power-law model. This result can be justified by the mathematical 

representation of this model. The range of Re number studied in this work creates regions of 

high shear rates (order of ~10�, 10�	𝑠DE) in the microchannel cross section. Based on Fig. 6, 

in this region, the power-law model greatly underestimates the xanthan gum viscosity, 

especially for the higher concentration. As a result, even small changes in the shear rate, i.e., 

the Re number, yields unreasonable changes in the equilibrium positions of the particle. On the 

other hand, the Carreau-Yasuda model is insensitive to the shear rate in the mentioned range 

which indicates the small change of equilibrium positions in this model with respect to the Re 

number. However, both models can explicitly show the shift in the particle equilibrium position 

by changing the xanthan gum solution. Higher concentrations of xanthan gum solution move 

the particle equilibrium position to the microchannel wall due to stronger shear-thinning 

characteristics. This fact, which is proved by both power-law and Carreau-Yasuda models in 

our simulations, is frequently observed in the literature [29–32]. 

Table 5: Equilibrium position (2𝑧��/𝐻) of the particle in two Re numbers of Newtonian, power-law, and Carreau-
Yasuda fluids 

Re 

number 
Newtonian 

power-law Carreau-Yasuda 

Xanthan 300 ppm Xanthan 500 ppm Xanthan 300 ppm Xanthan 500 ppm 

𝑅𝑒 = 48 0.4504 0.4785 0.5091 0.4447 0.4449 

𝑅𝑒 = 90 0.4446 0.4803 0.5409 0.4386 0.4447 

 

4.6 Flow around the Particle 

The flow around the particle is shown in Fig. 10 at a point with the coordinate of 𝑥 = 0, 𝑦 = 0, 

and 𝑧 = 14.4	𝜇𝑚 in the 500ppm xanthan solution and 𝑅𝑒 = 48. Fig. 10a to Fig. 10d and Fig. 

10e to Fig. 10h are extracted from the simulations with the power-law and Carreau-Yasuda 

models, respectively. For all the cases, a similar trend is observed for the power-law and 

Carreau-Yasuda results. Fig. 10a and Fig. 10e depict the velocity profile in two different planes. 

Maximum velocity occurs at the wall of the microchannel, which accounts for the moving wall 

boundary condition. Fig. 10b and Fig. 10f show the top-view of the non-dimensional pressure 

((𝑝 − 𝑝S)/(0.5𝜌𝑉|F)) on the particle surface while Fig. 10d and Fig. 10h show the side-view 
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of the same pressure contour. The maximum and minimum pressures can be easily noticed on 

the particle surface. The low-pressure zone sucks the particle in while the high-pressure zone 

pushes it out. Similar to Newtonian fluids, in generalized Newtonian fluids, the lateral 

migration of the particles is governed primarily by the pressure forces rather than viscous forces 

[63,64]. The variation of this pressure is greater in the Carreau-Yasuda model compared to the 

power-law model, resulting in stronger negative wall-induced lift forces exerted on the particle 

for the Carreau-Yasuda model at the specified location. Although the difference in the pressure 

distribution on the particle surface exerts lift forces on the particle, it has no influence on the 

rotation of the particle. The viscous forces on the particle surface cause this rotation which 

results in bending the streamlines around the particle (Fig. 10c and Fig. 10g). The direction of 

this rotation is obtained based on the direction of the streamlines.  

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 



23 
 

(a) (b) 

  
(c) (d) 

 
 

(e) (f) 

  
(g) (h) 

  
Fig. 10: Flow around the particle at 𝑥 = 0, 𝑦 = 0, and 𝑧 = 14.4	𝜇𝑚 in the 500 ppm xanthan gum solution and 𝑅𝑒 =

48. Figures 10(a) to 10(d) represent the power-law model while figures 10(e) to 10(h) represent the Carreau-Yasuda model. 
(a) and (e) Velocity profile in two planes. (b) and (f) The side-view of non-dimensional pressure on the particle surface. (c) 
and (g) The streamlines around the particle at 𝑦 = 0. (d) and (h) The top-view of non-dimensional pressure on the particle 

surface. 
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5 Conclusions 

In this paper, the inertial lift forces were calculated for a single particle immersed in a 

Newtonian fluid and two xanthan gum solutions flowing through a straight microchannel with 

a rectangular cross-section. An iterative algorithm that couples a FEM solver with a MATLAB 

code was implemented to carry out the 3D DNS of the flow around the particle. The 

performance of the algorithm was validated by previous results of the lift force exerted on a 

particle in Newtonian fluids. To capture the shear-thinning characteristics of the xanthan gum 

solutions, power-law and Carreau-Yasuda models were fitted to our experimental data of the 

xanthan gum viscosity. For all the simulations, there exist the dominant region of the shear 

gradient and wall-induced lift forces resulting in the emergence of two equilibrium positions. 

This fact demonstrates the ability of Newtonian, power-law, and Carreau-Yasuda fluids for 

inertial focusing of different particles. Since the power-law model overestimates and 

underestimates the xanthan gum viscosity in low and high shear-rate regions, respectively, the 

obtained inertial lift forces from this model differed considerably from those of Carreau-

Yasuda model, especially for a high concentration of xanthan gum solutions. The discrepancy 

between the two non-Newtonian models was also observed in the Re dependency of inertial 

lift forces. That is, an increase in the Re number resulted in an increase and a decrease in the 

magnitude of inertial lift forces exerted on the particle in the power-law and the Carreau-

Yasuda fluids, respectively. The equilibrium position of the particle was achieved by 

pinpointing the location where the inertial lift forces become zero. In full agreement with the 

literature [29,30,60,61,65], by increasing the Re number of the Newtonian and power-law 

fluids, the equilibrium position moved toward the center and the wall of the microchannel, 

respectively. In contrast with the power-law model, the equilibrium position moved toward the 

center of the microchannel in the Carreau-Yasuda model. Furthermore, the Re number 

appeared to be of minor importance for the final equilibrium position in Newtonian and 

Carreau-Yasuda fluids; however, the power-law model, especially for xanthan 500 ppm, 

pointed out a more noticeable effect of Re number on the final equilibrium position of the 

particle. This stems from the fact that, based on its definition, the power-law model is highly 

sensitive to the flow shear rate, i.e., the Re number, especially at high shear-rate regions due to 

the underprediction of viscosity. However, both models accurately represented the shift of the 

equilibrium position toward the microchannel wall by an increase in the shear-thinning 

characteristics of the fluid, a fact which was previously examined in the literature [29–32]. 
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The results of the present study are applicable to inertial focusing and particle separation in 

curved microchannels as well. With the same cross-section and Re number, the inertial lift 

forces exerted on the particle are the same in straight and curved microchannels. Consequently, 

by taking into account the secondary flow drag forces and integrating the inertial lift forces into 

the Lagrangian tracking method, inertial focusing in curved microchannels of power-law and 

Carreau-Yasuda fluids can be studied as well. To the best of our knowledge, this was the first 

time in the literature that the inertial lift forces were directly calculated for a particle in power-

law and Carreau-Yasuda fluids. Concretely, further explorations of inertial lift forces in these 

models are required to conclusively prove the interesting observations of the present study. 

Furthermore, for the sake of computational costs, only two non-Newtonian fluids at two 

different Re numbers were examined in our simulations. By extending the range of non-

Newtonian fluids and Re number, more intriguing phenomena may emerge. Since a variety of 

biological fluids are non-Newtonian, the separation of biological and synthetic particles and 

cells in these fluids is of key importance for future studies. 
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