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Abstract

The oil and gas sector is the second largest anthropogenic emitter of methane,
which is responsible for approximately 25% of global warming since pre-industrial
times [1]. In order to mitigate methane atmospheric emissions from oil and gas
industry, the potential emitting infrastructure must be monitored. Initiatives such as
the Methane Alert and Response System (MARS), launched by the United Nations
Environment Program, aim to locate significant emissions events, alert relevant
stakeholders, as well as monitor and track progress in mitigation efforts. To achieve
this goal, an automated solution is needed for consistent monitoring across multiple
oil and gas basins around the world. Most methane emissions analysis studies
propose post-emission analysis. The works and future guidelines presented in this
paper aim to provide an automated collection of informed methane emissions by
oil and gas site and infrastructure which are necessary to dress emission profile
in near real time. This proposed framework also permits to create action margins
to reduce methane emissions by passing from post methane emissions analysis to
forecasting methods.

1 Introduction

Atmospheric methane accounts for about a quarter of global warming since pre-industrial times,
and the oil and gas sector is the second largest anthropogenic source of methane. To meet the
mitigation targets set out in the Global Methane Commitment, governments need to implement
effective mitigation measures at the scale and pace required. Current regulations are based on national
methane emissions inventories, which studies show significantly underestimate methane sources in all
emissions sectors. Most of the discrepancy in emissions estimates is due to the failure to include super-
emitters in emissions inventories. Such sources are characterized by high emission rates and account
for 40% of total methane emissions on average. Emission estimates can be greatly improved by taking
advantage of the increasing availability of methane emission data. This can be achieved by using and
combining data from high-resolution satellites to measure methane concentrations, which has the
advantage of being the more cost-effective tool for monitoring methane emissions. The International
Methane Emissions Observatory (IMEO), launched by the United Nations Environment Program, is
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Figure 1: Emissions profile determination process. Satellite images @Google Earth

an initiative that aims to create a global public dataset of empirically verified methane emissions by
integrating and combining data primarily from many sources, including various point-source satellite
data sources. However, once these methane emissions are identified and quantified globally, they
must be traceable to the levels of the O&G supply chain, site, operator, and infrastructure at which
they originated in order to understand their origins and thus better tailor regulations and mitigation
actions. The Methane Alert and Response System (MARS), launched by the UN environmental
program at COP27, aims to notify relevant governments and companies of major emissions events in
or near their jurisdictions or operations, which could help stop unwanted methane leaks more quickly.
To monitor methane emissions in various O&G basins around the world, this task must be automated
using machine learning algorithms.

Indeed, as illustrated on the Figure 1, artificial intelligence could play a critical role at several
stages of the worldwide methane emissions monitoring process by permitting a nearly continuous
monitoring in near real time. Various studies [2, 3, 4, 5, 6, 7] using deep learning algorithms propose
to automatically detect and quantify methane plumes from multispectral and hyperspectral satellite
data. Other studies have examined O&G site type detection[8, 9] and infrastructure detection[10].
These two main steps should enable the generation of geographical coordinates for both methane
plumes and their corresponding infrastructures. An automatic matching process is also required to
associate all the plumes detected with the emitting infrastructures. Over a medium-to-long-term
period, all these steps should make it possible to obtain time series of methane emission levels by
infrastructure, site, operator, region and country. Obtaining such data over the long term will make
it possible to characterize and predict emissions behavior. In this paper, focus will be given to the
detection of infrastructure and the matching between infrastructures and methane plumes.

2 Oil and Gas infrastructure automated detection

Sites in the oil and gas industry that contain wells, storage tanks, or compressor infrastructures
are considered to be significant contributors of fugitive emissions and therefore form the targets
that we wish to automatically detect. Existing approaches [11, 12, 13, 14, 15, 16, 10, 17, 18] to oil
and gas infrastructure detection typically do not allow for the simultaneous detection of multiple
infrastructures. One of our recent study[19] enabling automatic detection of compressors, tanks, and
well infrastructures simultaneously and compare different supervised object detection algorithms.

Database A database (OG)1 of various high-resolution aerial images from 15 cm to 1 m per pixel
(Google Earth) of O&G infrastructures was developed specifically for these tests and contains for
each image the labelled bounding box of the respective infrastructure (930 images, 1951 objects).
These images were extracted from the Permian Basin, the largest oil and gas basin in the world, where
the distance between sites is very small (so that a maximum of infrastructures can be captured within
a reduced number of images).

For these tests, 3 categories of object detection algorithms were used: single-stage detector
(YOLO)[20], two-stage detector (FASTER-RCNN)[21] and transformer-based algorithm (DETR)[22].
Each of these algorithms was pre-trained on the COCO dataset [23] (consisting of a large set of
annotated common objects) and fine-tuned on the OG database.

1https://universe.roboflow.com/thesis-ffaad/og-otgc5
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Figure 2: Detection results of YOLO, FASTER-RCNN, DETR on 4 different images. Source:
@Google Earth

Results tend to show a better general performance for the YOLO model, with an average accuracy
of over 90% (comparisons of algorithms detection illustrated in Figure 2 compare to 85,5% for DETR
and 48,8 for FASTER-RCNN. Through our tests, YOLO confirms its general ability to detect and
recognize O&G infrastructures with a quite high reliability. However, certain parameters remain to
be determined:

1. The limit of spatial resolution that allows these algorithms to detect infrastructures;
2. The replicability of these algorithms in other O&G basin with non-similar infrastructures.

Point (1) would make clear which satellite data can be used to apply these algorithms by testing our
train model on images with different categories of spatial resolution. As for point (2), replicability can
be tested using transfer learning from pre-trained Permian models applied to new basins. Otherwise,
these models would have to be re-trained on images from each basin. However, the task of extracting
and labeling a sufficient set of images/objects is time consuming, so a possible solution could be to
test few-shot and self-supervised learning algorithm which requires only few training images.

3 Automated matching between methane plumes and infrastructures

In one of our studies[24], we focused on using data from the open-source PermianMAP project2,
which provides access to a list of detected plumes associated with their geographic coordinates in
O&G sites (identified by their position in the supply chain) and the concerned operator for each of
these sites in the Permian Basin (USA). These data enabled the development of O&GProfile, the
first automated method to link all methane plumes detected from high resolution satellite to sites
parts of oil and gas supply chain (extraction, processing and production) and the respective operator.
As illustrated on the Figure 3, O&GProfile is based on the use of unsupervised machine learning
methods for clustering purposes (DBSCAN)[25] and a semi-automatic correction method. This is
the first method that allows methane detection to be automatically associated with the type of site
and operator causing the methane leakage. These mappings allow for emission profiling by site and
operator by combining point satellite and PermianMAP tagged detections.

Results O&GProfile is able to correctly assign satellite locations of point sources 98.8% of the
time, and the semi-automatic correction process allows to achieve 100% of correct assignments.

2https://www.permianmap.org
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Figure 3: O&G Profile method: Automated assignment of detected methane plume to O&G sites
type and operators using DBSCAN and semi-automatic correction method

O&GProfile may prove useful to continue monitoring methane emissions at specific sites that were
covered in previous ground survey, allowing surveys to continue over time. However, this method is
completely dependent on previous studies and therefore cannot be applied in regions where survey
and measurement data do not exist.

4 Perspectives

Infrastructure detection: coordinates extraction The previous as shown that current state of
the art object detection algorithms are able to recognize with a quite high confidence oil and gas
infrastructure. However, the previous test were conducted on images which do not permit to access
and collect the geographic coordinates of each detected infrastructures (which are needed to be
matched with methane plumes). By adapting object detection algorithm to satellite data (Mainly by
keeping the geographic coordinate data of each pixel) scans of the O&G basins in the world could
permits to obtain a list of infrastructures, each with its type and bounding box coordinates.

Plumes and infrastructures coordinates matching Once the list of infrastructures and plumes
with their locations is established, an unsupervised spatial clustering method similar to that used
for O&GProfile could be used to connect the plumes to the nearest infrastructure (assumed to be
their origin). It should be noted, however, that there is some uncertainty in determining the origin
of an exhaust plume (generally quantified by inversion models), which should be considered when
assigning it to the nearest infrastructure.

Profiling and Forecasting By associating the detected plumes (with the amount of methane
emissions) with the infrastructures, we can obtain a time series of methane emissions for each
infrastructure. Acquiring a sufficiently long time series will allow us to capture the emission behavior
of each infrastructure and thus establish its emission profile. Access to such a time series should
allow us to move from analyzing emissions after the fact to predicting them, which could prevent
many methane leakages, for example, with tendency analysis for methane leaks forecasting and also
spatio-temporal forecasting of methane super emitters.
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