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Abstract

The use of an antibiotic may lead to the emergence and spread of bacterial strains resistant

to this antibiotic. Experimental and theoretical studies have investigated the drug dose that

minimizes the risk of resistance evolution over the course of treatment of an individual,

showing that the optimal dose will either be the highest or the lowest drug concentration pos-

sible to administer; however, no analytical results exist that help decide between these two

extremes. To address this gap, we develop a stochastic mathematical model of bacterial

dynamics under antibiotic treatment. We explore various scenarios of density regulation

(bacterial density affects cell birth or death rates), and antibiotic modes of action (biostatic or

biocidal). We derive analytical results for the survival probability of the resistant subpopula-

tion until the end of treatment, the size of the resistant subpopulation at the end of treatment,

the carriage time of the resistant subpopulation until it is replaced by a sensitive one after

treatment, and we verify these results with stochastic simulations. We find that the scenario

of density regulation and the drug mode of action are important determinants of the survival

of a resistant subpopulation. Resistant cells survive best when bacterial competition

reduces cell birth and under biocidal antibiotics. Compared to an analogous deterministic

model, the population size reached by the resistant type is larger and carriage time is slightly

reduced by stochastic loss of resistant cells. Moreover, we obtain an analytical prediction of

the antibiotic concentration that maximizes the survival of resistant cells, which may help to

decide which drug dosage (not) to administer. Our results are amenable to experimental

tests and help link the within and between host scales in epidemiological models.

Author summary

Antibiotic treatment creates a beneficial environment for the evolution of antibiotic-resis-

tant bacterial strains. The dosage of the antibiotic drug during treatment plays an
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important role during this process. Here, we derive analytical predictions for the survival

probability of a resistant subpopulation until the end of treatment with either a biostatic,

i.e. growth-inhibiting, or a biocidal, i.e. death-promoting, drug. Importantly, we obtain a

prediction for the antibiotic concentration that maximizes this survival probability. Addi-

tionally, we also compute the size of the resistant subpopulation at the end of treatment

and its carriage time after treatment until it gets outcompeted by an antibiotic-sensitive

strain. This post-treatment phase is relevant only for commensal bacteria. We find that

treatment with a biocidal drug, compared to a biostatic drug, increases the risk of resis-

tance evolution, results in a larger resistant subpopulation size at the end of treatment and

prolongs the carriage time, and therefore shedding, of the resistant strain. Our analytical

predictions can be tested experimentally and link the within-host and the population scale

of antibiotic resistance dynamics.

Introduction

Bacterial pathogens resistant to antibiotics are a major public health challenge responsible for

more than a million deaths per year [1]. Ecological and evolutionary principles have guided

the design and evaluation of strategies to reduce the use of antibiotics while still eradicating

pathogenic bacteria in patients [2]. Theoretical and experimental research on antibiotic resis-

tance has focused on the optimal drug dose, e.g. [3–5] and the optimal prescription regimen in

hospitals, e.g. [6–9] to limit the evolution and spread of resistance (reviewed in [10–12]).

The question of the optimal drug dose and duration to limit the evolution of resistance has

received much attention. “Hitting early and hitting hard” [13, 14] may limit the emergence of

drug resistance [15–18]. More recent studies challenge this view [2, 3, 19] based on the result

that the probability of emergence of drug resistance is maximized at an intermediate concen-

tration. A low antibiotic concentration prevents the emergence of resistance by allowing the

maintenance of the sensitive strain, which impedes growth of the resistant strain through com-

petition. On the other hand, a high antibiotic concentration also prevents the emergence of

resistance by quickly eradicating the bacterial population, limiting the input of resistance

mutations, and directly limiting the growth of the resistant subpopulation. Thus, the emer-

gence of drug resistance is most likely maximal at an intermediate concentration where the

sensitive population is eradicated, which frees resistance from competition (“competitive

release”, [20]), allowing the resistant subpopulation to grow. Depending on the treatment win-

dow, which describes the feasible range of drug concentration and is defined by clearance of

the infection-causing bacteria and considerations on drug toxicity, a low or a high drug dose

may be best to limit the emergence of resistance. This line of argument applies to symptomatic

infections caused by pathogenic bacteria, which are the direct target of antibiotic treatment. It

also applies to commensals and opportunistic pathogens that are carried asymptomatically,

which are not the target of the antibiotic treatment but under ‘bystander selection’ [21].

The survival or extinction of a small resistant subpopulation emerging during treatment is

ultimately governed by the random processes of bacterial cell division and death. It is not clear

how this stochasticity impacts the early dynamics of resistance. Within the vast field of pharma-

cokinetics/pharmacodynamics, the field studying the dynamics of antibiotic concentration and

the impact of antibiotics on bacterial cells, several studies modeled the dynamics of sensitive and

resistant cells in vitro or in vivo [22–25]. These models describe deterministically how a resistant

subpopulation of cells can grow and cause a rebound in bacterial population size. The determin-

istic description of the bacterial dynamics is justified when a substantial resistant sub-population
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exists prior to treatment, as may be the case with large mutation rates from sensitivity to resis-

tance and/or large initial population sizes. However, in many common situations in commensal-

ism or in infection, the resistant bacterial population is initiated from one or a small number of

resistant cells, and mutations or gene transfers conferring resistance rarely occur. The early phase

of resistance emergence, when the resistant subpopulation is still small, is a stochastic process.

Yet only a handful of studies theoretically explored the impact of stochasticity on the emergence

of drug resistance [3, 4, 11]. The simple realization that resistance emergence is a stochastic pro-

cess has recently inspired elegant empirical and theoretical work measuring and computing the

probability of emergence in single cell assays [26]. Yet, an analytical solution for the probability

of emergence of resistance during treatment is still missing (although numerical solutions for

resistance survival probabilities under periodic antimicrobial treatment conditions were obtained

recently [27, 28]). Such solution would be important to characterize the drug concentration max-

imizing the probability of emergence of resistance, the size of the resistant subpopulation within

the host and, in the case of commensal bacteria, how long a treated host carries and sheds resis-

tance after treatment. These results can in turn provide insight on the optimal drug dose and

inform between-host models describing the shedding and transmission of the resistant strain to

other hosts. A stochastic description of the evolution of drug resistance also requires that we spec-

ify how bacterial cells compete, and whether the drug impedes cell division or actively kills cells

(biostatic or biocidal). Both are important determinants of the probability of emergence of resis-

tance. Little attention has previously been paid to these aspects of the life cycle of bacterial cells.

Here, we analyze a stochastic model of within-host dynamics and treatment, and derive

new analytical results on the survival probability of a resistant subpopulation until the end of

treatment; secondarily, we analyze the size of the resistant subpopulation at the end of treat-

ment, and the carriage time after treatment.

Model

We study the population dynamics of a bacterial population in the absence and presence of an

antibiotic drug. We first describe how a drug initially clears the sensitive population, poten-

tially allowing the establishment and rise of a resistant subpopulation. This first phase applies

both to the bystander antibiotic exposure of bacteria that are carried asymptomatically and to

the direct treatment of infections (symptomatic disease). A single resistant cell is introduced

during treatment by mutation or transmission from another host. This resistant subpopulation

may or may not establish in the host. If it does establish, it grows logistically until the end of

treatment. Following this establishment phase, we model the dynamics leading to the extinc-

tion of the resistant subpopulation after treatment. When bacteria are carried asymptomati-

cally, no further treatment is prescribed after the end of the antibiotic course. Sensitive strains

can re-establish, either because they were not fully eradicated or because they are reintroduced

by transmission. The sensitive strain eventually competitively excludes the resistant subpopu-

lation because of the cost of resistance. This potentially requires several re-introductions of the

sensitive strain. When bacteria instead caused an infection, it is reasonable to assume that a

second course of antibiotic will be applied if the bacterial load is still high at the end of the first

course. We do not model this scenario.

Overall, the model is a stochastic description of the transient establishment, peak and

extinction of a resistant subpopulation within the treated host (Fig 1).

Bacterial population dynamics

We study two different models of density regulation of the bacterial population (Table 1). In

the first model, population density affects the birth rate, which we refer to as ‘birth
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competition’. For example, limited resource availability impedes cell division [29]. In the sec-

ond model, population density increases the death rate, which we refer to as ‘death competi-

tion’. For example, bacterial cells may secrete antibiotics, toxins or viruses that kill

neighbouring cells [30–33]. Additionally, death competition could implicitly model the effect

of the immune system [3, 4]. Both models of density regulation yield the same deterministic

population dynamics, as long as the overall population size remains below the carrying capac-

ity. In the stochastic model formulation and analysis, however, the exact form of density regu-

lation matters as we will show below. The relative contributions of the two forms of

competition in natural environments is poorly known. It is certain that nutrients are limited

and therefore birth competition occurs; however, the extent to which bacteria kill each other

when at high density in the host environment is to the best of our knowledge unknown.

Additionally, we distinguish between two modes of action of antibiotics: biostatic and bio-

cidal. A biostatic drug, e.g. tetracycline or erythromycin, reduces the birth (division) rate of

the cells. A biocidal drug, e.g. ciprofloxacin or streptomycin, increases the death rate. The

deterministic dynamics are the same for the two modes of action if the antibiotic

Fig 1. Population dynamics of the resistant (orange) and sensitive (black) strains. The sensitive subpopulation

declines almost deterministically during treatment, which is administered for seven days (gray shaded region). At the

same time the resistant subpopulation, if it survives, increases in size. There is strong variation between the resistant

growth curves because of stochastic birth and death events. Non-surviving trajectories are omitted. After treatment,

both subpopulations grow until the overall pathogen population reaches the carrying capacity, which happens

approximately two days after the end of treatment when the resistant subpopulation reaches its maximum. The overall

size of the resistant subpopulation at that point shows variation among the ten sample trajectories, again because of

demographic stochasticity. This variation carries over to the time at which the resistant subpopulation is outcompeted

by the sensitive subpopulation in the absence of antibiotic treatment.

https://doi.org/10.1371/journal.pcbi.1011364.g001

Table 1. Birth and death rates in the four studied scenarios. The overall birth and death rates, denoted by λj and μj,

are composed of the birth, death and competition processes that occur at rates βj, δj and γj, respectively. Additionally,

the effect of antibiotics, denoted by αj(c), affects either the birth or the death rate, depending on the type of drug

administered. The variable c denotes the concentration of the antibiotic and the index j indicates the strain-specificity, j
= S or j = R for antibiotic-sensitive or -resistant cells.

birth competition death competition

biostatic λj(xS, xR) max (βj − γj (xS + xR) − αj(c), 0) max (βj − αj(c), 0)

μj(xS, xR) δj δj + γj (xS + xR)

biocidal λj(xS, xR) max (βj − γj (xS + xR), 0) βj

μj(xS, xR) δj + αj(c) δj + γj (xS + xR) + αj(c)

https://doi.org/10.1371/journal.pcbi.1011364.t001
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concentration is small enough. They differ, however, for larger concentrations because the

birth rate cannot be smaller than zero, while the death rate can, in principle, increase without

bounds as the antibiotic concentration increases (Fig A in S1 Appendix). Interestingly, the sto-

chastic dynamics always depend on the mode of action because the variance of the underlying

stochastic process is different for the two modes of action.

The two density regulation models and two modes of action define four scenarios. We start

by describing the dynamics of the sensitive strain in the bacterial population. The per capita

birth and death rate of sensitive cells are denoted by λS(xS, xR) and μS(xS, xR), where xS and xR
denote the densities of the sensitive and resistant subpopulations, respectively. These rates

defining the stochastic process vary across scenarios. For simplicity, we mostly present results

from the main scenario: birth competition and biocidal treatment. In this main scenario the

birth and death rates are given by:

lSðxS; xRÞ ¼ maxðbS � gSðxS þ xRÞ; 0Þ and mSðxS; xRÞ ¼ dS þ aSðcÞ; ð1Þ

where βS denotes the birth rate of the sensitive strain, δS the intrinsic death rate of the sensitive

strain, γS the competition parameter of the sensitive strain and αS(c) the effect of the antibiotic

treatment on the sensitive strain, where the drug is administered at concentration c (more

details in the next section). The basic death rate comprises both cell death and the outflux of

the host compartment colonized by bacteria.

The dynamics of the resistant strain are defined analogously. We assume that resistance

comes at a cost [34] that is mediated through a reduced birth rate βR< βS, an increased death

rate δR> δS, or through less competitiveness γR> γS. Being (partly) resistant to the antibiotic

reduces the rate at which the resistant type is affected by the antibiotic, i.e. αR(c) < αS(c).
The description of the four scenarios at the individual cell level is summarized in Table 1.

In Section H in S1 Appendix we additionally study another model of density regulation, where

the antibiotic interacts with the competition process described by the density-dependent

terms, and in Section J in S1 Appendix we study an alternative model with an explicit host

immune response instead of death competition between the two bacterial subpopulations.

Antibiotic response curve

We assume that the antibiotic affects the population dynamics of both the sensitive and the

resistant strains. The Minimum Inhibitory Concentration (MIC) is the concentration at which

the net growth rate, measured during the exponential phase (when density regulation can be

neglected) is zero. For the sensitive strain, it is denoted by micS and given by: βS − δS −
αS(micS) = 0. The MIC of the resistant strain, micR, is defined analogously and is larger than

the MIC of the sensitive strain. The resistant strain is unaffected by treatment (fully resistant),

when micR equals infinity.

The antibiotic response curve, denoted αj(c) (j either S or R), defines the effect of the antibi-

otic as a function of its concentration. In line with empirical studies [35–38], we assume a sig-

moid function relating the antibiotic-mediated death rate to the antibiotic concentration:

ajðcÞ ¼ ðcj;max � cj;minÞ

c
micj

 !k

c
micj

 !k

�
cj;min

cj;max

: ð2Þ
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The function increases from zero when the antibiotic concentration is zero (c = 0), to ψj,max

when c = micj, and to ψj,max−ψj,min (note that ψj,min < 0) when the antibiotic concentration is

much larger than micj.

The parameter ψj,max = βj − δj is the maximal growth rate of strain j. This parameter is can-

celled by antibiotic-induced death when the concentration is at the MIC. The parameter ψj,min

is negative and corresponds to the maximal decline rate of strain j, i.e., the value βj − δj −
αj(1). The parameter κ is the steepness of the antibiotic response curve. Fig 2 shows the

resulting pathogen growth rate under antibiotic treatment, i.e. βj − δj − αj(c), for our default

parameter values. For simplicity, we neglect pharmacokinetics and model a constant antibiotic

concentration during treatment.

Parameterization

Although we emphasize that our analytical results allow general insights, we explored in simu-

lations a set of parameters that is biologically plausible for an infection by Enterobacterales. As

explained above, the key parameters governing the response to antibiotics (micS, κ, ψj,min) are

informed by the empirical studies of E. coli dynamics under ciprofloxacin treatment [35] (note

that ψj,max is not a free parameter but equal to the maximal growth rate in the absence of anti-

biotic treatment). We test different values for the level of resistance (MIC value) of the resistant

strain. As has been shown before, evolution can increase the resistance levels by several orders

of magnitude, at least up to 1000-fold for certain bacteria [39]. We did not change the shape of

the antibiotic response curve for the resistant strain, in line with experimental findings [40].

Regarding demographic parameters, the birth rate of the sensitive strain is βS = 2.5 d−1. This

corresponds to a doubling time of 6–7 hours, or around four generations per day, similar to

what was measured for Salmonella enterica acute systemic infection in a murine model [41]:

2.4 d−1. We assumed that the cost of resistance decreases the birth rate of resistant strains to βR

= 2.25 d−1. Fitness is experimentally measured by competitive assays with 24 hours of growth,

which for example in the case of E. coli includes 5–6 hours of exponential growth on average.

Defining fitness as the relative exponential growth difference in six hours (exp(βR × 0.25)/exp

Fig 2. Bacterial growth rate without density-dependent effects for different antibiotic concentrations. The curves

show the effect of a biostatic (bs) and biocidal (bc) drug. For a biostatic drug, we plot max(βj − αj(c), 0) − δj (instead of

the expression written on the y-axis label, βj − δj − αj(c)). For clarity, we only show the biostatic drug effect for the

sensitive strain (black dot-dashed line), and not for the resistant strains. The effect of a biostatic drug on the resistant

strains would yield a minimal growth rate at −δR. Parameters for the sensitive antibiotic response curve are motivated

by estimates for ciprofloxacin from [35]: βS = 2.5 per day (d−1), βR = 2.25 (d−1), δS = δR = 0.5 (d−1), κ = 1.1, ψj,min =

−156 × log(10) (d−1), ψj,max = βj − δj (d−1).

https://doi.org/10.1371/journal.pcbi.1011364.g002

PLOS COMPUTATIONAL BIOLOGY Evolution of antibiotic resistance under drug mode of action and bacterial competition

PLOS Computational Biology | https://doi.org/10.1371/journal.pcbi.1011364 August 14, 2023 6 / 20

https://doi.org/10.1371/journal.pcbi.1011364.g002
https://doi.org/10.1371/journal.pcbi.1011364


(βS × 0.25)), our choice of parameters corresponds to a*6% fitness disadvantage of the resis-

tant strain, which is in line with experimental data [42]. The death rates in the absence of anti-

biotic effect are set to δS = δR = 0.5 d−1, which approximately corresponds to the bacterial

death rates estimated in liver and spleen in [41]: liver = 0.41 d−1, spleen = 0.22 d−1.

In addition, in Section G of the SI we study a second parameter set reflecting the lifestyle of

E. coli in commensalism in the gut. This parameter set assumes a faster doubling time of *90

minutes (βS = 11 d−1) [43]. The death rates are set to the same values as for infection, δS = δR =

0.5 d−1. Here, this reflects plausible values for the outflux of E. coli in the human gut corre-

sponding to a mean transit time of 2 days [44].

The parameter determining the strength of competition between bacteria is set to γS = γR =

1 d−1. A larger competition parameter increases the negative effect of the wild type on the

mutant and thus reduces the survival probability, the size of the resistant subpopulation at the

end of treatment and the carriage time. Lastly, the order of the relevant population size is set to

K = 1, 000 for computational feasibility. The value of the population size K, which can be

understood as the volume that the population inhabits, does not influence the survival proba-

bility of resistance (our main result), and influences the final resistant population size in a

straightforward way as a multiplicative factor. However, it affects the mean carriage time of the

resistant strain after the end of treatment in a non-obvious way, by modulating the magnitude

of the stochastic fluctuations.

Stochastic simulations

In the stochastic simulations, we keep track of bacterial counts, denoted by Xj (j either S or R)

and not densities, xj, as introduced above. To translate between counts and densities, we divide

the count by the order of the population size K. The relationship between densities and counts

is then given by xj = Xj/K.

The population updates in the stochastic simulations are determined by the exact Gillespie

algorithm [45]. To this end, the birth and death rates of sensitive and resistant cells are com-

puted based on the current population size by the formulas in Table 1. Random numbers to

determine the next update, birth or death of a sensitive or resistant cell, and the time of the

next update are drawn from a uniform and exponential distribution, respectively, and the pop-

ulation is updated. More details are provided in Section K in S1 Appendix.

All simulations are written in the C++ programming language and use the GNU Scientific

Library. Code and data to reproduce the figures, which have been generated with python, have

been deposited at https://github.com/pczuppon/AMRWithinHost.

Results

We compute the probability of survival of a resistant subpopulation until the end of treat-

ment, the size of the resistant subpopulation at the end of treatment and the carriage time of

the resistant strain after the end of treatment. Together, these quantities provide a compre-

hensive picture of the stochastic population dynamics of a resistant subpopulation within a

host (Fig 1).

Survival probability of the resistant strain during treatment

We compute the survival probability of a resistant strain emerging during treatment. We

assume that the resistant subpopulation establishes from a single resistant cell appearing dur-

ing treatment. This single resistant cell could arise from a de novo mutation, or equivalently

from transmission from another host during treatment, or from standing genetic variation.

For clarity, in the main text we just present the results of resistance evolution from standing
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genetic variation, that is, when one resistant cell is present at the beginning of treatment.

Results on resistance dynamics from de novo emergence are discussed in Section F in S1

Appendix. Qualitatively, the results of standing genetic variation and de novo emergence of

resistance during treatment are similar. One exception is that biostatic drugs applied at con-

centrations above the MIC of the sensitive strain result in no resistance evolution because cell

replication is fully suppressed, i.e., the survival probability is equal to zero for these concentra-

tions (Figs F-H in S1 Appendix). Another difference is that with de novo resistance the maxi-

mal survival probability is shifted to lower concentrations compared to resistance emergence

from standing genetic variation. In our main parameterization, the maximum is reached at or

below the MIC of the sensitive strain in the case of de novo emergence.

The dynamics of the resistant subpopulation emerging from a single resistant cell are well

described by a stochastic birth-death process. We note that these dynamics only depend on the

density of sensitive cells (not their absolute numbers), which means that they are independent

of the choice of the parameter K. For small numbers of resistant cells, a deterministic descrip-

tion through an ordinary differential equation is not appropriate because stochastic fluctua-

tions cannot be ignored and extinction events cannot be observed. We use a branching

process in a time-heterogeneous environment [46–48] to approximate the probability of sur-

vival until the end of treatment. This is the probability of having at least one resistant cell in

the bacterial population at the end of treatment, which we refer to as emergence of resistance.

Emergence, or survival, therefore does not imply establishment. We say that resistance estab-
lished if the resistant type has risen to a density large enough that the probability of stochastic

loss is negligible. A similar argument has been used in [3] to distinguish between emergence

and establishment (note that they refer to emergence as “occurrence” and to establishment as

“emergence”). The difference between emergence and establishment becomes visible when we

study the size of the resistant subpopulation at the end of treatment below.

In the following, we qualitatively compare the predictions for the survival probability in the

four scenarios. Theoretical predictions are derived in Section B in S1 Appendix. In general, the

survival probabilities depend on the exponential growth rates of the two strains, denoted by ρj
= βj − δj − αj(c), and the selection coefficient s = ρR − ρS. For example, under birth competition

and biocidal treatment we find the following form of the survival probability, denoted by φ, for

an infinitely long treatment (Eq. (B.35) in S1 Appendix):

φ ¼
srSrR

srRrS þ ðdR þ aRÞrSðgxSð0Þ þ sÞ
¼

1

1þ
dR þ aR

rR|fflfflfflffl{zfflfflfflffl}
stochastic death

gxSð0Þ

s
þ 1

� �

|fflfflfflfflfflfflfflfflfflffl{zfflfflfflfflfflfflfflfflfflffl}
competition

:

ð3Þ

This concise equation is our main result and illuminates the factors influencing the resistant

survival probability. It encapsulates, in a simple form, the chance that a single resistant cell sur-

vives treatment when it appears in a sensitive subpopulation of density xS(0), and the sensitive

subpopulation is declining under the action of biocidal treatment. The survival probability is

large when the factor in the denominator is small. This depends on two processes. The first is

stochastic variability: the stochastic death of resistant cells threatens the survival of the resistant

subpopulation. This is translated in mathematical terms by the contribution of death terms to

the overall growth rate (the term (δR + αR)/ρR). Of course, if resistant cells do not die (δR + αR

= 0), the survival probability is 1. The second process is competition, mediated through the

term γxS(0)/s, which depends on the initial sensitive density and the strength of competition γ.

It scales with a factor 1/s, which means that competition is alleviated when the growth rate dif-

ference between resistant and sensitive cells is large (s = ρR − ρS). Similar formula structures
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are found in both scenarios of death competition (Eqs. (B.9) and (B.13) in S1 Appendix), the

scenario of birth competition and biostatic antibiotic is not possible to resolve analytically by

our method (Eq. (B.31) in S1 Appendix). Analogous formulae can be obtained for a finite

treatment duration τ. For details, we refer to Section B in S1 Appendix.

In Fig 3, we plot the survival probabilities of the resistant subpopulation for different MICs

of the resistant strain and in the different models of density regulation and antibiotic modes of

action as defined in Table 1. The survival probability of the resistant subpopulation is maximal

for intermediate antibiotic concentrations c, in line with previous results [3, 4]. The relation-

ship quantitatively depends on the model of density dependence. The survival probability is

always higher for birth rather than death competition (compare y-axes between the different

rows in Fig 3). This is explained by a larger variance of the stochastic process when the density

affects the death rate. Intuitively, a larger variance increases stochastic fluctuations, which

reduces the survival probability for a population with large birth and death rates compared to

a population with the same deterministic growth rate but small birth and death rates [49].

By the same argument, one would expect that biocidal antibiotic treatment results in a

smaller survival probability than biostatic treatment. Interestingly though, we observe that in

all scenarios, there is just a small difference between the two antibiotic modes of action (com-

pare the blue and orange curves and symbols in Fig 3). In fact, survival probabilities tend to be

larger for biocidal drugs. The largest difference is for highly resistant strains (right column in

Fig 3). This is explained by the much stronger competitive release caused by biocidal drugs.

For biocidal drugs, increasing the antibiotic concentration continues to increase the death rate

of sensitive strains and the strength of competitive release (Fig 2, black solid line). For biostatic

drugs in contrast, the sensitive population will reach its minimal growth rate for concentra-

tions just slightly above the MIC. This deterministic effect dominates the stochastic effect

Fig 3. Survival probability of the resistant subpopulation for varying drug concentrations, MIC values, drug types and

density regulations. At the beginning of treatment the population consists of the sensitive strain at its carrying capacity and a

single resistant cell. Then treatment, either with a biostatic (blue) or biocidal (orange) antibiotic, is applied for seven days

(solid lines) or infinitely long (colored dashed lines). The vertical dashed line indicates the MIC of the sensitive strain,

micS = 0.017. The survival probability of the resistant subpopulation obtained from 106 stochastic simulations (symbols)

agrees perfectly with our theoretical predictions (Section B in S1 Appendix). The different rows show different models

(Table 1): top row = birth competition; bottom row = death competition. The columns show survival probabilities for

different values of the resistant MIC as a multiple of the sensitive MIC: left = low, middle = intermediate, right = high resistant

MIC. Parameter values are: βS = 2.5 per day (d−1), βR = 2.25 (d−1), δS = δR = 0.5 (d−1), κ = 1.1, ψj,min = −156 × log(10) (d−1), ψj,

max = βj − δj (d−1), γS = γR = 1 (d−1), K = 1, 000, XR(0) = 1, XS(0) = (βS − δS)K/γ.

https://doi.org/10.1371/journal.pcbi.1011364.g003
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explained above and explains why the survival probability of resistant strains is larger for a bio-

cidal treatment.

Predicting the antibiotic concentration that maximizes the resistant

survival probability

As just outlined, the survival probability exhibits a maximum at intermediate antibiotic con-

centrations. In the context of treatment of symptomatic infections, the exact location of this

antibiotic concentration would inform whether the “hit hard” strategy is optimal to limit resis-

tance evolution.

Despite having explicit expressions for the survival probability (Section B in S1 Appendix),

we were not able to analytically find the concentration that maximizes the survival probability

of the resistant subpopulation during treatment. However, under biocidal treatment we can

derive implicit solutions that depend on the demographic parameters. For birth competition

and biocidal treatment for example, the concentration maximizing the survival probability of

the resistant subpopulation is found by solving the following equality (details in Section C in

S1 Appendix):

a0SðcÞ
a0RðcÞ

� 1 ¼
bRðrRðcÞ � rSðcÞÞ
rRðcÞðdR þ aRðcÞÞ

þ
bRðrRðcÞ � rSðcÞÞ

2

xSð0ÞgrRðcÞðdR þ aRðcÞÞ
; ð4Þ

where a0jðcÞ denotes the derivative of the antibiotic response curve with respect to the antibiotic

concentration, and ρj = βj − δj − αj(c) is the exponential growth rate under treatment of strain

k 2 {S, R} (as in Eq (3)). A similar condition can also be derived in the scenario of a biocidal

drug and death competition (Section C in S1 Appendix).

The left-hand side of Eq (4) reflects how much more the antibiotic affects the growth of the

sensitive strain compared to the resistant strain. This difference can be positive or negative.

For low concentrations, it will be positive as the sensitive strain is more affected by the antibi-

otic than the resistant strain. As soon as the antibiotic response for the resistant strain has a

steeper negative slope than for the sensitive strain, the left-hand side will become negative. It is

not possible to generally predict when this will be the case, but one can expect this to be at con-

centrations above the MIC of the sensitive strain (at least for sigmoid antibiotic response

curves). The right-hand side is always positive as long as the selection coefficient (the growth

rate difference ρR(c) − ρS(c)) is positive, which is always the case in a neighborhood of the max-

imizing concentration. Still, it is not straightforward to predict when these fractions are large

and no general prediction of the maximizing concentration is possible.

For biostatic drugs, we are not able to derive a similar condition. For death competition,

however, we find an upper bound for the concentration maximizing the survival probability.

Denoting this concentration by ~c, it is given by the lowest concentration that ensures no fur-

ther sensitive cell replication (details in Section C in S1 Appendix):

~c ¼ inffc : bS � aSðcÞ ¼ 0g : ð5Þ

Importantly, this implies that this upper bound is independent of the level of resistance of

the resistant strain. The maximum of the survival probability remains at the same concentra-

tion, as can be verified visually in Fig 3 (lower row, blue curves). Note that if the intrinsic death

rate of sensitive cells, δS, is zero, we find ~c ¼ micS, which implies that the maximum of the

resistant survival probability is at a concentration equal to or less than the MIC of the sensitive

type (note that in Fig 3 we have δS> 0). Intuitively, this upper bound is the concentration at

which competition pressure with sensitive cells is maximally reduced. Any increase in antibi-

otic concentration will result in the same decline of the sensitive strain. Administering
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concentrations beyond this critical threshold therefore only decreases the birth rate of the

resistant strain, explaining the decline in survival probability above this critical concentration.

In the scenario of treatment with a biostatic drug and birth competition, no analytical predic-

tion on the survival-maximizing concentration seems possible.

Size of resistant subpopulation at end of treatment

We now study the size of the resistant subpopulation when it survives treatment. The probabil-

ity of survival is useful to know if any resistant subpopulation is able to emerge during treat-

ment. Yet, the amount of shedding of resistant cells from one host to another will depend not

only on the possible emergence but also on the absolute size reached by the resistant subpopu-

lation. Note that the resistant subpopulation may still continue to grow after treatment has

ended if the total carrying capacity has not been reached at that time (Fig 1).

The resistant subpopulation size at the end of treatment is typically larger in a stochastic

model than in the deterministic counterpart (compare solid and dotted lines in Fig 4). Precisely,

because we condition on survival of the resistant subpopulation, the stochastic trajectory will

increase faster initially than the deterministic trajectory until a certain threshold number of cells

is reached. This threshold is defined by the survival probability being equal to one for a resistant

subpopulation of that size [50, 51]. From that threshold level on, the dynamics are equal to the

deterministic system of ordinary differential equations. The detailed mathematical analysis is

stated in Section D in S1 Appendix. The difference between the stochastic and deterministic pre-

dictions is largest for small differences between the resistant and sensitive strain because this is

where the survival probability of the resistant strain is smallest, which speeds up the initial sto-

chastic resistance establishment dynamics the most (compared to deterministic dynamics).

In Fig 4, we compare the stochastic prediction for the size of the resistant subpopulation at

the end of treatment (solid lines) and the deterministic prediction (dotted lines) with simula-

tion results (symbols). Under birth competition, the two modes of action of antibiotics affect

Fig 4. Size of the resistant subpopulation at the end of treatment if the resistant subpopulation survives. At the onset of

treatment there is exactly one resistant cell in the population and treatment lasts for seven days. The top row shows the results

for the model of birth competition, the lower row corresponds to death competition. Dotted lines show the deterministic

prediction of the resistant subpopulation size, solid lines correspond to the stochastic prediction that incorporates a

‘correction’ due to conditioning on survival. Symbols are the mean resistant subpopulation sizes of 106 stochastic simulations

that were conditioned on survival of the resistant subpopulation. Blue and orange colors correspond to biostatic and biocidal

treatment, respectively. Parameters are as in Fig 3.

https://doi.org/10.1371/journal.pcbi.1011364.g004
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the resistant subpopulation size at the end of treatment differently (upper row in Fig 4). We

consistently find that the size of the resistant subpopulation at the end of treatment is larger

for biocidal drugs than for biostatic ones. This is again explained by the stronger competitive

release under biocidal drugs: the sensitive subpopulation declines faster under biocidal treat-

ment than under biostatic treatment (Fig A in S1 Appendix). Under death competition, the

resistant subpopulation sizes at the end of treatment do not differ substantially between the

two antibiotic types for concentrations below the sensitive MIC (lower row in Fig 4). For con-

centrations above the sensitive MIC, again the resistant subpopulation size is smaller with bio-

static than biocidal treatment. However, the difference between the two treatments is smaller

than under birth competition. This is explained by the decline of the sensitive population with

biostatic treatment being stronger under death competition than under birth competition,

which in turn increases the competitive release effect and therefore the resistant subpopulation

size.

The largest resistant subpopulation is reached for an antibiotic concentration close to the

MIC of the sensitive strain in all parameter sets and scenarios (compare dashed vertical line

with the maximum of the curves in Fig 4).

Carriage time of resistant subpopulation within a host after treatment

So far, we have studied the dynamics of a bacterial population, commensal or pathogenic, dur-

ing antibiotic treatment. Following treatment, the resistant subpopulation will, if it established,

still be present and can therefore be transmitted to other hosts. Here, we study the carriage

time of a resistant commensal strain in a host after treatment has ended. The analysis of this

last phase is less relevant for infections by pathogenic bacteria, because in this case treatment

would be continued, possibly with a different antibiotic, to reduce the pathogen load and to

cure the patient.

The carriage time of a commensal resistant subpopulation can be interpreted as the time it

takes a sensitive strain to re-establish within a host after antibiotic treatment has ended. At the

end of treatment, the antibiotic concentration is set to c = 0 and therefore αS(0) = αR(0) = 0. In

the absence of antibiotics, the resistant subpopulation will likely be replaced by the sensitive

strain because the resistant strain has a fitness cost compared to the sensitive strain. The size of

the resistant and sensitive subpopulations at the end of treatment (previous section) are the

initial conditions for this post-treatment phase. If the sensitive subpopulation has been eradi-

cated during treatment, we assume that it restarts with a single cell that is introduced from the

host environment immediately after treatment has ended. In reality, the time until re-intro-

duction of sensitive cells is a stochastic process governed by the influx rate from the

environment.

We estimate the extinction time of the resistant subpopulation, conditioned on its extinc-

tion. To characterize this phase, we apply a timescale separation of the fast ecological and slow

evolutionary dynamics, which reduces the problem to a single dimension [52, 53]. We follow

the frequency dynamics of the resistant type in the population, while the overall population

size is assumed to remain (approximately) constant. A timescale separation of the population

size and the frequency dynamics applies if the difference between the resistant and sensitive

strains is small or even negligible compared to the ecological rates [54, 55]. In our standard

parameter set, the evolutionary rate is proportional to the cost of resistance βS − βR. This cost is

10% of the ecological rate βk − δk, which translates to 6% in terms of the empirical fitness cost

in [42], as outlined in the Parameterization section above. We first outline the deterministic

population dynamics and then comment on the differences with a fully stochastic version. The

deterministic population dynamics unfold as follows (Fig 1): first, on the fast timescale, the
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overall population size, which is the sum of sensitive and resistant cells, will rebound to the

carrying capacity very quickly. Once at carrying capacity, the population will slowly move

towards the extinction boundary of the resistant strain due to its fitness disadvantage. In other

words, the population size remains approximately constant while the frequency of the sensitive

strain increases. With demographic fluctuations, which are due to stochasticity in the birth

and death processes, extinction of the resistant strain is not certain as the sensitive strain can

go extinct on its way to re-establishment. Still, we assume that eventually the sensitive strain

will replace the resistant subpopulation. Biologically, this is motivated by a constant influx of

sensitive cells, so that one of these repeated establishment attempts will eventually be success-

ful. We therefore condition the stochastic process on extinction of the resistant subpopulation.

Because of this conditioning, the carriage will in reality be at least as long as our estimate.

Applying results from one-dimensional stochastic diffusion theory [50, 56, 57], we compute

the mean extinction time of the resistant population (mathematical details are stated in Section

E in S1 Appendix).

The comparison between our theoretical prediction and the simulation results in Fig 5

shows that the timescale separation in our competitive Lotka-Volterra model captures well the

simulation results, even for this relatively large evolutionary rate compared to the ecological

processes. At low antibiotic concentrations, the carriage time is comparable for the two types

of antibiotics. At concentrations above the sensitive MIC (vertical dashed line in Fig 5), the

carriage time is larger after biocidal treatment than after biostatic treatment. This is explained

by a larger relative frequency of the resistant strain in the bacterial population at the end of

treatment (Fig C in S1 Appendix). This difference arises again because the sensitive population

size decreases faster with biocidal treatment than with biostatic treatment (Fig A in S1 Appen-

dix). This increases the frequency of the resistant strain directly by the lower sensitive popula-

tion size and indirectly through a larger competitive release effect, which may result in a

higher resistant population size at the end of treatment.

Stochastic effects do not reduce much the carriage time compared to a deterministic analy-

sis (Fig D in S1 Appendix). The carriage time of resistant strains is substantially reduced by

Fig 5. Mean carriage time of the resistant subpopulation in a host (including the treatment time τ = 7). The carriage time

is set to zero if the resistant subpopulation did not survive antibiotic treatment. Discontinuities are a result of discontinuities in

the estimate of the resistant subpopulation size at the end of treatment (discussion in Section D in S1 Appendix). The

theoretical predictions (lines) are derived in Section E. Symbols show the average carriage time of 106 stochastic simulations.

The color coding and figure structure is the same as in the previous figures. Parameters are the same as in Fig 3.

https://doi.org/10.1371/journal.pcbi.1011364.g005
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stochasticity only when the variance of the stochastic process is large. This is the case under

death competition or when the cost of resistance is smaller than in the default parameter set

(Fig E in S1 Appendix).

Discussion

We developed a fully stochastic model describing the dynamics of antibiotic resistance in a

treated host. We mainly analyzed the survival probability of the resistant strain until the end of

treatment. We also derived results on the resistant subpopulation size at the end of treatment.

These results apply to commensal bacteria as well as to pathogens. Additionally, we computed

the time after treatment until a commensal is replaced by an antibiotic-sensitive strain due to

competition, which we refer to as the carriage time.

Generally, the survival probability, size of resistant subpopulation, and carriage time are all

maximized at an intermediate antibiotic concentration (Figs 3–5) in line with previous studies

[3, 4]. Our main new results are explicit analytical formulae for the probability of survival and

predictions for the antibiotic concentration that maximizes this probability. We find that in

the scenario of biostatic treatment and death competition, this maximizing concentration is

very close to, not necessarily below, the MIC of the sensitive strain, and independent of the

resistant pharmacodynamic parameters. The distance between the sensitive MIC and the max-

imizing concentration is determined by the death rate of the sensitive strain and the shape of

the antibiotic response curve of the sensitive strain. Precisely, the smaller the death rate of the

sensitive strain, the closer is this maximizing concentration to the sensitive MIC. Under bio-

cidal treatment, the condition for the concentration maximizing resistant survival cannot be

evaluated in all generality and depends in particular on the shape of the antibiotic response

curve (Eq (4)). We find in extensive simulations that the concentration maximizing the resis-

tant survival probability is always close to the sensitive MIC. This was true in our default and

alternative parameter set (Section G in S1 Appendix), for a broad range of sigmoid antibiotic

response curves (Section I in S1 Appendix), in an alternative model where the bacterial popu-

lation is limited by the host’s immune response instead of intraspecific competition (Section J

in S1 Appendix) and in previous models, e.g. [3, 4, 11]. If patients are generally prescribed anti-

biotic doses at or above the MIC of the sensitive drug, this implies that to limit resistance emer-

gence, “hitting hard” (at the maximum tolerable dose) is best in the case of biostatic drugs and

seems often to be best in the case of biocidal drugs. More importantly, hitting hard is best not

only to limit the probability of emergence of resistance, but also to limit the growth of the resis-

tant subpopulation (Fig 4).

One originality of our model is that we describe in detail the bacterial life cycle including

density regulation on birth vs. death, and antibiotic effect on birth vs. death (see [27] for similar

models). These considerations are particularly important in stochastic models. One interesting

result is that the probability of survival is larger when competition reduces the birth rate. This

is explained by a reduction in demographic stochasticity from this type of density regulation

compared to death competition. Precisely, in two scenarios with the same deterministic

dynamics, as is the case with birth and death competition for a growing resistant subpopula-

tion, in the scenario with the lower birth and death rates, in our case birth competition, the sub-

population is less likely to be lost due to demographic stochasticity [49]. Another interesting

result is that biocidal drugs lead to stronger competitive release than biostatic drugs. Biocidal

drugs eliminate the sensitive strain faster by driving the death rate to very large values, while

the birth rate, which is affected by biostatic drugs, can only be reduced to zero (Fig 2 and Fig A

in S1 Appendix). As a consequence, the probability of emergence of resistance, resistant sub-

population size and overall carriage time of resistant pathogens are larger for biocidal drugs.
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This result that biostatic drugs suppress resistance evolution more than biocidal drugs,

derived when resistant cells are already present at the onset of treatment (Fig 3), is reinforced

when resistance instead evolves de novo (Section F in S1 Appendix). As biostatic drugs suppress

cell replication, they also limit the mutational input compared to biocidal drugs. These compari-

sons between biostatic and biocidal drugs corroborate and extend findings from another theo-

retical study that investigated de novo resistance evolution under periodic treatment with

different drug types [27]. The authors found that infection clearance is more likely under bio-

cidal treatment. Yet, perfect biostatic drugs, i.e. drugs that fully suppress cellular division, are

superior in suppression of de novo resistance evolution. These conflicting theoretical recom-

mendations suggest that it might be complicated to translate our results to the clinical setting.

The simple and robust result emerging from theory on the superior impact of biocidal drugs in

faster clearance of the sensitive strain is not even verified in recent clinical studies. Several meta-

analyses found no difference in treatment success between biostatic and biocidal drugs [58–60].

It is possible that drugs that are in theory biostatic, in practice also directly kill bacteria at clini-

cally relevant doses [59]. In vitro experiments might be a promising next step to test the conflict-

ing impacts of different modes of action on clearance and resistance evolution (see below).

In our parameterization, we assumed high drug resistance (large MIC differences between

resistant and sensitive cells), which leads to large survival probabilities (up to 60%) and limited

stochastic effects. We also assumed a large, but realistic, cost of resistance (* 6 − 10% in main

text and S1 Appendix) [42], which reduced stochastic effects in the post-treatment phase. All

stochastic effects would be stronger for smaller differences between the drug-sensitive and

-resistant cells, i.e., weak resistance and weak cost of resistance. Precisely, the survival probabil-

ity would be smaller and the differences between different antibiotic modes of action and den-

sity dependence would be larger. A smaller cost of resistance will always prolong the carriage

time (Fig E in S1 Appendix).

Our model has several limitations. We model a single antibiotic course of fixed duration

(e.g. seven days). Variation in treatment duration will affect the quantitative values, but not the

qualitative pattern of the studied quantities. For example, compare the dashed and solid col-

ored lines in Fig 3 that correspond to an infinite treatment and a seven day treatment, respec-

tively. Importantly, the concentration maximizing the risk of resistance evolution remains

unchanged. The last phase examining the duration of carriage of the resistant strain is less rele-

vant if we consider pathogenic bacteria. In this case, as the total bacterial population size

quickly recovers to pre-treatment values after the end of treatment (Fig 1), it is likely that the

host would undergo a second antibiotic course to cure the disease. However, bystander expo-

sure to antibiotics in carriage (not infection), where our post-treatment phase applies, is the

most common context of exposure for several important bacterial species [21]. Last, we assume

that the antibiotic concentration is constant throughout treatment. In reality, the antibiotic

concentration might fluctuate in time, which would impact the probability of emergence and

the final population size. Models with explicit pharmacokinetics did not directly study the

probability of resistance emergence and establishment in comparison to a scenario with con-

stant concentration of a single drug [28, 61–63]. It is therefore difficult to speculate how

explicit pharmacokinetics would affect our results.

Our theoretical work suggests several interesting experiments. Some of our findings have in

fact already been tested experimentally. A larger resistant subpopulation size at the beginning

of treatment increases the probability of survival and establishment of the resistant strain and

the subpopulation size at the end of treatment ([26] and Eq. (B.2) in S1 Appendix). Another

study investigated the population dynamics of a pathogen population under different drug

modes of action and found that biocidal treatment reduces the population size more strongly

than biostatic treatment ([64] and our Fig A in S1 Appendix). Based on our theoretical results,

PLOS COMPUTATIONAL BIOLOGY Evolution of antibiotic resistance under drug mode of action and bacterial competition

PLOS Computational Biology | https://doi.org/10.1371/journal.pcbi.1011364 August 14, 2023 15 / 20

https://doi.org/10.1371/journal.pcbi.1011364


further in vitro experiments could be conducted to characterize the probability of emergence

of resistance depending on drug concentration, the model of density regulation and the drug

mode of action. We predict that the differences between the two drug modes of action are

strongest when density affects the birth rate (Fig 4).

The validity of our prediction on the resistant survival probability in Eq (3) can also be

tested. To this end, one needs to expose sensitive cells to antibiotics, and measure the survival

probability of an introduced resistant cell as a function of the antibiotic concentration. In paral-

lel, one can evaluate all terms of Eq (3) through simple in vitro experiments. The exponential

growth rates of both types of cells (ρS, ρR), as well as the death rate of antibiotic resistant bacte-

ria (αR), can all be measured in vitro at different antibiotic concentrations. The competition

coefficient γ need not be measured provided that the starting sensitive population is at station-

ary phase equilibrium (the term γxS(0) is equal to βS − δS). Our prediction that biostatic drugs

always have a maximizing concentration at (or slightly above) the sensitive MIC, irrespective of

the level of resistance, can even be tested without knowledge of the demographic parameters.

The within-host dynamics of antimicrobial resistance underpin the between-host epidemio-

logical dynamics of resistance. In fact, the dynamics of colonization by resistant strains and the

slow dynamics of clearance of the resistant strain after treatment are key determinants of the

intermediate equilibrium frequency reached by the resistant strain in a host population [65].

Here, we produced mathematical results that help bridge the gap between the two scales. All

quantities derived here (probability of survival, population size reached, carriage time) are rele-

vant to epidemiological dynamics and determine the total shedding of resistance. Stochasticity

implies that not all events of transmission of a resistant strain lead to survival and establishment

of a resistant subpopulation; when establishment is successful, however, a greater resistant sub-

population is reached than in the equivalent deterministic model. These two effects may

approximately compensate in terms of shedding of resistance: accounting for stochasticity leads

to fewer hosts colonized by resistant strains, but to more resistance transmission per success-

fully colonized host. The carriage time is reduced by stochasticity, but this reduction is small for

our choice of parameters (highly resistant strains with a strong cost; Figs D-E in S1 Appendix).

In conclusion, we developed a fully stochastic mathematical description of the emergence

of a resistant subpopulation during antibiotic treatment. This work could motivate experi-

ments studying how drug resistance evolves from small populations of resistant cells, and bet-

ter epidemiological models explicitly linking the within and between host scales.
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